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Abstract

This research is aimed at providing theoreti-
cally rigorous, flexible, efficient, and scalable
methodologies for intelligent delivery of data
in a dynamic and resource constrained envi-
ronment. Our proposed solution utilizes a uni-
form client and server profilization for data de-
livery and describe the challenges in develop-
ing optimized hybrid data delivery schedules.
We also present an approach that aims at con-
structing automatic adaptive policies for data
delivery to overcome various modeling errors
utilizing feedback.

1 Introduction

Web enabled application servers have had to increase
the sophistication of their server capabilities in order
to keep up with the increasing demand for client cus-
tomization. Typical applications include RSS feeds,
stock prices and auctions on the commercial Inter-
net, and increasingly, access to Grid computational
resources. Despite these advances, there still remains
a fundamental trade-off between the scalability of both
performance and ease of implementation on the server
side, with respect to the multitude and diversity of
clients, and the required customization to deliver the
right service/data to the client at the desired time.

We begin with two motivating examples, demon-
strating the necessity of a framework for data delivery
that goes beyond existing standards.
Example 1 (RSS): RSS ([17]) is growing in its popular-
ity to deliver data on the Internet but currently faces
scalability issues. RSS 2.0 defines a mostly pull based
protocol but supports a simple notification mechanism
named “clouds” that can push notifications about RSS
feed refreshment. Most RSS providers do not support
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the clouds mechanism since it requires bookkeeping
about registered clients; this is not scalable for a pop-
ular RSS provider such as CNN. Current RSS consumers
either poll the server periodically or pull according to
authoring tags embedded within the RSS channel (e.g.,
<ttl>). The pull based protocol of RSS also faces scal-
ability issues; a recent survey in [9] of 100,000 RSS feeds
from the popular RSS repository syndic8.com showed
that almost 90% of pull actions by RSS consumers,
typically using software such as RSS Readers or Ag-
gregators, did not capture any useful changes to RSS
feeds.

Example 2 (Grid): Consider a simplified scenario of
a physicist client who wants to submit her application
to a Linux Farm of several thousand nodes. The Linux
Farm collects Node Status metadata for each node in-
cluding attributes such as Machine Up Time, CPU
Load, Memory Load, Disk Load, and Network Load;
this data is updated every time a new job is submit-
ted to the Linux Farm, and is periodically pushed to
clients. She further determines that a remote dataset
is needed and it can be retrieved from a number of
replica sites. Network behavior metadata for these
replica sites are available from either a GridFTP mon-
itor or the Network Weather Service (NWS) monitor.
Neither monitor pushes updates to clients. Current
data delivery mechanisms provide few solutions to the
physicist possibly resulting in excessive polling; this
may have a performance impact on these servers.

Current data delivery solutions can be classified
as either push or pull solutions, each suffering from
different drawbacks. Push (e.g., [8]) is not scalable,
and reaching a large numbers of potentially transient
clients is typically expensive in terms of resource con-
sumption. In some cases, where there is a mismatch
with client needs, pushing information may overwhelm
the client with unsolicited information. Pull (e.g., [7]),
on the other hand, can increase network and server
workload and often cannot meet client needs. Several
hybrid push-pull solutions have also been presented in
the past (e.g, [5]). Examples of related work in push-
based technologies include BlackBerry [8] and JMS
messaging, push-based policies for static Web content



(e.g., [10]), and push-based consistency in the context
of caching dynamic Web content (e.g., [18]). Another
related research area is that of publish/subscribe sys-
tems (e.g., [1]). Pull-based freshness policies have been
proposed in many contexts such as Web caching (e.g.,
[7]) and synchronizing collections of objects, e.g., Web
crawlers (e.g., [4]).

As demonstrated in Examples 1 and 2 the problem
we face is that of providing theoretically rigorous, flexi-
ble, and efficient methodologies for intelligent delivery
of data in a dynamic and resource constrained envi-
ronment that can efficiently match client requirements
with server capabilities and generate a scalable hybrid
push-pull solution.

The rest of the paper is organized as follows. In
Section 2 we introduce our proposed model. We then
present in Section 3 the different challenges of the pro-
posed research. Section 4 describe our current research
progress, and we conclude in Section 5.

2 Model for Online Data Delivery

We begin by presenting the general architecture of our
proposed framework. We then introduce our model
for data delivery based on the abstraction of execution
intervals, followed by profile specification.

2.1 Architecture

The proposed framework aims at providing a scalable
online data delivery solution. We identify three types
of entities, namely servers, clients, and brokers. A
server is any entity that manages resources and can
provide services for querying them by means of pull
(e.g., HTTP GET messages) or push (e.g., registration
to an alerting service in digital libraries [3]). Each
server has a set of capabilities for data delivery (e.g.,
periodical push of notifications). A client is any entity
that has an interest in some resources and has data de-
livery requirements in the form of client profiles. Given
client requirements and server capabilities, a broker is
responsible to match the client with suitable servers,
and provide the client with the desired information of
interest specified in the client profile. To do so, the
broker may register to servers and as needed augment
server notifications with pull actions. Each broker can
further act as both server or client of other brokers,
formatting a brokerage network as illustrated in Fig-
ure 1. The profile specification proposed in Section 2.3
allows a broker to efficiently aggregate client profiles,
thus achieving scalability.

We now present our model for profile based online
data delivery, followed by the profile specification.

2.2 Model

LetR = {R1, R2, ..., Rn} be a set of n resources, where
each resource Ri is described in some language (e.g.,
RDF [13]) and has a set of properties, that can be

Figure 1: Framework architecture

queried. Utilizing a schema specification (e.g., RDF
Schema [14]) we further classify resources and describe
properties in different granularity levels. We use T to
denote a discrete timeline.

2.2.1 Execution intervals

Given a query Q which references resources from R,
we would like to formally define periods of time in T in
which running query Q is useful for some client. Such
periods of times are termed execution intervals. We
further associate with each interval (denoted as I) the
following properties.

Interval end points : Each interval has a start time
Ts ∈ T, and a finish time Tf ∈ T, where Ts ≤ Tf .

Query : A selection query over a subset ofR, denoted
as Q, that should be executed at some time Tj ∈
I.

Utility : A scalar vector of size |I| that defines the
utility of executing Q at any time Tj ∈ I. For the
client, the utility models the benefit of getting a
notification of Q during I, while for the server, the
utility models the benefit of pushing data during
I.

Label Function : Given the set of resources refer-
enced by query Q, we define a labelling function
LI : Q → {push, pull, none}. The meaning of
the possible labels for each resource is as follows.
push means that the state (or values) of resource
R that is part of Q is pushed during I by some
server that stores R. pull means that the state
of resource R is pulled during I from some server
that stores R. none if no action is taken during I.

Execution intervals are the basic elements of our
model. We shall discuss their usage in Section 2.3.



“Return the title and description of items published
on the CNN Top Stories RSS feed, once
three new updates to the feed channel have occurred.
Notifications received within ten minutes after
new three update events have occurred will have
a utility value of 1. Notification outside this
window has a value of 0. Notifications should
take place in the two months following April
24th 2006, 10:00:00 GMT.”

Figure 2: Example client profile for RSS domain

2.2.2 Events, eventlines and timelines

Events in the context of data delivery identify possi-
ble changes to states of resources of interest. We define
event e of resource R (denoted by e(R)) to be any up-
date event or temporal (time based periodical) event.
We denote by Tek

the occurrence time of the k -th event
on the eventline. An event occurrence time can be fur-
ther defined to be the start or end time of an execu-
tion interval, denoting that the execution of query Q
is conditioned on the occurrence of some event (e.g.,
an RSS channel was refreshed three times). We trans-
late eventlines into timelines and use update models
that rely on resource update histories observed from
the data delivery process. Such models are usually
given in stochastic terms and may suffer from differ-
ent modelling errors. In Section 3.2 we present an
adaptive scheme that aims at providing efficient data
delivery despite such errors.

2.3 Profile language specification

We have a particular interest in semantic richness of
profiles. Such richness is given in the profile expressive
power to allow reasoning about temporal evolution of
resources, where profiles can be modified to add and
remove resources of interest dynamically to express
evolving interests. We aim at unique profile specifi-
cation that can be used uniformly to define client re-
quirements, and server capabilities in supporting such
requirements. Profiles basically state four important
aspects of data delivery, namely, what are the resources
of interest, when such interests exist and notifications
should take place, what are the conditions upon notifi-
cations, and what is the value (utility) of each notifi-
cation. An example for a possible client profile for the
RSS domain is given in Figure 2.

2.3.1 Profile languages

Let P denote a profile language (or profile) class and
let p be a profile. Let R = {R1, R2, ..., Rn} be a set of
resources. Class P is a triplet P = 〈Ω,N , T 〉, where
Ω ⊆ R is called profile domain, N = {η1, η2, ..., ηm}
is a set of rules termed notification rules, and T =
{T1, T2, ..., TN}, T ⊂ T is a set of N chronons termed
profile epoch. Given an epoch T we define IT =

{[Tj , Tk] |Tj ≤ Tk}. IT contains all possible inter-
vals in T . Each notification rule η is a quadruple
η = 〈Q,Γ,T, U〉, where Q ⊆ Ω is termed notification
query, Γ ⊆ IT is a set of execution intervals, T ⊆ T is
notification scope, and U : Γ→ Rm;m ∈ N is a utility
function. This general class of profiles can be further
classified, for example, to the class of languages that
allow to refer to events on the eventline (using Tek

) or
those which use deterministic timeline (e.g., periodic
time). As an example, Figure 3 contains the specifica-
tions of RSS client profile.

Ω(p)←
{http://rss.cnn.com/services/rss/cnn topstories.rss}
N (p) := {η}
Q(η) := σtitle,description(item)
e(cnn topstories.rss) := “UPDATE TO channel”
Γ(η) := {[Te3∗k

, Te3∗k
+ 10 minute]; k ∈ N}

T(η) := “4/24/2006 10:00:00 GMT” + 2 month

U(I) =
{

[1, 1, ..., 1] if I ∈ Γ(η)
[0, 0, ..., 0] otherwise

(1)

Figure 3: Formal specification of the example client
profile

3 Challenges

We now introduce two main challenges. The first in-
volves the provision of an optimized hybrid scheduling
solution to the data delivery problem. The second
challenge involves the provision of a mechanism for
data delivery that can adaptively reason about events
at servers despite update modelling errors, exploiting
feedback gathered from the data delivery process. We
now describe each challenge in details.

3.1 Optimized hybrid scheduling

Utilizing the unique profile specification for both client
requirements for data delivery and server capabilities
to support such needs, we wish to construct efficient,
flexible, and scalable hybrid data delivery schedules to
satisfy a set of client profiles by exploiting server push
as much as possible while augmenting with pull activ-
ities when needed.

Profile satisfaction ([15]) means that clients are
guaranteed to get notifications according to their pro-
files. Given a set of either client or server profiles
P = {p1, p2, ..., pm}, we translate each profile into a set
of client/server execution intervals respectively. For
each client execution interval I and each resource R
referenced by the interval associated query Q, a sched-
ule S assigns a pair of values 〈LI(R), T 〉 which denotes
the type of action to be taken during I for resource
R and the actual time T ∈ I that such an action
should take place. For example, if schedule S assigns



〈pull, T 〉 than resource R should be pulled at time T .
We denote by S the set of all possible schedules.

Any schedule that aims at satisfying a given client
profile must assign either a push or pull action to
each resource referenced by each client execution in-
terval query. Using client profile coverage, formally
defined in [16], we wish to efficiently find a minimal set
of server execution intervals that maximizes the num-
ber of client execution intervals that can be covered
by pushing data during the client execution intervals.
Whenever we identify a set of candidate server inter-
vals that can cover the same client execution interval,
we shall further rank this set according to metrics such
as server availability, commitment to push, and others.

We now describe three important aspects of data
delivery that this research considers, namely, con-
straint hybrid data delivery, scalability, and tradeoffs.

3.1.1 Constraint hybrid data delivery

Data delivery becomes a constrained optimization
problem when system resource usage is limited. Gen-
erally speaking, given a set of profiles P we define a
target function F (P) to be optimized, subject to a set
of constraints on the data delivery schedule, C(P,S).
Examples of possible constraints over pull actions are
an upper bound on the total bandwidth, CPU, and
memory that can be allocated per chronon (e.g., [11])
or upper bound on the total number of probes allowed
per the whole epoch, termed politeness in [6]. As for
push related costs, each push may have an associated
cost set by the server providing the push, thus a further
upper bound on total payments can be set. Examples
for target functions for the data delivery process are to-
tal gained utility, profile satisfaction, system resources
used to process P, etc.

3.1.2 Scalability

Current pull and push based solutions face scalabil-
ity problems. Using our suggested framework for data
delivery, we shall accomplish better scalability. Client
profiles will be aggregated and optimized, offering scal-
able profile processing. In the proposed system archi-
tecture, each broker will be responsible to track a set
of servers and manage client profiles for several clients,
and can further act as either a client or server of other
brokers. The hybrid approach can reduce server work-
loads and save network resources.

3.1.3 Data delivery tradeoffs

Data delivery tradeoffs can be captured by means of
multi-objective optimization that involves a set of tar-
get functions F = {F1(P), F2(P), ..., Fm(P)} to be op-
timized. For example, the tradeoff between data com-
pleteness and delay1 can be defined as a bi-objective

1Completeness can be measured as the number of execution
intervals correctly captured by any schedule, while delay can be

optimization problem as follows.

F = {F1(P) = “completeness”, F2(P) = “delay”}
maximize F1(P)
minimize F2(P)
s.t. C(P,S)

(2)

It is obvious that such target functions can be depen-
dent as in Example 2, thus optimizing one function can
come at the expense of the other. Such dependencies
capture “tradeoffs” in data delivery. In multi-objective
optimization problems we would like to find a set of
non dominated solutions, termed also as Pareto Set in
the literature, representing optimal tradeoffs and of-
fering different alternatives to clients or servers during
the data delivery process. In the general case, find-
ing a Pareto set is an NP-Hard problem and we shall
further find an approximated set instead ([12]).

3.2 Adaptive policies for data delivery

Motivated with the work originated in [2] we shall in-
vestigate adaptive policies to overcome modeling er-
rors and unexpected temporary changes (“bursts”) to
existing valid update models. Modeling errors gen-
erally occur due to two basic error types. First, the
underlying update model that is assumed in the static
calculation is stochastic in nature and therefore up-
dates deviate from the estimated update times. Sec-
ond, it is possible that the underlying update model is
incorrect, and the real data stream behaves differently
than expected. Bursts are kind of unpredicted noise
in the underline update model and are hard to pre-
dict. This research will devise an adaptive algebra to
create (automatic) adaptive policies for data delivery.
The basic idea for such algebra is as follows. Given
a profile p and some time T ∈ T , we can associate
two sets of execution intervals with each η ∈ N (p),
denoted as Γt≤T (η) and Γt>T (η). Lets assume that
all actual execution intervals of η up to time T are
known (e.g., gathered from previous probes feedback).
Thus Γt≤T (η) holds (maybe a subset of) those inter-
vals. Γt>T (η) still holds execution intervals that their
actual alignment is known only in expected or prob-
abilistic terms. An adaptive policy A takes as input
the pair of sets 〈Γt≤T (η),Γt>T (η)〉 and returns a set
of execution intervals Γ∗t>T (η) as output, reflecting the
adaptive policy implemented by A. The output set
Γ∗t>T (η) can include corrections to interval end points,
alignments, additional intervals, or corrections to label
assignments for the hybrid schedule. It is worth noting
that such adaptive policies can further take into con-
sideration different constraints (e.g., additional probes
that the system can allocate to implement the policy),
casting the adaptive task as an optimization problem.

measured as the time that elapse from the beginning of each
such interval.



4 Current progress

Parts of the proposed research have already been ac-
complished. In [15] we have formally defined the no-
tion of profile satisfiability and cast it as an optimiza-
tion problem. We have developed an algorithm named
SUP that guarantees to satisfy a set of profiles in ex-
pected terms, while minimizing the efforts of doing
so. We also suggested an adaptive version for SUP,
named fbSUP which is an example of an adaptive pol-
icy that uses feedback from previous probes and adds
additional execution intervals as needed. Our study
shows that we improved the data delivery accuracy
with a reasonable increase in the amount of system
resources that such adaptiveness requires.

In [16] we have suggested a generic hybrid schedul-
ing algorithm named ProMo which utilizes profile cov-
erage and aims at maximizing server capabilities usage
while providing efficient augmentation of pull actions
when needed. In ProMo we have dealt with 1 : 1 client-
server relationship and provided a proxy based archi-
tecture. Future work with the brokerage architecture
will use more general relationships focusing on provid-
ing expressive, yet scalable and efficient hybrid data
delivery solution.

In our most recent work we devised an approxi-
mated solution to a bi-objective optimization problem
similar to the example of Section 3.1.3, termed Proxy
Dilemma, where a proxy manages a set of client pro-
files and aims at maximizing the number of execution
intervals that can be served, while minimizing the de-
lay in notification to clients, subject to the number of
resources that can be probed per chronon.

5 Conclusions

In this paper we presented a novel framework for pro-
file based online data delivery, including architecture,
model, language, and algorithms for efficient, flexible,
and scalable data delivery. We presented a unique pro-
file specification based on execution intervals which
can be used uniformly to describe both client require-
ments and server capabilities. We presented different
challenges the research face in supporting efficient data
delivery using the proposed model, and discussed au-
tomatic adaptive policies for online data delivery.
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