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Abstract. To achieve inter-enterprise software interoperability, the semantics of 
interchanged information by using electronic business documents, has to be 
explicitly modeled. A common approach to model semantics is to use an ontology. 
However, there is an emerging approach that combines an ontology with its context 
definition. So, the misunderstanding can be avoided if the context is explicitly 
defined. The resulting structure is called contextual ontology. To process a 
contextual ontology at run time, it has to be expressed in a machine procesable 
language. Recently, some languages have appeared. But, the main disadvantage of 
these languages is that they are mostly based on logic formalisms to support 
machine reasoning. Then, for the analysis and design phase of electronic business 
documents, a more appropriate contextual ontology modelling language is needed. 
To this aim, this paper presents a language for modelling explicit and formal 
contextual ontologies that assists business ontology designers in modelling 
contextual ontologies associated to electronic business documents. 
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1 Introduction 

Nowadays, enterprises confronts technological changes, such as Internet and mobile 
computing, and business changes, such as shorter product life cycles and global market; 
that makes business decisions complex and difficult. In this scenario, business managers 
need appropriate tools for conducting collaborative business over Internet. This way of 
doing business is called e-Collaboration. The e-Collaboration is supported through 
electronic business documents interchanges.   

When information passes between companies, inconsistencies and misunderstandings 
occur very often, leading to wasted work efforts. To solve this problem XML-based 
specifications were defined to exchange business information between partners. These 
specifications propose to use the same vocabulary, that is, the same collection of terms. 
However, this is unrealistic since in the same department of different enterprises, people 



could use the same term to define different concepts. This problem is known as semantic 
interoperability problem. In order to overcome this problem we have to explicitly define 
the meaning of the terms, its semantics [6]. 

A common approach to represent semantics is to use an ontology. However, it is well 
known that a human being does not reason without context. So, if we explicitly define the 
context, we improve the semantic interoperability. The resulting structure is called 
contextual ontology [2].  

To process a contextual ontology at run time, it has to be expressed in a machine 
procesable language. Recently, some languages have appeared. However, from business 
perspective, the main disadvantage of these languages is that they are mostly based on 
logic formalisms to support machine reasoning. This makes the language syntax 
unfamiliar to business analysts who model the electronic business documents (EBD).   

To overcome the gap between people involved in the definition of EBD and ontology 
specification languages, a contextual ontology modeling language is needed. A model 
consists of sets of elements that describe some physical, abstract, or hypothetical reality. 
Good models serve as means of communications [12].  

The objective of this paper is to present a metamodel for modeling explicit and formal 
contextual ontologies, for human processing, associated to EBD. Firstly, we discuss some 
related works. Then, we present the proposed metamodel. Following, we analyze 
relationships between XML-based  specifications and ontologies in order to add formal 
and explicit semantics to EBD. Finally, we present our conclusions. 

2. Related works  

The wide acceptance of the Unified Modeling Languages (UML), not only in academia 
but also in software development; makes it an ideal language to be used in order to create 
a critical mass of people able to build high quality models of information semantics. 
Cranefield (2001) proposed an ontology representation formalism based on a subset of the 
UML together with its associated Object Constraint Language (OCL) for agent software 
communication. However, UML itself does not satisfy needs for representation of 
ontology concepts that are borrowed from Descriptive Logic and that are included in 
ontology specification languages [8].  

The Ontology Working Group is defining the Ontology Definition Metamodel (ODM) 
[13], which is a MOF2 (Meta Object Facilities) compliant metamodel. ODM allows a user 
to define ontology models using the same terminology and concepts as those defined in 
OWL, a semantic markup language for publishing and sharing ontologies on Internet 
[11]. In this metamodel the context definition is supported by using annotations in natural 
language which make the definition ambiguous. In addition, context features cannot be 
automatically transform into a machine procesable language.  

The need for a dedicated contextual ontology modeling language stems from the 
observation that a contextual ontology cannot be sufficiently modeled in UML or ODM.  



3 An overview of the proposal 

In order to define the proposed modeling language, we have imported from the “UML 
2.0: Infrastructure” specification [15] some elements of the Core::Abstractions, which  
contains a set of metaclasses to be specialized when defining new metamodels, and 
Core::PrimitiveTypes Packages, which simply contains a number of predefined data 
types.  

The main design principles of the metamodel are: (1) easy to use in rapid development 
of contextual ontologies from electronic business documents, (2) modularity and (3) high 
independence degree of contextual ontology specification languages. 

In order to fill the modularity design principles, the metamodel constructs were 
grouped into packages. The main package is the Kernel Package which imports the reused 
elements from Infrastructure::Core Package. All metamodel elements are derived from 
Kernel elements. Following we define the other packages of the proposed metamodel.  

3.1 Modeling an Ontology  

An ontology Oi is defined as a 4-tuple of the form Oi = <Ti, Pi, Ri, Ai> where: i identifies 
the domain that an ontology is associated with; Ti is a set of terms tj ∈Oi ;Pi is a set of 
properties of terms tj  ∈  Ti; Ri is a set of relations between tj and tx ∈Ti and Ai is a set of 
axioms. 

 Classes and associations, defined in the proposed modeling language for ontology 
modeling, are showed in Figure 1. The main component is Ontology class that includes 
definition of concepts used to describe a domain. This class is associated with the 
OntologyElements abstract metaclass, which groups the objects of an ontology 
metamodel. If an ontology is removed, so are the elements owned by it. The imports 
association represents that an ontology could contain definitions whose meanings are 
defined in other ontologies. The prior_Version association identifies the referred ontology 
as a prior version of one ontology. Each ontology element could be described by a 
comment, represented by the Documentation class. Finally, each ontology could be 
described by Feature, such as creation date, author, subject, title and so on.  
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Figure 1. Elements defined in the Ontology package. 

3.2 Modeling concepts 

A term and their relations with other terms represent a concept. A term can be simple or 
complex. Simple terms have literal of some kind as their values. Complex terms are 
composed by simple or complex terms.  

Properties describe the features of a term. For example, allowed values, the number of 
the values, and other features of the values that a simple or complex term could take.  

The metamodel that represents the relation between Property and Term is showed in 
Figure 2. In the proposed metamodel, the class Property defines the features of a term so 
if a term is removed the properties owned by it have to be removed.    
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Figure 2. Elements defined in the Properties and Terms package. 



3.3 Defining relations between terms  

A set of relations Ri represents how terms belonging to Oi are related to. Relations can be 
divided into hierarchical relations (is-a, part-of), conceptual relations (synonym and 
antonym), particular relations (defined by the ontology modeler) and the relation that 
states that a term is an attribute of another term.   

Term and Relations classes are associated via the RelationEnd class, as showed in 
Figure 3. An instance of Relations class has to be associated with two instances of 
RelationEnd class, the source and target. RelationEnd class is associated with one Term 
class and contains the information about cardinality and the role of terms. Furthermore, 
this class has the Navigable attribute to represent the direction of the relation.  

The Particular class allows ontology modeler to model user-defined relations between 
terms. One important requirement for ontologies is the ability to structure the relations 
into hierarchies, i.e., to define sub-relations of a relation. Furthermore, it is suitable to 
define equivalent relations and inverse relations. Subrelationof, inverseof and equivalentto 
relations model these characteristics. 

Each relation could be characterized by axioms and this is modeled by the 
axiom:Relational [0..n] association.   
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Figure 3. Elements defined in the Relations package. 

3.4 Modeling axioms  

Axioms are properties of relations and facts about concepts. Axioms help to constrain 
interpretation of concepts and provide guidelines for automated reasoning.  



In the knowledge engineering area, axioms have been represented using logic 
languages. In the UML class diagram, axioms could be expressed by Object Constraint 
Language (OCL) [15]. However, describing such constraints may involve writing 
moderately complex OCL expressions that are not immediately understandable to a 
human reader. Furthermore, there may be several different expressions encoding the same 
constraint. So, an interesting issue is to represent axioms as objects [14] for modeling 
constraints.  

Axioms can be divided into three subsets: the set of axioms for relational algebra, the 
set of general axioms and the set of axioms that states relations between attributes of a 
term. These sets of axioms are representing by Relational, AParticular and non-
Relational classes, respectively, as showed in Figure 4.   

The Relational class is an abstract class that groups the symmetric, transitive, 
antisymmetric, reflexive and functional axioms.  The AParticular class is associated with 
the Period class indicating that an axiom could be true during a period of time.  
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Figure 4. Elements defined in the Axioms package. 

3.5 Contextualizing ontologies  

There is no unique definition about what a context is. Different approaches use their own 
assumptions to define a context and use it for different purposes. In computer science, 
several context definitions have been defined in different areas, such as artificial 
intelligence, software development, databases, knowledge representation and semantics 



web. However, all of these notions of context are very diverse and suffice for different 
purposes [9][3]. From business perspective, a context Cj Jj∈∀ can be defined as a 3-
tuple <c, Dj, Oi,j>, where J is a set of indexes and c is the unique identifier of the context j, 
Dj is a set of assumptions about context j and Oi represents the ontology i within the 
context j. 

In the class diagram of Figure 5, we associate the Context class with an Ontology class 
and with one or more Assumptions classes. In [1] the following components are defined 
as assumptions: the owner of the context, the group in which the context has been 
developed, the security information and information on how a context was generated. But, 
we preferred to define the class in general to allow a user to define their own 
Assumptions. In addition, a context could be derived from other context and this is 
modeled by the derivedfrom association.   

Furthermore, a context could be a simple one or a complex one. That is, a context 
could be formed by other contexts. For example, the context of an enterprise could be 
composed by different contexts that represent different decision points, such as 
Forecasting, Planning, Scheduling, Product Design, and so on.   
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Figure 5. Elements defined in the Context package. 

  

3.6 Modeling Context Mappings  

A context mapping Ms,t allows us to state that a certain property holds between elements 
defined in the source context s and the target context t.  

Mappings are directional, i.e., Ms,t is not the inverse of Mt,s. A mapping Ms,t might be 
empty [2]. That means that there is no relation between both contexts.   

A context mapping is defined by bridge rules as linking rules between contexts. A 
bridge rule from context s to context t is a statement of one of the following forms,  



 
          (1)           (2)          (3)            (4)           (5) 

where ei and ej are elements of context cs and ct respectively.  
Rule (1) means that ei is similar to ej.  For example, Forecasting:Item →≡  
Scheduling:Item.  
Rule (2) means that both elements are disjointed. For example, Forecasting:Forecast 
→⊥  Scheduling:Employee.  

Rule (3) means that ei and ej are compatible elements. For example, 
Forecasting:Forecast →* Scheduling:Schedule (an Schedule derives from a Forecast). 
Rule (4) means that ei is less general than ej and 
Rule (5) means that ei is more general than ej. For example, 
Forecasting:Bucket →⊇ Scheduduling:Date (bucket: valid forecast time period).  
 
Finally, we have to define the container of all the above defined elements. This 

container is the domain space concept. That is, the contexts and the mapping rules that 
relate the elements between contexts are contained in a domain.  

Classes and associations to model context mappings, bridge rules and the domain space 
are showed in Figure 6. The DomainSpace class is associated with one or more Context 
and Mapping classes.  A Rules class associated with the BrigdeRules class could be one 
of the five rules previously defined, Equivalence, MoreGeneral, LessGeneral, 
Compatible and Disjunct. 
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Figure 6. Elements defined in the Context Mapping package. 

jtis ecec :: *→jtis ecec :: →⊥
jtis ecec :: →≡

jtis ecec :: →⊆
jtis ecec :: →⊇



4 An example of ontology modeling 

XML (eXtensible Markup Language) has became a standard for business information 
interchange in a e-Collaboration domain where the information is interchanged by using 
electronic business documents based on XML [6]. In order to integrate the information 
contained in the electronic business documents to their own information systems, both 
parties have to know what the information exactly means. For example, the meaning of 
the “requirement information” depends on the business collaborative process. That is, at 
Forecasting Process level “requirement information” means a demand forecast sent from a 
customer to a supplier. At Scheduling Process level, “requirement information” means a 
supply schedule sent from a supplier to a customer. To inform this information between a 
customer and a supplier the structure of the electronic business document could be the 
same, i.e. as shown in Figure 7; but the semantics changes.  

First of all, trading partners have to define the context and the characteristics that make 
the context unique. Then, they decide about the schemas of business documents that will 
be interchanged during the e-Collaboration relationship. Finally, they have to model the 
semantics associated to these business documents.  

Figure 7.  A fragment of the business document: Planning Schedule. 

    
1.   <xs:complexType name = "LocalAddress">
2.   <xs:complexContent>
3.   <xs: extension base = "Address">
4.   <xs:sequence>
5.   <xs:element name= "zip" type = "xs:string"/>
6.   </xs:sequence>        
7.   </xs:extension>  
8.   </xs:complexContent>
9.   </xs:complexType>   
10.   <xs:complexType name = "Quantity">
11.   <xs:simpleContent>
12.   <xs:extension base = "xs:decimal">
13.   <xs:attribute name = "uom" use = "required" type = "UOM"/>
14.   </xs:extension>
15.   </xs:simpleContent>
16.   </xs:complexType>   
17.   <xs:complexType name="PlanningSchedule">    
18.   <xs:sequence>   
19.   <xs:element name = "Date" type = "xs:date"/>
20.   <xs:element name = "Description" type = "Description"/>     
21.   < xs:element name = "LocalAddress" type = "LocalAddress"/>    
22.   <xs:element name = "Item" type = "Items"/>
23.   <xs:element  name="ItemQuantity" type="Quantity"  minOccurs="0"/>
24.   </xs:sequence>   
25.   </xs:complexType>   

30.   <xs:element name = "PlanningSchedule" type="PlanningSchedule"/>
31.   </xs:schema>   

    

26. 
27. 
28. 
29. 

<xs:simpleType name = "Description"> 
     <xs:restriction base = "xs:string"> 
        <xs:maxLength value = "40"/> 
</xs:simpleType> 



3.1 Rules defined for ontology modeling from XML document 

To model an ontology from a document based on XML, we have defined some rules 
presented following: 

1. The xsd:complexType element has to be modeled by the class Complex. For 
example, from the document defined in Figure 7, line 1 and line 17, we can model 
LocalAddress and ReplenishmentOrder terms as complex terms.  

2. The xsd:simpleType element has to be modeled by the class Simple. For example,  
from the document presented in Figure 7, line 26, we can model Description 
element as a simple term.  

3. The xsd:element element could be simple or complex depending on its type 
definition. That is, if they are defined as a base xsd type, they are simple terms. For 
example, on line 5 the zip element is defined as xsd:string. So, this element has to 
be modelled as a simple term. Then, on line 23, the term ItemQuantity element is 
defined as Quantity. Due to Quantity (line 10) is defined as complexType, 
ItemQuantity is a complex term.  

4. The xsd:restriction element has to be modelled by Properties class. For example, 
on line 27 the Description element is restricted by using xsd:restriction definition 
so this characteristic has to be modelled as a property of the Description term.  

After identifying the terms, the associations between them have to be defined. These 
relationships between concepts can be derived from an XML document as follows: 

1. The xsd:extension element represents the is-a relationship between terms. For 
example, in Figure 7 line 18, the <xsd:extension base = "Address"> definition 
states that the previously defined element (LocalAddress) is-a Address.  

2. The combination of complexType and element primitives represents the part-of 
relationship between terms. For example, all elements defined between the 
complexType primitives that define the ReplenishmentOrder term are related to it 
by the part-of relation. That is, Date, Description, Items and LocalAddress are 
part-of  ReplenishmentOrder.  

3. The element primitive represents the Inst-of relation between terms.   
4. The xs:attribute represents the Atributte relation. For example, in line 13 the 

definition states that uom term is an attribute of Quantity term.  

Figure 8 presents the model of the terms belonging to the XML-based document 
represented in Figure 7. On the one hand, at the left of the figure 8, we can see the 
syntactic model of the Planning Schedule document represented like a tree. On the other 
hand, at the right of the figure, we can see the semantic model. This model was obtained 
by applying the rules above defined. The graphical notation is based on [4].  



 
Figure 8. Syntactic and semantic models. 

4 Conclusions  
New information technologies provide new opportunities for allowing e-Collaboration 
which requires integration of the information and processes needed to conduct business in 
real time. XML is becoming widely used for defining electronic business documents 
within an e-Collaboration. However, these specifications need to be enriched using 
contextual ontologies due to XML does not express semantics by itself.  

In order to fill the gap between people involved in the electronic business documents 
definition and contextual ontology specification languages we have defined a Contextual 
Ontology Definition Metamodel. This metamodel allows business analysts to explicitly 
model a contextual ontology. Furthermore, we have defined a set of rules to model the 
semantics implicit in XML-based business documents. These rules are based on the 



elements that can be modeled automatically from an XML-based document. Other 
contextual ontology elements have to be defined by the ontology modeler. 

 
Acknowledgment  
This work has to be partially supported by Banco Rio S.A. and Universidad Tecnológica Nacional. 

REFERENCES 

[1] Bouquet, P, Dona, A, Serafini, L and Zanobini, S. Contextualized local ontologies 
specification via CTXML.  AAAI-02 Workshop on Meaning Negotiation (MeaN-02) July 28, 
2002, Edmonton, Alberta, Canada.  

[2] Bouquet, P; Giunchiglia, F.; van Hamerlen, F.; Serafini, L and Stuckenshmidt. C-OWL: 
Contextualizing ontologies. Proc. of the 2nd Int. Semantic Web Conference, 2003. 164-179.   

[3] Brézillon, P. (1999) Context in problem solving: A survey. The Knowledge Engineering 
Review, 14 (1), 1-34. 

[4] Caliusco, Ma. Laura. Soporte para la definición semántica de Documentos de Negocio 
Electrónicos en relaciones de e-Colaboración. PhD Thesis. March 2005 

[5] Caliusco, Ma. L.; Maidana, C.; Chiotti, O. and Galli, Ma. R. Propuesta de un Sistema 
Multiagente para Asistir al Modelado de Documentos de Negocio. Proceeding of Argentine 
Symposium on Information Systems (ASIS 2004).  

[6] Caliusco, Ma. L., Galli, Ma. R. and Chiotti, O. Ontology and XML-based specifications for 
collaborative B2B relationships. Proceeding of III Jornadas Iberoamericanas de Ingeniería de 
Software e Ingeniería de Conocimiento (JIISIC). Nov. 2003. 

[7] Cranefield, S., Haustein, S. and Purvis, M.. UML as an ontology modelling language. 
Proceedings of the Workshop on Ontologies in Agent Systems, Canada, 2001. 

[8] Duric, D.; Gasevic, D; Devedzic, V. A MDA-based Approach to the Ontology Definition 
Metamodel. Proceedings of a 4th Workshop On Computational Intelligence and Information 
Technologies. October 13, 2003, Faculty of Electronics, Niš, Serbia. 

[9] Giunchiglia, F. and Bouquet, P. "Introduction to contextual reasoning. An Artificial 
Intelligence Perspective", in B. Kokinov (ed.), Perspectives on Cognitive Science, 3, NBU 
Press, Sofia (Bulgaria) 1997. http://dit.unitn.it/~bouquet/pers-publ-engl.html   

[10] Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., Smith, J. UML for 
Ontology Development, Knowledge Engineering Review Journal Special Issue on Ontologies 
in Agent Systems, 2002 Vol. 17. 

[11] McGuinness, D and van Harmelen, F. OWL Ontology Web Language - Overview. W3C 
Recomended Propesed. December 2003. http://www.w3.org/TR/owl-features/. 

[12] Mellor, S; Scott, K; Uhl, A. and Weise, D. MDA Distelled – Principles of Model-Driven 
Architecture. ADDISON-WESLEY, 2004. 

[13] Ontology Definition Metamodel (ODM). Initial Submission to OMG. August, 2003.  
[14] Staab, S; Mädche, A.. Axioms are objects, too - Ontology Engineering Beyond the Modeling 

of Concepts and Relations. Proc. of the ECAI 2000 Workshop on Ontologies and Problem-
Solving Methods. Berlin, August 21-22, 2000. 

[15] UML 2.0 Infrastructure – Final Adopted Specification. September, 2003. 


