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Abstract

This paper studies the problem of discovering pro-
tocol definitions from read-world service interac-
tion data, which often are imperfect in various
ways. It first describes the challenges in proto-
col discovery in such a context and the differ-
ent aspects that must be considered by a proto-
col discovery solution. Next, it reports the cur-
rent progress by presenting a discovery algorithm
that is robust to log imperfection and widely ap-
plicable. Following, it shows our interactive pro-
tocol refinement approach that is intended to cor-
rect possible imprecisions introduced in the dis-
covered protocol due to log imperfection. Finally,
the experimental results on both real and synthetic
data is presented.

1 Introduction and motivations
In Web service, a conversation is a sequence of message ex-
changes between two or more services to achieve a certain
goal, e.g., to purchase and pay for goods. A business proto-
col of a service is a specification of the possible conversa-
tions that a service can have with its partners [2]. Endowing
Web services with a definition of the business protocol al-
lows development tools and runtime middleware to deliver
functionality that considerably simplifies the service devel-
opment lifecycle ranging from automated code generation
and service compatibility and compliance checking to au-
tomated exception handling.

Protocol discovery refers to the process of inferring the
business protocol definition from service interaction data
in a service execution log. There are several scenarios in
which protocol discovery is useful and needed: (i) proto-
col definition: In some cases, the protocol definition is not
provided. This can happen for many reasons: e.g., the ser-
vice has been developed using a bottom-up approach, by
wrapping an existing application as a service for which the
protocol specification is not available; (ii) protocol verifi-
cation, compliance and exception handling: even when the
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designed protocol specifications are available, protocol dis-
covery allows to verify if the service implementation fol-
lows the designed protocol, if not, what are the differences,
what parts of the protocol are more often used, and what
are the parts that the most exceptions occur, etc. In addi-
tion, it enables checking the compliance of service interac-
tions with specifications required by some domain-specific
standardization body or industry consortium.

2 Protocol Discovery Problem: Facets, Chal-
lenges and Related Work

The discovery problem has many facets. These facets in-
clude the scope of the protocol discovery, the formalism
that we choose for discovered protocols, and other facets
correspond to the steps of protocol discovery that are shown
in Figure 1. To illustrate the concepts we use a supply
chain scenario with Retailer, Warehous, Payment, and
Shipper services, and clients of Retailer service.

2.1 Scope of Protocol Discovery

Protocol discovery can be performed from the perspective
of a service provider, a service requester, or as a middle-
ware service. Considering these different possibilities, we
can discover one of the following models.

Bi-party protocols. The protocol model of a given ser-
vice in interactions with another specific (type of) service.
For example, the protocol of the Retailer service with its
clients.

Service-specific view of choreography. The protocol
of a given service when interacting with many or all of its
partners. For example, the protocol of the Retailer ser-
vice interacting with Warehouse, Payment, and Shipper
services in the supply chain scenario.

Choreography. This includes all interactions among
multiple services. For example, the choreography of all
partner services in the above supply chain including clients.
Note that a choreography model capture all interactions be-
tween the partners, e.g., interaction between the Payment
and Shipper services that is not captured in the Retailer-
specific view of the choreography.

2.2 Discovered Protocol Model

Another facet is developing or choosing a language (formal
and visual) to represent discovered protocols. We adopted
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Figure 1: Protocol Discovery Process
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Figure 2: The business protocol of the Retailer service

deterministic Finite State Machines (FSMs) following our
earlier work on business process modeling for Web services
[4]. In a FSM-based protocol model, states represent the
different phases through which a service may go during
its interactions with partners. A protocol has one initial
state and a set of final states. Transitions are labeled with
message names with the semantics that the exchange of the
message causes the transition from a source to a target state.
A complete conversation is as a path from the initial state
to a final state.

Example 1. Assume that the Retailer service has two
types of clients: regular and premium. A typical conver-
sation of regular clients may start with a request for the
product catalog, followed by an order. Then, an invoice
is sent to clients and, once it has been paid, the requested
goods will be shipped. For premium customers, goods may
be shipped immediately after placing an order (the invoice
is sent later). The protocol of the Retailer service is de-
picted in Figure 2. R-Shipped, and P-Paid are final states
(for regular and premium customers, respectively).

As discussed in the following, discovering a business
protocol from potentially imperfect conversation data is al-
ways an imprecise process. To provide the user with better
understanding of the discovered protocol (DP), we extend
the FSM model by attaching metadata in form of support

and confidence to states and transitions. The support of
a state expresses the probability that a conversation in the
log terminates in that state. The confidence of a state gives
the probability of termination of those conversations that
traverse it in that state. The support of a transition is de-
fined as the probability that conversations in the log take
that transition. The confidence of a transition is defined as
the probability that the transition is taken among all other
possible transitions from its source state.

2.3 Message Log Characteristic and Issues

Dustdar et. al. [7] have described the different ways that
service interaction log can be collected. Depending on how
services are implemented and on the type of tools used
to monitor service executions, different kind of informa-
tion may be included in the logs, which can make proto-
col discovery more or less complex. In practical scenarios,
there are three different kinds of information that can be
included in a conversation log: (i) message transfer infor-
mation (sender, receiver, timestamp), (ii) SOAP message
header; (iii) SOAP body (message content); We formally
define a message log format as the following: a message
log ML is a set of entries e = (s,r,τ,m(mh,mb)), where s
and r denote the sender and the receiver of message m, and
τ is the timestamp. mh and mb stands for header and body
of message m, which may or may not be present.

In practice, there maybe other information in the log that
we do not discuss them, here, for brevity. We refer to the
above message log format as the common format. Given
this format, the first step of the protocol discovery pro-
cess consists of collecting data from different data sources
(shown as “Message Log” in Figure 1) and transforming it
into this format (called “Conformed Message Log” in Fig-
ure 1). There are some challenges in data transformation,
though interesting, fall out of the scope of this work.

The next pre-processing step is the construction of con-
versation log CL from ML (referred to as “Correlated Mes-
sage Log” in Figure 1). This step involves identifying and
correlating messages belong to the same conversation. This
require existence of a conversation identifier, denoted cid,
for each entry in ML. Assuming such identifier exists or
could be inferred, which we discuss later in this section, we
can transform ML to conversation log CL. Formally, a con-
versation log CL = {ci|0≤ i≤ k}, is a set of conversations
in which conversations ci is a sequence < e1,e2, ...,en >
of ML such that, for any u,v, 0 ≤ u,v ≤ n: (i) ev.cid =
eu.cid (same conversation identifier), (ii) eu.τ≤ eu+1.τ (en-
try timestamps define the sequence order). However, in
practice there are a number of challenges that make the re-
alization of the above 2 steps hard, and generally the pro-
tocol discovery, a challenging problem:

Log imperfection. The cleaning and transformation
step may introduce some imperfection in form of missing
or incorrect information about messages in ML. In addi-
tion, conversations of CL may contain different types of im-
perfection: disordered messages, incomplete conversations
(conversations that terminate in a non-final state), missing



messages, etc. These imperfections can happen for various
reasons including bugs and flaws in the implementation of
the logging infrastructure or the service, interruptions in
logger, exceptions in the service execution, network fail-
ure, abnormal termination of the service interactions, and
finally incorrectness or imprecision of the timing informa-
tion [11].

Correlation. Correlation refers to the process of iden-
tifying which message in the log belongs to which conver-
sation between services. Currently, there is no widely ac-
cepted approach for incorporation of correlation informa-
tion in the log of Web services. Disparate service man-
agement infrastructures deal with this problem differently
ranging from customized ways of using standard proposals
(e.g. WS-Addressing), introducing propetriary approaches
(e.g., IBM WebSphere deploys a nested transaction iden-
tifier mechanism that can track the interactions inside the
same organization), or providing no support and leaving it
to be addressed at the service implementation level by ser-
vice developers. When such an identifier do not exist, in
our vision, we can map the correlation problem to that of
record linkage (or entity resolution) in the database com-
munity [5].

Transition identification. Transitions between states of
a protocol can depend not only on messages, but also on
message parameters. Furthermore, a protocol model may
also allow timed-controlled transitions or other sophisti-
cated modeling constructs. This means that the mapping
between messages in the log and state transitions in a con-
versation may not be 1-1. Hence, part of the protocol dis-
covery process lies in identifying state transitions. The out-
put of this step is called transition log. We believe this
problem can be mapped to that of associate rule mining in
the database community [9], in the sense that the condi-
tions on transition can be discovered as a set of association
rules attached to that transition. This step could be done
as a post protocol discovery step in order to refine the dis-
covered protocol model. In the existing work, the work of
decision mining for workflows in [12] uses classification
approaches and in particular decision trees to discover sim-
ple rules for an already known workflow model from events
in the log, however, the idea there is to tag the workflow
transitions with conditions discovered from the log, but not
to refine the discovered protocol model.

Performance. Another issue is the effect of logging on
the performance of running services and also the fact that
performance issue may lead to imperfection in logs. This is
mainly an issue if we log the full payload of messages, as
well. Our experiment shows that logging message payload
increases the chance of having imperfection for messages
that are close in time, e.g., such messages may get the same
timestamp and so it is difficult to judge on their ordering.

2.4 Algorithmic Aspect of Protocol Discovery

The general problem of inferring a model from instances is
not new. It has been extensively studied in the context of
grammar inference [10], software process [6, 1] and work-

flow mining [14]. However, very few existing approaches
tackle the problem of model discovery from imperfect logs
as characterized above.

If we consider conversations as the strings of a regular
language, we can map protocol discovery to that of gram-
mar (autoamta) inference [10]. The main two approaches
in this area are based on state merging and state splitting.
State-splitting approaches start from a generalized repre-
sentation of the target automata and iteratively specialize
the model to maximize a fitness measure. In contrast, state-
merging approaches start from a specialized representation
of the model (most often a prefix tree) and iteratively gen-
eralize it. Unfortunately, according to Gold’s Theorem [10]
this problem is undecidable in limit even if the sets of pos-
itive (accepted) and negative (rejected) samples of the tar-
get language are given. On the other hand, in most real-
world applications, like in protocol discovery, only positive
samples are available. In this case, approximate probabilis-
tic grammar inference approaches becomes tractable[10].
However, these approaches are ineffective for model dis-
covery from imperfect log. In this area, [13] extends gram-
mar inference approaches for inferring a probabilistic au-
tomata from noisy language instances, however, this ap-
proach cannot detect noise or remove it, but applies more
restrictive state merging rules that leads to less merges and
so a more complex model.

Workflow mining from event logs has also been subject
of research for many years [14]. However, the focus of
the research in this area is rather different. Some workflow
discovery approaches assume the existence of a complete
log and provide algorithms to discover complex process
constructs such as complex loops, paralelism and non-free
choice.

In the area of the software process mining, [6] proposes
a state-splitting based approach for discovering software
processes from software execution streams. They recog-
nize noise in logs and ask the user to specify a noise thresh-
old that is used to filter noise. In the area of Web services,
the work of Dustdar et. al.[7] considers the problem of ser-
vice interaction mining. In fact, they map message interac-
tions to the input format accepted by workflow mining tools
and uses such tools to discover the service workflow mod-
els. Finally, model discovery by static analysis of code [8]
is also relevant. While this approach is applicable to well-
structured (e.g., block-structured) code, it does not enjoy
from the benefits of dynamic interactions analysis.

2.5 Model Refinement

The fact that logs’ data is imperfect makes it impossible
for the algorithm to discover the exact protocol model sup-
ported by a service. Once a model has been derived, there
is the need of assisting users in refining and correcting the
protocol model, based on knowledge or hypothesis that
users may have and also the analysis of conversations in
the logs that cannot be accepted by DP. The challenge here
consists in how to best guide users through the areas of un-
certainty and how to analyze excluded conversations in a



way that is as simple and as effective as possible.

3 Research Progress and Results
We argue that it is important for any approach to proto-
col discovery to characterize its position with respect to the
various facets presented in Section 2. In terms of scope, up
to now we have tackled discovering bi-party protocol mod-
els. The modeling formalism is as described in Section 2.2.
In terms of correlation, at this stage we assume that con-
versation identifiers are inserted either by service develop-
ers or by the logging system. In terms of assumptions on
conversation logs, we consider most “real life” scenarios,
whenever Web service interactions are monitored via Web
services monitoring engine such HP SOA Manager or IBM
WebSphere Process Server. Until now, we have made three
unique contributions: (i) providing an automatic noise esti-
mation method to deal with log imperfection, (ii) develop-
ing an algorithm for protocol discovery, and (iii) providing
a methodology for refinement of the discovered protocol.
In the following, we give a short overview of our approach
and omit the technical details due to lack of space.

3.1 Measuring Noise in Message logs

We assume that occurrence of imperfect conversations fol-
lows a Poisson distribution (infrequent and non-repeatable
events). The challenge lies in defining the meaning of
“infrequent” and a mechanism for identifying a frequency
threshold, which is widely applicable. Instead of conver-
sations we consider subsequences of length k (called k-
sequence) of conversations for two reasons: (i) computa-
tional complexity, (ii) typically few subsequences of an in-
frequent conversation are infrequent but other correct sub-
sequences of it can contribute to better discover the pro-
tocol model. For each k-sequence, we compute its sup-
port as the percentage of conversations that contain that
sequence. Then we analyze the support distribution of k-
sequences. The intuition confirmed by experiments is that
a lot of incorrect sequences share a similar low support. On
the other hand, correct sequences are fewer in number and
have greater (typically dissimilar) support. Ranking the the
sequence distribution by support identifies a step function.
From the low end of this function, we take the first support
that has a smaller length (sequences with the same support
value) relatively to the increase in the value of the support
from the previous support as a threshold. This approach
proved robust in many experiments.

3.2 Protocol Discovery Algorithms

Our protocol discovery algorithm is similar to that of soft-
ware process mining [6] algorithm in the sense that it is a
state splitting based algorithm that starts from a generalized
model of the protocol and iteratively refines it by splitting
over-generalized states, i.e., states that allow generation of
sequences that are not in the input log data. The goal of
splitting is to disallow such sequences (starting splitting

from sequences of length 2 to k in the generalized proto-
col model). Though, the main differences of our algorithm
with [6] is that we do not require the user to provide a noise
threshold as the input, as we estimate it adaptively for se-
quences of different lengths during the splitting. The other
difference is that we devised a new splitting procedure, as
the splitting method in [6] can not be used to disallow in-
correct sequences in a deterministic state machines and it
causes non-determinism. The technical details of the al-
gorithm is omitted for brevity. One main property of the
algorithm is that its time complexity is polynomial.

There are two main criteria when evaluating the qual-
ity of a discovered protocol: its simplicity and its fitness
[3]. The former, with FSM-based models, can be defined
as the size (measured as the number of states) of the discov-
ered protocol. For the later, since a protocol can be seen as
a classifier, it can be assessed by the classical recall and
precision measures. The maximal recall (rec(DP) = 1) is
achieved when all the correct conversations (CC) present in
the conversation log are accepted (AC) by DP. Similarly, a
protocol DP has a maximal precision (pre(P) = 1) when
all AC are correct ones. More formally:

rec(DP) =
|AC∩CC|
|CC|

, pre(DP) =
|AC∩CC|
|AC|

,Qe(DP) =
rec(DP)× pre(DP)
size(DP)/size(P)

In this formula, we consider that P is the minimal pro-
tocol model. The quality measure, denoted by Qe, can only
be used in an experimental setting. Indeed, in real situa-
tion, the reference protocol model P is unknown. We used
this measure to assess the robustness of the model and also
to evaluate the effectiveness of noise estimation approach.

3.3 Protocol Refinement

Threshold cannot always provide a clear cut separation be-
tween correct and incorrect conversations. Consequently,
the discovered protocol may allow generation of some in-
correct conversations or exclude generation of other infre-
quent correct conversations. To overcome these limitations,
we devise some methods for interactive refinement of dis-
covered protocols by featuring (1) meta-data driven proto-
col refinement and (2) classification of uncertain conversa-
tion for interactive protocol refinement.

(1) Meta-Data Driven Protocol Refinement. The goal
of this step is to improve the precision of DP. By browsing
the discovered protocol and visually examining associated
meta-data, users can understand potential errors made dur-
ing the discovery process and correct them. We use the
metadata to help the user in visually navigating to the ar-
eas that needs more attention. Transition and state are re-
spectively highlighted using various arrow thickness and
state color brightness based on protocol metadata (see Sec-
tion 2.2).

(2) Classification of Uncertain Conversation. The goal
of this step to increase the recall of DP by inclusion of con-
versations that are incorrectly excluded. In our approach,
the analysis of excluded conversations is based on measur-
ing the edit distance between them and the protocol. In a



Retailer−1 Retailer−2 Game
# Operations 8 10 32
# Conversations 5,000 5,000 25,791
Noise Level 7.64 9.78 NA
Min. Length 2 1 1
Avg. Length 5.2 9.45 43.31
Max. Length 18 50 1,921

Table 1: Characteristics of the datasets

nutshell, the distance is computed by counting the number
of edit operations that have to be performed on the con-
versation string to obtain a conversation that is accepted by
the protocol. Based on such an analysis, we group the con-
versation with the same set of edit operations. Each class
proposes some edit operations (of type of state and transi-
tion addition) to the protocol. The user can accept or reject
the changes in a visual environment to refine the protocol.

3.4 Implementation and Result

Since our approach focuses on the discovery of proto-
col from imperfect conversation logs, we examined its ro-
bustness with respect to the noise level present in various
datasets. We used two datasets in our experiments, two
synthetic and one from a real-world service. For the syn-
thetic datasets, we simulated two real-world retailer ser-
vices similar to, but more complex than, the the Retailer
service in Example 1. We used HP SOA Manager as the
logging infrastructure. We developed the Retailer-1 and
Retailer-2 services and their clients in Java using Apache
Axis as the SOAP engine, and Apache Tomcat as the Web
server. The protocol discovery framework has been imple-
mented in Java as Eclipse plug-ins. The real-world dataset
is taken from the user’s interactions log of a game ser-
vice (called robostrike (http://www.robostrike.com)). This
dataset allows us to evaluate the capabilities of our proto-
type to handle large datasets (several gigabytes) as well as
discovering an unknown and complex protocols (see Ta-
ble 1).

For the synthetic scenarios, we also introduced some
artificial noise to reach the noise level to 30% from 7.64
abd 9.78 in the datasets. Our experiment show that the
noise level does not sensibly affect the precision and re-
call of our algorithm. In both cases the precision decreases
from arround 97 to 92 percent, and recall increases from
arround 88 to 95 percent for zero to 30% of noise, respev-
tively (we ommitted the graph details for the sack of space).
We also compared the size of the DPs of Retailer-1 and
Retailer-2 relatively to the size of their corresponding
reference models. We observed that the noise affects the
size of the discovered protocols to the point that their size
can be less than doubled when the noise level in the log
reaches 30%. For the game service, we collected 25,791
conversations. The model discovered by the algorithm has
68 states and 181 transitions. This result was very promis-
ing in the sense that we asked the data provider to compare
the discovered model with the real protocol of the game
service. The algorithm was able to identify the main paths
of the real protocol of this service. The large number of

states, in this case, is due to the fact that some messages
can be sent in any state of the game service. For example,
players can at any time send discussion messages to their
partners. In addition, this service has quite large number
of operations (32 operations) and the number of paths sup-
ported by the protocol is also high.

4 Concluding Remarks
In this paper, we presented the problem of protocol dis-
covery from the real-world service interaction logs that can
be imperfect in many ways. We identified challenges re-
lated to capturing, pre-processing and analyzing message
logs. We identified that two of these challenges, namely
message correlation and transition identification could be
linked to well-known problems in the database area, i.e.,
record-linkage and association rule mining, respectively.
We also presented our current result, i.e., a protocol dis-
covery algorithm, which is robust to log imperfection, and
an interactive protocol refinement method for refining dis-
covered protocol models. As the future work, we intend to
investigate the challenges identified in the paper, and also
extending the scope of our work by discovering service-
specific view of choreography models and choreographies
of services from service interaction data.
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