
A UML Extension for Designing Usable User Experiences for Web Applications

Vito Perrone1, Luca Mainetti2, Paolo Paolini1

1 HOC (Hypermedia Open Center), Politecnico di Milano, Italy
perrone@elet.polimi.it

2 SET-Lab (Software Engineering and Telemedia),
 Università degli Studi di Lecce, Italy
luca.mainetti@unile.it

Abstract

In this paper we introduce our framework for
supporting the entire development of interaction and data
intensive (typically Web) applications and describe one of
the composing methods addressing the design of the user
experience. Current proposals, both in the academic and
industrial communities addressing such a kind of
application, exhibit different weaknesses and strengths
but are both characterized by poor acceptance by the
current practice. Instead of proposing a new, richer
modelling method, we have extracted and reused what
good has been done in both the academic and industrial
worlds in order to meet potential stakeholders’
requirements. The whole approach has been shaped by
the domain analysis and addresses the development of
Web applications from requirements elicitation/analysis
to software design in four phases. One of these phases,
the user experience design named E-WOOD, is here de-
tailed. Its specific stakeholders and requirements are here
described. E-WOOD extends a UML proposal, coming
from the industrial world, reusing web engineering
principles coming from the academic experience. It
introduces a reasoning oriented, user centered semantics
which can be used for designing application better fitting
stakeholders’ goals and closer to final user expectations.

1. Introduction

Modern Web applications are assuming more and
more a key role in most of the computer mediated human
activities. ECommerce, eBanking, eFinancing, eLearning
and so forth, are only some important fields where the
success of the business is strictly related to the quality of
the Web application acting as mediator towards final
users. As far as shown in [1], in these applications user
effectiveness and stakeholders’ goals satisfaction are
crucial for their quality. Typically, such applications
provide users with a large amount of different
information (data intensive applications) and integrate
operations and business processes. As distinctive
characteristics, all these services are accessed in a highly
interactive way exploiting the navigational paradigm.
Furthermore, currently services are more and more

offered exploiting different delivery channels. These
characteristics, together with the growing complexity of
the delivered applications, have considerably increased
the intrinsic complexity of such a software category.

Our assumption, quite agreed by the academic and
industrial communities [2], is that quality for such
applications is strictly related to a good design. As a
consequence of the above considerations, it is clear that in
this stage industry needs systematic design methods that
could help in assuring the required quality [3].

Looking at the current methods addressing the design
of Web applications, we discern two different
communities. From the one side, we have the academic
community, in particular the Web engineering one, where
a considerable number of specific design methods have
been proposed along the last decade [4-11]. Generally
speaking and neglecting some peculiarities, most of these
methods address the conceptual design [4] of Web
applications. They are characterized by rich semantics
coping with numerous peculiarities of Web applications.
On the other side, there is the UML community where
representative companies from the industrial world are
employing a massive effort [17,18] in defining a
reference modelling language for supporting the
development process of software systems. UML native
methods address the logical design [4] of an application,
in that most of the modelling primitives abstract from
concrete implementation artefacts. Being their modelling
primitives closely related to concrete counterparts, these
methods result easier to be understood and used by
technicians as support for the implementation activities.
On the contrary, when referring to the Web application
domain, where the user interaction with the system plays
a key role, it is recognized that UML support is quite
vague [5]. It is mostly due to the fact UML lacks of a
proper semantics which should help designers during the
analysis activities to devise a user oriented application.
Confirming this trend, the most recognized UML method
proposed by the industrial community, that is, the WAE
[12] introduce ah-hoc primitives for modelling typical
software components of a Web applications, like client
page, server page, frameset, etc. Evidently, these
concepts do not belong to the user experiences so they
cannot be used to reason on how to improve it.

Conversely, they can be effectively used to reason about
the software architecture before coding it.

Besides their peculiar characteristics, the adopted

modelling languages, primitives, strengths and
weaknesses, both communities advocate the MDA as a
way to improve the final product quality. However, they
front this approach with a different philosophy. Academic
proposals aim at designing what final users should
perceive, carefully matching this design against the
achieved requirements. Conversely, they often neglect
architectural concerns. In other words, we can say they
embrace the idea that quality is mostly decided at
conceptual level so they typically pass from the
conceptual design to the code. This position is also
evident by the fact that most of these approaches propose
support tools that can produce an application prototype
(usually an evolutionary one) from the conceptual design.
On the other hand, industrial approaches pay more
attention to the correct design of the software modules
that compose the system architecture often overcoming an
accurate design of the user perspective. Most of them
analyze user requirements by means of use case diagrams
[18] describing which functionalities are supposed to be
provided by the system to its users. Then, the user
interaction with the system is detailed by means of
sequences or collaboration diagrams [18] that describe the
dynamic properties of these functionalities in some
relevant scenario. On the basis of such an analysis and the
chosen architecture, designers have to define the software
that will meet the achieved requirements. In other words,
we can say they embrace the idea that quality can be
assured by a good analysis and if suitable software
models are crafted.

Recent studies [3, 14, 15, 16] demonstrate that in the

Web domain most of the current proposals have only
slightly impacted on the actual practice. What are the
reasons? Which of the above philosophies should be
adopted to define a more suitable design model? Various
can be the factors that hinder the adoption of systematic
approaches for modeling.

In this light, the methodological framework we

introduce in this paper aims at embodying the advantages
of the two mentioned philosophies. It is composed by
four phases embracing the web application development
lifecycle from analysis to software specification. Each
phase adopts a specific design model which has been
defined on the basis of an accurate analysis of its
stakeholders’ goals. In particular, in this paper we
describe our proposal for designing the user experience.
This method, named E-WOOD, extends the Conallen’s
UML proposal for designing the user experience – UX

[12] but embodies the semantics of a known academic
method, called W2000 [25, 26], we are familiar to.

To illustrate vividly the approach and in particular the

user experience modelling method, we will use real
examples from the design of a running Web application
which we have designed and developed: the Website
“Munch und Berlin” (www.munchundberlin.org). It has
been originally realized for the State Museum in Berlin
within the HELP EU-funded project with the aim of
providing to the general public (including users with
visual disabilities) a Website promoting the temporary
exhibition of Evard Munch’s prints. Being a real, even if
relatively small-sized, application, it is quite suitable to
illustrate the main aspects of our approach.

2. Web application design: panorama and
related works

Along the last ten years a number of methods have
been proposed for supporting the design of Web
applications. In the following of this section we briefly
resume the main characteristics of these methods from
two perspectives – the academia and the industry – and
considering their role with respect to the analysis and
software design phases. Looking at the academic
community, some of the most known existing
methodologies are HDM [6], W2000 [25, 26], OO-HDM
[8], WebML [10], UWE [11], WSDM [9], OO-H [13],
etc. Roughly speaking, they specify the design of a Web
application at the conceptual level, neglecting
technological aspects and constraints. Besides technical
(minor) differences, these methods share lots of common
features. All of them are based upon an information-
navigation paradigm to describe the user interaction,
recognize the importance of the semantics as guidance for
conceiving the application design and share the
fundamental principle of separation of concerns. On the
other hand, they differ one with another in terms of
proposed design primitives, notation and support tolls. All
these methods Following this principle, and adopting the
W2000 [25, 26] terminology1, the design of a Web
application is achieved in four dimensions: Information
and Access Structures design, defining the basic
conceptual information units (entities) as perceived by the
user and the navigational infrastructure in terms of
semantics associations (between related entities) and

1 In this paper we use W2000 as example of academic
design method since it has been developed in our research
group so we are very familiar to its terminology.
Nevertheless, we are firmly convinced all our
considerations are quite independent from it and generic
with the respect of other similar design methods.

access structures (navigational paths enabling users reach
interesting information units); Operations and Business
Process design, defining operations (e.g. “add to
shopping cart”) and processes (e.g. “check-out”,
“registration”) within a Web application; Navigation
design, defining the navigation network allowing users
browse information and access structures and execute
operations and processes; Presentation design, defining
the page structure in terms of lay-out aspects and
graphical elements and the page organization and
navigation.

Although, if properly used, current academic methods
have the potentiality of enabling designers conceive high
quality (say usable and effective) applications, they
suffer, as stated in a recent study [3], of some
inefficiencies which contribute to a poor acceptance from
the industrial environment. Owning sophisticated and
semantically rich primitives often it takes too much effort
and time in order to learn and start using the methods.
Modelling purpose is only badly or vaguely specified with
the respect of the overall development process. It is often
claimed models are intended as support tool during the
early analysis activities, but they then their models are
also used to automatically generate the running
application [13], [10]. Cumbersome design documents are
generally produced as output of the design activities.
These documents risk being hard to read and use both
during the analysis and the following implementation
activities. Proprietary concepts and notation are
generally proposed (except a few cases like [11]) by each
method increasing the learning time and thus the negative
perception of industry people [21]. Ad-hoc and in-house
made support tools are generally proposed instead of
commercial ones.

With regard to the second category, that is, methods
proposed in by the industrial world, UML is definitively
considered the standard de-facto in the design practice.
Referring to the web application domain, the only
recognized method coming from the industrial
environment is the one proposed by Conallen in [12],[20],
that is, the Web Application Extension (WAE). WAE,
like other UML native methods, adopts an
implementation oriented approach, in that most of the
modelling primitives abstract from concrete
implementation artefacts. Examples of WAE primitives
are client page, sever page, style sheet, frameset, etc,
obtained by stereotyping UML classes and link, redirect,
submit, etc., obtained stereotyping UML associations.
Due to this characteristic, they are quite easy to
understand and use by technicians for supporting the
software design activities and broadly supported by
commercial tools. On the other hand, concerning WEB
applications, it is known [5] that UML lacks of proper
semantics for supporting the design of communication

and navigation aspects both during the analysis and
design phases.

Finally, the topic of explicitly considering stakeholders

and their requirements for shaping a suitable design
method has been barely fronted by existing approaches.
In most of examined literature when a new modelling
method is proposed, the well-known and high level
software engineering principles are, at most, cited. For
example in [5] it is argued that the next generation of OO
methods “…should be sufficiently user-friendly to all
kinds of possible stakeholders. That is, for all
stakeholders of any model, its relevant parts expressed in
the modeling language, must be understandable, must be
clear even. For the modeler as well as for all other
persons involved in the modeling activity, any model must
be expressive, precise and clear as well”. However,
besides these well known software engineering principles,
we also advocate that, due to the diversity of all possible
stakeholders, the lack of an explicit consideration of what
every potential stakeholder expects by the modeling
method could be one of the main reasons of the existing
gap between current proposals and industry practice.

3. Analyzing Stakeholders’ Requirements

To be successful, design methods, as well as any
engineering product, should accomplish the needs and
expectations of its potential stakeholders. Defining a new
method requires an accurate analysis of goals and
requirements of their users, i.e. the practitioners who
daily conceive, develop and deploy applications, and
other potential stakeholders whose needs may influence
the method definition. Neglecting stakeholders’ needs can
bring to lack of attention towards these engineering
products (design models) by the industrial practice while
fitness to requirements can drastically increase their
acceptability at wider level. On this basis, we have
defined our approach by taking explicitly into account its
potential stakeholders. It is composed by four phases
embracing the web application development lifecycle
from analysis to software specification. Each phase
adopts a specific design model which has been defined on
the basis of an accurate analysis of its stakeholders’ goals.
In this paper we focus on the conceptual design of the
user experience which is usually achieved between the
analysis activities and the software design.

3.1 Requirements for a conceptual model
addressing the user experience design
Conceptual models are used at the beginning of the
overall design activities, as intended in the software
engineering discipline, which will finally lead to the
detailed specification of the software modules to be

coded. In this phase, the main goal of conceptual models
is to clearly define the solution (application to-be)
characteristics, even if still avoiding implementation
details. In the following potential stakeholders (the most
relevant ones) and their relative requirements, gathered in
our experience on the field, are described. It should be
noticed that not all the described stakeholders are also
active users of design method, but their needs can
indirectly influence the method definition.
Designers: are in charge of the system design. Depending
on the reference community, the terminology adopted
within a company, the kind of application, and so on,
different professional figures (e.g. information architects,
interaction and usability experts, and so on) might be
attributed to play this role. Usually several designers
work both in the analysis and design phases thus first goal
is to ease the communication with the analysis activities
and among different designers in the design activities.
For the former, some form of guidance should be
provided to support the passage from the early solution
devised in the analysis activities to the actual design of
the system. This mapping should compromise between
rigour – to enable some form of automatic passage – and
flexibility – to not constraint choices designers have to
perform in the design phase. In this phase, they have to
design models very close to the application to-be, thus
inevitably these models are rich in details and the
specification is often composed by several heterogeneous
diagrams representing different application concerns. To
master the overall design complexity (avoiding naive
designers feel lost) the method should provide an explicit
framing strategy. Furthermore, model drawing is time-
consuming activity that needs proper tool support. In
order to be used in professional environments, support
tools should adhere to the commercial standards. Since
building such tools is an expensive activity, new
modeling methods should be defined so that existing
commercial tools can be exploited.
Usability experts and Graphical designers: depending
on project parameters like those mentioned above, these
roles could be attributed to designers or other
professionals with non technical skills. However, in WEB
applications these aspects are taking more and more
importance and require specific competences. Whatever
is the case, these figures are interested in carefully
defining and reviewing usability and graphical aspects
of the application to-be, thus concerns impacting usability
and layout/graphical aspects should be explicitly modeled
and made easy to access. These experts are used to
analyze and discuss about usability and graphical
concerns by means of mock-up or other similar
representations that closely reproduce the application to
be. Thus, to achieve an effective communication with
usability and graphical experts, models should also look
as close as possible to the actual application.

Software designers and Implementers: define and
implement the software modules that will actually realize,
on the basis of the chosen system architecture, the
application specified by the conceptual models. From our
experience on the field, a recognized lack of existing
conceptual models is that they require a considerable
effort to be mapped into software artifacts. Often, it is
hard to understand which diagrams should be considered
for obtaining a single software artifact and, most of times,
several different diagrams must be composed. For
example in the web domain, to design a server page,
software designers have to refer to information models
for the page data, operation and business process models
for the business logic, navigation models for the
navigation logic and presentation models for graphical
and layout aspects. Software designers consider this
activity being time consuming and, if not properly
supported by tools, a possible source of mapping
mistakes. On the basis of these considerations, models
should embody modeling primitives as closer as possible
to concrete counterparts and that as less as possible
diagrams should be considered to define a software
component. Also the design documentation to be used for
supporting the implementation activities should be
concise and easy to read (many cross-references among
different diagrams are considered highly annoying).
Another highly desirable feature a modeling method
should own, for these stakeholder types, is to provide
predefined mapping strategies – let’s say mapping
patterns – towards the most known architectural patterns.
Finally, most of the interviewed software designers and
implementers were already used to the UML and related
CASE tools, thus they showed a remarkable preference in
having conceptual models described in UML-like
notation and following the UML philosophy, that is,
modeling methods should belong to the UML family.
Product manager: this stakeholder type represents the
most important client counterpart dealing with the
application design, and act as interface of decision
makers, opinion makers, clients and content/domain
experts. Product managers are usually in charge of
assuring the envisioned application will be able to satisfy
the client company expectations, but they also are
responsible of a number of other specific tasks. Among
others, one the most important is to set up the editorial
chain. Their main, somehow opposite, goals are to take
the control of the overall application at a glance and to
get details of specific aspects (related to their tasks).
Desirable features for the method should be to review
models at different levels of detail, to embody most of the
needed information to set up the editorial chain and to
enable some form of requirements tracking.
Final Users: this stakeholder category is the more
important for tuning the application interaction even if it
is also the less accessible for several reasons. In fact, they

usually are not part of the client, are barely identifiable
and their characteristics can vary remarkably.
Nevertheless, gathering some feedback from potential
users before the coding activities start can bring several
advantages since modifying models is much less
expensive than modifying code. From our experience
[27], a discussion with users mediated by models is
usually ineffective because they need to see and handle
application as it were running. Application prototypes are
much more effective in this development stage, thus
models should be easy to turn into prototypes.
Testers and Evaluators: models produced in the design
phase are also used by testers and evaluators once the
application has been implemented. In these phases,
models should provide the ground for setting up the
testing or evaluation plan. Testers and evaluators need
different concerns to be evaluated being easily
identifiable in the implemented application. Moreover,
models should look very close to the implemented
application so that testers and evaluators can easily match
the running product to the originating models.
Table 1. Requirements for a conceptual tool for the
design phase.

Stakeholders Design Requirements
Designers R1. provide guidance for passing from early

solutions to actual design
R2. compromise between rigor and

flexibility
R3. provide a framing strategy
R4. enable to exploit existing commercial

tools
Usability and
Graphical
experts

R5. distinguish and make easily accessible
concerns impacting usability and
layout/graphic

R6. models should look as close as possible
to the actual application

Software
designers and
Implementers

R7. modeling primitives as closer as
possible to concrete counterparts

R8. as less as possible diagrams should be
considered to define a software
component

R9. Concise and easy to read specification
documents

R10. predefined mapping strategies towards
the most known architectural patterns

R11. belong to the UML family
Product
manager

R12. review models at different levels of
detail

R13. embody information to set up the
editorial chain

R14. enable requirements tracking
Final Users R15. models easy to turn into prototypes
Testers or
Evaluators

R16. different concerns to be evaluated being
easily identifiable

R17. models should look very close to the
implemented application

4. The whole framework at a glance

In this section we briefly introduce the whole
methodological framework to better contextualize the
proposed conceptual modelling method. In all the section,
we specify precise references to the requirements
discussed above as it becomes necessary.

In Figure 1 the composing phases are shown. A
different modelling method is proposed for each of them.
As well as other software development processes, we
assume that these phases should be executed in an
iterative and incremental way, therefore the picture only
purpose is to express the phases order within the whole
process. Considering the entire development process of a
web application, we can say the framework covers both
the analysis and design activities [28]. Moreover,
adopting the Jackson terminology [22], we distinguish
between the problem and the solution domains. These
dimensions, the process and the domain, are used to
organize the following discussion.

Requirements
elicitation/analysis

Problem Domain

Requirements
design

Solution Domain

UX design

User Oriented

Software design

System Oriented

Phase 1 Phase 2 Phase 3 Phase 4

Conceptual Design

Analysis Design
Figure 1: Phases in the development process of Web

applications

The two left more phases are both achieved during the

analysis activities. For supporting the requirements
elicitation and analysis (phase 1) we propose AWARE
[1], a goal-oriented method specially suited for web
application requirements engineering. AWARE
primitives include goals and requirements which
definitively belong to the problem domain.

However, in our experience, discussing with
stakeholders (analysis) about needs and goals can be too
abstract for a fruitful reasoning about relative importance
of various goals and requirements and for eliciting new
ones [27]. A first very high level solution, focusing on
specific topics, can help validation and elicitation
activities (e.g. interviews) enabling a more concrete
discussion about the problem. We call this activity
Requirements Design (phase 2) meaning that in this
phase requirements take a more concrete form
accomplishing a preliminary hop from the problem
domain to the solution one. In this phase we use IDM
[24]. IDM (Interactive Dialogue Model) is a design model
for interactive applications based on linguistic concepts of
human dialogue. It bases on the interpretation of the
interaction between the user and the application as a sort

of dialogue. It is simple to grasp, and effective in
representing the most relevant features of the application
in terms of content of the dialogue and dialogue moves.
In fact, three simple design elements characterize IDM:
“topic”, “change of topic”, and “group of topic”. An
interactive application may describe a “topic” (e.g. a
“print”, or a “technique”); or it may allow the user to
switch to a “related topic” (e.g. switching from a “print”
to the “technique” used for it); or it may allow the user to
start from a “group of topics” (e.g. “the masterpieces”, or
“the prints dealing with sickness”) and then browse
within the group.

Although in traditional SE approaches requirements
are directly used for designing the software architecture
(e.g. class diagrams, component diagrams, etc. using the
UML terminology), in applications where the user
interaction and the communication potential play crucial
roles, the software design has to be postponed to the user
experience design [12]. In this phase the application is
designed as perceived by final users, neglecting how the
software will be realized. Here, designers have to
precisely define how users interact with the application to
accomplish their tasks, taking care of the application
usability and effectiveness with the respect of user
requirements and quality expectations. In our framework,
we achieve the concrete passage into the design phase by
translating IDM models (phase 2) into E-WOOD ones
(phase 3). IDM and E-WOOD, together, build up our
approach to the conceptual design of WEB applications.
Both methods take their foundations in W2000 [25, 26],
last heir of HDM [6] recognized as one of the first
conceptual methods for web application design. As
described in section 2, W2000, as well as other similar
conceptual models, implements the separation of
concerns principle by structuring the design in four
dimensions. Both our methods keep this principle at the
basis of their definitions but projecting the previous
dimensions in a sole dimension for the sake of
conciseness, for reducing the number of concepts to be
learnt and references among diagrams (R8,R9). The last
step (phase 4) consists of a detailed design of the software
that will be implemented to realize the desired user
experience. This is generally called logical design of the
system to-be. Passing from phase 3 to phase 4, a
paradigm shift is achieved since, in phase 4, designers
have to design the system that will realize the modelled
user experiences. This passage is far to be straightforward
and a number of trade-offs with the architectural
constraints and various decisions have to be undertaken
[27]. Models produced in this phase should specify a
design easy to code. Here, we adopt the modelling
method proposed by Conallen, namely WAE [12]. Our
choice has been driven by two main reasons. First, it is
already recognized in the industrial environment as the
UML method for designing the software for web

applications and a number of CASE tools already support
its diagram drawing (e.g. Rational Rose, MS Visio).
Second, as shown in paragraph 4.2, it is very easy and
intuitive mapping WAE models upon E-WOOD as far as
most of times, only one E-WOOD artefact is needed to
define a set of related WAE artefacts (R8,R9).

Finally, the methodological framework also includes a
number of guidelines on how to use every method within
each phase and how to move forward and back between
adjoining phases. Guidelines are informally described in
terms of patterns [29] so providing an useful but flexible
guidance (R1,R2). They also front specific design issues
like the multi-user and multi-channel design. Lack of
space prevents us to describe this aspect, but the complete
set of guidelines can be found in [27].

5. E-WOOD: the user experience design

Our proposal for designing the user experience, called
E-WOOD, has been defined as a UML extension. UML
has been chosen as modelling language to meet R11,
while the extension mechanism has been preferred to
defining a metamodel in order to exploit easily existing
commercial tools (R4). Our model extends an existing
proposal for designing the user experience, that is, the
UX [12] since, as shown in the Conallen’s book, mapping
WAE models upon UX ones is easy and intuitive
(R8,R10,R17). UX’s high level primitives are screen and
links, and an application is merely considered as made up
of a number of screens connected by links. Typically, a
set of WAE artefacts are mapped upon a screen by means
of realization associations (stereotyped as <<build>>),
specifying which logical elements (WAE models) build
the various parts of the screen (contents and links). Our
main goal in extending the UX has been to add the
needed semantics (extracted by the W2000 primitives) to
enable the separation of concerns impacting the
application usability, its functionalities and the whole
quality (R5,R13,R16). In E-WOOD different concerns
are specified in different views and by introducing
specific design concepts. These concepts have been
defined extending standard class and association
elements in terms of stereotype, semantic description,
constraints, tags properties. An additional property
(mapping constraints) has been also introduced to specify
mapping constraints between IDM and E-WOOD models
(R1,R2). As well as in UX, E-WOOD high level
primitives are screens and links. Screens can aggregate
both content and input forms; links can be used to
perform a simple navigation among pages or to provide
inputs to operations and processes. E-WOOD models are
thus very close to the application to-be (R6, R7, R17) and
easy to turn into prototypes or mock-ups (R15). Keeping
these basic primitives we have also preserved the proven
mapping capabilities towards the WAE (R10, R8).

The introduced semantics is also used to define a
framing strategy (R3) which helps designers organize the
overall design activities, fosters reuse and make design
documentation more readable (R9). The framing strategy
mostly reflects the W2000’s design dimensions. E-
WOOD proposes to organize the design of the overall
application in five views. Each view includes several
diagrams and makes use of specific stereotyped classes.
Due to the lack of space, in the following we only
introduce the main views to show the philosophy behind
our method and how we have tried to accomplish the
above stated requirements. The complete specification
can be found in [27].

The Template View is used to define common contents
and links of page sets. Examples of common contents
could be the copyright information, the company logo and
so on, whilst examples of common links could be those
connecting to the home page or to the various site’s
sections (like those on the bottom of many web sites).
Typically the template design involves the graphical
designers who are in charge of the application look-and-
fell (R5). The basic primitive used in these diagrams is
the <<Screen Template>>, an abstract class used as place-
holder for content and links belonging to a set of screens.
Layout contents (both information and graphical
elements) and common links are modelled respectively by
means of <<Layout Content>> and <<Landmark link>>
primitives. In Figure 2 a Web page of Munch is shown
together with design excerpts taken from the template
view.

<<Screen Template>>

Standard Page

<<Screen Template>>

Standard Page

<<Screen Template>>

Standard Page

Publishing Unit Type NamePublishing Unit Type Name

Figure 2: Some excerpts from the Template view

Every Munch’s Web page includes contents and links
highlighted in the picture by continue line rectangles,
while only some pages include also the set of links
highlighted by a broken line rectangle. To model this we
use two <<Screen Template>> abstract classes
modelling the two different templates. The diagram on
the bottom right corner shows that a specialization
relationship is used to specify the hierarchy between these
templates. The layout content belonging to the “General
Template” is represented by the <<Layout Content>>
class aggregated to the template, while the outgoing links
are represented by means of the stereotyped associations
<<Landmark>> ending on the target pages. It can be
noticed as <<Screen Template>> is modelled as abstract
class since it is defined only for generalizing content and
links belonging to a set of concrete pages. A specific
constraint is provided in the formal specification of the
UML extension.

The Structural View is used to define pages enabling
users explore information concerning the domain entities
or IDM’ topics. <<Content>> classes are aggregated to
screen classes and models portions of the whole topic
information. <<Structural link>>s are used to model the
navigation achieved across pages belonging to the same
topic. For example, as depicted in Figure 3, the overall
information concerning the “Print” entity are organized in
three pages (Introduction, Big Image and Description)
which are connected by means of bi-directional links
originating from the “Introduction” page. Each IDM topic
is mapped on a number of content classes (and relative
pages) equivalent to the number of its dialog acts.
Content classes are then enriched by a fine-grain
definition of data slots which can be used as input for
setting up the editorial chain (R13). Content classes
contain a Boolean tagged value called entry point whose
purpose is to specify whether that portion of the content
can be used as starting point for exploring the entity
information. Following our framework guidelines, such
pages should include, at least, a minimal set of entity
attributes that can be used by the user to understand what
the entity instance talks about. Information organization,
kind of navigation and entry points are concerns usually
discussed with communication and usability experts
(R5,R16) taking in mind that when users navigate these
pages are clearly interested in improving their knowledge
about the entity.

Figure 3: a) Structural view for the "Print" topic;

In the Association View designers specify how to pass

from a discovered interesting topic to a related one
(relevant relation in IDM). For this part of the user
experience design, it is very important to carefully decide
how to enable users to understand which of the possible
target topic instances they are interested in. This aspect is
called, in the HCI community, information scent and is
one of the factors strongly impacting the application
usability. In E-WOOD we use to this purpose the
<<Association Content>> (Figure 4 (a) and (b)). In (a)
these information are integrated in all the “Print”’s pages
(it is aggregated to the abstract page representing the
common features of all the structural pages) and
<<Association link>>s connect these pages to the target
one. In (b), the “Technique” page includes a <<Link>>
association which brings to new page “Prints of the
Technique” whose only purpose is to list the possible
target “Prints” which have been produced using the
source “Technique”. From this page a <<Association
link>> point to the destination pages. The <<Association
link>> primitive includes a tagged value that specifies the
association multiplicity in terms of min, max and expected
values. In particular, the expected multiplicity provides a
useful indication about how many instances of the target
entity are in general addressed by the association. This
information can be used for taking some design choices
like attaching the <<Association content>> to the source
page or defining a new ad-hoc page (the two possible
solutions shown above). Having max or expected
cardinality very small, our guidelines suggest aggregating
the <<Association Content>> to the source pages, while
in case the expected number grows up, we suggest the
other solution.

(a)

(b)

Figure 4: Association views

In the Access Path View designers have to specify the

navigational paths enabling users find interesting objects.
For example in an e-commerce web site like Amazon,
examples of predefined navigational paths are the books
categories which organize books by topic and sub-topics,
but also a “Bestsellers” or personalized “Book
recommendations” and so forth. The purpose of these
pages is supporting users while exploring the proposed
site content organization improving the user
understanding. Such pages should help users in deciding
how to move around possible choices enabling them
exploring in depth the navigational path. In each path
step, possible users should choice how to refine the set of
possible interesting kinds of topics or, in case of terminal
steps, which topic instance is worth to be examined
(passing to the structural navigation) among the possible
ones. Navigational paths are related to the IDM “Group
of topics” concept. In the example in Figure 5, the E-
WOOD model of a one-step path enabling users access to
the most famous Munch’s prints is depicted. The access
structure is available in the page modelled by the
<<Screen>> “MasterPieces”. Here users can find an
“Introduction” to the collection and a list of prints. For
each print a short preview is provided by means of three
print’s attributes: “Small picture”, “Name” and “Print’s
data”. This information is modelled by the <<Access
Content>> class aggregated to the <<Screen>>
“MasterPieces”. By means of these previews users can
choice which print they are interested in and navigate to it
by means of the <<Collection Link>> “Index”. Once
users land to the choose print page, he can also move
back and forward among the collection members (other
MasterPieces prints). To model this, in this diagram the
<<Collection Link>> “Next/Previous Masterpieces” is
added to the abstract <<Screen>> “Print”. It represents

the E-WOOD model for a case of guided tour pattern. It
is important to be noticed as these links are only available
in the context of this collection, so if the user reaches a
print by other access mechanisms (other access paths,
associations, search engine, etc.) he cannot move among
prints contained in this collection. Access paths usually
define a navigational context, in that new content and
links can be added to entity pages when accessed by a
specific access path.

<<Screen Template>>

Standard Page

Figure 5: An excerpt of the Access Path View for

the Masterpieces page

Besides these main views, we also propose a

Navigational Map View that summarizes the main
navigational features of the entire application. Our
guidelines suggest how to choice candidate pages, among
the overall defined in other views, to be included in the
navigational map. Switching from the navigational map to
the detailed design of contained screens it allows R12
being accomplished. Finally, the Operation/Process View
complements the previous views adding to pages
concerns related to operations invocation (e.g. “add to
shopping cart”) and defining pages involved in business
processes execution. Lack of space prevents us to
describe this complementary view.

6. Conclusions

We all know that the existing literature about
conceptual methods addressing the design of Web
applications is (over)abundant. On the other hand, we
also know that a remarkable gap between theory and
practice still exists [14, 15, 16],[3]. Which are the reasons
behind the poor acceptance by the practitioners? Starting
from these considerations, in this paper we have claimed
that a possible reason might be that existing proposals
have failed short by neglecting stakeholders’ goals and
expectations. In this light and focusing on the
development of WEB applications, we have carefully
analyzed the environment where a design method should

operate identifying which are the potential stakeholder
types and their goals and requirements. On the basis of
this analysis, instead of inventing new design methods,
we have reused or extended the best, in our view, of
current approaches both in the academic and industrial
communities. The approach covers both analysis and
design activities and consists of four phases, executed in
an iterative and incremental way. Defining it, we put in
practice most of our experience achieved working on the
field with conceptual design methods for Web
applications [3], [27].

This paper has focused on our proposal for the user
experience design, namely E-EWOOD. It is a UML
profile that enables to specify the user experience in terms
of pages and links but that embodies semantics enabling
designers reason together with different stakeholder types
about crucial concerns heavily impacting the application
usability and effectiveness, that is, its perceived quality.
Moreover, due to its definition, E-WOOD can exploit
existing commercial tools for supporting the model
drawing and perfectly match an existing and already
affirmed, among practitioners, method for designing the
software modules of a WEB application.

The approach has been applied in several design and
reverse design case studies and industrial projects. Its
transferability in industrial environments has been also
experimented in two projects in cooperation with two
Italian software companies (in the context of the
GENESIS-D projects [27]). From these first experiences
a number of considerations can be drawn out. Compared
to W2000, we have noticed a significant decrease of the
required learning time. Practitioners were able to use both
methods after a short but intensive course (2-3 days).
They drew IDM models using paper and pencil, while
used VISIO™ stencils for designing E-WOOD and WAE
models. In all the achieved experiences, we spent, with E-
WOOD, on the average one third of the time required by
W2000 to produce the same level of detail in the
specification of several application designs. This has to be
summed to the time required for manually drawing IDM
models which is, however, very affordable. Compared to
UX, we obtained several advantages mostly due to the
introduced semantics. Models are more expressive and
easy to be revisited; the framing strategy enables a
suitable organization of the overall design activities; a
number of well know design patterns, developed in the
web engineering community, can be exploited to produce
quality applications.

Finally, concerning future works, we are working in
two main directions: (i) enriching the framework with
guidelines and patterns for fronting specific aspects like
the multi-channel design and the mapping of E-WOOD
models upon the most known software architectures
(JAVA and MS.NET); (ii) Concerning the second point,
as said above, one of the reasons which guided our

decisions in defining methods in phase 3 and in adopting
WAE in phase 4 has been the reuse of commercial CASE
tools already widespread in the industrial environment
like MS Visio® and IBM Rational Rose®. So doing,
companies already accustomed to these tools can easily
step towards the adoption of our methods only adding a
few stereotypes and our views strategy. Existing
commercial tools do not support the design of models of
phase 1 and 2. In order to improve the coverage of the
whole approach with proper tools, we are already
working for defining an ECLIPSE [30] add-in which
should include, besides all the modelling primitives, also
a set of semi-automatic rules for passing from a phase to
the next one, some tracking mechanism among phases
and a loose consistency check option. For example, the
consistency manager could check if the several user views
can be actually derived by the unique database and if the
logic perceived by users when executing processes is
compatible with the business processes implemented at
the logic level.

10. References

1. Bolchini, D., Paolini, P. Goal-Driven Requirements

Analysis for Hypermedia-intensive Web
Applications. Requirements Engineering Journal,
Special Issue RE03, Springer 2003.

2. Grady Booch. Language Once Was Key – Now It's
Design. Windows Server System Magazine. February
2003 Issue.

3. Garzotto, F., Perrone, V. On the Acceptability of
Conceptual Design Models for Web Applications. In
Pro. of ER’03 Workshops, (IWCMQ’03), October
2003 , Chicago, USA.

4. Mylopoulos, J., Information Modeling in the Time of
the Revolution. Information Systems, Vol. 23, 1998

5. Engels, G., Groenewegen, L. Object-oriented
modeling: a roadmap. In A. Finkelstein, editor, "The
Future of Software Engineering", Special Volume
published in conjunction with ICSE 2000, 2000.

6. Garzotto F., Paolini P. HDM- A Model-Based
Approach to Hypertext Application Design. In ACM
Transactions on Information Systems, Vol. 11, No1
January 1993, p1-26.

7. Isakowitz T, Stohr EA., Balasubramanian P. (1995)
RMM: A design Methodology for Structured
Hypermedia Design. In Communications of the ACM
Vol.38 No8 August pp 34-44.

8. Schwabe, D., Rossi, G. An Object Oriented Approach
to Web-Based Application Design. Theory and
Practice of Object Systems, 4 (4), J. Wiley, 1998

9. De Troyer, O., Leune, C., WSDM: a User-Centered
Design Method for Web Sites, in Proceedings 7th

International Wolrd Wide Web Conference,
Brisbane, 1997.

10. Ceri, S., Fraternali, P., Bongio, A. et al., Designing
Data-intensive Web Applications, Morgan
Kaufmann, 2002.

11. Hennicker, R., Koch, N. A UML-based Methodology
for Hypermedia Design. In volume 1939 of LN in
Computer Science, York, England, October 2000.
Springer Verlag.

12. Conallen, J. Building Web Applications with UML
(s.e.), Addison-Wesley, 2003.

13. Gómez, J., Cachero, C., Pastor, O., Conceptual
Modeling of Device-Independent Web Applications,
IEEE Multimedia, April-June 2001 (Vol. 8, No. 2).

14. Barry and Lang: A Survey of Multimedia and Web
Development Techniques and Methodology Usage.
IEEE Multimedia, April-June, 2001

15. C. Britton et al.: A Survey of Current Practice in the
Development of Multimedia Systems. Information
and Software Technology, vol. 39, no. 10, 1997, pp.
695-705.

16. B. Fitzgerald: An Investigation of the Use of Systems
Development Methodologies in Practice. Fourth
European Conf. Information Systems, Lisbon,
Portugal, 1996

17. OMG, Object Management Group: UML 2001: a
Standardization Odyssey, October 1999.

18. OMG, Object Management Group: Unified Modeling
Language (UML), version 1.5 (formal/04-04-04)

19. SDTimes Magazine. UML Adoption Making Strong
Progress. August 15, 2004

20. Conallen, J., Modeling Web Application
Architectures with UML. Communications of the
ACM, 1999

21. Kaindl, H., et al. Requirements Engineering and
Technology Transfer: Obstacles, Incentives and
Improvement Agenda. Requirement Engineering
journal 7(3): 113-123 (2002)

22. Jackson, M., The World and the Machine. Keynote
Address at ICSE-17; in Proceedings of ICSE-17;
ACM Press, 1995.

23. Yu, E., Modeling Organizations for Information
Systems Requirements Engineering. Proc. of the 1st
Int. Symposium on Requirements Engineering,
RE'93, San Jose, USA, 1993.

24. Bolchini, D., Paolini, P., Dialogue-based Design for
Multichannel Interactions. In Proc. of IWWOST04
workshop held in conjunction with ICWE’04,
München, Germany.

25. Baresi, L., Garzotto, F., Paolini, P. From Web Sites
to Web Applications: New Issues for Conceptual
Modelling. In Proc. WWW Conceptual Modeling
Conf, October, 2000.

26. 24. Baresi L., Garzotto, F., Paolini, P., Perrone, V.
Hypermedia and Operation Design. Deliverable D7,
European IST project UWA, www.uwa-project.org

27. Perrone, V., Bolchini, D., Designing Communication
Intensive Web Applications: Experience and Lessons
from a Real Case. In proc. of WER 2004, 9-10 Dec.
2004 - Tandil, Argentina. To appear in a special issue
on Req. Engineering of the Journal of Computer
Science & Technology, autumn 2005.

28. Ghezzi, C., Jazayeri, M., Mandrioli, D.:
Fundamentals of Software Engineering. Prentice-
Hall, 1991.

29. Gamma, E, Helm, R., Johnson, R. and Vlissides, J.
Design Patterns: Elements of Reusable Software
Architec-ture. Addison-Wesley, 1995.

30. Balconi, A., Mainetti, L., Paolini, P. Perrone, V.:
GENESIS-D: Formal specification of the conceptual
and logical models. Politecnico of Milan, deliverable
D2.2, project Genesis-D (October 2004). Available
on
https://www.elet.polimi.it/upload/perrone/D22Modell
oConcettuale.pdf in Italian.

31. Eclipse consortium. Eclipse – Home page.
www.eclipse.org/.

