
Introduction Framework Conclusion

Modeling and Analyzing Timed Web

Services Protocols

Julien Ponge1,2 – ponge@isima.fr

http://www.isima.fr/ponge/

1Laboratoire LIMOS, ISIMA, Clermont-Ferrand, France

2Computer School of Engineering, The University of New South Wales, Sydney,
Australia

ICSOC’05 PhD Symposium

1 / 35

ponge@isima.fr
http://www.isima.fr/ponge/


Introduction Framework Conclusion

Agenda

Introduction
Web services today
Outline of approach

Framework
Timed business protocols
Temporal compatibility and replace-ability analysis
ServiceMozaic

Conclusion
Conclusion
Perspectives and future work

2 / 35



Introduction Framework Conclusion

Agenda

Introduction
Web services today
Outline of approach

Framework
Timed business protocols
Temporal compatibility and replace-ability analysis
ServiceMozaic

Conclusion
Conclusion
Perspectives and future work

3 / 35



Introduction Framework Conclusion

Web services?

• Middlewares evolution (RPC / MOM) [Alonso, Casati,
Kuno, Machiraju].

• Extensive use of standards (XML, SOAP, HTTP(S),
SMTP, ...).

• Loose-coupling, easier integration.

4 / 35



Introduction Framework Conclusion

On the developer’s side...

• SOAP / WSDL are well
accepted.

• Static / Dynamic binding.

• Rich services (ex: Amazon AWS)
provide many messages.

• ”Understanding” a service can
be tedious.

• Low-level standards, lots of
manual processes.

5 / 35



Introduction Framework Conclusion

Agenda

Introduction
Web services today
Outline of approach

Framework
Timed business protocols
Temporal compatibility and replace-ability analysis
ServiceMozaic

Conclusion
Conclusion
Perspectives and future work

6 / 35



Introduction Framework Conclusion

Capturing conversations

• Business protocols that describe the external
behavior [Benatallah, Casati, Toumani].

• Based on deterministic automata.

• A conversation is a complete interaction.

• Easy to understand, well-suited and has formal
semantics.

• Expressiveness / complexity trade-off.

• Extensible (ex: time, transactions, policies, ...).

7 / 35



Introduction Framework Conclusion

A business protocol (subset of Amazon AWS)

searchIn

cartRequestOutstart

searchOut shopping

cartRequestIn

keywordSearchRequest(+)

keywordSearchResponse(-)

addShoppingCartItemsRequest(+)

modifyShoppingCartItemsRequest(+)

removeShoppingCartItemsRequest(+)

keywordSearchRequest(+)
getShoppingCartRequest(+)

shoppingCartResponse(-)

modifyShoppingCart
ItemsRequest(+)

addShoppingCart
ItemsRequest(+)

removeShoppingCart
ItemsRequest(+)

getShoppingCartRequest(+)
8 / 35



Introduction Framework Conclusion

A need for temporal abstractions

• Business protocols only specify the allowed messages
orderings.

• There are countless examples (deadlines, soft-locks, ...).

• This abstraction is essential to better ”understand” the
external behavior of a service.

9 / 35



Introduction Framework Conclusion

Research problem and applications

Summary
Take temporal abstractions into account and perform flexible
compatibility and replace-ability analysis by using a protocol
operators based algebra.

Why?

• Help in making a compliant implementation (ex: against
specifications such as RosettaNet).

• Generate adapters in case of mismatches [Hamid
Motahari].

• Support evolution.

• Enhanced discovery and dynamic binding.

10 / 35



Introduction Framework Conclusion

Research problem and applications

Summary
Take temporal abstractions into account and perform flexible
compatibility and replace-ability analysis by using a protocol
operators based algebra.

Why?

• Help in making a compliant implementation (ex: against
specifications such as RosettaNet).

• Generate adapters in case of mismatches [Hamid
Motahari].

• Support evolution.

• Enhanced discovery and dynamic binding.

10 / 35



Introduction Framework Conclusion

Agenda

Introduction
Web services today
Outline of approach

Framework
Timed business protocols
Temporal compatibility and replace-ability analysis
ServiceMozaic

Conclusion
Conclusion
Perspectives and future work

11 / 35



Introduction Framework Conclusion

Extended model

• A user-oriented model.

• Introduction of implicit
transitions.

• Models temporal
availability windows and
deadlines.

s0

s1

s2

a(+)

b(+)

P

s3i1: 60s

s4

b(+) c(+)

12 / 35



Introduction Framework Conclusion

Formalization

Web services business protocol
P = (S, s0,F , M,R)

Timed web services business protocol [BDA’05,
CAiSE’05 Forum]

• M = Me ∪ Mi

• For R(s, s′, m), m ∈ Mi, we define
Time(s, m) → t ∈ Q≥0.

13 / 35



Introduction Framework Conclusion

Formalization

Web services business protocol
P = (S, s0,F , M,R)

Timed web services business protocol [BDA’05,
CAiSE’05 Forum]

• M = Me ∪ Mi

• For R(s, s′, m), m ∈ Mi, we define
Time(s, m) → t ∈ Q≥0.

13 / 35



Introduction Framework Conclusion

Formalization – cont.

• Deterministic.

• At most 1 implicit outgoing transition per state.

• Deadlocks-free.

• Assumptions:
• instantaneous transitions
• time relative to the entrance in a state s
• every state is reachable
• no implicit circuits
• messages semantics is another issue.

14 / 35



Introduction Framework Conclusion

Semantics

2 kind of constraints:

• conversations – Linear time

a(+) · b(−) · c(+)

• temporal – timed traces

(a(+), 0) · (b(−), 3) · (c(+), 20)

We focus on observable traces.

15 / 35



Introduction Framework Conclusion

A few lessons from timed automata [Alur, Dill]

Facts

• TA are more expressive and less user-friendly.

• Many decision problems are undecidable, unless you
choose adequate subclasses and pay attention to the
constraints grammar.

• ε-transitions are a problem, but can sometimes be
removed, under certain conditions.

−→ We have mappings and use TA to identify properties on
our model.
−→ Interestingly, implicit transitions are not a problem in our
case.

16 / 35



Introduction Framework Conclusion

A few lessons from timed automata [Alur, Dill]

Facts

• TA are more expressive and less user-friendly.

• Many decision problems are undecidable, unless you
choose adequate subclasses and pay attention to the
constraints grammar.

• ε-transitions are a problem, but can sometimes be
removed, under certain conditions.

−→ We have mappings and use TA to identify properties on
our model.
−→ Interestingly, implicit transitions are not a problem in our
case.

16 / 35



Introduction Framework Conclusion

Agenda

Introduction
Web services today
Outline of approach

Framework
Timed business protocols
Temporal compatibility and replace-ability analysis
ServiceMozaic

Conclusion
Conclusion
Perspectives and future work

17 / 35



Introduction Framework Conclusion

Compatibility

s0 s1 s2a(+) b(+)

s0' s1' s2'a(-) b(-)

P1

P2

2 services can talk to each other

18 / 35



Introduction Framework Conclusion

Replaceability

s0 s1 s2a(+) b(+)

s0' s1' s3'a(+) b(+)

P1

P2

s2'c(+)

1 service can replace another one

19 / 35



Introduction Framework Conclusion

Classes

• Partial or full compatibility.

• Replace-ability:
• equivalence, subsumption, partial replace-ability
• w.r.t. client protocol
• w.r.t. interaction role.

−→ the flexibility introduced by these classes is original and
needed by the versatility induced by the web.

20 / 35



Example: replace-ability w.r.t. a client protocol

creditExpired

start logged

vehicle
Selection

preApproval
Application

creditApproved

application
Rejected

cancelled

payment
Estimation

credit
Application

credit
Accepted

login(+)

accountManagement(+)

preApproval(+)

reject(-)

approved(-)

30 days

selectVehicle(+)

selectVehicle(+)

budgetPlanner(+)

leaseOrBuyTest(+)

modifySelection(+)

cancel(+)

estimatePayment(+)

reApplication(+)

30 hours

fullCredit(+)

accept(-)

reject(-)



Example: replace-ability w.r.t. a client protocol

start

application
Rejected

logged

vehicle
Selection

payment
Estimation

creditApplication

credit
Accepted

cancelled

login(+)

changeLoginInfo(+)

selectVehicle(+)

estimatePayment(+)

fullCredit(+)

reject(-) accept(-) 15 hours



Example: replace-ability w.r.t. a client protocol

start

application
Rejected

logged

vehicle
Selection

payment
Estimation

creditApplication

credit
Accepted

cancelled

login(+)

changeLoginInfo(+)

selectVehicle(+)

estimatePayment(+)

fullCredit(+)

reject(-) accept(-) 15 hours



Example: replace-ability w.r.t. a client protocol

creditExpired

start logged

vehicle
Selection

preApproval
Application

creditApproved

application
Rejected

cancelled

payment
Estimation

credit
Application

credit
Accepted

login(+)

accountManagement(+)

preApproval(+)

reject(-)

approved(-)

30 days

selectVehicle(+)

selectVehicle(+)

budgetPlanner(+)

leaseOrBuyTest(+)

modifySelection(+)

cancel(+)

estimatePayment(+)

reApplication(+)

30 hours

fullCredit(+)

accept(-)

reject(-)



Introduction Framework Conclusion

Timed business protocols operators

• Timed compatible composition: ‖TC

• Timed intersection: ‖TI

• Timed difference: ‖TD

• Projection: [P1 ‖TC P2]P1

22 / 35



Introduction Framework Conclusion

Example: timed difference

s0

s3

s1 s2

s4

i: 3min

a(-) b(+)

c(+)

s0 s1 s2 s3a(-) b(+) c(+)

s0 s1 s2

s4

a(-) b(+) s2i: 3min

c(+)

P3 = P2 ‖TD P1

P1

P2

P3

23 / 35



Introduction Framework Conclusion

Characterization

• We can characterize the compatibility and replace-ability
classes with these operators.

• Ex: TReplPC
(P1,P2)

PC ‖TC (P2 ‖TD P1) = ∅

• Polynomial-time complexity algorithms.

24 / 35



Introduction Framework Conclusion

Agenda

Introduction
Web services today
Outline of approach

Framework
Timed business protocols
Temporal compatibility and replace-ability analysis
ServiceMozaic

Conclusion
Conclusion
Perspectives and future work

25 / 35



Introduction Framework Conclusion

Goals

• A model-driven conceptual framework and a CASE
toolset.

• Support for design, development and management of web
services.

• Technologies: Eclipse + J2EE.

26 / 35



Analysis & management 
interface

Trust negotiation 
protocol editor

Business protocol editor

Composition editor

Mismatch pattern editor

Development environment

Adapter generator

Model generator

Protocol analysis & 
manipulation operators

Analysis & management
components

Models representation, storage and manipulation components

Mismatch 
patterns 

templates

Service 
descriptions 

& models

Repositories

Calls from external
clients via SOAP

interface



Introduction Framework Conclusion

Specificities

• Techniques for analyzing and managing services
interactions at the protocol and traces level.

• Re-engineering (ex: protocols mining).

• Scalable development.

• Protocols evolution.

• Execution monitoring support.

28 / 35



Introduction Framework Conclusion

Agenda

Introduction
Web services today
Outline of approach

Framework
Timed business protocols
Temporal compatibility and replace-ability analysis
ServiceMozaic

Conclusion
Conclusion
Perspectives and future work

29 / 35



Introduction Framework Conclusion

Related work

• Timed automata [Alur, Dill].

• The (many) ”standardization” efforts.

• Temporal logics and their extensions.

• Work on components in software engineering.

30 / 35



Introduction Framework Conclusion

What has been done

Flexible context-oriented model and analysis:

• Temporal extension of the business protocol model
[BDA’05, CAiSE’05 Forum].

• Timed operators to characterize the compatibility /
replace-ability classes.

• Polynomial-time timed operator algorithms.

• Protocols library (untimed) and editor for the
ServiceMozaic platform.

31 / 35





Introduction Framework Conclusion

Agenda

Introduction
Web services today
Outline of approach

Framework
Timed business protocols
Temporal compatibility and replace-ability analysis
ServiceMozaic

Conclusion
Conclusion
Perspectives and future work

33 / 35



Introduction Framework Conclusion

Perspectives and future work

• A more expressive temporal constraints framework.

• Multi-protocols analysis (open issues).

• Protocol changes management.

• Timed implementations for the ServiceMozaic platform.

• Other abstractions investigations (transactions).

34 / 35



Thanks!


	Introduction
	Web services today
	Outline of approach

	Framework
	Timed business protocols
	Temporal compatibility and replace-ability analysis
	ServiceMozaic

	Conclusion
	Conclusion
	Perspectives and future work


