
A Model Driven Approach to Design Web Services in a
Web Engineering Method1

Marta Ruiz, Pedro Valderas, Victoria Torres, Vicente Pelechano

1 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camí de Vera s/n, Valencia-46022, España
{mruiz, pvalderas, vtorres, pele}@dsic.upv.es

Abstract. Probably one of the most difficult tasks in the development of a Ser-
vice Oriented Architecture (SOA) is how to obtain well designed Web Ser-
vices. In this work, we present an extension of a web engineering method
(OOWS) to provide a methodological guide that allow us to identify well de-
signed Web services in a SOA from the OOWS conceptual model.

1 Introduction

The emerging Web Engineering discipline is being worried on how to develop well
designed Web services. A web service should provide public operations with an ap-
propriate granularity level in order to provide flexibility and to facilitate its connec-
tion and integration into distribute business processes over Internet.

Some Web Engineering methods (OOHDM [1] and WebML [2]) are trying to in-
troduce web services into their web conceptual modelling approaches. However these
approaches do not give support to the design and develop of Web services.

The OOWS [4] approach introduces a model driven approach to develop web ap-
plication. The OOWS method integrates navigational design with a classical OO
conceptual modelling providing systematic code generation (OO-Method [3]). This
work is an initial effort to introduce SOA and the Web services technology in the
OOWS method. Our proposal defines a methodological guide that allows us to iden-
tify a set of functional groups that define public and coarse grained services in a
multi-tier SOA. This is done by taking the conceptual models that the OOWS method
provides and providing a model driven strategy to systematically obtain the functional
groups (web services) by extracting all the useful knowledge that the models include.

This paper is organized as follows: section 2 presents a methodological guide to
obtain well designed Web services in a SOA. Finally, we present some conclusions in
section 3.

1 This work has been developed with the support of MEC under the project DESTINO

TIN2004-03534 and cofinanced by FEDER.

2 A Model Driven Approach to Design Web Services.

In this section, we introduce a methodological guide to identify a set of functional
groups that define public and coarse grained services in a multi-tier SOA. A coarse
grained service is defined as a Web service that may perform a great amount of op-
erations.

These functional groups are identified from the models that the OOWS method
provides. In this sense, to easily understand the presented guide a (necessary) brief
overview of the OOWS method is first presented. Moreover, a muti-tier architectural
style for SOA is also introduced.

2.1 The source Models. The OOWS approach

In this section we present a brief overview of the OOWS method [4]. The OOWS
development process is divided in three major steps: user identification, task descrip-
tion and conceptual modelling.

In the user identification step, a User Diagram is defined to express which kind
of users can interact with the system. Fig. 1A shows the User Diagram of an applica-
tion like the Amazon Web site where products can be electronically purchased. We
have defined users of three kinds: Visitor, Client and Administrator.

A d m in i s t r a t o r

V i s i t o r

C l ie n t

A) B)

Fig. 1. User and Task diagrams.

In the task description step, a Task Diagram is defined for each kind of user. In
this diagram, we describe which tasks the user can achieve by interacting with the
Web application. To define the task diagram we use the CTT (ConcurTaskTree) ap-
proach [5]. Fig. 1B describes how a Client can buy a product.

In the conceptual modelling step, we define a web conceptual schema that gives
support to the tasks identified above. The OOWS conceptual schema is made up of
several models which describe the different aspects of a Web application. The system
static structure and the system behaviour are described in three models (class dia-
gram and dynamic-and functional models) inherited from an object oriented software
production method called OO-Method [3]. The navigational aspects of a Web appli-
cation are described in a navigational model [4].

In the OOWS navigational model, for each kind of user we define a directed graph
(which defines its allowed navigational structure) whose nodes are navigational con-
texts and its arcs denote navigational links (see Fig. 2A). A navigational context (rep-

resented by an UML package stereotyped with the «context» keyword) defines a view
on the class diagram (see Fig. 2B) that allows us to specify an information recovery.
There are links of three kinds (see Fig. 2A): (1) Sequence links (represented by solid
arrows) that represent a reachability relationship between two contexts; (2) Explora-
tion links (represented by dashed arrows) that are defined from the root of the naviga-
tional map (depicted as a user) and ends in a navigational context. This kind of link
can be activated from any context of the navigational map providing access to the
context where the link ends; and (3) Service links (see Fig. 2B) that represent the
target navigational context that the user will reach after that service execution.

Fig. 2. The OOWS Navigational Model

Furthermore, for each context, we can also define (see Fig. 2B): (1) Search filters
that allow us to filter the space of objects that retrieve the navigational context and (2)
Indexes that provide an indexed access to the population of objects. Indexes create a
list of summarized information allowing the user to choose one item (instance) from
the list. Fig. 2 shows a partial view of the Client navigational model that we obtain
from the tasks that this kind of user can achieve.

2.2 Architecting Web Service Applications.

The approach introduced in this paper is based on a multi-tier architectural style for
SOA that is shown in Fig. 3.

Fig. 3. Multi-tier architecture

In the Service Provider tier, we have three subtiers: Persistence Tier, Application Tier
and Interaction Tier. In this work, we focus on designing the Interaction Tier (also
called Façade) of the service provider which is the public part (at operations level) of

the application. This Interaction Tier is made up of four functional groups: User
Management, Information Retreival, Aplication Logic and Navigation Support. Next
section introduces a methodological guide to obtain well designed Web services for
each functional group, with their operations.

2.3 A Methodological Guide for Designing Coarse Grained Web Services.

In this section we show how a set of functional groups that structure the interaction
tier can be identified form the models of the OOWS method. These functional groups
are the Web services published in the application and their operations are going to be
designed in an appropriate way. These operations are represented in a hierarchical
structure: the root node represents the Web service, the first level of nodes represents
the public operations offered by this service and the second level of nodes represents
the private operations that can perform a public operation.

To easily understand this approach, we follow the example of an application like
the Amazon Web site (thereafter known as “Amazon Example”) where products can
be electronically purchased (see section 2.1).
Next, each service that defines a functional group of the interaction tier is identified.

User Management Service
This service provides the operations for the authentication, authorization and man-
agement of the potential users that interact with the application. It is composed by
two kinds of operations: (1) those that provide support for the user identification
(loginUser, logoutUser, changeRol) and (2) those that give support to generic user
administration (newUser, remindPassword, modifyUser, deletelUser).

Application Logic Service
This functional group provides operations to implement functional requirements of
the application. The operations that constitute this service are obtained from the OO-
Method and OOWS models (see Fig. 4): (1) the task diagram is used to obtain which
are the public and coarse grained operations and their composites; (2) the class dia-
gram is used to obtain the parameters of each operation.

Fig. 4 shows the task and the class diagrams from this application. From the task
diagram we can obtain two public and coarse grained operations: collectPro-
ducts and CheckOut. The collectProducts operation is decomposed into
two private operations: fillShoppingCart and inspectShoppingCart. To
obtain their parameters, we should see at the class diagram. For the collectPro-
ducts we need to detect which are the necessary attributes for each composed op-
eration. To do this, we match the composed operation with operations of the class
diagram. Then, the composition of all attributes will be the parameters of the col-
lectProducts.

Fig. 4. Application Logic Operations

Information Retrieval Service
This service defines operations to retrieve information about the classes shown in the
OOWS contexts. Three operations are obtained from the navigational context specifi-
cation shown in Fig. 5: (1) The RetrieveInfo that is defined to obtain informa-
tion about several classes, (2) the Index operation that is defined from the index
mechanism and (3) the Filter operation that is defined from the Filter mecha-
nism. These three operations are public and coarse grained because they encapsulate a
lot of functionality.

Fig. 5. Information Retrieval Service Operations

Navigation Support Service
This service offers operations to implement the navigation support defined in the
navigational maps. The service moves the navigational logic to the interaction tier,
making easy the implementation of personalization mechanisms and web applications
adaptation.

This service has three operations (see Fig. 6). The first two ones are obtained from
the Navigational map and the last one is obtained from Navigational Contexts. The
explorationLink(id_sesion) operation is obtained from the Exploration
navigational contexts and the sequenceLink(id_sesion, contex) opera-
tion is obtained from the Sequence navigational contexts. The Service-
Link(id_sesion, service) operation is obtained to support the Service links.

The three operations are public and fine grained because they provide simple func-
tionality that is clear defined and only performs one operation.

Fig. 6. Navigation Support Operations

3. Conclusions and Future Work

In this work, we have introduced a multi-tier architecture based on levels when we
distinguish four functional groups: User Management, Information Retrieval, Appli-
cation Logic and Navigations Support. Each of these groups is a Web service com-
posed by a set of operations. We have presented a methodological guide to obtain
well designed Web services in a SOA.

This methodological can be generalized to other Web Engineering Methods, be-
cause the OOWS method share the most common models and primitives which that
source information to obtain the web services. As further work, we are defining the
transformations using Graph Grammars [6] to automatically generate the Web ser-
vices from the OOWS models.

References

[1] Schwabe D., Rossi G. and Barbosa D.J. “Systematic Hypermedia Application Design
with OOHDM“. Proc. ACM Conference on Hypertext. pp.166. 1996.

[2] Ceri S., Fraternali P., Bongio, “A. Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites”. In WWW9, Vol. 33 (1-6), pp 137-157. Computer
Networks, 2000

[3] Pastor, O., Gomez, J., Insfran, E., Pelechano, V. “The OO-Method Approach for Infor-
mation Systems Modelling: From Object-Oriented Conceptual Modeling to Automated
Programming”. Information Systems 26, pp 507–534 (2001)

[4] Joan Fons, Vicente Pelechano, Manoli Albert y Oscar Pastor. “Development of Web
Applications from Web Enhanced Conceptual Schemas”. Springer-Verlag, Lecture Notes
in Computer Science. Proc. Of the International Conference on Conceptual Modelling,
22nd Edition, ER'03, pp 232-245. Chicago, EE.UU, 13 - 16 October 2003.

[5] F. Paternò, C. Mancini and S. Meniconi, 1997. “ConcurTaskTrees: a Diagrammatic
Notation for Specifying Task Models”, In Proceedings of INTERACT’97, Chapman &
Hall, 368-366.

[6] Dániel Varró. “Automated Program Generation for and by Model Transformation Sys-
tems“. In Proc. AGT 2002: Workshop on Applied Graph Transformation, 2002.

	textHeader_Forum/030-CAiSE05Forumpaper124:
	pdf_0: 183
	pdf_1: 184 Marta Ruiz, Pedro Valderas, Victoria Torres, Vicente Pelechano
	pdf_2: 185
	pdf_3: 186 Marta Ruiz, Pedro Valderas, Victoria Torres, Vicente Pelechano
	pdf_4: 187
	pdf_5: 188 Marta Ruiz, Pedro Valderas, Victoria Torres, Vicente Pelechano

	textFooter_Forum\030-CAiSE05Forumpaper124:
	pdf_0: Proceedings of the CAiSE'05 Forum - O. Belo, J. Eder, J. Falcão e Cunha, O. Pastor (Eds.)© Faculdade de Engenharia da Universidade do Porto, Portugal 2005 - ISBN 972-752-078-2

