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Abstract

In this paper, it is siown hav extraded patterns from data can be verified using dedsiontables (DTs).
It isdemonstrated hov a complete and consistent dedsion table can be automaticdly modelled even if
the extraded patterns contain anomalies. The proposed method is empiricdly validated on several
benchmarking datasets. In addition to modelling a DT that is free of anomalies, it is diown that the
DTsare sufficiently small such that the DTs can be mnsulted easily.
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1. Introduction

Currently, there is an ugent nead for techniques that can extrad knowledge from the data by
discovering relations and petterns between the data dements in a (nealy) automatic way. The need
for these techniques and todls has creaed a new field o research cdl ed knowledge discovery in data
(KDD). KDD can be defined as (Fayyad, Piatetsky-Shapiro & Smyth, 199§:

“Knowledge discovery in databases is the nontrivial process of identifying valid, novel,
patentially useful, and uti mately understandable patternsin data.”

KDD covers the whole process from raw data until the knowledge mnsultation plese. The
knowledge extradion pocess itself is commonly denoted as data mining. While mnsiderable
reseach is devoted to improving data mining algorithms lessattention is paid to the verificaion and
validation d the extraded patterns.

To thisend, in Wets, Vanthienen & Piramuthu (1997), a tabular knowledge-based framework (see
Figure 1) was propcsed. The framework consists of threestages. In the first stage, raw data ae pre-
processed to reduce the data set sufficiently using feaure seledion. Rules are then generated and
incorporated in the system. In the second stage, based on the extraded rules, the knowledge is
modelled by means of dedsion tables (DTs). Verificaion and validation cheds are dso performed
during this dage. In the final stage of the framework, the modelled knowledge is incorporated in an
expert system environment, in order to fadlit ate consultation o the knowledge base.

Preprocessing Modelling Consultation
Expert system
Feature seledion Construction Relationd DB
i > t ~—p|| | Program
Rule generation Verification Dialogue
Validation Visual

Figure 1: A tabular knowledge-based framework

In Wets, Vanthienen & Piramuthu (1997, an approach to indicate the anomalies deteded in the
verificdion plrese to the expert was propased, but no suggestions to solve these anomalies were
made. The main contribution d this paper will be to show how a computer can lean a proper DT
(consistent, complete and sufficiently small) given certain data even if the extraded patterns contain
anomalies.

This paper is organized as follows. First, DTs are introduced. Subsequently, it is described hov
DTs can be modelled starting from raw data. In Sedion 3 this processis outlined, while in Sedion 4
it is emphasized how it can be guaranteed that the modelled DT does not contain anomalies. Then,
the proposed approach is empiricdly validated using some benchmarking datasets. Finally, some
conclusions are given and some topics for further research are outlined.

2. Decision tables

A DT is atabular representation used to describe and analyze procedural dedsion situations, where
the state of a number of condtions jointly determines the exeaution d a set of adions. Not just any
representation, havever, bu one in which all distinct situations are shown as columns in atable, such



that every possble caeisincluded in ore and orly one aolumn (completenessand exclusivity). The
tabular representation d the dedsion situation is charaderized by the separation ketween condtions
and adions, on ore hand, and ketween subjeds and condtional expresgons (states), on the other.
Every table oolumn (dedsion column) indicaes which adions shoud (or shoud na) be exeauted for
aspedfic combination d condtion states. In this definition, the DT concept is deli berately restricted
to the single-hit table, where mlumns are mutually exclusive. Only this type of table dlows easy
chedking for consistency and completeness (Vanthienen and Dries, 1997. Many other variations of
the DT concept exist which look similar at first sight (e.g., in multi ple-hit tables the same combination
of condtion values can occur in dfferent columns). As aresult, in a multiple-hit DT the overview
over the wlumns is lost, and with it, the simplicity of inspedion. For these reasons we do nd
consider these latter tablesto bered DTs.
A DT consists of four parts (Codasyl, 1982:

1. The mndtion subjeds are the aiteria that are relevant to the dedsion-making process They
represent the items abou which information is needed to take the right dedsion. Condtion
subjeds are foundin the upper left part of the table.

2. The ondtion states are logicd expressons determining the relevant sets of values for a given
condtion. Every condtion hes its st of condtion states. Condtion states are found at the
upper right part of the table.

3. The adion subjeds describe the results of the dedsion-making process They are foundin the
lower left part of the table.

4. The adion values are the passble values a given adion can take. They are foundat the lower
right part of the table.

A DT is afunction from the Cartesian product of the aondition states to the Cartesian product of the
adion values, by which every condtion combination is mapped into ore (completeness and orly one
(exclusivity) adion configuration. If ead column ony cortains smple states (no contradions or
irrelevant condtions), the tableis cdled an expanded DT. An exampleisgivenin Figure 2.

1. Space (3) 5<20 20<=5<40 Sr=40
2. Costs (C) || C«2|2¢=C<4| Cr=4|C«2|2¢=C<4| Cr=4 | C«2 | 2¢=C<4| C»=4

1. Premium 1 - - x - x x - x x

2. Premium 2 || x x x x - x - - x

1 2 3 4 5 4 7 a 9

Figure 2: Example of an expanded DT

If necessary, columns in an expanded DT can be mntraded. Contradion combines columns or
groups of columns that only differ in the state value of one ndtion and that have equal adion
configurations into respedively one wlumn. It isimportant to nde that contradion dees not change
the knowledge contained in the DT. Only the format in which it is presented to the user is changed.
Contradionisimportant in arder to enhance the dfedivenessof the dedsion-making or to provide a
more cmpad formulation that can serve & a basis for discusson between the expert and the
knowledge enginea. The mntraded version d the expanded DT of Figure 2 is depicted in Figure 3.
There ae only five mlumnsin the cwntraded DT instead o the nine mlumnsin the expanded DT.

1. Costs (C) C<2 2¢=C<¢4 Cr=4
2. Space (3| S<20or 20¢=5<40 | 5>=40| S<20 [ 20<=5<40 or 3>=40

1. Premium 1 - - - x x

2. Premium 2 x - x - x

1 2 3 4 5

Figure 3: Example of a mntraded DT




3. Modedlling DTsfrom data

To model a DT threeinformation elements are necessary: condtions, adions and the dedsion logic.
First, condtions, adions and their respedive states have to be retrieved from the dataset. Because we
want to extrad these information elements automaticdly from a dataset, the data contained in the
dataset shoud satisfy some constraints. All information abou an instance in the dataset shoud be
expressed in terms of alist of values of anumber of fedures (also cdled attributes). One out of these
feaures is the goal attribute (also cdled the dassor the label) or to pu it in DT terminology is the
adion. The other attributes are the condtions. Furthermore, it is necessary that the fedures are
discrete. If continuous feaures occur, they have to be discretized by splitting up the domain of the
fedure in nonoverlapping partitions. A plethora of discretization methods has been propaosed in the
literature. For an overview see Dougherty, Kohavi and Sahami (1995. In ou experiments we used
the dgorithm proposed by Fayyad & Irani (1993. Fayyad and Irani describe an algorithm that uses
the entropy function to split the continuows Pacein two partitions. Reaursively, more partitions can
be aeded by the dgorithm urtil some stopping criterion is attained. Furthermore, it is passble that
also some irrelevant fedures in the dataset occur. Because the number of columnsin aDT increases
exporentially as the number of condtions increases, it is very important only to seled the relevant
feaures in the dataset using some feaure seledion algorithm. In ou experiments, the data were pre-
processed using the Idtm algorithm (Kohavi, (1999).

After that the condtions and the adions are obtained the dedsion logic has to be derived. In a
classcd DT modelli ng method,the deasionlogic is elicited from an expert (e.g., in the form of rules)
and subsequently these rules are used to model the DTs (Vanthienen & Wets, 1994. In this paper,
however, the dedsion logic will be extraded from the dataset using some kind d classfication
technique and then it will be imported into the DT. Severa hypothesis gaces can be used to model
the dedsionlogic (e.g. rulesand dedsiontrees). In ou experiments, we used C4.5 (Quinlan, 1993 to
obtain the dedsionlogic. C4.5is awell-known example of a dassficaion tree agorithm. This type
of algorithms tries to fit atreeto atraining sample using reaursive partitioning. This means that the
training set is lit i nto increasingly homogeneous aubsets until the led nodes contain oy cases from
asingle dass After that the dedsion treeis obtained, C4.5 all ows to transform the dedsion treein
rules. Theserulescan be used to model the DT, aswill be explained next.

One problem that arises during this process is that the extraded rules can ill contain
inconsistencies or be incomplete. Yet, in most red-life situations, a final dedsion shoud be made on
what adion(s) to perform for a given case. For example, a physician shoud dedde on the type of
treament a patient shoud receave, regardless of the aility or inability of the extraded rule set to
produce an advice. The question then beaomes: shoud it be left entirely up to the expert to dedde on
what to dofor ead o these anomalous cases, or can he be adsted in some way?

Accordingly, at this point in the development process two major options can be dasen:
constructing a (possbly anomalous) DT from the dedsion logic that refleds all the information
present in the dedsionlogic or propasing aDT that is consistent, complete and as corred as passhble.

» Constructing a DT from the decision logic which reflects all the information present in the
decision logic (including possible anomalies)
In this option, several types of anomalies sich as inconsistency and incompletenesscan be present
in the extraded knowledge. The system will deted these anomalies, bu there ae no fadliti es in
the system to remove the anomalies. Thus, the expert himself has to dedde how the anomalies
which are presented in the DT have to be resolved. An empiricd evaluation d this approach
involving dired mail -order data was presented in Wets, Vanthienen & Piramuthu (1997).



e Constructing a DT which is consistent, complete and as correct as possible from data

The purpose of thisoptionisto propcse aDT with noanomalies to the expert. To construct such a
DT, anomalies which are present in the DT have to be removed using some heuristic. However it
is nat only necessary that those anomalies are naot refleded anymore in the DT, bu also the
constructed DT shoud be & corred as posdble. Of courseit is clea that a DT that is completely
corred canna be constructed for red-life problems because the induced dedsion logic only partly
represents that corred hypothesis. Therefore we want to emphasize that the DT, which shoud be
constructed based onthe propcsed approach, shoud always be thedked by the expert to ensure that
it refleds the corred dedsion for ead case. In Sedion4, we will investigate how we can
construct a cnsistent and complete DT, which approximates best the, in most cases unknown,
corred DT.

4. Construct a complete, consistent and correct DT from data

The onstruction consists of two pheses. First, the empty DT has to be constructed. Then, ead
adionentry inthisDT hasto befill ed such that no more anomali es occur.

4.1 Construction of theempty DT

The ampty expanded table has to be drawn using the information elements which had been oltained
previoudy. The name of ead feaure that occurs in the extraded dedsion logic will occur in the
condtion stub o the DT. The possble values of ead feaure which occur in the dedsion logic will
be refleded in the condtion entries part of the DT. Based onthis information, the enpty expanded
DT will be mnstructed such that it is a single hit tree structured DT. This is a DT that can be
evaluated top-down by continuowsly choasing the relevant condtion states until a spedfic column is
readied. In this case, the DT is a straightforward representation d the dedsion tree with all
condtions tested in the same order. The treestructure dso implies that the cmbination d condtion
values occur from left to right in lexicographicd order, in ather words that the states of the lowest
condtionsvary first.

The adion stub can be filled using the names of the adions which occur in the dedsion logic. The
condtion entries part consists of the Cartesian product of the various condition states. Finally, based
onthe deasionlogic the ac¢ion entries have to be fill ed aswill be explained rext.

4.2 Fillingtheaction entries

This ®dion consists of two subsedions. First, the proposed approach will be explained in general.
Then, some techniques are explained which can be used to implement the propased approach.

4.2.1 Outline of the proposed approach

In order to construct a mnsistent and complete DT, we have to ensure that for ead posdble
combination d condtion values it shodd be unambiguowsly spedfied which adions soud be
performed for this combination d condtionvalues. However, if the extraded deasionlogic contains
ambiguity for some combinations of condtion values, the foll owing question hasto be solved. Which
adions $wodd be exeauted for a combination d condtion values, given the fad that the dedsion
logic for this combination d condtion values gedfies contradictory adions?

To solve this probdlem we have to look differently at the condtion entries part of an expanded
single hit DT. Ead column in the condtion entries part consists of a unique cmbination o
condtion values. Therefore, we will consider such a cmbination d condtion values as an



unlabelled instance which has to be dasdfied, by means of the induced rules. In the mntext of the
construction d a DT, clasdficaion means filli ng in the proper adion entries for this combination o
condtion values. When the adion entries for a mmbination d condtion entries are filled in, this
procedure will be repeaed for the remaining combinations of condtion values in the DT. It depends
onthe expert whether he will chedk ead suggestion d the system separately, or that he will ched the
DT after that the system has filled in al necessry adion entries. As a cnsequence ou initial
problem can be reformulated into the following formulation: “how can an urlabelled instance be
clasdfied by theinduced rules?”. This questionwill be discussed in the foll owing sedion.

4.2.2 Overview of techniquesto implement the proposed approach

Because modelling a cmplete and consistent DT relies on clasdfying properly an urlabelled
instance, we will review in this sdion some major techniques to accomplish this clasdficaion. For
any unlabell ed instance during classfication threesituations may happen:

1. theunlabelled instanceis classfied urembiguouwsly by one or more rules;

2. the unlabelled instance is classfied by some rules into a dassand at the same time dassfied by
some other rules in ancther class

3. theunlabelled instanceis not classfied at all.

1. THE UNLABELLED INSTANCE IS CLASSFIED UNAMBIGUOUSLY

Situation 1 poses no problems, since the unlabelled instance is classfied urambiguowsly by one or
more rules. However, this does not mean that this unlabell ed instanceis clasdfied properly. It only
means that, given the induced rule set, this unlabell ed instance can be dassfied urambiguowsly. Still,
it hasto be gproved by the expert that the unlabell ed instance has been classfied properly.

2. THE UNLABELLED INSTANCE ISAMBIGUOUSLY CLASSFIED
In situation 2, more than ore rule matches the unlabelled instance and the matching rules gedfy
contradictory adions to be exeauted. The question is: how shoud such an urlabelled instance be
clasdfied? In the madiine leaning literature, several approaches are proposed to ded with this
problem.
A first approacdh to the @ove mentioned problem uses dedsionlists (Rivest, 1987. A dedsionlistis
an odered list of rules. The ealiest rule that matches an urlabelled instance will classfy the
unlabelled instance. The last rule is a default rule. This rule will classfy the unlabelled instance &
no aher rule does classfy the unlabelled instance Dedsion lists are the most simple technique to
solve the problem of inconsistency. Well-known macdine leaning algorithms which use dedsion
listsare C4.5(Quinlan, 1993 andthe original CN2 algorithm (Clark & Niblett, 1989.

A seoond approadh to classfy an udabelled instance is used in AQ15 (Michalski, Mozetic, Hong
& Lavrag 1989. AQ15will seled the rules which completely match the unlabelled instance (using
AQl5terminadogy, “strict matching”). Using an heuristic which uses information abou the matching
rules, the unlabell ed instance will be dassfied. Therefore, in AQ15 with every rule R an estimate of
probability EP(R) is assciated. This estimate is defined as foll ows:

number of examples classified properly by rule R
total number of training examples

EP(R) =

Based onthese EP(R), the number EP(C), describing the dassC, is computed as the probabili stic sum
of all EP(R) matching C, asfoll ows:

EP(C) = z EP(R) - Z EP(R)EP(RJ.)+ JZ EP(R)EP(RJ.)EP(&)—...iEP(Ri)EP(RZ)... EP(R,)



Note that by doing so the EP(R) are treaed as if they were probabiliti es, since the probabili stic sum
computes the probability of the disunction d n events (here n rules). But one has to kegp in mind
that in fad the EP(R) are only estimates of probabilities. The unlabelled instance is clasdfied as
belonging to the dasswhich has the highest probabili stic sum.

Ancther approac to classfy an urlabelled instance is presented in Holland, Holyoak & Nisbett
(1989 undkr the name “bucket brigade dgorithm”. The same strategy has been adopted by the LERS
system (Grzymaa-Buss, 1999. In this approacd, the dedsion to which classan urlabelled instance
belongs is made on the basis of threefadors: strength, spedficity and suppat. The meaning of these
fadorsisasfollows:

» The strength fador measures how well arule has performed in the past (e.g., onatraining set).

» Spedficity measures the relevance of a rule. The more detailed the rule’s condtion part, the
greder its edficity. Spedficity of aruleisequal to the number of attributesin the condtion part
of arule.

» Suppat isdefined as the sum of scores of al matching rules from the dass The score for aruleis
cdculated by multiplying the strength fador for the rule with the spedficity of the rule. An
unlabell ed instance will be dassfied as belonging to the dasswith the highest suppat.

In ou experiments the DTs were modelled using dedsion lists. Currently, we ae investing also the
other techniques to model DTs from data.

3. THE UNLABELLED INSTANCE ISNOT CLASSFIED AT ALL

In this stuation, there is no rule which exadly matches the unlabelled instance  This means that not
al attribute values of the rule ae matched by their courterparts in the unlabelled instance As a
consequence, the DT that will be modelled will nat be mmplete. Because it is an important goal to
construct a awmplete DT, this stuationis unsatisfadory.

A first solution to this problem uses a default rule. A default rule is arule which will classfy the

unlabelled instance if al other rules fail to doso. It can be seen as a last resort. A well-known
induction algorithm which uses a default ruleis C4.5.
A secondsolutionis used in AQ15. AQl5will classfy an urabell ed instance using partial matching
(using AQ15 termindogy, “analogicd matching”). To this end an heuristic is proposed which uses
information abou the partial matching rules. Based onthis heuristic, the unlabell ed instance will be
clasdfied. First, a measure of fit for ead attribute value (&) occurring in a rule and ead attribute
value (f;) occurring in an unabelled instance. This measure of fit MF(g;, f;) can be defined as foll ows.
First, ameasure of fit MF(R) for every ruleis cdculated. This measure of fit is defined as follows:

if 3 =fi then MF(a;, f) =1
else MF(a;, f;) = 1/jnumber of the dtribute’s possble values|

Note that in AQ15it is possble that the left hand side of arule mntains expressgons of the form (a, f;
Of,0... Of). Thisexpressonindicaes that the value for the atribute a may take k different values.
Asaresult, MF(a;, f;) will become equal to k/ |number of the dtribute’s posdble values|.

If there ae n attributes in arule the measure of fit for arule can be defined as:

strength of arule
total number of training examples

MF(R) = (] MF(a,, ) (

In this expression, [] MF(a, f,) is aweighting fador. Thisfador indicates how good the uniabell ed
=1



instance matches the rule. Based onthe measure of fit for the rules, a measure of fit for a dassC can
easily be mmputed. The same procedure as that was used to compute EP(C) is taken. Given n partial
matching rules, the measure of fit for a dassis the probabili stic sum of all MF(R).

A third solutionis presented in LERS. To compute the suppat in case of partial matching besides
strength and spedficity an additional fador is taking into acourt, the matching fador. This fador is
defined as foll ows:

Matching(R) = number of matched attribute valuesinrule R
A= total number of attributesinrule R

Thus, the suppat for arule R can now be cdculated as foll ows:
Support(R) = Matching(R) O Srength(R) O Specificity(R)

Subsequently, using the suppat which was cdculated for ead rule R, the suppat for a dassC can be
computed. The suppat for ead classC is cdculated by taking the summation d the suppat of rules
with resped to the dassC.

In ou experiments we used a default rule to avoid incompleteness Currently, we ae dso
experimenting with the other outlined techniques.

5. Empirical evaluation

To ill ustrate the proposed approad, it was tested on seven datasets. All the datasets used in this
sedion came from the UC Irvine repasitory (Merz & Murphy, 1996. Prior to the analysis, instances
with missng values were removed from the training set. In the next table, an overview of the seleded
datasetsis given.

Dataset Features | Classes | Trainingsize | Test size

Breast 10 2 699 10-fold stratified CV
Cleve 13 2 303 10-fold stratified CV
Aucrx 15 2 690 10-fold stratified CV
Pima 8 2 768 10-fold stratified CV
Sick 25 2 3163 10-fold stratified CV
Monk1 6 2 124 432

Monk3 6 2 122 432

Table 1: Summary of datasets used

First, the datasets were pre-processed (discretization wing Fayyad's and Irani's method and feaure
seledion wing IDTM). Then, the dedsion logic was induced using C4.5. Findly, the DTs were
constructed and contraded. In the experiment, we used 10fold stratified crossvalidation. In general,
this method all ows that we acarately measure the estimated acaracy. Because 10-fold stratified
crossvalidation was used ten rule sets for ead dataset exist. If not al folds classfy an example in
the same way, the dasswhich occurs most frequently is used. In case of atie, the default classis
used. In Figure 4 the modelled DT is depicted for the dataset Breest.

1. uniforcellsha (L) 1¢=1U<3 3¢=1<h E¢=1J
2. barenuclei (B) || 1¢=B<3 or 3¢<=B<6 E<=B 1¢=B<3 3¢=B<b orb<=B
3. mitoses (M) - 1¢=h<2 | 2¢=hd [ 1<=h<2 | 2¢=M
1
2

. benign x - x - x - -

. malignant - x - x - x x

1 2 3 4 5 B 7

Figure 4: DT for Breast dataset



It can be seen that this DT is aufficiently small, so that it can be interpreted easily. Also the other
DTswere quite small asis depicted in the next table. The major reasons why the DTs are so small is
pre-processng by discretization and feaure seledion and ogimization d the DT by table contradion.
It can easily be seen that the impad of this reduction is enormous with resped to the number of
posshle wlumns in the DT. For example, for the dataset breast the number of posdble wlumnsin
the DT before discretization and feaure seledion is a staggering 10°. The expanded DT after
discretization and feaure seledion shows only eighteen columns. Table cntradion reduces the
number of columns even further. The contraded table shows only seven columns.

Dataset #columns | #columns
(expanded) | (contracted)
Breast 18 7
Cleve 24 8
Aucrx 72 2
Pima 32 9
Sick 6 3
Monk1 36 8
Monk3 12 3

Table 2: Number of columnsin the modelled DTs

One may conclude that the number of columnsis largely reduced. But, this might be & the st of a
significant reduction in expeded acairacy. Therefore, in the next table, results of C4.5ules on the
raw data ae cmpared with the results of the dassficaionacairacy attained by the DTs.

Dataset Accuracy of C4.5rules | Accuracy of the DT
Breast 95.76 96.47
Cleve 75.34 82.67
Aucrx 83.93 85.20
Pima 72.78 77.92
Sick 97.23 96.93
Monkl 91.67 100.00
Monk3 96.30 97.22
AVG 86.12 89.87

Table 3: Comparison o acaracy

In this table, it can be seen that for most datasets the acaracy adualy improves after feaure
seledion and dscretization. These results dow that feaure seledion and dscretization improve
gredly the comprehensibility of the DTs and moreover, the acaracgy of the knowledge contained in
the DTsgives gill avery goodestimation d the acual unknown distribution d the data.

6. Conclusion and futureresearch

Originaly, DTs were anstructed based on some knowledge provided by an expert or some pieceof
regulation. In this paper, we have demonstrated that it is possble to model a cwmplete and consistent
DT from data. Therefore, a DT was interpreted as a set of examples which have to be gpropriately
classfied using some knowledge induced from the dataset. Our propaosed approadh was empiricdly
validated and it was shown that the modelled DTs are small enough in order to fadlit ate consultation.



In this paper severa techniques to model a mmplete and consistent DT were presented. However,
in ou experiments only one tedhnique was used so far. Althowh the results, as we have
demonstrated, are satisfadory it would be interesting to compare dl the proposed techniques to model
DTsfromdata. Currently, such experiments are caried ou.
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