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Abstract

In this paper, it is shown how extracted patterns from data can be verified using decision tables (DTs).
It is demonstrated how a complete and consistent decision table can be automatically modelled even if
the extracted patterns contain anomalies.  The proposed method is empirically validated on several
benchmarking datasets.  In addition to modelli ng a DT that is free of anomalies, it is shown that the
DTs are suff iciently small such that the DTs can be consulted easily.
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1. Introduction

Currently, there is an urgent need for techniques that can extract knowledge from the data by
discovering relations and patterns between the data elements in a (nearly) automatic way.  The need
for these techniques and tools has created a new field of research called knowledge discovery in data
(KDD).  KDD can be defined as (Fayyad, Piatetsky-Shapiro & Smyth, 1996):

“Knowledge discovery in databases is the non-trivial process of identifying valid, novel,
potentiall y useful, and ultimately understandable patterns in data.”

KDD covers the whole process from raw data until the knowledge consultation phase.  The
knowledge extraction process itself is commonly denoted as data mining.  While considerable
research is devoted to improving data mining algorithms less attention is paid to the verification and
validation of the extracted patterns.

To this end, in Wets, Vanthienen & Piramuthu (1997), a tabular knowledge-based framework (see
Figure 1) was proposed.  The framework consists of three stages. In the first stage, raw data are pre-
processed to reduce the data set suff iciently using feature selection. Rules are then generated and
incorporated in the system.  In the second stage, based on the extracted rules, the knowledge is
modelled by means of decision tables (DTs).  Verification and validation checks are also performed
during this stage.  In the final stage of the framework, the modelled knowledge is incorporated in an
expert system environment, in order to facilit ate consultation of the knowledge base.
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Figure 1: A tabular knowledge-based framework

In Wets, Vanthienen & Piramuthu (1997), an approach to indicate the anomalies detected in the
verification phase to the expert was proposed, but no suggestions to solve these anomalies were
made.  The main contribution of this paper will be to show how a computer can learn a proper DT
(consistent, complete and suff iciently small ) given certain data even if the extracted patterns contain
anomalies.

This paper is organized as follows.  First, DTs are introduced.  Subsequently, it is described how
DTs can be modelled starting from raw data.  In Section 3 this process is outlined, while in Section 4
it is emphasized how it can be guaranteed that the modelled DT does not contain anomalies.  Then,
the proposed approach is empirically validated using some benchmarking datasets.  Finally, some
conclusions are given and some topics for further research are outlined.

2. Decision tables

A DT is a tabular representation used to describe and analyze procedural decision situations, where
the state of a number of conditions jointly determines the execution of a set of actions.  Not just any
representation, however, but one in which all distinct situations are shown as columns in a table, such



that every possible case is included in one and only one column (completeness and exclusivity).  The
tabular representation of the decision situation is characterized by the separation between conditions
and actions, on one hand, and between subjects and conditional expressions (states), on the other.
Every table column (decision column) indicates which actions should (or should not) be executed for
a specific combination of condition states.  In this definition, the DT concept is deliberately restricted
to the single-hit table, where columns are mutually exclusive.  Only this type of table allows easy
checking for consistency and completeness (Vanthienen and Dries, 1997).  Many other variations of
the DT concept exist which look similar at first sight (e.g., in multiple-hit tables the same combination
of condition values can occur in different columns).  As a result, in a multiple-hit DT the overview
over the columns is lost, and with it, the simplicity of inspection.  For these reasons we do not
consider these latter tables to be real DTs.

A DT consists of four parts (Codasyl, 1982):

1. The condition subjects are the criteria that are relevant to the decision-making process.  They
represent the items about which information is needed to take the right decision.  Condition
subjects are found in the upper left part of the table.

2. The condition states are logical expressions determining the relevant sets of values for a given
condition.  Every condition has its set of condition states.  Condition states are found at the
upper right part of the table.

3. The action subjects describe the results of the decision-making process.  They are found in the
lower left part of the table.

4. The action values are the possible values a given action can take.  They are found at the lower
right part of the table.

A DT is a function from the Cartesian product of the condition states to the Cartesian product of the
action values, by which every condition combination is mapped into one (completeness) and only one
(exclusivity) action configuration.  If each column only contains simple states (no contractions or
irrelevant conditions), the table is called an expanded DT.  An example is given in Figure 2.

Figure 2: Example of an expanded DT

If necessary, columns in an expanded DT can be contracted.  Contraction combines columns or
groups of columns that only differ in the state value of one condition and that have equal action
configurations into respectively one column.  It is important to note that contraction does not change
the knowledge contained in the DT.  Only the format in which it is presented to the user is changed.
Contraction is important in order to enhance the effectiveness of the decision-making or to provide a
more compact formulation that can serve as a basis for discussion between the expert and the
knowledge engineer.  The contracted version of the expanded DT of Figure 2 is depicted in Figure 3.
There are only five columns in the contracted DT instead of the nine columns in the expanded DT.

Figure 3: Example of a contracted DT



3. Modelling DTs from data

To model a DT three information elements are necessary: conditions, actions and the decision logic.
First, conditions, actions and their respective states have to be retrieved from the dataset.  Because we
want to extract these information elements automatically from a dataset, the data contained in the
dataset should satisfy some constraints.  All i nformation about an instance in the dataset should be
expressed in terms of a li st of values of a number of features (also called attributes).  One out of these
features is the goal attribute (also called the class or the label) or to put it in DT terminology is the
action.  The other attributes are the conditions.  Furthermore, it is necessary that the features are
discrete.  If continuous features occur, they have to be discretized by splitti ng up the domain of the
feature in non-overlapping partitions.  A plethora of discretization methods has been proposed in the
literature.  For an overview see Dougherty, Kohavi and Sahami (1995).  In our experiments we used
the algorithm proposed by Fayyad & Irani (1993).  Fayyad and Irani describe an algorithm that uses
the entropy function to split the continuous space in two partitions.  Recursively, more partitions can
be created by the algorithm until some stopping criterion is attained.  Furthermore, it is possible that
also some irrelevant features in the dataset occur.  Because the number of columns in a DT increases
exponentially as the number of conditions increases, it is very important only to select the relevant
features in the dataset using some feature selection algorithm.  In our experiments, the data were pre-
processed using the Idtm algorithm (Kohavi, (1995)).

After that the conditions and the actions are obtained the decision logic has to be derived. In a
classical DT modelli ng method, the decision logic is elicited from an expert (e.g., in the form of rules)
and subsequently these rules are used to model the DTs (Vanthienen & Wets, 1994).  In this paper,
however, the decision logic will be extracted from the dataset using some kind of classification
technique and then it will be imported into the DT.  Several hypothesis spaces can be used to model
the decision logic (e.g. rules and decision trees).  In our experiments, we used C4.5 (Quinlan, 1993) to
obtain the decision logic.  C4.5 is a well -known example of a classification tree algorithm.  This type
of algorithms tries to fit a tree to a training sample using recursive partitioning.  This means that the
training set is split i nto increasingly homogeneous subsets until the leaf nodes contain only cases from
a single class.  After that the decision tree is obtained, C4.5 allows to transform the decision tree in
rules.  These rules can be used to model the DT, as will be explained next.

One problem that arises during this process is that the extracted rules can still contain
inconsistencies or be incomplete.  Yet, in most real-li fe situations, a final decision should be made on
what action(s) to perform for a given case.  For example, a physician should decide on the type of
treatment a patient should receive, regardless of the abilit y or inabilit y of the extracted rule set to
produce an advice.  The question then becomes: should it be left entirely up to the expert to decide on
what to do for each of these anomalous cases, or can he be assisted in some way?

Accordingly, at this point in the development process two major options can be chosen:
constructing a (possibly anomalous) DT from the decision logic that reflects all the information
present in the decision logic or proposing a DT that is consistent, complete and as correct as possible.

• Constructing a DT from the decision logic which reflects all the information present in the
decision logic (including possible anomalies)

In this option, several types of anomalies such as inconsistency and incompleteness can be present
in the extracted knowledge.  The system will detect these anomalies, but there are no faciliti es in
the system to remove the anomalies.  Thus, the expert himself has to decide how the anomalies
which are presented in the DT have to be resolved.  An empirical evaluation of this approach
involving direct mail -order data was presented in Wets, Vanthienen & Piramuthu (1997).



• Constructing a DT which is consistent, complete and as correct as possible from data

The purpose of this option is to propose a DT with no anomalies to the expert.  To construct such a
DT, anomalies which are present in the DT have to be removed using some heuristic.  However it
is not only necessary that those anomalies are not reflected anymore in the DT, but also the
constructed DT should be as correct as possible.  Of course it is clear that a DT that is completely
correct cannot be constructed for real-li fe problems because the induced decision logic only partly
represents that correct hypothesis.  Therefore we want to emphasize that the DT, which should be
constructed based on the proposed approach, should always be checked by the expert to ensure that
it reflects the correct decision for each case.  In Section 4, we will i nvestigate how we can
construct a consistent and complete DT, which approximates best the, in most cases unknown,
correct DT.

4. Construct a complete, consistent and correct DT from data

The construction consists of two phases.  First, the empty DT has to be constructed.  Then, each
action entry in this DT has to be fill ed such that no more anomalies occur.

4.1 Construction of the empty DT

The empty expanded table has to be drawn using the information elements which had been obtained
previously.  The name of each feature that occurs in the extracted decision logic will occur in the
condition stub of the DT.  The possible values of each feature which occur in the decision logic will
be reflected in the condition entries part of the DT.  Based on this information, the empty expanded
DT will be constructed such that it is a single hit tree structured DT.  This is a DT that can be
evaluated top-down by continuously choosing the relevant condition states until a specific column is
reached.  In this case, the DT is a straightforward representation of the decision tree with all
conditions tested in the same order.  The tree structure also implies that the combination of condition
values occur from left to right in lexicographical order, in other words that the states of the lowest
conditions vary first.
The action stub can be fill ed using the names of the actions which occur in the decision logic.  The
condition entries part consists of the Cartesian product of the various condition states.  Finally, based
on the decision logic the action entries have to be fill ed as will be explained next.

4.2 Filling the action entries

This section consists of two subsections.  First, the proposed approach will be explained in general.
Then, some techniques are explained which can be used to implement the proposed approach.

4.2.1 Outline of the proposed approach

In order to construct a consistent and complete DT, we have to ensure that for each possible
combination of condition values it should be unambiguously specified which actions should be
performed for this combination of condition values.  However, if the extracted decision logic contains
ambiguity for some combinations of condition values, the following question has to be solved.  Which
actions should be executed for a combination of condition values, given the fact that the decision
logic for this combination of condition values specifies contradictory actions?

To solve this problem we have to look differently at the condition entries part of an expanded
single hit DT.  Each column in the condition entries part consists of a unique combination of
condition values.  Therefore, we will consider such a combination of condition values as an



unlabelled instance which has to be classified, by means of the induced rules.  In the context of the
construction of a DT, classification means filli ng in the proper action entries for this combination of
condition values.  When the action entries for a combination of condition entries are fill ed in, this
procedure will be repeated for the remaining combinations of condition values in the DT.  It depends
on the expert whether he will check each suggestion of the system separately, or that he will check the
DT after that the system has fill ed in all necessary action entries.  As a consequence, our initial
problem can be reformulated into the following formulation: “how can an unlabelled instance be
classified by the induced rules?”.  This question will be discussed in the following section.

4.2.2 Overview of techniques to implement the proposed approach

Because modelli ng a complete and consistent DT relies on classifying properly an unlabelled
instance, we will review in this section some major techniques to accomplish this classification.  For
any unlabelled instance during classification three situations may happen:

1. the unlabelled instance is classified unambiguously by one or more rules;
2. the unlabelled instance is classified by some rules into a class and at the same time classified by

some other rules in another class;
3. the unlabelled instance is not classified at all .

1. THE UNLABELLED INSTANCE IS CLASSIFIED UNAMBIGUOUSLY

Situation 1 poses no problems, since the unlabelled instance is classified unambiguously by one or
more rules.  However, this does not mean that this unlabelled instance is classified properly.  It only
means that, given the induced rule set, this unlabelled instance can be classified unambiguously.  Still ,
it has to be approved by the expert that the unlabelled instance has been classified properly.

2. THE UNLABELLED INSTANCE IS AMBIGUOUSLY CLASSIFIED

In situation 2, more than one rule matches the unlabelled instance and the matching rules specify
contradictory actions to be executed.  The question is: how should such an unlabelled instance be
classified?  In the machine learning literature, several approaches are proposed to deal with this
problem.
A first approach to the above mentioned problem uses decision li sts (Rivest, 1987).  A decision li st is
an ordered li st of rules.  The earliest rule that matches an unlabelled instance will classify the
unlabelled instance.  The last rule is a default rule.  This rule will classify the unlabelled instance as
no other rule does classify the unlabelled instance.  Decision li sts are the most simple technique to
solve the problem of inconsistency.  Well -known machine learning algorithms which use decision
lists are C4.5 (Quinlan, 1993) and the original CN2 algorithm (Clark & Niblett, 1989).

A second approach to classify an unlabelled instance is used in AQ15 (Michalski, Mozetic, Hong
& Lavrac, 1986).  AQ15 will select the rules which completely match the unlabelled instance (using
AQ15 terminology, “strict matching”).  Using an heuristic which uses information about the matching
rules, the unlabelled instance will be classified.  Therefore, in AQ15 with every rule R an estimate of
probabilit y EP(R) is associated.  This estimate is defined as follows:

EP R
R

( ) =
number of examples classified properly by rule 

total number of training examples

Based on these EP(Ri), the number EP(C), describing the class C, is computed as the probabili stic sum
of all EP(Ri) matching C, as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )EP C EP R EP R EP R EP R EP R EP R EP R EP R EP Ri
i

i j i j k
ijkij

n= − + − ±∑ ∑∑ � �

1 2



Note that by doing so the EP(Ri) are treated as if they were probabiliti es, since the probabili stic sum
computes the probabilit y of the disjunction of n events (here n rules).  But one has to keep in mind
that in fact the EP(Ri) are only estimates of probabiliti es.  The unlabelled instance is classified as
belonging to the class which has the highest probabili stic sum.

Another approach to classify an unlabelled instance is presented in Holland, Holyoak & Nisbett
(1986) under the name “bucket brigade algorithm”.  The same strategy has been adopted by the LERS

system (Grzymala-Busse, 1994).  In this approach, the decision to which class an unlabelled instance
belongs is made on the basis of three factors: strength, specificity and support.  The meaning of these
factors is as follows:

• The strength factor measures how well a rule has performed in the past (e.g., on a training set).
• Specificity measures the relevance of a rule.  The more detailed the rule’s condition part, the

greater its specificity.  Specificity of a rule is equal to the number of attributes in the condition part
of a rule.

• Support is defined as the sum of scores of all matching rules from the class.  The score for a rule is
calculated by multiplying the strength factor for the rule with the specificity of the rule.  An
unlabelled instance will be classified as belonging to the class with the highest support.

In our experiments the DTs were modelled using decision li sts.  Currently, we are investing also the
other techniques to model DTs from data.

3. THE UNLABELLED INSTANCE IS NOT CLASSIFIED AT ALL

In this situation, there is no rule which exactly matches the unlabelled instance.  This means that not
all attribute values of the rule are matched by their counterparts in the unlabelled instance.  As a
consequence, the DT that will be modelled will not be complete.  Because it is an important goal to
construct a complete DT, this situation is unsatisfactory.

A first solution to this problem uses a default rule.  A default rule is a rule which will classify the
unlabelled instance if all other rules fail to do so.  It can be seen as a last resort.  A well -known
induction algorithm which uses a default rule is C4.5.
A second solution is used in AQ15.  AQ15 will classify an unlabelled instance using partial matching
(using AQ15 terminology, “analogical matching”).  To this end an heuristic is proposed which uses
information about the partial matching rules.  Based on this heuristic, the unlabelled instance will be
classified.  First, a measure of f it for each attribute value (ai) occurring in a rule and each attribute
value (fi) occurring in an unlabelled instance.  This measure of f it MF(ai, fi) can be defined as follows.
First, a measure of f it MF(R) for every rule is calculated.  This measure of f it is defined as follows:

if ai = fi then MF(ai, fi) = 1
else MF(ai, fi) = 1/|number of the attribute’s possible values|

Note that in AQ15 it is possible that the left hand side of a rule contains expressions of the form (a, f1

∨ f2 ∨ … ∨ fk).  This expression indicates that the value for the attribute a may take k different values.
As a result, MF(ai, fi) will become equal to k / |number of the attribute’s possible values|.

If there are n attributes in a rule the measure of f it for a rule can be defined as:

MF(R) = ( ( , )) * ( )MF a fi i
i

n strength of a rule

 total number of training examples=
∏

1

In this expression, ( )MF a fi i
i

n

,
=
∏

1

 is a weighting factor.  This factor indicates how good the unlabelled



instance matches the rule.  Based on the measure of f it for the rules, a measure of f it for a class C can
easily be computed.  The same procedure as that was used to compute EP(C) is taken.  Given n partial
matching rules, the measure of f it for a class is the probabili stic sum of all MF(R).

A third solution is presented in LERS.  To compute the support in case of partial matching besides
strength and specificity an additional factor is taking into account, the matching factor. This factor is
defined as follows:

( )Matching R
R

R
=

number of matched attribute values in rule 

total number of attributes in rule 

Thus, the support for a rule R can now be calculated as follows:

( ) ( ) ( ) ( )Support R Matching R Strength R Specificity R= ∗ ∗    

Subsequently, using the support which was calculated for each rule R, the support for a class C can be
computed.  The support for each class C is calculated by taking the summation of the support of rules
with respect to the class C.

In our experiments we used a default rule to avoid incompleteness.  Currently, we are also
experimenting with the other outlined techniques.

5. Empirical evaluation

To ill ustrate the proposed approach, it was tested on seven datasets.  All the datasets used in this
section came from the UC Irvine repository (Merz & Murphy, 1996).  Prior to the analysis, instances
with missing values were removed from the training set.  In the next table, an overview of the selected
datasets is given.

Dataset Features Classes Training size Test size
Breast 10 2 699 10-fold stratified CV
Cleve 13 2 303 10-fold stratified CV
Aucrx 15 2 690 10-fold stratified CV
Pima 8 2 768 10-fold stratified CV
Sick 25 2 3163 10-fold stratified CV
Monk1 6 2 124 432
Monk3 6 2 122 432

Table 1: Summary of datasets used

First, the datasets were pre-processed (discretization using Fayyad's and Irani's method and feature
selection using IDTM).  Then, the decision logic was induced using C4.5.  Finally, the DTs were
constructed and contracted.  In the experiment, we used 10-fold stratified cross-validation.  In general,
this method allows that we accurately measure the estimated accuracy.  Because 10-fold stratified
cross-validation was used ten rule sets for each dataset exist.  If not all folds classify an example in
the same way, the class which occurs most frequently is used.  In case of a tie, the default class is
used.  In Figure 4 the modelled DT is depicted for the dataset Breast.

Figure 4: DT for Breast dataset



It can be seen that this DT is suff iciently small , so that it can be interpreted easily.  Also the other
DTs were quite small as is depicted in the next table.  The major reasons why the DTs are so small i s
pre-processing by discretization and feature selection and optimization of the DT by table contraction.
It can easily be seen that the impact of this reduction is enormous with respect to the number of
possible columns in the DT.  For example, for the dataset breast the number of possible columns in
the DT before discretization and feature selection is a staggering 109.  The expanded DT after
discretization and feature selection shows only eighteen columns.  Table contraction reduces the
number of columns even further.  The contracted table shows only seven columns.

Dataset ## columns
(expanded)

## columns
(contracted)

Breast 18 7
Cleve 24 8
Aucrx 72 2
Pima 32 9
Sick 6 3
Monk1 36 8
Monk3 12 3

Table 2: Number of columns in the modelled DTs

One may conclude that the number of columns is largely reduced.  But, this might be at the cost of a
significant reduction in expected accuracy.  Therefore, in the next table, results of C4.5rules on the
raw data are compared with the results of the classification accuracy attained by the DTs.

Dataset Accuracy of C4.5rules Accuracy of the DT
Breast 95.76 96.47
Cleve 75.34 82.67
Aucrx 83.93 85.20
Pima 72.78 77.92
Sick 97.23 96.93
Monk1 91.67 100.00
Monk3 96.30 97.22
AVG 86.12 89.87

Table 3: Comparison of accuracy

In this table, it can be seen that for most datasets the accuracy actually improves after feature
selection and discretization.  These results show that feature selection and discretization  improve
greatly the comprehensibilit y of the DTs and moreover, the accuracy of the knowledge contained in
the DTs gives still a very good estimation of the actual unknown distribution of the data.

6. Conclusion and future research

Originally, DTs were constructed based on some knowledge provided by an expert or some piece of
regulation.  In this paper, we have demonstrated that it is possible to model a complete and consistent
DT from data.  Therefore, a DT was interpreted as a set of examples which have to be appropriately
classified using some knowledge induced from the dataset.  Our proposed approach was empirically
validated and it was shown that the modelled DTs are small enough in order to facilit ate consultation.



In this paper several techniques to model a complete and consistent DT were presented.  However,
in our experiments only one technique was used so far.  Although the results, as we have
demonstrated, are satisfactory it would be interesting to compare all the proposed techniques to model
DTs from data.  Currently, such experiments are carried out.
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