A distributed version of the Ganter algorithm for general Galois Lattices

Gérard Lévy and Fatma Baklouti
CERIA Laboratory, Paris Dauphine University
Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
\{gerard.levy,fatma.baklouti\}@dauphine.fr

Abstract

Standard Galois Lattices are effective tools for data analysis and knowledge discovery. Several algorithms were proposed to generate concepts of lattices, among which the ScalingNextClosure algorithm. In order to share the production workload between several processors when the number of closed itemsets to determine is very large, this algorithm leans on the sequential character of the closed itemsets determination of a Galois Lattice by the Ganter algorithm. In this paper, we prove that the parallelised version of the ScalingNextClosure can be extended to more general contexts (even some complex data) than usual binary contexts and that the partition of the workload between processors can be made with all the wished precision.

1 Introduction

Standard Galois Lattices are very useful tools in data mining. They allow us to structure data sets, by extracting concepts and rules to deduce concepts from other concepts. Concept lattice studies how objects can be hierarchically grouped together according to their common attributes. Since each set of objects possesses some attributes, we can classify objects and attributes according to the relation between objects set and attributes set. Formal concept or closed itemset represents stronger association between itemsets and the set of their common objects.
Several algorithms are well known and used to determine the Galois lattice GL(C) associated to a given context C, when the size of C is not too large. Nevertheless, we need nowadays to treat contexts which are large and not necessarily binary.
Several algorithms were proposed to generate concepts of lattices, among which the ScalingNextClosure algorithm proposed in [11]. In order to share the workload between several processors when the number of closed itemsets to determine is too large, this algorithm leans on the sequential character of the closed itemsets determination of a Galois Lattice by the Ganter algorithm. One of the essential points of this distributed version is the work distribution between various processors. (The qualifier "large" concerns here not only the size of the context but also the number of closed itemsets of the lattice since a small table can generate a big lattice).

In this paper, we show that the parallelized version of the ScalingNextClosure can be extended to more general contexts, than usual binary contexts and that the partition of the work between processors can be made with all the required precision.
The rest of the paper is organized as follows. In section 2, we define all the concepts necessary to present clearly the general contexts to which we shall apply our algorithms, and to develop the tools of partition. In section 3, we define the lexicographical order. We introduce the first version of the Ganter algorithm in section 4 and its segmented version in section 5 . Section 6 is devoted to the choice of partitions. In section 7, we define some mathematical tools in order to help the construction of good partitions proposed in section 8 . Section 9 concludes this paper by listing future research directions.

2 Notations, Definitions

Let m and n be two finite positive integers. The set $I=\{1 \ldots m\}=[1 \ldots m]$ designates a set of m individuals or objects i, and the set $J=\{1 \ldots n\}=[1 \ldots n]$ designates a set of n properties or variables j.
Every variable j takes its values in a set $B_{j}=\left\{0 \ldots b_{j}-1\right\}=\left[0 \ldots b_{j}-1\right]$, where b_{j} is a finite integer > 1 .
In that case, the sequence $\left(b_{1} \ldots b_{n}\right)$ will be called a multibased or a generalized base, or a heterogeneous base.
We suppose that every B_{j} is provided with the total order \leq of the natural integers.
We note $B^{[n]}$ the Cartesian product $B_{1} \times B_{2} \times \ldots \times B_{n}$ which is the set of the elements $X_{n}=\left(x_{1} \ldots x_{n}\right)$ such as $\mathrm{x}_{j} \in B_{j}$, for every j of J.
We provide $B^{[n]}$ with the relation of order \leq of the Cartesian product, namely: $X_{n} \leq Y_{n}$ iff $x_{j} \leq y_{j}$ for every j of J. Provided with this relation $\left\langle B^{[n]}, \leq>\right.$ is a lattice for the operations "sup" (supremum) noted \vee and "inf" (infimum) noted \wedge. These operations are defined by:
$Z_{n}=X_{n} \vee Y_{n}$ iff for every j of $J z_{j}=x_{j} \vee y_{j}=\sup \left(x_{j}, y_{j}\right)$;
$Z_{n}=X_{n} \wedge Y_{n}$ iff for every j of $J z_{j}=x_{j} \wedge y_{j}=\inf \left(x_{j}, y_{j}\right)$.
Furthermore, the extreme elements of this lattice are O_{F} and $l_{F} . \mathrm{O}_{F}$ and 1_{F} are defined by $O_{F}=(0 \ldots 0 \ldots 0)$, and $1_{F}=\left(b_{l^{-}} 1 \ldots b_{j}-1 \ldots b_{n-1}\right)$.
Every X_{n} of $B^{[n]}$ verifies the constraint $0_{F} \leq X_{n} \leq 1_{F}$.
(In the rest of this paper, in order to avoid using $b_{j}-1$, we shall put $1_{F}=\left(c_{1} \ldots c_{j} \ldots c_{n}\right)$, with $c_{j}=b_{j}-1$, for every j of J)
Let $E=2^{I}=P(I)$ be the set of subsets of I.
Let $d: I \rightarrow B^{[n]}$ be a mapping which associates to every individual i of I its description $d(i)=\left(d_{1}(i) \ldots d_{j}(i) \ldots d_{n}(i)\right)$, where $d_{j}(i)$ is the value of the variable j for the individual i.
Let $f: E \rightarrow B^{[n]}$ be the mapping which associates to every subset X of I the element f (X) of $B^{[n]}$ defined by $\mathrm{f}(X)=1_{F} ; X=\varnothing$, and $f(X)=\wedge_{\mathrm{i} \in \mathrm{X}} d(i)=d\left(i_{1}\right) \wedge d\left(i_{2}\right) \wedge . \ldots \wedge$ $d\left(i_{k}\right)$ if $X=\left\{i_{1}, i_{2} \ldots i_{k}\right\} \subseteq I .(f(X)$ is called the intent of $X)$.
We define the mapping $g: B^{[n]} \rightarrow E$ by $g\left(Z_{n}\right)=\left\{i \in I: Z_{n} \leq d(i)\right\}$, for every $Z_{n} d e$ $B^{[n]}$. $\left(\mathrm{g}\left(Z_{n}\right)\right.$ is called the extent of $\left.Z_{n}\right)$.

We note that f and g are decreasing mappings and their composites $h=g \circ f$ and $k=f$ $\circ g$ are closure operators.
In the literature of «data mining», the triplet $C=\langle I, F, d\rangle$ is called a context. It is often materialized by a table, which has m lines and n columns, every element in position (i, j) being equal to $d_{j}(i)$.
The pair (f, g) is called the Galois connection associated to the context C.
The elements X of E such as $h(X)=X$ are called the closed elements of E, and Z_{n} of $B^{[n]}$ such as $k\left(Z_{n}\right)=Z_{n}$ are called the closed elements of $B^{[n]}$.
Let us note $\operatorname{Inv}(E)=\{X \in E: h(X)=X\}$ and $\operatorname{Inv}(F)=\left\{Z_{n} \in F: k\left(Z_{n}\right)=Z_{n}\right\}$.
We can prove that these sets are in bijection [4].
The set of pairs $\left(X, Z_{n}\right)$ of $E \times B^{[n]}$ such as $\left(X \in \operatorname{Inv}(E)\right.$ and $\left.Z_{n}=f(X)\right)$ is equal to the set of all the pairs $\left(X, Z_{n}\right)$ such as $\left(Z_{n} \in \operatorname{Inv}(F)\right.$ and $X=g\left(Z_{n}\right)$). (Each of these pairs is called a concept). This set is called the Galois Lattice associated to the context C, and noted $T G(C)$.
$T G(C)=\left\{\left(X, Z_{n}\right): X \in \operatorname{Inv}(E)\right.$ and $\left.Z_{n}=f(X)\right\}=\left\{\left(X, Z_{n}\right): Z_{n} \in \operatorname{Inv}(F)\right.$ and $X=g$ $\left.\left(Z_{n}\right)\right\}$.
We can prove that this set is a lattice for the relation of order \leq defined by $\left(X, Z_{n}\right) \leq$ $\left(X^{\prime}, Z_{n}{ }^{\prime}\right)$ iff $X \subseteq X^{\prime}$ and $Z_{n}{ }^{\prime} \leq Z_{n}$.
Many problems of data mining are related to the determination of the Galois Lattice associated to a context C. Depending on the nature of the data mining problem, this determination may consist in determining simply all the concepts (X, Z_{n}), or to determine this set and its order relation.

3 Lexicographical Order on $B^{[n]}$

Up to here, $B^{[n]}$ is provided with the order associated with $B_{1} \times B_{2} \times \ldots \times B_{n}$.
If all the b_{j} 's are equal to 2 (binary case), the Ganter algorithm allows to build all the closed itemsets of the Galois lattice following the lexicographical order of its elements.
In order to generalize the Ganter algorithm, we define, in this section, this order on $B^{[n]}$ when the b_{j} 's are greater than 1.

3.1 The lexicographical order definition

Being given two elements X_{n} and Y_{n} of $B^{[n]}$, our objective is to determine their greatest common prefix. Two cases are possible: either $X_{n}=Y_{n}$, or they are different. If $j=\inf$ $\left\{\mathrm{k} / x_{l} \neq y_{l}\right\}$ of and if $x_{j}<y_{j}$ then X_{n} precedes Y_{n} in lexicographical order (L.O), and otherwise Y_{n} precedes X_{n}. We note $X_{n} \leqq Y_{n}$ the fact that X_{n} precedes Y_{n} in L.O.
In pseudo-Pascal, the following function takes the value True iff $X_{n} \leqslant Y_{n}$.

```
Function inflex ( }\mp@subsup{X}{n}{},\mp@subsup{Y}{n}{}\mathrm{ : elements of }\mp@subsup{\textrm{B}}{}{[n]})\mathrm{ : boolean;
    Var j: integer;
    Begin
```

```
j=1; while ((j<=n) and (x[j]=y[j])) do j=j+1;
Inflex=(j>n) or (x[j]<y[j]);
```

End;

3.2 The next in lexicographical order of X_{n}

While $1_{F}=\left(c_{1} \ldots c_{j} \ldots c_{n}\right)$, we define the transition subscript of every X_{n} of $B^{[n]}$ as follows:
$j=n$; While $((j>0)$ and $(x[j]=c[j]))$ do $j=j-1$; Subscript of transition $=j$;
In other words, if $X_{n}=\left(x_{1}, x_{2} \ldots x_{i-1}, x_{i}, c_{i+1}, c_{i+2} \ldots c_{n}\right)$, and $x_{i} \leqslant c_{i}$, then its transition subscript is i.
This subscript is designated by $i^{+}\left(X_{n}\right)$. Therefore, $i^{+}\left(X_{n}\right)=0$, iff $X_{n}=1_{F}$.
Moreover, if $X_{n} \neq 1_{F}$, and if its transition subscript is i, we define its following Y_{n} in lexicographical order by $Y_{n}=\left(x_{1}, x_{2} \ldots x_{i-1}, 1+x_{i}, 0,0 \ldots 0\right)$., and we note it X_{n}^{+}. (It is easy to verify that Y_{n} follows of X_{n} in L.O).On the other hand, if $X_{n}=1_{F}$, the following of X_{n} in L.O is not defined.
We can also define, the next of X_{n} in L.O, from the subscript i (of J), as follows:

```
Procedure next ( \(X\) : element of \(B^{[n]} ; i\) : element of \(J\); the Var \(Y\) : element of \(B^{[n]}\);
Var \(i^{+}\): integer)
Var \(j, k\) : integer;
begin
\(j=i\);
    While \(((j>0)\) and \((x[j]=c[j]))\) do \(j=j-1\);
    \(i^{+}=j\);
    If \(\left(i^{+}>0\right)\) then
    begin
        For \(j=1\) to \(i^{+}-1\) do \(y[j]=x[j]\);
        \(y\left[i^{+}\right]=1+x\left[i^{+}\right] ;\)
        For \(j=1+i^{+}\)to \(n\) do \(y[j]=0\);
    end;
end;
```

Remark: when i is the transition subscript of X, this procedure output is $Y=X^{+}$, the next of X in L.O, which may be generally provided by starting with $i=n$.
For every $X=X_{n}=\left(x_{1}, x_{2} \ldots x_{i-1}, x_{i}, c_{i+1}, c_{i+2} \ldots c_{n}\right)$, other than 1_{F}, we define the element X^{*} of $B^{[n]}$ by: $X^{*}=\left(x_{1}, x_{2} \ldots x_{i-1}, c_{i}, c_{i+1}, c_{i+2}, \ldots c_{n}\right)$, if $i^{+}(X)=i$. Thus, we remark that $X \leq X^{+} \leq X^{*}$.
for every X of $B^{[n]}$, other than 1_{F},
In the next sub-section, we establish several relations between product-order and lexicographical order.

3.3 Product-order and lexicographical order on $\boldsymbol{B}^{[n]}$

Proposition 1: $\forall X$ and Y of $B^{[n]}$, if $X \leq Y$ then $X \leq Y$
Proof: For every j of $J x_{j} \leq y_{j}$. If $Y<X, \exists j$ of J such as $y_{j}<x_{j}$. This is in contradiction with the fact that $X \leq Y$.
Proposition 2: whatever are X and Y of $B^{[n]}$, if X is different of 1_{F}, then: $X^{+} \leq Y \leq X^{*}$ iff $X^{+} \underline{\angle} Y \underline{L} X^{*}$.
Proof: It is obvious that $\forall X, X^{+} \leq X^{*}$ and $X^{+} \leq X^{*}$. The implication from left to right results from 2.3.1.
Let us prove the second implication. We note $i=i^{+}(X)$ the transition subscript of X. Since $X^{+} \leqslant Y$,

- Either $X^{+}[j]=Y[j]$ for every j of J.i.e. $X^{+}=Y$. Therefore, we conclude in this case that $X^{+} \leq Y$ and $Y \leq X^{*}$;
- Or there is a subscript k of J such as $X^{+}[k]<Y[k]$. If $k<i=i^{+}[X]$, we have every $j<$ $k, X^{+}[j]=Y[j]$, and $X^{+}[k]<Y[k]$. But for every $j<i$, we have $X^{+}[j]=X^{*}[j]=X[j]$. It follows that $X^{*} \angle Y$, in contradiction with the hypotheses. In that way, $i=i^{+}[X] \leq k$. Consequently, for every $j<i$:
$X^{+}[j]=X^{*}[j]=X[j]=Y[j]$. Furthermore, for every $j>i$, we have $X^{+}[j]=0 \leq Y[j] \leq c_{j}$ $=X^{*}[j]$.
If $X^{+} \leq Y \leq X^{*}$, we have thus for $j=i, X^{+}[i]=1+X[i] \leq Y[i] \leq c_{i}=X^{*}[j]$.
This proves that for every j of $J, X^{+}[j] \leq Y[j] \leq X^{*}[j]$, and thus that $X^{+} \leq Y \leq X^{*}$.

3.4 Next closed itemset according to lexicographical order

For a given context $C=\langle I, F, d\rangle$, with $F=B^{[n]}$, and an element a of F, we search the first element y of F which is a closed itemset of the lattice TG (C) and such as $a \angle$ y.
The following result generalizes the Ganter's one.
Proposition 1: Let a^{+}be the following of a in L.O. We pose $X=g\left(a^{+}\right) \subseteq I$, and $y=k$ $\left(a^{+}\right)=f(X) \in F$.
If $a^{+} \leq y \leq a^{*}$, then y is the first closed itemset, of TG (C), following a in L.O;
Otherwise, there is no closed item z of TG (C) between a^{+}and a^{*}, and the following closed itemset of a in L.O is to be searched from the next of a^{*}.
Proof:
Since k is extensive, $a^{+} \leq k\left(a^{+}\right)=y$.

- We suppose that we have furthermore $y \leq a^{*}$. Then $a^{+} \leq y \leq a^{*}$.

According to 2.3.2, $a^{+} \leq y \leq a^{*} . y$ is a closed item which follows a in L.O. Let us prove that it is the first one. If there was one closed item z of TG (C), such as $a^{+} \leq z$ $\leq a^{*}$, then $a^{+} \leq z \leq a^{*}$. Since k is increasing, we have $y=k\left(a^{+}\right) \leq k(z)=z$. Therefore y $\leq z$, and according to 2.3.1, $y \leq z$.
Consequently, y is the first closed item of TG (C) following a in L.O.

- On the other hand, if $a^{*}<y$, let us prove that there is no closed item z of TG (C) such as $a^{+} \underline{L} z \underline{a^{*}}$.

If a such z existed, then $a^{+} \leq z \leq a^{*}$. Since k is increasing, we have $y=k\left(a^{+}\right) \leq k(z)=$ z. Finally, since $z \leq a^{*}$, we have $y \leq a^{*}$. This result is in contradiction with the hypothesis.

4 Ganter algorithm

The properties established previously lead to the first version of the Ganter algorithm for contexts $\mathrm{C}=\langle I, F, d\rangle$ such as $F=B^{[n]}$ provided with the product-order.

```
Procedure GANTER1 (C: context)
\(\operatorname{Var} a, a^{+}, a^{*}, y\) : elements of \(F ; X\) element of \(E ; n f\) : integer; \(\{n f=\) number of closed
itemsets of the lattice\}
Begin
    \(n f=0 ; a=\mathrm{O}_{F} ;\)
    \(X=g(a) ; y=f(X)\);
    If \((y=a)\) then begin \(n f=1+n f\); show \((X, y)\); end;
    While ( \(\mathrm{a}<1_{\mathrm{F}}\) ) do
    Begin
        \(a=a^{+} ;\)
        \(X=g(a)=f(X)\);
        If \(\left(y \leq a^{*}\right)\) then
            begin
                \(n f=1+n f ;\) show \((X, y) ; a=y ;\) end;
        else \(a=a^{*}\);
    End;
End;
```

We can reduce the number of operations of this algorithm by taking into account the properties established above: If i denotes the transition subscript of a, it obvious that that

- By assigning a to O_{F}, we have $i=n$;
- The condition $\left(a<1_{F}\right)$ is equivalent to ($i>0$);
- The expression " $a=a^{+}$" may be replaced by the expression "next $\left(a, i, a^{+}\right.$, $\left.i^{+}\right) ; i=i^{+}$, , which provides a^{+}as well as its transition subscript;
- The expression "If $\left(y \leq a^{*}\right.$.) "may be replaced by the expression "(If $y_{j}=a_{j}$ for $j=1 . . . i-1) "$.
- The expression " $a=a^{*}$ "may be replaced by the expression " $i=i-1$ ". That leads to a faster version of the Ganter (?) algorithm.

Procedure GANTER2 (C : context)

Var a, a^{+}, a^{*} : elements of $F ; X$ element of $E ; \mathrm{i}^{\mathrm{i}} \mathrm{i}^{+}, n f$: integer; $\{n f=$ number of closed itemsets of the lattice\}

Begin

```
\(n f=0 ; a=\mathrm{O}_{F} ; i=n ; X=g(a) ; y=f(X)\);
If \((y=a)\) then
    begin \(n f=1+n f\); show \((X, y)\); end;
While ( \(i>0\) ) then
begin
        next \(\left(a, i, a^{+}, i^{+}\right) ; a=a^{+} ; i=i^{+} ; X=g(a) ; y=f(X)\);
        If (for every \(j<i\) we have \(y_{j}=a_{j}\) ) then
            begin \(n f=1+n f\); show ( \(X, y\) ); \(a=y ; i=n\); end;
        else \(i=i-1\);
end;
End;
```

Example:
$F=F_{1} \times F_{2} \times F_{3}$

- $\quad F_{1}:$ Size: short (1), medium (2), high (3)
F_{1} will be presented by $1<2<3$ (ordered set by the relationship \leq)
- $\quad F_{2}$: Weight: thin (0), fat (1)
F_{2} will be presented by $0<1$ (ordered set by the relationship \leq)
- $\quad F_{3}$: Age: child (1), adolescent (2), adult (3)
F_{3} will be presented by $1<2<3$ (ordered set by the relationship \leq)

	Size	Weight	Age
Marc	2	0	1
Cédric	2	0	3
Céline	1	1	2
Carine	3	1	2

Total number of closed pairs (X, z) of $\mathrm{T}=\mathrm{GL}(\mathrm{C})=8$.
$\mathrm{C}_{1}: \mathrm{X}=\{$ Marc, Céline, Carine $\}, \mathrm{z}=(2,0,1)$
$\mathrm{C}_{2}: \mathrm{X}=\{$ Marc, Cédric, Céline, Carine $\}, \mathrm{z}=(1,0,1)$
$\mathrm{C}_{3}: \mathrm{X}=\{$ Cédric, Carine $\}, \mathrm{z}=(1,1,2)$
$\mathrm{C}_{4}: \mathrm{X}=\{$ Cédric, Céline, Carine $\}, \mathrm{z}=(1,0,2)$
$\mathrm{C}_{5}: \mathrm{X}=\{$ Céline $\}, \mathrm{z}=(2,0,3)$
$\mathrm{C}_{6}: \mathrm{X}=\{$ Céline, Carine $\}, \mathrm{z}=(2,0,2)$
$\mathrm{C}_{7}: \mathrm{X}=\{$ Carine $\}, \mathrm{z}=(3,1,2)$
$\mathrm{C}_{8}: \mathrm{X}=\{ \}, \mathrm{z}=(3,1,3)$

5 The segmented procedure of Ganter

In this section, we use the sequential character of the construction of TG (C) by the Ganter algorithm to split this construction process into many parts.

5.1 Construction of an interval of TG(C)

Let u and v be two elements of $B^{[n]}$ such as $0_{F} \leq u \angle v \leq 1_{F}$. We recall that the Ganter algorithm produces the closed itemset (X, y) of $\operatorname{TG}(C)$ in the lexicographical order of the elements y of $B^{[n]}$. Therefore, if we note TG (C, u, v) the set of closed itemset (X, y) of $\mathrm{TG}(C)$ such as $u \leqslant y \angle v$, and if we call it the interval [u, v [of $\mathrm{TG}(C)$, then it is possible to obtain this interval by applying the following procedure:

```
Procedure GANTER_TRUNCATED (C: context; \(\mathbf{u}\), v: elements of \(B^{[n]}\); Var
TG: set of pairs of (X,y) of \(E \times F)\)
Var \(n f\) : integer; \(a, a^{+}, a^{*}, y\) : elements of \(F ; X\) : element of \(E\);
Begin
    TG= \(\varnothing ; n f: 0 ; a=u ;\)
    \(X=g(a) ; y=f(X)\);
If \((y=a)\) then begin \(n f=1+n f\); show \((X, y)\); \(\mathrm{TG}=\mathrm{TG} \cup\{(X, y)\}\); end;
    While ( \(a \angle v\) ) do
    begin
        \(a=a^{+} ; X=g(a) ; y=\mathrm{f}(X)\);
        If \(\left(y \leq a^{*}\right.\) and \(\left.y<v\right)\)
        then begin \(n f=1+n f ;\) show \((X, y) ; a=y ; \mathrm{TG}=\mathrm{TG} \cup\{(X, y)\}\);
end
        else \(a=a^{*} ;\)
    end;
End;
```

We think that it is possible to provide a more efficient version of this procedure by taking into account the same remarks as for Ganter2.

5.2 Distributed construction of TG(C)

Let $(u[0], u[1] \ldots u[p-1], u[p])$ be a sequence of elements of $B^{[n]}$, strictly increasing according to the lexicographical order, and such as $O_{F}=u[0] \angle u[l] \angle \ldots \angle . u[p-l]$ $\angle u[p]=1_{F}$.
In the rest of the paper, such a sequence is called a partition of $B^{[n]}$.
TG (C) may be built as the union of the TG (C,u[k-1],u[k]), for $k=1,2 \ldots p$.
In that way, we obtain all the closed itemset (X, y) of $\mathrm{TG}(C)$ such as $Y \in\left[0_{F}, u[1][\cup\right.$ $\left[u[1], u[2]\left[\cup \ldots \cup\left[u[p-1], 1_{F}[\right.\right.\right.$.
Let us remark that this construction excludes the pair (X, y) such as $y=1_{F}$.
1_{F} is a closed item, since for every y of F we have $y \leq k(y)$. Thus, $1_{F} \leq k\left(1_{F}\right)$. Nevertheless $k\left(1_{F}\right)$ is an element of F and thus $k\left(1_{F}\right) \leq 1_{F}$. That confirms that $y=1_{F}$ is a closed item.

Furthermore $g\left(1_{F}\right)=\left\{i \in I: 1_{F}=d(i)\right\}=\left\{i \in I: 1_{F}=d(i)\right\}$. Consequently TG $(C)=$ TG $(C, u[0], u[1]) \cup \ldots \cup \mathrm{TG}(C, u[p-1], u[p]) \cup\left\{\left(g\left(1_{F}\right), 1_{F}\right)\right\}$.
Besides, we obtain a procedure to build TG (C), all the pairs of closed itemsets of the Galois lattice associated to the context C.

```
Procedure GANTER_PARTITION ( \(C\) : context; \(u\) : partition of \(B^{[n]}\); Var TG:
ensemble of pairs \((X, z)\) of \(E \times F)\)
Var \(k\) : integer;
Begin
    \(\mathrm{TG}=\varnothing\);
    For \(k=1\) to p do \(\mathrm{TG}=\mathrm{TG} \cup \mathrm{TG}(C, u[k-1], u[k])\);
    \(\left.\mathrm{TG}=\mathrm{TG} \cup\left\{\left(g\left(1_{F}\right)\right), 1_{F}\right)\right\} ;\)
End;
```

The value of TG provided by this algorithm is TG (C).

6 The choice of a partition

We often use the segmentation of $B^{[n]}$ because this set is with strong cardinality. Moreover, since the algorithm of Ganter consists essentially in making a path in L.O of this set, we can intend to split this path in many separate intervals to be computed by different processors. Therefore the problem to be solved is equivalent to use partitions ($u[0] \ldots u[p]$) which are as adequate as possible. A partition is called adequate if it allows sharing the workload by taking into account the capacity of the various available processors.
Let us note $b^{[n]}=\left|B^{[n]}\right|$ the cardinality of $B^{[n]}=b_{1} . b_{2} \ldots b_{n}$. If there are p processors of the same capacity, we can, for example, intend to allocate to each processor, the exploration of an interval $\left[u[k-1], u[k]\left[\right.\right.$ of $B^{[n]}$ (with length $=b^{[n]} / p$). Consequently, the total workload between processors will be equally distributed.
It is also possible to design partitions which attribute to the processors the exploration of intervals with amplitudes proportional to their respective powers. From this point of view, the choice of partition, proposed in [11], is unbalanced.
Let us recall this choice proposed in the binary case:

- We have $b_{i}=2$, for every j of $J=\{1 \ldots n\}$;
- For every k of $J, \delta_{n, k}$ the vector of $B^{[n]}=B_{1} \times B_{2} \times \ldots \times B_{\mathrm{n}}=\{0,1\}^{n}$, where all the constituents are null, except the k-th which is equal to 1 .
Let us denote $u[k]=\delta_{n, n-k+1}$, for $k=1, \ldots, n, u[0]=\mathrm{O}_{F}=(0, \ldots, 0), u[n+1]=1_{F}=$ $(1, \ldots, l)$, and $p=n+1$.
Then, the sequence $(u[0], u[1], u[2] \ldots u[p-1], u[p])$ is lexicographically increasing, and it can be used to partition $B^{[n]}$. It is easy to note that:
- The number of elements of $B^{[n]}$ following $\delta_{n, k}$ in L.O , is $2^{n}-2^{n-k}$, for $k=1, \ldots, n$;
- The number of elements of $B^{[n]}$ following $u[k]=\delta_{n, n-k+1}$ in L.O, is thus $2^{n}-2^{k-1}$;

So that the number of elements of $B^{[n]}$ contained in L.O in the interval $[u[k-1], u[k][$ is:
$\Delta_{n, k}=\left(2^{n}-2^{k-2}\right)-\left(2^{n}-2^{k-1}\right)=2^{k-2}$, for $k=2, \ldots, n+1$.
Then $\Delta_{n, k}=2 . \Delta_{n, k-1}$. That indicates that the amplitudes of the intervals of the partition are in a geometrical progress of reason 2. Every interval being twice as large as the precedent, the distribution of the tasks is extremely unbalanced. If the first processor has to do a certain work, the second will have to do twice as much, the third four times more, etc. We also note that the last processor has to do the half of the total work, the last but one processor the quarter of the work.
In that way, any other partition which uses only a part of the $\delta_{n, k}$ would be also unbalanced. In the next section, we present some mathematical tools that will help us to build better-balanced partitions.

7 Mathematical tools

7.1 Rank of an element of $B^{[n]}$ in lexicographical order

In this section, we assume that all the b_{j} can be different. This corresponds to the general case. Our goal is to define a ranking function which permits associating to each element X_{n} of $B^{[n]}$ its rank in $B^{[n]}$ in lexicographical order. Then we shall prove that this function defines an isomorphism of ordered sets.
$B^{[n]}$ and X_{n} may be defined recursively as following:

- $B^{[n]}=B_{1}$, if $n=1$, and $B^{[n]}=B^{[n-1]} \times B_{n}$, if $n>1$.
- Any element X_{n} of $B^{[n]}$ by $X_{n}=\left(x_{1}\right)$, if $n=1$, and $X_{n}=\left(X_{n-1}, x_{n}\right) \in B^{[n-1]} \mathrm{x} B_{n}$, if $n>1$.
In the same way, we define recursively the mapping $\rho_{n}: B^{[n]} \rightarrow N$: for every X_{n} of B ${ }^{[n]}$:
If $n=1$, then. $\rho_{n}\left(X_{n}\right)=x_{n}$, and if $n>1$, then $\rho_{n}\left(X_{n}\right)=x_{n}+b_{n .} . \rho_{n-1}\left(X_{n}-1\right)$.
Let us prove the following property:
Property 7.1: ρ_{n} is a bijection between $B^{[n]}$ and the set $\left[0, b^{[n]}-1\right]$.
Proof: we proceed by induction on $n>0$.
The property is true for $n=1$. Let us suppose that we have established it until $n-1$. Let us show that it is true for n.
- Let us begin by showing that for every X_{n} of $B^{[n]}$, we have $0 . \leq \rho_{n}\left(X_{n}\right) \leq b^{[n]}-1$.

Indeed, by hypothesis of induction (I.H, in summary), we have $0 . \leq \rho_{n-1}\left(X_{n-1}\right) \leq b^{[n-1]}$ -

1. On the other hand since $0 \leq x_{n} \leq b_{n}-1$, we have $0+b_{n} .0=0 \leq \rho_{n}\left(X_{n}\right) \leq b_{n}-1+b_{n}$. $\left(\mathrm{b}^{[n-1]}-1\right)=b_{n} . b^{[n-1]}-1=b^{[n]}-1$.

- Let us prove that ρ_{n} is injective. If two elements of $B^{[n]}$ are X_{n} and Y_{n} such as $\rho_{n}\left(X_{n}\right)$. $=\rho_{n}\left(Y_{n}\right)$
We thus have $\rho_{n}\left(X_{n}\right)=x_{n}+b_{n} . \rho_{n-1}\left(X_{n-1}\right)=\rho_{n}\left(Y_{n}\right)=y_{n}+b_{n} . \rho_{n-1}\left(Y_{n-1}\right)$.
If $\rho_{n-1}\left(X_{n-1}\right)<\rho_{n-1}\left(Y_{n-1}\right)$, we have:

$$
\left.x_{n}-y_{n}=b_{n} \cdot\left(\rho_{n-1}\left(Y_{n-1}\right)\right)-\rho_{n-1}\left(X_{n-1}\right)\right) \geq b_{n}-1=b_{n} .
$$

This is impossible, because $x_{n}-y_{n} \leq x_{n} \leq b_{n}-1$.
In the same way, we cannot have $\rho_{n-1}\left(X_{n-1}\right)>\rho_{n-1}\left(Y_{n-1}\right)$. It follows that $\rho_{n-1}\left(X_{n-1}\right)=\rho_{n-1}$ $\left(Y_{n-1}\right)$,. Thus $x_{n}=y_{n}$. Now, by I.H, ρ_{n-1} is injective. Consequently, $X_{n-1}=Y_{n-1}$, and $X_{n}=$ $\left(X_{n-1}, x_{n}\right)=\left(Y_{n-1}, y_{n}\right)=Y_{n}$.

- Let us prove that ρ_{n} is surjective. It is necessary to show that for every integer a, such as $0 \leq a \leq b^{[n]}-1$, there is an element X_{n} of $B^{[n]}$ such as $\rho_{n}\left(X_{n}\right)=a$. According to the Euclidian division of r by b_{n}, there is a unique pair of naturel integers (q, r) such as $a=b_{n} . q+r$, with $r<b_{n}$. Furthermore $0 \leq q \leq\left(b^{[n]}-1\right) / b_{n}, 0 \leq q \leq b^{[n-1]}-1$. Let us define $x_{n}=r$. By I.H, ρ_{n-1} is surjective. Thus, there is an element X_{n-1} of $B^{[n-1]}$ such as $\rho_{n-1}\left(X_{n-1}\right)=q$, Furthermore, we have $0 \leq x_{n} \leq b_{n}-1$. So $X_{n}=\left(X_{n-1}, x_{n}\right)$ is an element of $B^{[n]}$, and we have $\rho_{n}\left(X_{n}\right)=x_{n}+b_{n} \cdot \rho_{n-1}\left(X_{n-1}\right)=r+b_{n} . q=a$. Q.E.D.
The following procedures written in pseudo Pascal allow computing the function rank: $B^{[n]} \rightarrow N$ as well as its inverse Expansion: $N \rightarrow B^{[n]}$. Knowing $n, b_{1} \ldots b_{n}$, and X_{n} de $\mathrm{B}{ }^{[n]}$, the first one computes $\rho_{n}\left(X_{n}\right)$. For every integer a such as $0 \leq a \leq b^{[n]}-1$, the second procedure, determines the element X_{n} of $B^{[n]}$ such as. $\rho_{n}\left(X_{n}\right)=a$.

```
Function RANK ( \(n, b_{1} \ldots b_{n}\) : integer; \(X_{n}\) : element of \(B^{[n]}\) ): long integer;
Var \(i\) : integer; \(a\) : long integer;
Begin
    \(a=0\);
    For \(i=1\) to \(n\), do \(a=x[i]+a^{*} b[i]\);
    Rank= \(a\);
End;
```

```
Procedure EXPANSION ( }n,\mp@subsup{b}{1}{}\ldots..\mp@subsup{b}{n}{\prime}\mathrm{ : integer; a: long integer; var X: element of
\mp@subsup{B}{}{[n]}}\mathrm{ ;
Var s: long integer; i: integer;
Begin
    s=a;
    For }i=n\mathrm{ down to 1 do
        begin
            X[i]=s mod b[i];
            s=s div b [i];
    end;
End;
```

Remark: The inverse function of rank is called expansion, because it provides the expression of the integer a in the multiple or heterogeneous base $\left(b_{1}, b_{2} \ldots b_{n}\right)$. This writing is $X_{n}=\left(x_{1}, x_{2} \ldots x_{n}\right)$.
Reciprocally, every X_{n} of $B^{[n]}$ can be viewed as the writing in base $\left(b_{1} \ldots b_{n}\right)$ of the integer a which is equal to $\rho_{n}\left(X_{n}\right)$.
Remark 2: the function rank was defined in a recursive way. We can need an explicit formulation which can be obtained by using the following formula:
$\rho_{n}\left(X_{n}\right)=x_{n}+b_{n} \cdot x_{n-1}+b_{n} \cdot b_{n-1} \cdot x_{n-2}+\ldots+b_{n} \cdot b_{n-1} \ldots b_{2} \cdot x_{1}$.

7.2 Isomorphism of ordered sets

Proposition: ρ_{n} is an isomorphism between $B^{[n]}$ provided with lexicographical order \leq, and $\left[0, b^{[n]}-1\right]$ provided with the order \leq of the naturel integers.
Proof: By induction on n. The property is obvious for $n=1$. Let us suppose we have proved it until $n-1$. Let us prove that it is true for n. We have $X_{n}=\left(X_{n-1}, x_{n}\right)$, and $Y_{n}=$ $\left(Y_{n-1}, y_{n}\right)$. If we suppose that $X_{n} \leq Y_{n}$. then we have $\rho_{n}\left(X_{n}\right) \leq \rho_{n}\left(Y_{n}\right)$. Indeed we have $X_{n} \leq Y_{n}$ if $\left(X_{n-1} \angle Y_{n-1}\right)$, or $\left(X_{n-1}=Y_{n-1}\right.$ and $\left.x_{n}<y_{n}\right)$.

- in the second case, we have $\rho_{n}\left(X_{n}\right)=x_{n}+b_{n} . \rho_{n-1}\left(X_{n-1}\right)<y_{n}+\rho_{n-1}\left(X_{n-1}\right)=\rho_{n}\left(Y_{n}\right)$.
- In the first case, by I.H, we have. $\rho_{n-1}\left(X_{n-1}\right)<\rho_{n-1}\left(Y_{n-1}\right)$, and therefore $\rho_{n}\left(Y_{n}\right)-\rho_{n}$ $\left(X_{n}\right)=b_{n} .\left(\rho_{n-1}\left(Y_{n-1}\right)-\rho_{n-1}\left(X_{n-1}\right)\right)+y_{n}-x_{n} \geq b_{n} .1+y_{n}-x_{n}$. Since $0 \leq x_{n}, y_{n} \leq b_{n}-1$, we can conclude that. $\rho_{n}\left(Y_{n}\right)-\rho_{n}\left(X_{n}\right)>0$. So $X_{n} \leq Y_{n} . \rho_{n}\left(X_{n}\right) \leq \rho_{n}\left(Y_{n}\right)$. Reciprocally, let X_{n} and Y_{n} of $B^{[n]}$ such as $\rho_{n}\left(X_{n}\right) \leq \rho_{n}\left(Y_{n}\right)$. Let us show that $X_{n} \leq Y_{n}$.
- If $Y_{n-1}<X_{n-1}$, then, by I.H, $\rho_{n-1}\left(Y_{n}\right)<\rho_{n-1}\left(X_{n-1}\right)$. In that way, we have $\rho_{n}\left(X_{n}\right)-\rho_{n}$ $\left(Y_{n}\right)=b_{n} .\left(\rho_{n-1}\left(X_{n-1}\right)-\rho_{n-1}\left(Y_{n-1}\right)\right)+x_{n}-y_{n} \geq b_{n}-1+x_{n}-y_{n}>0$. This is in contradiction with the hypothesis.
- If $X_{n-1}=Y_{n-1}$ and $y_{n}<x_{n}$, we still have then for every integer a such as $0 \leq a \leq b^{[n]}$ 1 for every integer a such as $0 \leq a \leq b^{[n]}-1 \rho_{n}\left(X_{n}\right)-\rho_{n}\left(Y_{n}\right)>0$, in contradiction with the hypothesis CQFD.

7.3 Addition of two numbers written in a multiple base

Let $\left(b_{1}, b_{2} \ldots b_{n}\right)$ be the multiple base and x, y two natural integers such as $0 \leq x, y \leq b$ ${ }^{[n]}-1$. The respective expressions of these two numbers in base $\left(b_{1}, b_{2} \ldots b_{n}\right)$ are X_{n} and Y_{n}. What is the expression of $z=x+y$ in this base?
In a different way: if we know the writings X_{n} and Y_{n} of two numbers x, y in base $\left(b_{1} \ldots b_{n}\right)$, without knowing x and y, is-it possible de compute the expression Z_{n} of z, without having to compute $z=x+y$?
The solution consists in making the addition of X_{n} and Y_{n} in the base. The following procedure implements this operation. It uses an auxiliary sequence of nature integers $r_{0}, r_{1} \ldots r_{n}$ which play the role of the "carries".

```
Procedure ADDITION \(\left(n, b_{1}, \ldots, b_{n}\right.\) : integer; \(X, Y\) : elements of \(B^{[n]}\); var \(Z\) :
element of \(B^{[n]}\); var \(r\) : integer);
Var \(r[0 . . \mathrm{n}]\) : integer; \(i\) : integer; \(u\) :entier;
Begin
\(r[n]=0\);
For \(i=n\) down to 1 do
begin
            \(u=x[i]+y i]+r[i] ; \mathbf{I f}(u<b[i])\) Then
begin \(z[i]=u ; r[i-1]=0\); end
    else begin \(z[i]=u-b[i] ; r[i-1]=1\); end;
```

	end;
$r=r[0] ;$	
End;	

In this procedure, r plays the role of the final carry. The addition of X_{n} and Y_{n} in base ($b_{1} \ldots b_{n}$) will be noted $X_{n} \oplus Y_{n}$.
Let us show that the procedure ADDITION provides the expected result.

- For $i=n, n-1, \ldots 1$, we add x_{i} and y_{i} and the carry r_{i}. Since for every i we have $0 \leq x_{i}, y_{i} \leq b_{i}-1$, and $r_{i}<2$, we obtain that $0 \leq u=x_{i}+y_{i}+r_{i} \leq 2 b_{i}-1$. If $0 \leq u \leq b_{i}-1$, we put
- $\quad z_{i}=u$, and $r_{i-1}=0$; and else $z_{i}=u-b_{i}$, and $r_{i-1}=1$. Therefore, for every i of
$1 . . . n$ we have
- $0 \leq z_{i} \leq b_{i}-1$, and $0 \leq r_{i} \leq 1$. The final carry $r=r_{0}$, is also equal to 0 or 1 .
- Since for every i of $\{1 \ldots n\} 0 \leq z_{i} \leq b_{i}-1, Z=\left(z_{1} \ldots z_{n}\right)$ belongs to $B^{[n]}$.
- $X_{n} \oplus Y_{n}$. is equal to the output Z, of the procedure of addition

Now we establish the following proposition:
Proposition 7.3: Whatever are the elements X_{n} and Y_{n} of $B^{[n]}$, we have $\rho_{n}\left(X_{n} \oplus Y_{n}.\right)=$ $\rho_{n}\left(X_{n}\right)+\rho_{n}\left(Y_{n}\right) .-r_{0} . b^{[n]}$, with $r_{0}=0$ or 1 .
Proof: At every step i of the procedure ADDITION, we have noted that:
If $u<b_{i}$, then

$$
\begin{aligned}
& z_{i}=u \text { and } r_{i-1}=0 ; \\
& \quad \text { else } z_{i}=u-b_{i}, \text { and } r_{i-1}=1 ;
\end{aligned}
$$

end;
Therefore for every i, we can write that $z_{i}=u-b_{i} . r_{i-1}, z_{i}=x_{i}+y_{i}+r_{i}-b_{i} . r_{i-1}$.

8 Construction of good partitions

The tools, which we introduced above, will help us to build any partition of $B^{[n]}$.
Let us suppose that we have p processors to determine TG (C), knowing that $F=B^{[n]}$. Suppose that these processors are of respective capacities $c_{1}, c_{2} \ldots c_{p}$, $c_{k}=$ number of closed that the processor k can build in a given lapse of time), and that $c_{1}+c_{2} \ldots+c_{p}$ $\geq b^{[n]}=b_{1} \cdot b_{2} \ldots b_{n}$. We can build a sequence of integers $a_{0}, a_{1} \ldots a_{l}$, in the following way:
$l: 0 ; a_{l}=0$;
while $\left(a_{l}<b^{[n]}-1\right)$ do begin $l=l+l ; a_{l}=a_{l-1}+c_{l}$; end;
$a_{l}=b^{[n]}-1$.
In that way, we obtain a strictly increasing sequence $\left(a_{0}, a_{1} \ldots a_{l}\right)$ such as $a_{0}=0$, and a_{l} $=b^{[n]}-1$. Furthermore for $k=1 \ldots 1$, we have $c_{k}=a_{k}-a_{k-1}$.
Then, for $k=0,1 \ldots 1$, we build the elements u_{k} of $B^{[n]}$, by computing EXPANSION ($n, b_{1} \ldots b_{n}, a_{k}, u_{k}$), which provides the writing u_{k} of a_{k} in base $\left(b_{1} \ldots b_{n}\right)$.
This sequence $\left(u_{0}, u_{1} \ldots u_{l}\right)$ constitutes a good partition of $B^{[n]}$, since it is lexicographically strictly increasing one, with $u_{0}=\mathrm{O}_{F}, u_{l}=1_{F}$, and since it distributes the workload by taking into account the capacity of all the processors.

However, although mathematically correct, this method is difficult to implement. Indeed, when n is large, (even for $n=30$), the number $b^{[n]}=b_{1} \cdot b_{2} \ldots b_{n}$ is equal at least to 2^{n}, and it can reach very large values, which are hard to compute with the current processors. Therefore, the procedure EXPANSION $\left(n, b \ldots a_{k}, u_{k}\right)$ is difficult to execute with big values of the parameter a_{k}.
To overcome this difficulty we can use additions in base ($b_{1} \ldots b_{n}$) as in the following case of equi partition:
Let us suppose that all the processors have the same capacity c. We determine the smallest integer p equal or bigger than $b^{[n]} / c$.
Then we determine the expression $u c$ of c in base $\left(b_{1} \ldots b_{n}\right)$, by executing EXPANSION $\left(n, b_{1} \ldots b_{n}, c, u c\right)$. Finally, we build the sequence of elements u_{k} of $B^{[n]}$ by the mean of the following instructions:

```
\(k=0 ; u[k]=0_{F} ; r=0\);
while \((r=0)\) do
begin
    \(k=k+1\);
    ADDITION \(\left(n, b_{1}, \ldots, b_{n}, u[k-1], u c, u[k], r\right)\);
end;
\(p=k ; u[p]=1_{F} ;\)
```

This procedure returns $u_{0}=0_{F} ; u_{1}=u_{0} \oplus u c=u c, u_{2}=u_{1} \oplus u c \ldots$ until the carry r becomes equal to 1 .
While $r=0$, by the property 5.3, we have $\rho_{n}\left(X_{n} \oplus Y_{n}\right)=\rho_{n}\left(X_{n}\right)+\rho_{n}\left(Y_{n}\right)$. Thus the addition of writings in base $\left(b_{1} \ldots b_{n}\right)$ is equivalent to the addition of the corresponding numbers.
By this way we built the sequence $\left(u_{0}, u_{1} \ldots u_{p}\right)$ of the partition, without computing $\left(a_{0}, a_{1} \ldots a_{p}\right)$ ranks $a_{k}=\rho_{n}\left(u_{k}\right)$. We stop when r takes the value 1 . One then take $p=k$, and we set $u_{p}=1_{F}$.

9 Conclusion

We have proposed a generalization of the Ganter algorithm, as well as a distributed version of this algorithm.
On the one hand, this generalization allows us to determine the Galois lattices associated to rather general contexts, without needing to re-code the data into binary values. On the other hand, when one analyze the relationship between product-order and lexicographical order on the Cartesian product $\mathrm{B}^{[n]}=\mathrm{B}_{1} \times \mathrm{B}_{2} \times \ldots \times \mathrm{B}_{\mathrm{n}}$, with $B_{j}=\left\{0, b_{j}-1\right\}$, for $j=1 \ldots n$, this generalization seems to be natural. Moreover, viewing the elements of $B^{[n]}$ as expressions of integers in base ($b_{1} \ldots b_{n}$) allows us to obtain good partitions of $\mathrm{B}^{[n]}$ and to simplify the calculations. From a practical point of view, we can intend to apply the procedure of segmentation of $\mathrm{B}^{[n]}$ to very large contexts.

This approach seems more efficient than the context-based approaches proposed in [1] and [14] which need to compute the Cartesian product of two Galois lattices.

Finally, let us note that the algorithm proposed in this paper is based on a lexical search through the space $B^{[n]}$ of the attributes. While being more general than [11], it cannot determine the most general Galois lattice. To reach this target, we need algorithms which search throw the set $\mathrm{P}(I)$ of all subsets of individuals. This could be obtained either by searching this space in lexicographical order, or by obtaining a partition of this space and to share the workload of solving the corresponding sublattices between several processors. This is a possible future research direction.

References

1. Baklouti F, Lévy G. Parallel algorithms for general Galois lattices building. Proc. WDAS 2003.
2. Birkhoff. G: Lattice Theory. American Mathematical Society, Providence, RI, $3^{\text {rd }}$ edition. (1967)
3. Emilion. R. Lambert. G, Lévy. G, Algorithmes pour les treillis de Galois, IndoFrench Workshop., University Paris IX-Dauphine. 1997.
4. Diday. E, Emilion. R : Treillis de Galois maximaux et capacités de Choquet. C.R.Acad.Sci. Paris, t.325, (1997) Série I. p.261-266.
5. Ganter, B: Two basic algorithms in conceptual analysis. Technical report, Darmstadt University (1984).
6. G. Lambert, R. Emilion, G. Lévy : Algorithmes pour construire les treillis de Galois généraux. To appear.
7. Ganter. B: Two basic algorithms in concept analysis. Preprint 831, Technische Hochschule Darmstadt (1984).
8. Ganter. B, Wille. R: Formal Concept Analysis. Mathematical Foundations, Springer. (1999).
9. Ganter. B : Formal Concept Analysis: algorithmic aspects. TU Dersden. (2002).
10. Godin. R : Complexité de structures de treillis. Ann. SC. Math., (1989) Quebec, 13 (1): 19-38.
11. Huaiguo Fu, Engelbert Mephu Nguifo: A fast scalable algorithm to build closed item sets for large data. Third IASTED International Conference on Artificial Intelligence and Applications (2003).
12. Nourine. L., Raynaud. O: A fast algorithm for building Lattices. Information Processing Letters 71, (1999) 199.
13. Njiwoua. P, Mephu Nguifo. E: A parallel algorithm to build concept lattice. In Proceedings of 4th Groningen Intl. Information Tech. Conf. For Students, (1997) pp. 103-107.
14. Valtchev P., Missaoui R., Lebrun P., A partition based approach toward construction Galois (concept) lattices. Discrete Mathematics 256(2002) 801-829.
15. Wille. R: Concept Lattices and Knowledge Systems. Computer Mathematic Applied, 23 (6-9), (1992) 493-515.
