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Web services?

• Middlewares evolution (RPC / MOM) [Alonso, Casati,
Kuno, Machiraju].

• Extensive use of standards (XML, SOAP, HTTP(S),
SMTP, ...).

• Loose-coupling, easier integration.
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On the developer’s side...

• SOAP / WSDL are well
accepted.

• Static / Dynamic binding.

• Rich services (ex: Amazon AWS)
provide many messages.

• ”Understanding” a service can
be tedious.

• Low-level standards, lots of
manual processes.
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Capturing conversations

• Business protocols that describe the external
behavior [Benatallah, Casati, Toumani].

• Based on deterministic automata.

• A conversation is a complete interaction.

• Easy to understand, well-suited and has formal
semantics.

• Expressiveness / complexity trade-off.

• Extensible (ex: time, transactions, policies, ...).
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A business protocol (subset of Amazon AWS)

searchIn

cartRequestOutstart

searchOut shopping

cartRequestIn

keywordSearchRequest(+)

keywordSearchResponse(-)

addShoppingCartItemsRequest(+)

modifyShoppingCartItemsRequest(+)

removeShoppingCartItemsRequest(+)

keywordSearchRequest(+)
getShoppingCartRequest(+)

shoppingCartResponse(-)

modifyShoppingCart
ItemsRequest(+)

addShoppingCart
ItemsRequest(+)

removeShoppingCart
ItemsRequest(+)

getShoppingCartRequest(+)
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A need for temporal abstractions

• Business protocols only specify the allowed messages
orderings.

• There are countless examples (deadlines, soft-locks, ...).

• This abstraction is essential to better ”understand” the
external behavior of a service.
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Research problem and applications

Summary
Take temporal abstractions into account and perform flexible
compatibility and replace-ability analysis by using a protocol
operators based algebra.

Why?

• Help in making a compliant implementation (ex: against
specifications such as RosettaNet).

• Generate adapters in case of mismatches [Hamid
Motahari].

• Support evolution.

• Enhanced discovery and dynamic binding.
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Extended model

• A user-oriented model.

• Introduction of implicit
transitions.

• Models temporal
availability windows and
deadlines.

s0

s1

s2

a(+)

b(+)

P

s3i1: 60s

s4

b(+) c(+)
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Formalization

Web services business protocol
P = (S, s0,F , M,R)

Timed web services business protocol [BDA’05,
CAiSE’05 Forum]

• M = Me ∪ Mi

• For R(s, s′, m), m ∈ Mi, we define
Time(s, m) → t ∈ Q≥0.
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Formalization – cont.

• Deterministic.

• At most 1 implicit outgoing transition per state.

• Deadlocks-free.

• Assumptions:
• instantaneous transitions
• time relative to the entrance in a state s
• every state is reachable
• no implicit circuits
• messages semantics is another issue.
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Semantics

2 kind of constraints:

• conversations – Linear time

a(+) · b(−) · c(+)

• temporal – timed traces

(a(+), 0) · (b(−), 3) · (c(+), 20)

We focus on observable traces.
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A few lessons from timed automata [Alur, Dill]

Facts

• TA are more expressive and less user-friendly.

• Many decision problems are undecidable, unless you
choose adequate subclasses and pay attention to the
constraints grammar.

• ε-transitions are a problem, but can sometimes be
removed, under certain conditions.

−→ We have mappings and use TA to identify properties on
our model.
−→ Interestingly, implicit transitions are not a problem in our
case.
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Compatibility

s0 s1 s2a(+) b(+)

s0' s1' s2'a(-) b(-)

P1

P2

2 services can talk to each other
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Replaceability

s0 s1 s2a(+) b(+)

s0' s1' s3'a(+) b(+)

P1

P2

s2'c(+)

1 service can replace another one
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Classes

• Partial or full compatibility.

• Replace-ability:
• equivalence, subsumption, partial replace-ability
• w.r.t. client protocol
• w.r.t. interaction role.

−→ the flexibility introduced by these classes is original and
needed by the versatility induced by the web.
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Example: replace-ability w.r.t. a client protocol

creditExpired

start logged

vehicle
Selection

preApproval
Application

creditApproved

application
Rejected

cancelled

payment
Estimation

credit
Application

credit
Accepted

login(+)

accountManagement(+)

preApproval(+)

reject(-)

approved(-)

30 days

selectVehicle(+)

selectVehicle(+)

budgetPlanner(+)

leaseOrBuyTest(+)

modifySelection(+)

cancel(+)

estimatePayment(+)

reApplication(+)

30 hours

fullCredit(+)

accept(-)

reject(-)
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Timed business protocols operators

• Timed compatible composition: ‖TC

• Timed intersection: ‖TI

• Timed difference: ‖TD

• Projection: [P1 ‖TC P2]P1
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Example: timed difference

s0

s3

s1 s2

s4

i: 3min

a(-) b(+)

c(+)

s0 s1 s2 s3a(-) b(+) c(+)

s0 s1 s2

s4

a(-) b(+) s2i: 3min

c(+)

P3 = P2 ‖TD P1

P1

P2

P3
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Characterization

• We can characterize the compatibility and replace-ability
classes with these operators.

• Ex: TReplPC
(P1,P2)

PC ‖TC (P2 ‖TD P1) = ∅

• Polynomial-time complexity algorithms.
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Goals

• A model-driven conceptual framework and a CASE
toolset.

• Support for design, development and management of web
services.

• Technologies: Eclipse + J2EE.
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Analysis & management 
interface

Trust negotiation 
protocol editor
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Specificities

• Techniques for analyzing and managing services
interactions at the protocol and traces level.

• Re-engineering (ex: protocols mining).

• Scalable development.

• Protocols evolution.

• Execution monitoring support.
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Related work

• Timed automata [Alur, Dill].

• The (many) ”standardization” efforts.

• Temporal logics and their extensions.

• Work on components in software engineering.
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What has been done

Flexible context-oriented model and analysis:

• Temporal extension of the business protocol model
[BDA’05, CAiSE’05 Forum].

• Timed operators to characterize the compatibility /
replace-ability classes.

• Polynomial-time timed operator algorithms.

• Protocols library (untimed) and editor for the
ServiceMozaic platform.
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Perspectives and future work

• A more expressive temporal constraints framework.

• Multi-protocols analysis (open issues).

• Protocol changes management.

• Timed implementations for the ServiceMozaic platform.

• Other abstractions investigations (transactions).
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