
Proceedings

of the Third Workshop on

Spatio-Temporal Database Management

STDBM 06

September 11, 2006

Seoul, South Korea

in conjuction with VLDB 06

Edited by

Christophe Claramunt

Ki-Joune Li

Simonas Šaltenis

Workshop Co-Chairs

Christophe Claramunt, Naval Academy, France
Simonas Šaltenis, Aalborg University, Denmark
Ki-Joune Li, Pusan National University, Korea

Advisory Committee

Ralf Hartmut Güting, Fernuniversität Hagen, Germany
Christian S. Jensen, Aalborg University, Denmark
Mario A. Nascimento, University of Alberta, Canada
Yannis Manolopoulos, Aristotle University, Greece

Program Committee

Dave Abel, CSIRO, Australia
Walid G. Aref, Purdue University, USA
Lars Arge, University of Aarhus, Denmark
Elisa Bertino, Purdue University, USA
Michela Bertolotto, University College Dublin, Ireland
Thomas Brinkhoff, Oldenburg University of Applied Sciences, Germany
Edward P.F. Chan, University of Waterloo, Canada
Andrew U. Frank, Technical University of Vienna, Austria
Fabio Grandi, University of Bologna, Italy
Ralf Hartmut Güting, Fernuniversität Hagen, Germany
Erik Hoel, ESRI, USA
Kathleen Hornsby, University of Maine, USA
Christopher B. Jones, Cardiff University, UK
George Kollios, Boston University, USA
Ravikanth V. Kothuri, Oracle Corporation, USA
Mario A. Lopez, University of Denver, USA
Yannis Manolopoulos, Aristotle University, Greece
Claudia Bauzer Medeiros, UNICAMP, Brazil
Dimitris Papadias, UST Hong Kong, China
Jignesh M. Patel , University of Michigan, USA
Dieter Pfoser, CTI, Greece
Philippe Rigaux, Université Paris-Dauphine, France
John Roddick, Flinders University, Australia
Jörg Sander, University of Alberta, Canada

ii

Michel Scholl, Cedric/CNAM, France
Bernhard Seeger, University of Marburg, Germany
Timos Sellis, NTUA, Greece
Richard Snodgrass, University of Arizona, USA
Jianwen Su, UC Santa Barbara, USA
Yannis Theodoridis, University of Piraeus, Greece
Theodoros Tzouramanis, University of the Aegean, Greece
Babis Theodoulidis, University of Manchester, UK
Goce Trajcevski, Northwestern University, USA
Nectaria Tryfona, Talent Information System SA, Greece
Vassilis Tsotras, UC Riverside, USA
Jeffrey S. Vitter, Purdue University, USA
Agnès Voisard, Fraunhofer ISST & FU Berlin, Germany
Peter Widmayer, ETH Zurich, Switzerland
Jef Wijsen, University of Mons-Hainaut, Belgium
Stephan Winter, University of Melbourne, Australia
Michael Worboys, University of Maine, USA
Donghui Zhang, Northeastern University, USA

Sponsor

Geospatial Information Technology Co. Ltd, South Korea

iii

Preface

Managing spatially and temporally referenced data is becoming increasingly
important, given the continuing advances in wireless communications, sensor
technologies, and ubiquitous computing. New types of spatial databases
and applications enabled by these technologies require data management
technology to store, query, and analyze spatio-temporal data.

This volume contains papers presented at the Third Workshop on Spatio-
Temporal Database Management, STDBM’06, co-located with the 32nd In-
ternational Conference on Very Large Data Bases, VLDB 2006. This work-
shop follows the previous STDBM workshops respectively held in conjunc-
tion with VLDB’99 in Edinburgh and VLDB’04 in Toronto. The goal of this
workshop is to bring together leading researchers and developers in the area
of spatio-temporal databases in order to discuss and exchange novel research
ideas and experiences with real world spatio-temporal databases.

The workshop received 14 submissions. All papers were evaluated by at
least three of the 42 members of the program committee. At the end nine
papers of high quality were accepted and are included in these proceedings.

We would like to thank the members of the workshop’s steering committee
for their valuable advice organizing the workshop, and program committee
members for making their reviews in due time. We are thankful to our
sponsor, Geospatial Information Technology Co. Ltd., for their support.
We finally acknowledge the support provided by the VLDB organization,
and of the CEUR organization for supporting the on-line publication of the
proceedings.

Christophe Claramunt, Ki-Joune Li, and Simonas Šaltenis
STDBM’06 Organizers and PC co-chairs

iv

Contents

Session 1: Spatio-Temporal Databases for Transportation
Systems

Automatically and Efficiently Matching Road Networks with Spatial
Attributes in Unknown Geometry Systems.

Ching-Chien Chen, Cyrus ShahabiCraig A. Knoblock,Mohammad
Kolahdouzan . 1

Update-efficient Indexing of Moving Objects in Road Networks.
Jidong Chen, Xiaofeng Meng,Yanyan Guo,Zhen Xiao 9

A Spatio-temporal Database Model on Transportation Surveillance Videos.
Xin Chen, Chengcui Zhang . 17

Session 2: Spatio-Temporal Queries

Predicted Range Aggregate Processing in Spatio-temporal Database.
Wei Liao, Guifen Tang, Ning Jing, Zhinong Zhong 25

Additively Weighted Voronoi Diagrams for Optimal Sequenced Route
Queries.

Mehdi Sharifzadeh, Cyrus Shahab 33

On Construction of Holistic Synopses under the Duplicate Semantics of
Streaming Queries.

David Toman . 41

Session 3: Spatio-Temporal Data Structures and Data

v

Mining Long, Sharable Patterns in Trajectories of Moving Objects.
Gyozo Gidófalvi, Torben Bach Pedersen 49

Fusion Based Methodology for Spatial Clustering.
Pavani Kuntala, Vijay V. Raghavan 59

A Storage Scheme for Multi-dimensional Databases Using Extendible
Array Files.

Ekow J. Otoo, Doron Rotem 67

vi

Automatically and Efficiently Matching Road Networks with

Spatial Attributes in Unknown Geometry Systems

Ching-Chien Chen

Geosemble Technologies

2041 Rosecrans Ave, Suite 245

El Segundo, CA 90245

jchen@geosemble.com

Cyrus Shahabi

Craig A. Knoblock

University of Southern California

Department of Computer Science

Los Angeles, CA 90089

shahabi, knoblock@usc.edu

Mohammad Kolahdouzan*

Yahoo! Search Marketing

Burbank, CA

mohammad_ysm@yahoo.com

Abstract

Vast amount of geospatial datasets are now

available through numerous public and private

organizations. These datasets usually cover

different areas, have different accuracy and level

of details, and are usually provided in the vector

data format, where the latitude and longitude of

each object is clearly specified. However, there

are scenarios in which the spatial attributes of the

objects are intentionally transformed to a

different, and usually unknown, (alien) system.

Moreover, it is possible that the datasets were

generated from a legacy system or are

represented in a native coordinate system. An

example of this scenario is when a very accurate

vector data representing the road network of a

portion of a country is obtained with unknown

coordinate. In this paper, we propose a solution

that can efficiently and accurately find the area

that is covered by this vector data simply by

matching it with the (possibly inaccurate and

abstract) data with known geocoordinates. In

particular, we focus on vector datasets that

represent road networks and our approach

identifies the exact location of the vector dataset

of alien system by comparing the distribution of

the detected road intersection points between two

datasets. Our experiment results show that our

technique can match road vector datasets that are

composed of thousands of arcs in a relatively

short time with 91% precision and 92.5% recall

for the matched road feature points.

1. Introduction

With the rapid improvement of geospatial data collection

techniques, the growth of Internet and the implementation

of Open GIS, a large amount of geospatial data are now

readily available on the web. The examples of well-

known vector datasets are US Census TIGER/Line files
1

(covering most roads over the United States),

NAVSTREETS from NAVTEQ,
2
 VPF data from NGA

(U.S. National Geospatial-Intelligence Agency),
3

 and

DLG data from USGS (U.S. Geological Survey).
4
 The

Yahoo Map Service,
5
 Google Map Service,

6
 Microsoft

TerraService
7
 [1] are good examples of map or satellite

imagery repositories. These datasets usually cover

different areas, have different accuracy and level of

details, and some of them are provided in the vector data

format, where the latitude and longitude of each vector

object is clearly specified. However, there are scenarios in

which the spatial attributes of the vector objects are

intentionally transformed to a different, and usually

unknown, (alien) system. Moreover, it is also possible that

the datasets were generated from a legacy system or are

represented in a native coordinate system.

Figure 1 illustrates a scenario where we want to locate

the area of a USGS raster topographic map (as shown in

1 http://www.census.gov/geo/www/tiger/

2 http://www.navteq.com/

3 http://www.nga.mil/

4 http://tahoe.usgs.gov/DLG.html

5 http://maps.yahoo.com/

6 http://maps.google.com

7 http://terraserver-usa.com/

* This work was done when the author was working at University of
Southern California as a Post-Doc Research Associate.

Proceedings of the 3rd Workshop on STDBM
Seoul, Korea, September 11, 2006

1

Figure 1(a)). The map covers partial area of St. Louis

County, MO in U.S.A., but its exact geocoordinates are

inaccessible. The map is first processed to extract road

network (as shown in Figure 1(b)) by using a

text/graphics separation technique developed by us [2] .

Obviously, the extracted road network is in a native

coordinate system (i.e., raster pixel x/y in Cartesian

system). Meanwhile, a larger road network covering this

county is publicly available from US Census

TIGER/Lines. By identifying matched features between

the two road networks, the system can then automatically

infer the geocoordinate of the extracted map road network

(as the area highlighted in Figure 1(c)).

There have been a number of efforts to automatically

or semi-automatically detect matched features across

different road vector datasets [3, 4, 5, 6, 7]. Given a

feature point from one dataset, these approaches utilize

different matching strategies to discover the

corresponding point within a predetermined distance (i.e.,

a localized area). This implies that these existing

algorithms only handle the matching of vector datasets in

the same geometry system (i.e., the same coordinate

system
8
). Hence, to the best of our knowledge, no general

method exits to resolve the matching of two vector data in

unknown geometry systems. Furthermore, processing

large vector datasets often requires significant CPU time.

Our methodology, described in this paper, is able to

automatically and efficiently handle the matching of

diverse and potentially large vector datasets, independent

of the coordinate system used. In particular, we focus on

vector datasets that represent road networks.

The basic idea of our approach is to find the

transformation T between the layout (with relative

distances) of the feature point set on one road network

and the corresponding feature point set on the other road

network. This transformation achieves global matching

between two feature point sets by locating the common

point pattern among them. More precisely, the system can

detect feature points from both road networks. The

8 In this paper, we use the terms “geometry system” and

“coordinate system” interchangeably.

distribution of detected feature points from each road

network forms a particular (and probably unique) point

pattern for the road network. In order to improve the

running time, our approach exploits auxiliary spatial

information to reduce the search space for the

transformation T. Once the matched points across

different road networks are identified, the system can then

utilize this transformation to map the road network of

alien geometry (coordinate) system into a known

coordinate system (e.g., geodetic coordinate system).

To illustrate the usefulness of our approach, consider

the matching of two road networks: one is in an unknown

coordinate system but with more accurate geometry and

the other has rich attributes and a known coordinate

system but with poor geometry. Applying our matching

algorithm to these two road networks can result in a

superior road network that combines the accuracy of the

road geometry from one vector dataset and rich attributes

from the other. Furthermore, these matched points can be

used as control points to conflate these two road network

datasets [6].

The remainder of this paper is organized as follows.

Section 2 describes our approach in details. Section 3

provides experimental results. Section 4 discusses the

related work and Section 5 concludes the paper by

discussing our future plans.

2. Proposed Approach

In this section, we first describe our overall approach to

match two road networks. Then, we describe the details of

our techniques.

2.1 Approach Overview

Intuitively, matching road networks relies on the process

of matching the road segments from two vector datasets to

find the corresponding road segments. However, this is a

challenging task for two large road networks, especially

when one of the road networks is in a different or

unknown geometry system. To address this issue, we

propose to match two datasets based on some feature

points detected from the road networks. In particular, we

(a) A USGS topographic map (b) The extracted road network in

a native coordinate system

(c) The U.S. Census TIGER/Lines road

network

Figure 1: Two road networks cover overlapping areas

2

utilize road intersections as the feature points. Road

intersections are good candidates for being matched,

because road intersections are salient points to capture the

major features of the road network and the road shapes

around intersections are often well-defined. In addition,

various GIS and computer vision researchers have shown

that the intersection points on the road networks are good

candidates to be identified as an accurate set of matched

points [7, 8, 9, 10].

After detecting a set of intersection points from each

road network separately, the remaining problem is how to

match these intersection points effectively and efficiently

to locate a common distribution (or pattern) from these

intersections. Our system perceives the distribution of

detected intersections from each road network as the

fingerprint of the road network. Then our system finds the

transformation T between the layout (with relative

distances) of the feature point set on one road network

data and the feature point set on the other road network.

This transformation achieves global alignment between

two intersection point sets by locating the common point

pattern among them.

Figure 2 shows our overall approach. Using detected

road intersections as input, the system locates the

common point pattern across these two point sets by

computing a proper transformation between them. The

system can then utilize this transformation to map the

road network in unknown geometry system into a known

coordinate system. We describe our detailed techniques in

the following sections.

2.2 Finding the feature points from vector datasets

The technique to detect road intersections from road

network relies on the underlying road vector data

representation. Typically, there are two common ways to

represent the geometry of a road vector dataset: (1). The

road network is composed of multiple road segments

(polylines), and the line segments are split at intersections

(as the example shown in Figure 3(a)). (2). The road

network is composed of multiple road segments

(polylines), but the line segments are not split (if not

necessary) at intersections (see Figure 3(b)).

This generation of our system focus on handling

vector data represented in the first way (i.e., the line

segments are split at intersections), because most of the

popular road vector datasets (such as US Census

TIGER/Line files and NAVSTREETS from NAVTEQ)

represent their datasets in such way. Based on this sort of

road segment representation, the process of finding the

intersection points from the road network is divided into

two steps. First, the system examines all line segments in

the vector data to label the endpoints of each segment as

the candidate intersection points. Second, the system

examines the connectivity of these candidate points to

determine if they are intersection points. In this step, each

candidate point is verified to see if there are more than

two line segments connected at this point. If so, this point

is marked as an intersection point and the directions of the

segments that are connected at the intersection point are

calculated. In practice, the search of road intersections

from large road networks is supported efficiently by

spatial access method R-tree [11].

2.3 Finding the matched feature points by Point

Pattern Matching (PPM)

Now that we have described how to detect feature points

from a road network, we now describe how this

Detected intersectionsA road network with

known coordinate system

A road network with

unknown coordinate system
Detected intersections

Point Pattern

Matching (PPM)

?

?

lat/long

lat/long
Detected intersectionsA road network with

known coordinate system

A road network with

unknown coordinate system
Detected intersections

Point Pattern

Matching (PPM)

?

?

lat/long

lat/long

Figure 2: The overall approach

(a) Road segments are split at intersections

(b) Road segments are not split at intersections

Figure 3: Different ways to represent a cross-

shaped road network with one intersection

3

information can be used to automatically match two road

networks. Let U= {ui | ui= (xi, yi), where (xi, yi) is the

location of intersections of the first road network} and

V= {vj | vj= (mj, nj), where (mj, nj) is the location of

intersections of the second road network}. Our objective

is to locate the set: {RelPat={(ui,vj) | where ui is the

intersection on the first vector dataset and vj is the

corresponding intersection (if any) on the second dataset.

That is, point ui and vj are formed by the same intersected

road segments}. Consider identifying matched point

pattern between two road networks. If the system can

recognize the names of road segments that meet at

intersections, it can use these road names to infer the set

RelPat. However, road vector data may not include the

non-spatial attribute, road name. Instead, we propose our

approach that relies on some prominent geometric

information, such as the distribution of points, the degree

of each point and the direction of incident road segments,

to locate the matched point pattern. In other words, the

problem of point pattern matching is at its core a

geometric point sets matching problem. The basic idea is

to find the transformation T between the layout (with

relative distances) of the point set U and V.

The key computation of matching the two sets of

points is calculating a proper transformation T, which is a

2D rigid motion (rotation and translation) with scaling.

Because the majority of vector datasets are oriented such

that north is up, we only compute the translation

transformation with scaling. Without loss of generality,

we consider how to compute the transformation where we

map from a fraction α of the points of U to the points of

V. The reason that only a fraction α of the points of U is

considered is that one road vector dataset could be

detailed while the other one is represented abstractly or

there may be some missing/noisy points from each road

network. The transformation T brings at least a fraction α

of the points of U into a subset of V. This implies:

∃ T and U’ ⊆ U , such that T(U’) ⊆ V , where | U’ | ≥

α| U | and T(U’) denotes the set of points that results from

applying T to the points of U’. Or equivalently, for a 2D

point (x, y) in the point set U’ ⊆ U, ∃ T in the matrix form













1

00

00

TyTx

Sy

Sx

(Sx and Sy are scale factors along x and y

direction, respectively, while Tx and Ty are translation

factors along x and y directions, respectively), such that

[x, y, 1] *













1

00

00

TyTx

Sy

Sx

= [m , n, 1] , where | U’ | ≥

α| U | and the 2D point (m, n) belongs to the intersection

point set V on the second vector dataset. With this setting,

we do not expect point coordinates to match exactly

because of finite-precision computation or small errors in

the datasets. Therefore, when checking whether a 2D

point p belongs to the point set V, we declare that p ∈ V,

if there exists a point in V that is within Euclidean

distance δ of p for a small fixed positive constant δ, which

controls the degree of inaccuracy. The minimum δ such

that there is a match for U’ in V is called Hausdorff
distance. Different computations of the minimum

Hausdorff distance have been studied in great depth in the

computational geometry literature [12]. We do not seek to

minimize δ but rather adopt an acceptable threshold for δ.

The threshold is relatively small compared to the average

inter-point distances in V. In fact, this sort of problem was

categorized as “Nearly Exact” point matching problem in

[13].

Given the parameters α and δ, to obtain a proper

transformation T, we need to compute the values of the

four unknown parameters Sx, Sy, Tx and Ty. This implies

that at least four different equations are required. A

straightforward (brute-force) method is first choosing a

point pair (x1, y1) and (x2, y2) from U, then, for every pair

of distinct points (m1, n1) and (m2, n2) in V, the

transformation T’ that map the point pair on U to the point

pair on V is computed by solving the following four

equations:

Sx* x1 + Tx = m1 Sy* y1 + Ty = n1

Sx* x2 + Tx = m2 Sy* y2 + Ty = n2

Each generated transformation T’ is thus applied to the

entire points in U to check whether there are more than

α|U| points that can be aligned with some points on V

within the threshold δ. This process is repeated for each

possible point pair from U, which implies that it could

require examining O(|U|
2
) pairs in the worst case. Since

for each such pair, the algorithm needs to try all possible

point pairs on V (i.e., O(|V|
2

)) and spends O(|U| log|V|)

time to examine the generated transformation T’, this

method has a worst case running time of O(|U|
3
 |V|

2

log|V|). The advantage of this approach is that we can find

a mapping (if the mapping exists) with a proper threshold

δ, even in the presence of very noisy data. However, it

suffers from high computation time. One way to improve

the efficiency of the algorithm is to utilize randomization

in choosing the pair of points from U as proposed in [14],

thus achieving the running time of O(|V|
2
 |U| log|V|).

However, their approach is not appropriate for our

datasets because it is possible one vector dataset is in

detailed level while other vector dataset is represented

abstractly.

In fact, in our previous work [15], we utilized the

similar technique to match two point sets detected from a

raster map and an image. More precisely, in [15], we

proposed an enhanced point pattern matching algorithm to

find the overlapping area of a map and an imagery by

utilizing map-scale to prune the search space of possible

point pattern matches (by reducing the numbers of

potential matching point pairs needed to be examined). In

the following sections, we focus on finding the matching

4

between different road networks and developing more

efficient techniques by utilizing some additional spatial

information that can be inferred from the road vector

datasets. In addition, we also discuss how to prioritize the

potential matching point pairs needed to be examined.

2.4 Enhanced PPM Algorithm: Prioritized Geo-PPM

Due to the poor performance of the brute-force point

pattern matching algorithm mentioned in the previous

section, PPM cannot be applied to large datasets where

the number of points (or intersections) is in the order of

thousands (such as the road networks covering large

areas). Consequently, we utilize some auxiliary

information that can be extracted from the road vector

data to improve the performance of PPM for larger road

networks. With the goal to reduce the numbers of

potential matching point pairs needed to be examined, the

intuition here is to exclude all unlikely matching point

pairs. For example, given a point pair (x1, y1) and (x2, y2)

in S1, we only need to consider pairs (x’1, y’1) and (x’2,

y’2) in S2 as candidate pairs such that the real world

distance and angle between (x1, y1) and (x2, y2) is close to

the real world distance and angle between (x’1, y’1) and

(x’2, y’2). In addition, (x’1, y’1) would be considered as a

possible matching point for (x1, y1) if and only if they

have similar connectivity and road directions. We

categorize the auxiliary information we utilize to the

following groups.

1. Point connectivity: We define the connectivity of a

point as the number of the road segments that intersect at

that point. Clearly, if datasets S1 and S2 have very close

densities (i.e., number of intersections per one unit of

area), a candidate matching point P’1 in S2 for a point P1

in S1 must have the same connectivity as P1. Note that if

the densities of the datasets are different (i.e., one dataset

is detailed and the other one is represented abstractly),

this condition will not be valid for a large portion of the

intersections and may only be valid for major roads’

intersections.

2. Angles of the point: The angles of a point are defined

as the angles of the road segments that intersect at that

point. Similar to the connectivity, a point P’1 in S2 can

only be considered as a candidate for point P1 in S1 only if

the two points have similar angles, or the difference

between their angles is less than a threshold value. To

illustrate, consider comparing two road networks as the

example shown in Figure 4(a). Whenever the system

chooses a point (as the point shown in the left figure of

Figure 4(b)) in one road network, it only has to consider

the candidate matched points with same connectivity and

similar directions of intersected road segments from the

other network (as some possible candidates marked in the

right figure of Figure 4(b)). Note that if the densities of

the datasets are different (i.e., one dataset is detailed and

the other one is represented abstractly), this condition will

not be valid for a large portion of the intersections and

may only be valid for major roads’ intersections.

3. Angle between the points: The angle between two

points is defined as the angle of the straight line that

connects the points. Clearly, a pair (P’1,P’2) can be

considered as a possible candidate for the pair (P1,P2) only

if the angle between P’1 and P’2 is similar to the angle

between P1 and P2, or the difference between their angles

is less than a threshold value. Note that this feature can

only be utilized when the second dataset is not rotated and

has the same direction as the first dataset. Consider the

example shown in Figure 4(c). Whenever the system

chooses a point pair (as the point pair shown in the left

figure of Figure 4(c) and the angle between these two

points is about 110 degree) in one road network, it only

has to consider the candidate matched point pairs with the

(a) The two networks to compare

(b) Using Point connectivity and Angles of the point to prune the search space

(110)(110)

(c) Using Angles between the points to prune the search space

Figure 4: Comparing two road networks by using Geo-PPM

5

similar angle (as some possible candidate point pairs

marked as dash lines in the right figure of Figure 4(c)).

4. Distance between the points: The distance between

two points is defined as the length of the straight line that

connects the points in Euclidean space. Similar to the

previous case, a pair (P’1,P’2) can be considered as a

possible candidate for the pair (P1,P2) only if the length of

the line connecting P’1 and P’2 is similar to the length of

the line connecting P1 and P2, or the difference between

the lengths is less than a threshold value. Note that this

feature can only be utilized when the relationship between

the geometry of the datasets is known and hence, the

distances between objects in two datasets are comparable.

By applying the above conditions simultaneously, the

Geo-PPM approach can be defined as a specialization of

PPM where only the candidate pairs that have similar

point connectivity, angles of the point, angles between the

points, and distances between the points, will be

considered. This will greatly reduce the size of the search

space. However, this is still a very complex approach

when the number of points in the datasets is in the order

of thousands. Hence, we propose prioritized Geo-PPM

that can dramatically reduce the complexity of Geo-PPM

for large networks by examining the points that have the

minimum number of candidates.

Prioritized Geo-PPM

The intuition behind prioritized Geo-PPM is to increase

the possibility of examining the correct matching pair

from the candidates by first examining the pairs of points

that have the minimum number of candidates. Suppose

that there are n1, n2, n3 and n4 points in the pool of

candidates for points P1, P2, P3, and P4, respectively. This

means that the number of possible candidate pairs for (P1,

P2) and (P3, P4) that must be examined by Geo-PPM is

n1n2 and n3n4, respectively. Note that the values of n1 to n4

could be very large, especially for urban areas where the

road networks follow a grid pattern and hence, a large

portion of the intersections have the same connectivity

and angles. Also note that from these possible candidate

pairs, only (a maximum of) one pair is the correctly

matching one. Hence, by first examining the combination

that contains the minimum number of points, we can

significantly increase the possibility of finding the correct

matching pair sooner. Consider the example shown in

Figure 5. Our system can start the matching process by

first examining the combination that contains the

minimum number of points. As the point pair chosen in

the left figure of Figure 5(b), it has less potential matching

point pairs as shown in the right figure of Figure 5(b),

comparing to the point pair examined in the left figure of

Figure 5(a).

3. Evaluations

We performed several experiments with real world

datasets to examine the performance of our prioritized

Geo-PPM. We used three road networks obtained from

USGS, NGA and US Census, covering the streets in the

area of (-122.5015, 37.78) to (-122.3997, 37.8111). Figure

6(a) shows USGS road network with accurate geometry

but with poor attributes. Figure 6(b) shows the US Census

TIGER/Lines road network with rich attributes (e.g., road

names, road classifications) but with poor geometry.

Figure 6(c) shows the NGA road network with some

specific attributes (e.g., road surface type). Also note that,

as shown in the figure, while the data from USGS and US

Census have almost similar granularity, the NGA data is

an abstract level data (i.e., only major roads are stored).

We manually transformed each dataset to unknown

geometry systems by multiplying and subsequently

adding different values to latitudes and longitudes of the

vector objects in each dataset. Moreover, we filtered the

south west quarter of the datasets to generate datasets with

smaller sizes to examine how our approach behaves for

different sizes of data.

Figure 7 shows the partial result of matched feature

point sets for the USGS and US Census road networks.

We also performed a quantitative analysis to measure the

performance of our approach. Toward that end, we

developed two metrics, precision and recall, to measure

the performance of our Geo-PPM technique, since the

accuracy of the matched points significantly affects the

matching of the two road networks. Let the point pattern

generated by Geo-PPM be defined as a set:

(a) A bad starting point pair candidate (several potential point pairs needed to be examined in the other

road network)

(b) A better starting point pair candidate (only two potential point pairs needed to be examined in the

other road network)

Figure 5: Picking up proper point pair by using Prioritized Geo-PPM
6

RetPat={(mi, sj) | where mi is the intersections on the

first vector dataset and sj is the corresponding

intersections located by prioritized Geo-PPM}

To measure the performance of Geo-PPM, we need to

compare the set RetPat with respect to the real matched

point pattern set RelPat (defined in Section 2.3).

Using this term, we define

||

||
Precision

pat

patpat

Ret

RelRet h
=

||

||
Recall

pat

patpat

Rel

RelRet h
=

Intuitively, precision is the percentage of correctly

matched road intersections with respect to the total

matched intersections detected by prioritized Geo-PPM.

Recall is the percentage of the correctly matched road

intersections with respect to the actual matched

intersections. Table 1 shows the results of our

experiments for three combinations of these datasets. As

shown in the table, the average number of candidates (i.e.,

the number of points in the second dataset with the same

connectivity and angles as compared to a point in the first

dataset) varies between 371 and 637. This shows that the

possibility of selecting 2 pairs from the candidate pool

which are exactly matched to 2 points selected from the

first dataset is very low, meaning that random selection of

points in Geo-PPM will result to a very large number of

possibilities and hence, to a very large processing time.

For example, for the USGS+US Census combination, the

possibility that randomly selected pair of points from the

pool of candidates is exactly matched to the pair of points

selected from the first dataset is 405769

1

637

1

637

1
=×

.

However, as shown in the table, by utilizing prioritized

Geo-PPM we could achieve an acceptable precision (i.e.,

over 80% for USGS+NGA data and over 90% for other

cases) and recall (i.e., over 90%) by examining between

33 and 52 candidate pairs. This means that using the

prioritized Geo-PPM, the possibility of selecting the

actual matching pair is between 100

3

to 100

2

, which is

up to 4 orders of magnitude better than that of Geo-PPM.

4. Related Work

There have been a number of efforts to automatically or

semi-automatically detect matched features across

different road vector datasets [3, 4, 5, 6, 7]. Given a

feature point from one dataset, these approaches utilize

different matching strategies to discover the

corresponding point within a predetermined distance (i.e.,

a localized area). This implies that these existing

algorithms only handle the matching of vector datasets in

the same geometry systems (i.e., the same coordinate

system). Hence, to the best of our knowledge, no general

method exits to resolve the matching of two vector data in

unknown geometry systems. In addition, various GIS

systems (such as ESEA MapMerger
9

) have been

implemented to achieve the matching of vector datasets

with different accuracies. However, most of the existing

systems require manual interventions to transform two

road networks into same geocoordinates beforehand.

Thus, they are not suitable for handling road networks in

unknown geometry systems, while our approach can

match two road networks in unknown geometry systems.

Finally, our approach discussed in this paper utilizes a

specialized point pattern matching algorithm to find the

corresponding point pairs on both datasets. The geometric

9

http://www.esea.com/products/

Datasets USGS+

 US Census

USGS+

NGA

USGS+

 US Census

Number of

Intersections

2367 + 2456 2367 +

133

920 + 1035

Average

Number of

Candidates

637 514 371

Point Pairs

Examined

43 52 33

Processing

Time

946 sec. 48 sec. 132 sec.

Precision 91% 82% 95.8%

Recall 92.5% 96.5% 95.8%

Table 1: Experimental Results (on a PC with 3.2GHz CPU)

(a) USGS road network (b) US Census road network (c) NGA road network

Figure 6: Different road networks used in the experiments

7

point set matching in two or higher dimensions is a well-

studied family of problems with application to area such

as computer vision, biology, and astronomy [12, 14].

5. Conclusion and Future Work

In this paper, we proposed an efficient and accurate

technique, termed prioritized Geo-PPM, to locate the

matched points between two road network datasets when

the spatial attributes of the datasets are in unknown

systems. In our solution, we first select pairs of points in

the first dataset with the minimum number of candidates

(i.e., point with similar connectivity and angles) in the

second dataset, and then perform our PPM method on

these pairs. Although our technique matches road

networks at the point level (not at the road segment level),

it takes the road connectivity, road directions and global

distribution of road intersections into consideration. Our

experiments show that this approach provides acceptable

precision and recall values by only examining a very

small number of pairs.

We plan to extend our approach in several ways. First,

we plan to examine prioritized Geo-PPM for even larger

road networks and for different patterns of road networks

(e.g., rural roads and urban roads), and consider the

orientations of the road networks as well. Second, we

intend to investigate the appropriate order of utilizing the

auxiliary information described in Section 2.4. Third, we

would like to perform comprehensive comparisons

between our approach and the related techniques

described in Section 4. Finally, we also plan to use these

matched points as control points to integrate different

road network datasets.

6. Acknowledgements

This research is based upon work supported in part by the National

Science Foundation under Award No. IIS-0324955. The views and
conclusions contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of any of the above

organizations or any person connected with them.

7. Reference

1. Barclay, T., Gray, J., and Stuz, D. Microsoft TerraServer: A

Spatial Data Warehouse. in the 2000 ACM SIGMOD

International Conference on Management of Data. 2000.
Dallas, TX: ACM Press.

2. Chiang, Y.-Y. and Knoblock, C.A. Classification of Line and
Character Pixels on Raster Maps Using Discrete Cosine

Transformation Coefficients and Support Vector Machines. in

the 18th International Conference on Pattern Recognition.
2006.

3. Walter, V. and Fritsch, D., Matching Spatial Data Sets: a
Statistical Approach. International Journal of Geographic

Information Sciences, 1999. 13(5): p. 445-473.

4. Ware, J.M. and Jones, C.B. Matching and Aligning Features in
Overlayed Coverages. in the 6th ACM International Symposium

on Advances in Geographic Information Systems (ACM-
GIS'98). 1998. Washington, D.C: ACM Press.

5. Cobb, M., Chung, M.J., Miller, V., Foley, H.I., Petry, F.E., and

Shaw, K.B., A Rule-Based Approach for the Conflation of
Attributed Vector Data. GeoInformatica, 1998. 2(1): p. 7-35.

6. Saalfeld, A., Conflation: Automated Map Compilation.
International Journal of Geographic Information Sciences, 1988.

2(3): p. 217-228.

7. Chen, C.-C., Shahabi, C., and Knoblock, C.A. Utilizing Road
Network Data for Automatic Identification of Road Intersections

from High Resolution Color Orthoimagery. in the Second
Workshop on Spatio-Temporal Database Management,

colocated with VLDB. 2004. Toronto, Canada.

8. Chen, C.-C., Thakkar, S., Knoblok, C.A., and Shahabi, C.
Automatically Annotating and Integrating Spatial Datasets. in

the 8th International Symposium on Spatial and Temporal
Databases (SSTD'03). 2003. Santorini Island, Greece.

9. Habib, A., Uebbing, R., Asmamaw, A, Automatic Extraction of

Primitives for Conflation of Raster Maps. 1999, The Center for
Mapping, The Ohio State University.

10. Flavie, M., Fortier, A., Ziou, D., Armenakis, C., and Wang, S.

Automated Updating of Road Information from Aerial Images.
in the American Society Photogrammetry and Remote Sensing

Conference. 2000. Amsterdam, Holland.
11. Guttman, A. R-trees: a dynamic index structure for spatial

searching. in the SIGMOD Conference. 1984. Boston, MA.

12. Chew, L.P., Goodrich, M.T., Huttenlocher, D.P., Kedem, K.,
Kleinberg, J.M., and Kravets, D. Geometric pattern matching

under Euclidean motion. in the Fifth Canadian Conference on
Computational Geometry. 1993.

13. Cardoze, D.E. and Schulman, L.J. Pattern Matching for Spatial

Point Sets. in the IEEE Symposium on Foundations of Computer
Science. 1998.

14. Irani, S. and Raghavan, P., Combinatorial and experimental
results for randomized point matching algorithms.

Computational Geometry, 1999. 12(1-2): p. 17-31.

15. Chen, C.-C., Knoblock, C.A., Shahabi, C., Chiang, Y.-Y., and
Thakkar, S. Automatically and Accurately Conflating

Orthoimagery and Street Maps. in the 12th ACM International
Symposium on Advances in Geographic Information Systems

(ACM-GIS'04). 2004. Washington, D.C: ACM Press.

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

4

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(a) USGS road network (b) U.S. Census road network

Figure 7: The partial result of matched points from two road networks (some matched points are labelled in

order to show the corresponding points)

8

Update-efficient Indexing of Moving Objects in Road
Networks

Jidong Chen Xiaofeng Meng Yanyan Guo Zhen Xiao

School of Information, Renmin University of China
{chenjd, xfmeng, guoyy, xiaozhen}@ruc.edu.cn

Abstract

Recent advances in wireless sensor networks
and positioning technologies have boosted
new applications that manage moving objects.
In such applications, a dynamic index is often
built to expedite evaluation of spatial queries.
However, development of efficient indexes is a
challenge due to frequent object movement. In
this paper, we propose a new update-efficient
index method for moving objects in road net-
works. We introduce a dynamic data struc-
ture, called adaptive unit, to group neighbor-
ing objects with similar movement patterns.
To reduce updates, an adaptive unit captures
the movement bounds of the objects based
on a prediction method, which considers the
road-network constraints and stochastic traf-
fic behavior. A spatial index (e.g., R-tree) for
the road network is then built over the adap-
tive unit structures. Simulation experiments,
carried on two different datasets, show that an
adaptive-unit based index is efficient for both
updating and querying performance.

Keywords Spatial-Temporal Databases, Moving
Objects, Index Structure, Road Networks

1 Introduction

Recent advances in wireless sensor networks and po-
sitioning technologies have enabled a variety of new
applications such as traffic management, fleet manage-
ment, and location-based services that manage contin-
uously changing positions of moving objects [11, 12].
In such applications, a dynamic index is often built to
expedite evaluation of spatial queries. However, exist-
ing dynamic index structures (e.g. B-tree and R-tree)
suffer from poor performance due to the large over-
head of keeping the index updated with the frequently
changing position data. Development of efficient in-

Proceedings of the third Workshop on STDBM
Seoul, Korea, September 11, 2006

dexes to improve the update performance is an impor-
tant challenge.

Current work on reducing the index updates of mov-
ing objects mainly contains three kinds of approaches.
First, most efforts [4, 9, 10, 15] focus on the update
optimization of the existing multi-dimensional index
structures especially the adaptation and extension of
the R-tree [6]. To avoid the multiple paths search op-
eration in the R-tree during the top-down update, re-
cent work proposes the bottom-up approach [9, 10] and
memo-based [15] structure to reduce the updates of
the R-tree. Another method [4] exploits the change-
tolerant property of the index structure to reduce the
number of updates that cross the MBR boundaries of
R-tree.

However, the indexes based on MBRs exhibit high
concurrency overheads during node splitting, and each
individual update is still costly. Therefore, some index
methods based on a low-dimensional index structure
(e.g. B+-tree) are proposed [7, 16], which construct
the second category of index methods. They combine
the dimension reduction and linearization technique
with a single B+-tree to efficiently update the index
structure.

The third kind of approaches use a prediction
method with a time-parameterized function to reduce
the index updates [12, 13, 14]. They describe a mov-
ing object’s location by a linear function and the index
is updated only when the parameters of the function
change, for example, when the moving object changes
its speed or direction. The MBRs of the index vary
with the time as a function of the enclosed objects.
However, the linear prediction is hard to reflect the
movement in many real application and therefore leads
to low prediction accuracy and frequent updates.

Though these index structures solve the problem
of index updates to some extent, they are designed
to index objects performing free movement in a two-
dimensional space. We focus on the index update
problem in real life environments, where the objects
move within constrained networks, such as vehicles on
roads. In such setting, the spatial property of objects’
movement is captured by the network. Therefore, the

GENESIS
텍스트 상자
9

spatial location of moving objects can be indexed by
means of the road-network index structure. For ex-
ample, moving objects can be accessed by each road
segment indexed by the R-tree. Since the road net-
work seldom change and objects just move from one
part to the other part of the network, the R-tree in
this case remains fixed. Existing index work that han-
dles network-constrained moving objects [1, 5, 11] is
based on this feature. They separate spatial and tem-
poral components of the moving objects’ trajectories
and index the spatial aspect by the network with a
R-tree. However, they are mostly concerned with the
historical movement and therefore they do not consider
the problem of index updates.

In this paper, we address the problem of efficient
indexing of moving objects in road networks to sup-
port heavy loads of updates. We exploit the con-
straints of the network and the stochastic behavior of
the real traffic to achieve both high update and query
efficiency. We introduce a dynamic data structure,
called adaptive unit (AU for short) to group neigh-
boring objects with similar movement patterns in the
network. A spatial index (e.g., R-tree) for the road
network is then built over the adaptive units to form
the index scheme for moving objects in road networks.
The index scheme optimizes the update performance
for the following reasons: (1) An AU functions as
a one-dimensional MBR in the TPR-tree [13], while
it minimizes expanding and overlaps by considering
more movement features. (2) The AU captures the
movement bounds of the objects based on a predic-
tion method, which considers the road-network con-
straints and stochastic traffic behavior. (3) Since the
movement of objects is reduced to occur in one spatial
dimension and attached to the network, the update of
the index scheme is only restricted to the update of the
AUs. We have carried out extensive experiments based
on two datasets. The results show that an adaptive-
unit based index not only improves the efficiency of
each individual update but also reduces the number of
updates and is efficient for both updating and querying
performance.

The main contributions of this paper are:

• The introduction of Adaptive Units that optimize
for frequent index updates of moving objects in
road networks.

• An experimental evaluation and validation of the
efficient update as well as query performance of
the proposed index structure.

The rest of the paper is organized as follows. Sec-
tion 2 surveys related work and introduces underlying
model. Section 3 describes the structure and algo-
rithms of adaptive units for efficient updates. Sec-
tion 4 contains algorithm analysis and experimental
evaluation. We conclude and propose the future work
in Section 5.

2 Related Work and Underlying Model

2.1 Related Work

There are lots of efforts at reducing the need for index
updates of moving objects. In summary, they can be
classified into three categories.

First, most work focuses on the update optimiza-
tion of existing multi-dimensional index structures es-
pecially the adaptation and extension of the R-tree [6].
The top-down update of R-tree is costly since it needs
several paths for searching the right data item con-
sidering the MBR overlaps. In order to reduce the
overhead, Kwon et al. [9] develop the Lazy Update R-
tree, which is updated only when an object moves out
of the corresponding MBR. With adding a secondary
index on the R-tree, it can perform the update oper-
ation in the bottom-up way. Recently, by exploiting
the change-tolerant property of the index structure,
Cheng et al. [4] present the CTR-tree to maximize
the opportunity for applying lazy updates and reduce
the number of updates that cross MBR boundaries.
[10] extends the main idea of [9] and generalizes the
bottom-up update approach. However, they are not
suitable to the case where consecutive changes of ob-
jects are large. Xiong and Aref [15] present the RUM-
tree that processes R-tree updates in a memo-based
approach, which eliminates the need to delete the old
data item during an index update. Therefore, its up-
date performance is stable with respect to the changes
between consecutive updates. In our index structure,
however, the R-tree remains fixed since it indexes the
road network and only the adaptive units are updated.

The second type of methods are based on the dimen-
sion reduction technique [11] and a low-dimensional in-
dex [7, 16] (e.g. B+-tree). The Bx-tree [7, 16] combine
the linearization technique with a single B+-tree to ef-
ficiently update the index structure. They uses space
filling curves and a pre-defined time interval to parti-
tion the representation of the locations of the moving
objects. This makes the B+-tree capable to index the
two-dimensional spatial locations of moving objects.
Therefore, the cost of individual update of index is
reduced. However, the Bx-tree imposes discrete rep-
resentation and may not keep the precise values of lo-
cation and time during the partitioning. For our set-
ting, the two-dimensional spatial locations of moving
objects can be reduced to the 1.5 dimensions [8] by the
road network where objects move.

The techniques in third category use a prediction
method represented as the time-parameterized func-
tion to reduce the index updates [12, 13, 14]. They
store the parameters of the function, e.g. the veloc-
ity and the starting position of an object, instead of
the real positions. In this way, they update the in-
dex structure only when the parameters change (for
example, the speed or the direction of a moving ob-
ject changes). The Time-Parameterized R-tree (TPR-
tree) [13] and its variants (e.g. TPR*-tree) [12, 14] are

GENESIS
텍스트 상자
10

the examples of this type of index structures. They
all use a linear prediction model, which relates ob-
jects’ positions as a linear function of time.However,
the linear prediction is hard to reflect the movement
in many real application especially in traffic networks
where vehicles change their velocities frequently. The
frequent changes of the object’s velocity will incur re-
peated updates of the index structure. Our technique
also fall into this category and apply an accurate pre-
diction method we proposed in [3] by considering more
transportation features.

Several methods have been proposed for index-
ing moving objects in spatially constrained networks.
Pfoser et al. [11] propose to convert the 3-dimensional
problem into two sub-problems of lower dimensions
through certain transformation of the networks and
the trajectories. Another approach, known as the
FNR-tree [5], separates spatial and temporal compo-
nents of the trajectories and indexes the time intervals
that each moving object spends on a given network
link. The MON-tree approach [1] further improves
the performance of the FNR-tree by representing each
edge by multiple line segments (i.e. polylines) instead
of just one line segment. However, they all focus on
the historical movement and cannot support frequent
index updates. To the best of our knowledge, there is
no current index method to support efficient updates
of moving objects in road networks.

2.2 Underlying Model

We use the GCA model we proposed in [3] to model the
network and moving objects. A road network is mod-
eled as a graph of cellular automata (GCA), where
the nodes of the graph represent road intersections
and the edges represent road segments with no inter-
sections. Each edge consists of a cellular automaton
(CA), which is represented, in a discrete mode, as a
finite sequence of cells.

In the GCA, a moving object is represented as a
symbol attached to the cell and it can move several
cells ahead at each time unit. Intuitively, the velocity
is the number of cells an object can traverse during
a time unit. The motion of an object is represented
as some (time, location) information. Generally, such
information is treated as a trajectory.

3 The Adaptive Unit

3.1 Structure and Storage

Conceptually, an adaptive unit is similar to a one-
dimensional MBR in the TPR-tree, that expands with
time according to the predicted movement of the ob-
jects it contains. However, in the TPR-tree, it is possi-
ble that an MBR may contain objects moving in oppo-
site directions, or objects moving at different speeds.
As a result, the MBR may expand rapidly, which may
create large overlaps with other MBRs. The AU avoids
this problem by grouping objects having similar mov-

ing patterns. Specifically, for objects in the same net-
work edge, we use a distance threshold and a speed
threshold to cluster the adjacent objects with the same
direction and similar speed. In comparison, the AU
has no obvious enlargement because objects in the AU
move in a cluster.

We now formally introduce the AU. An AU is a
8-tuple:

AU = (auID, objSet, upperBound, lowerBound,
edgeID, enterTime, exitTime, auInitLen)

where auID is the identifier of the AU, objSet is a list
that stores objects belonging to the AU, upperBound
and lowerBound are upper and lower bounds of pre-
dicted future trajectory of the AU. The trajectory
bounds will be explained in details in Section 3.3. We
assume the functions of trajectory bounds as follows:

upperBound : D(t) = αu + βu · t
lowerBound : D(t) = αl + βl · t

edgeID denotes the network edge that the AU belongs
to, enterTime and exitTime record the time when the
AU enters and leaves the edge and auInitLen repre-
sents the initial length of the AU.

In the road network, multiple AUs are associated
with a network edge. Since AUs in the same edge are
likely to be accessed together during query process-
ing, we store AUs by clustering on their edgeID. That
is, the AUs in the same edge are stored in the same
disk pages. To access AUs more efficiently, we create
an in-memory, compact summary structure called the
direct access table for each edge. A direct access ta-
ble stores the summary information of each AU on an
edge (i.e. number of objects, trajectory bounds) and
pointers to AU disk pages. Each AU corresponds to
an entry in the direct access table, which has the fol-
lowing structure (auID, upperBound, lowerBound,
auPtr, objNum), where auPtr points to a list of AUs
in disk storage and objNum is the number of objects
included in the AU. In order to minimize I/O cost, we
use the direct access table to filter AUs and only access
the disk pages when necessary.

3.2 The Index Scheme

We build a spatial index (e.g., R-tree) for the road net-
work over the adaptive units to form the index scheme
for the network-constrained moving objects. The AU
index scheme is a two-level index structure. At the
top level, it consists of a 2D R-tree that indexes spa-
tial information of the road network. On the bottom
level, its leaves contain the edges representing road
segments included in the corresponding MBR of the
R-tree and point to the lists of adaptive units. The
top level R-tree remains fixed during the lifetime of
the index scheme (unless there are changes in the net-
work). The index scheme is developed with the R-tree

GENESIS
텍스트 상자
11

Direct Access
 Table

R-Tree

Adaptive Units
objSet objSet objSet

objSet objSet objSet

objSet objSet objSet

...

...

auID upperBd
lowerBd

leaf node

AU

Figure 1: Structure of the AU index scheme

in this paper, but any existing spatial index can also
be used without changes.

Figure 1 shows the structure of the AU index
scheme, which also includes the direct access table.
The R-tree and adaptive units are stored in the disk.
However, the direct access table is in the main memory
since it only keeps the summary information of adap-
tive units. In the index scheme, each leaf node of the
R-tree can be associated with its direct access table by
its edgeID and the direct access table can connect to
corresponding adaptive units by auPtr in its entries.
Therefore, we only need to update the direct access
table when AUs change, which greatly enhances the
performance of the index scheme.

3.3 Optimizing for Updates

An important feature of the AU is that it groups ob-
jects having similar moving patterns. The AU is capa-
ble of dynamically adapting itself to cover the move-
ment of the objects it contains. By tightly bounding
enclosed moving objects for some time in the future,
the AU alleviates the update problem of MBR rapid
expanding and overlaps in the TPR-tree like methods.

For reducing the updates further, the AU captures
the movement bounds of the objects based on a predic-
tion method we proposed in [3], which considers the
road-network constraints and stochastic traffic behav-
ior. Since objects in an AU have similar movement, we
then predict the movement of the AU, as if it were a
single moving object. In the following, we describe the
application and adaptation of the prediction method
to the AU.

We use GCAs not only to model road networks,
but also to simulate the movements of moving objects
by the transitions of the GCA. Based on the GCA,
the Simulation-based Prediction (SP) method to an-
ticipate future trajectories of moving objects is pro-
posed. The SP method treats the objects’ simulated
results as their predicted positions. Then, by the lin-
ear regression, a compact and simple linear function
that reflects future movement of a moving object can
be obtained. To refine the accuracy, based on differ-
ent assumptions on the traffic conditions we simulate
two future trajectories to obtain its predicted move-
ment function. Specifically, we extend the CA model
used in traffic flow simulation for predicting the future

t

d

slowest movement

fastest
movement

road

cars t

d

AU

upper bound

lower bound

road

tq

d1

d2

(a) Simulated trajectories (b) Trajectory bounds

Figure 2: The simulation-based prediction

trajectories of objects by setting Pd(i) to values that
model different traffic conditions. In this setting, Pd(i)
is treated as a random variable to reflect the stochas-
tic, dynamic nature of traffic system. By giving Pd(i)
two values (e.g. 0 and 0.1 in our experiments), we can
derive two future trajectories, which describe, respec-
tively, the fastest and slowest movements of objects.
Finally, we translate the two regression lines, until all
estimated future positions fall within to obtain the pre-
dicted trajectory bounds. The SP method is shown in
Figure 2. Through the SP method, we obtain two pre-
dicted future trajectory bounds of objects. We apply
this technique to the AU - a set of moving objects that
have similar movement and are treated as one object.

The future trajectory bounds are predicted as soon
as AU is created. The trajectory bounds will not be
changed along the edge that the AU moves on until
the objects in the AU move to another edge in the net-
work. It is evident that the range of predicted bounds
of AU will become wider with the time, which leads to
lower accuracy of future trajectory prediction. How-
ever, if we issue another prediction when the predicted
bounds are not accurate any more, the costs of sim-
ulation and regression are high. Considering that the
movement of objects along one network edge is sta-
ble, we can assume the same trends of the trajectory
bounds and adjust only the initial locations when the
prediction is not accurate. Specifically, when the pre-
dicted position exceeds its actual position above the
predefined accuracy, the AU treats its actual locations
(the locations of the boundary objects) at that time
as the initial locations of the two trajectory bounds
and follow the same movement vector (e.g. slope of
the bounds) as the previous bounds to provide more
accurate predicted trajectory bounds. In this way, the
predicted trajectory bounds can be effectively revised
with few costs. Figure 2(b) shows the adaptation of
the trajectory bounds. tq is the time slice when actual
locations of boundary objects in the AU exceeds the
predicted bounds of the AU above precision threshold
and the d1,d2 are the actual locations of the first object
and last object respectively in the AU. The trajectory
bounds are revised according to the actual locations
and the original bounds’ slopes. Therefore, without
executing more prediction, the prediction accuracy of
the objects’ future trajectories can be kept high.

GENESIS
텍스트 상자
12

Since the R-Tree indexes the road network, it re-
mains fixed, and the update of the AU index scheme
restricts to the update of adaptive units. Specifically,
an AU is usually created at the start of one edge and
dropped at the end of the edge. Since the AU is a
one-dimensional structure, it performs update opera-
tions much more efficiently than the two-dimensional
indexes. We will describe these operations in details.

3.4 Update Operations

The update of an AU can be of the following form:
creating an AU, dropping an AU, adding objects to an
AU and removing objects from an AU.

Creating an AU

To create an AU, we first compose the objSet – a list of
objects traveling in the same direction with similar ve-
locities, and in close-by locations. We then predict the
future trajectories of the AU by simulation and com-
pute its trajectory bounds. In fact, we treat the AU
as one moving object (the object closest to the center
of the AU) and predict its future trajectory bounds by
predicting this object. The prediction starts when the
AU is created and ends at the end the edge. Finally,
we write the created AU to the disk page and insert
the AU entry to its summary structure.

Dropping an AU

When objects in an AU move out of the edge, they
may change direction independently. So we need to
drop this AU and create new AUs in adjacent edges to
regroup the objects. When the front of an AU touches
the end of the edge, some objects in the AU may start
moving out of the edge. However, the AU cannot be
dropped because a query may occur at that time. Only
after the last object in the AU enters another edge and
joins another AU, can the AU be dropped. Dropping
an AU is simple. Through its entry in direct access
table, we find the AU and delete it.

Adding and removing objects from an AU

When an object leaves an AU, we remove this object
from the AU and find another AU in the neighborhood
to check if the object can fit that AU. If it can, the
object will be inserted into that AU, otherwise, a new
AU is created for this object. Specifically, when adding
an object into an AU, we first find the direct access
table of the edge that the object lies and, by its AU
entry in the table, access the AU disk storage. Finally,
we insert into the objects list of the AU and update
the AU entry in the direct access table. Removing an
object from an AU has the similar process.

Therefore, when updating an object in the AU index
scheme, we first determine whether the object is leav-
ing the edge and entering another one. If it is moving
to another edge, we delete it from the old AU (if it is
the last object in the old AU, the AU is also dropped)
and insert it into the nearest AU or create a new AU
in the edge it is entering. Otherwise, we do not update

the AU that the object belongs to unless its position
exceeds the bounds of the AU. In that case, we execute
the same updates as those when it moves to another
edge or only revise the predicted trajectory bounds of
the AU. Factually, we find, from the experiment eval-
uation, that the chances that objects move beyond the
trajectory bounds of its AU on an edge are very slim.
The algorithm 1 shows the update algorithm of AUs.

Algorithm 1: Update(objID, position, velocity, edgeID)

input : objID is the object identifier, position and
velocity are its position and velocity,
edgeID is the edge identifier where the
object lies

Find AU where objID is included before update;
if AU.edgeID 6= edgeID or (position <
AU.lowerBound or position > AU.upperBound)
then

// The object moves to a new edge or
exceeds bounds of its original AU

Find the nearest AU AU1 for objID on edgeID;
if GetNum(AU1.objSet) < MAXOBJNUM and
ObjectFitAU(objID, position, velocity, AU1)
then

InsertObject(objID, AU1.auID, AU1.edgeID);
else AU2 ← CreateAU(objID,edgeID);
if GetNum(AU.objSet) > 1 then

DeleteObject(objID, AU.auID, AU.edgeID);
else DropAU(AU.edgeID, AU.auID);

end

In summary, updating the AU-based index is easier
than updating the TPR-tree. It never invoke any com-
plex node splitting and merging. Moreover, thanks to
the similar movement features of objects in an AU and
the accurate prediction of the SP method, the objects
are seldom removed or added from their AU on an
edge, which reduces the number of index updates.

3.5 Query Algorithm

Query processing in the AU index scheme is straight-
forward. Given a query, we use the top level R-tree
to get the edges involved and then scan the direct
access tables of the edges. With the upperBound
and the lowerBound in the direct access table, we
can easily find AU entries that intersect the query,
and then visit the disk pages to get more informa-
tion about these AUs. For space limitation, we just
take window range query for example. Given a range
with (X1, Y1, X2, Y2), we first perform a spatial range
search in the top level R-Tree to locate the edges (e.g.
e1, e2, e3, . . .). For each selected edge ei, we trans-
form the original search (X1, Y1, X2, Y2) to a 1D search
range (S1, S2) (S1 ≤ S2), where S1 and S2 are the rel-
ative distances from the start vertex along the edge ei.
In the case of multiple intersecting edges, we can di-
vide the query range into several sub-ranges by edges
and apply the transformation method to each edge.
The method is also applicable to the various modes

GENESIS
텍스트 상자
13

that the query and edges intersect. Here, we only il-
lustrate the case when the query window range only
intersects one edge and compute its relative distances
S1 and S2. It can be easily extended to other cases.
Suppose Xstart, Ystart, Xend, Yend are the start vertex
coordinates and the end vertex coordinates of the edge
ei. According to Thales Theorem about similar trian-
gles, we obtain S1 and S2 as follows:

r =
√

(Xstart −Xend)2 + (Ystart − Yend)2

S1 =
X1 −Xstart

Xend −Xstart
r

S2 =
Y1 − Ystart

Yend − Ystart
r

The transformed query (S1, S2) is then executed in
each of the AUs in the direct access table of the cor-
responding edge ei. By the trajectory bounds of the
AU, we can determine whether the transformed query
intersects the AU, thus filtering the unnecessary AUs
quickly. Finally, we access the selected AUs in disk
storage and return the objects satisfying the query
window. In summary, the query processing is efficient
due to the grouping of similar objects in AUs and the
dimensionality reduction of the query.

4 Performance Analysis

We evaluate the AU index scheme (denoted as “AU
index”) by comparing it with the TPR-tree and the
AU index scheme when the direct access table is not
used (denoted as “AU index without DT”). We mea-
sure their their update performance with the individ-
ual update, update frequency and total update costs
and their query performance.

4.1 Datasets

We use two datasets for our experiments. The first
is generated by the CA simulator, and the second by
the Brinkhoff’s Network-based Generator [2]. We use
the CA traffic simulator to generate a given number of
objects in a uniform network of size 10000×10000 con-
sisting of 500 edges. Each object has its route and is
initially placed at a random position on its route. The
initial velocities of the objects follow a uniform random
distribution in the range [0, 30]. The location and ve-
locity of every object is updated at each time-stamp.
The Brinkhoff’s Network-based Generator is used as a
popular benchmark in many related work. The gen-
erator takes a map of a real road network as input
(our experiment is based on the map of Oldenburg
including 7035 edges). The positions of the objects
are given in two dimensional X-Y coordinates. We
transform them to the form of (edgeid, pos), where
edgeid denotes the edge identifier and pos denotes
the object relative position on the edge. The generator
places a given number of objects at random positions
on the road network, and updates their locations at
each time-stamp.

Table 1: Parameters and their settings
Parameters Settings

Page size 4K
Node capacity 100

Numbers of queries 200
Numbers of mo(cars) 10K, ... , 50K, ... , 100K
Numbers of updates 100K, ... , 500K, ... , 1M
Dataset Generator CA Simulator, Network-based Generator

We implemented both the AU index scheme and
the TPR-tree in Java and carried out experiments on
a Pentium 4, 2.4 GHz PC with 512MB RAM running
Windows XP. To improve the performance of the index
structure, we employed a LRU buffer of the same size
as the one used in the TPR-tree [13]. We summarize
workload parameters in Table 1, where values in bold
are default values.

4.2 Update Cost

We compare the cost of index update for the AU index
and the TPR-tree in terms of the average individual
update cost, update frequency and total update cost.

Individual Update Cost

We study the individual update performance of the in-
dex while varying the number of moving objects and
updates. Figure 3 shows the average individual update
cost when increasing the data size from 10K to 100K.
Figure 4 shows how the performance varies over time.
Clearly, updating the TPR-tree tends to be costly,
and the problem is exacerbated when the data size in-
creases. In each case of different data size and different
number of updates, the AU index has much lower up-
date cost than the TPR-tree. The main reason can
be explained as follows. Each update of the TPR-tree
involves the search of an old entry and a new entry, as
well as the modification of the index structure (node
splitting, merging, and the propagating of changes up-
wards). The cost increases with larger data size due
to more overlaps among MBRs. The changes of index
structure with the increase of data updates also affect
the performance of the TPR-tree. However, the AU
index has better performance because its update only
restricts to the AU’s update and as a one-dimensional
access structure, the AU has few overlaps and incurs
no cost associated with node splitting and the propa-
gation of MBR updates.

The direct access table of the AU index has a signif-
icant contribution in improving update performance.
This is because the search of the specific AU is accel-
erated by the in-memory structure.

Update Frequency

Frequent updates of moving objects (a.k.a. data up-
dates) may lead to frequent updates of index. When
an object’s position exceeds the MBR or AU, the index
needs to be updated to delete the object from the old
MBR or AU and insert it to another one. In this ex-
periment, we measure the index update rate, which is

GENESIS
텍스트 상자
14

 3

 4

 5

 6

 7

 8

 9

 10

 11

90K70K70K50K30K10K

U
pd

at
e

I/O
s

Number of moving objects

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 3

 4

 5

 6

 7

 8

 9

 10

 11

90K70K70K50K30K10K

U
pd

at
e

I/O
s

Number of moving objects

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 3: Individual Update Cost with Different Datasize

 2

 4

 6

 8

 10

 12

 14

900K700K500K300K100K

U
pd

at
e

I/O
s

Number of data updates

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 2

 4

 6

 8

 10

 12

 14

900K700K500K300K100K

U
pd

at
e

I/O
s

Number of data updates

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 4: Individual Update Cost over Time

the ratio between number of index updates and num-
ber of data updates, for every 100K data updates and
different data size. Figure 5 and 6 show that the up-
date rate of the TPR-tree is nearly 4 to 5 times more
than that of the AU index. The index update rate
depends on the prediction method. In the AU index,
the future positions of the object are predicted more
accurately, so the object is likely to remain in its AU,
which leads to fewer index updates.

Total Update Costs

The total update costs depend on the update fre-
quency and the average individual update cost, and
it can reflect the index update performance more ac-
curately. From both Figure 7 and 8, we can see that
although the AU index has to deal with the creation
and dropping of AUs, the TPR-tree incurs much higher
update costs than the AU index and its performance
deteriorates dramatically as data size increases. This
is mainly due to the inaccuracy of the linear prediction
model and the complex reconstruction of the TPR-tree
(e.g. splitting and merging).

 2

 4

 6

 8

 10

 12

 14

90K70K70K50K30K10K

R
at

e
of

 in
de

x
up

da
te

s
(%

)

Number of moving objects

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

90K70K70K50K30K10K

R
at

e
of

 in
de

x
up

da
te

s
(%

)

Number of moving objects

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 5: Index Update Frequency with Different Datasize

 2

 4

 6

 8

 10

 12

 14

900K700K500K300K100K

R
at

e
of

 in
de

x
up

da
te

s
(%

)

Number of data updates

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

900K700K500K300K100K

R
at

e
of

 in
de

x
up

da
te

s
(%

)

Number of data updates

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 6: Index Update Frequency over Time

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

90K70K70K50K30K10K

T
ot

al
 in

de
x

up
da

te
 I/

O
s

Number of moving objects

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 0

 5000

 10000

 15000

 20000

 25000

90K70K70K50K30K10K

T
ot

al
 in

de
x

up
da

te
 I/

O
s

Number of moving objects

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 7: Total Update Cost with Different Datasize

For each data size, the update costs of the two in-
dexes in the Brinkhoff’s dataset are both higher than
those in the CA dataset due to the higher complex-
ity of road network and skewed spatial distribution of
objects in the Brinkhoff’s dataset.

4.3 Query Cost

We study the window range query performance of the
TPR-tree and the AU index with different update set-
tings. We increase the number of updates from 100K
to 1M to examine how query performance is affected.
We issued 200 range queries for every 100K updates
in a 1M dataset. Figure 9 shows that the cost of the
TPR-tree increases much faster as the number of up-
dates increases. The cost of the AU index is consider-
ably lower and is less sensitive to the number of up-
dates. This is because the adaptive units in the AU
index have much less overlaps than the MBRs in the
TPR-tree, and the overlaps to a large extent determine
the range query cost. Besides, as objects move apart,
the amount of dead space in the TPR-tree increases,

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

900K700K500K300K100K

T
ot

al
 in

de
x

up
da

te
 I/

O
s

Number of data updates

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 0

 5000

 10000

 15000

 20000

 25000

 30000

900K700K500K300K100K

T
ot

al
 in

de
x

up
da

te
 I/

O
s

Number of data updates

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 8: Total Update Cost over Time

GENESIS
텍스트 상자
15

which makes false hits more likely. Also, updates lead
to the expanding and overlaps of MBRs, which further
deteriorate the performance of the TPR-tree. For the
AU index, the increase of the updates hardly affect the
total number of AUs, and the chances of overlaps of
different AUs are very slim.

We also study the query performance while varying
the number of moving objects and query window size.
For the space limitation, we do not report the exper-
imental results. Also, in each case, the AU index has
lower query cost than the TPR-tree and scales well.

 0

 200

 400

 600

 800

 1000

 1200

900K700K500K300K100K

R
an

ge
 q

ue
ry

 I/
O

s

Number of data updates

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 30

 40

 50

 60

 70

 80

 90

 100

900K700K500K300K100K

R
an

ge
 q

ue
ry

 I/
O

s

Number of data updates

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 9: Effect of Updates on Query Performance

5 Conclusions and Future Work

Indexing objects moving in a constrained network es-
pecially the road network is a topic of great practical
importance. We focus on the index update issue for
the current positions of network-constrained moving
objects. We introduce a new access structure, adap-
tive unit that exploits as much as possible the charac-
teristics of the movements of objects. The updates of
the structure are minimized by an accurate prediction
method which produces two trajectory bounds based
on different assumptions on the traffic conditions. The
efficiency of the structure also results from the possi-
ble reduction of dimensionality of the trajectory data
to be indexed. Our experimental results performed
on two datasets show that the efficiency of the index
structure is one order of magnitude higher than the
TPR-tree.

In the future, we will compare the update perfor-
mance with the work of the R-tree-based updating op-
timization such as RUM-tree [15] and CTR-tree [4].
On the other hand, since the adaptive units contain
the predicted future trajectories of moving objects,
the predictive query algorithms can be developed nat-
urally based on the adaptive unit-based index. Fur-
thermore, we will extend the query algorithms to sup-
port the KNN query and continuous query for moving
objects in the road network.

Acknowledgments

This research was partially supported by the grants
from the Natural Science Foundation of China under
grant number 60573091, 60273018; the Key Project of
Ministry of Education of China under Grant No.03044;

Program for New Century Excellent Talents in Uni-
versity (NCET); Program for Creative PhD Thesis in
University. The authors would like to thank Jianliang
Xu and Haibo Hu from Hong Kong Baptist Univer-
sity and Stéphane Grumbach from CNRS, LIAMA in
China for many helpful advice and assistance.

References
[1] V. T. Almeida, R. H. Güting. Indexing the Trajec-

tories of Moving Objects in Networks (Extended
Abstract). In SSDBM, 2004, 115-118.

[2] T. Brinkhof. A framework for generating network-
based moving objects. In GeoInformatica, 6(2),
2002, 153-180.

[3] J. Chen, X. Meng, Y. Guo, S. Grumbach, H.
Sun. Modeling and Predicting Future Trajectories
of Moving Objects in a Constrained Network. In
MDM, 2006, 156 (MLASN workshop).

[4] R. Cheng, Y. Xia, S. Prabhakar, R. Shah. Change
Tolerant Indexing for Constantly Evolving Data.
In ICDE, 2005, 391-402.

[5] E. Frentzos. Indexing objects moving on Fixed net-
works. In SSTD, 2003, 289-305.

[6] A. Guttman. R-trees: A Dynamic Index Structure
for Spatial Searching. In SIGMOD, 1984, 47-57.

[7] C. S. Jensen, D. Lin, B. C. Ooi. Query and Up-
date Efficient B+-Tree Based Indexing of Moving
Objects. In VLDB, 2004, 768-779.

[8] G. Kollios, D. Gunopulos, V. J. Tsotras. On index-
ing mobile objects. In PODS, 1999, 261-272.

[9] D. Kwon, S. J. Lee, S. Lee. Indexing the current
positions of moving objects using the lazy update
R-tree. In MDM, 2002, 113-120.

[10] M. L. Lee, W. Hsu, C. S. Jensen, B. Cui, K. L.
Teo. Supporting Frequent Updates in R-Trees: A
Bottom-Up Approach. In VLDB, 2003, 608-619.

[11] D. Pfoser, C. S. Jensen. Indexing of network con-
strained moving objects. In ACM-GIS, 2003, 25-32.

[12] S. Saltenis, C. S. Jensen. Indexing of Moving Ob-
jects for Location-Based Service. In ICDE, 2002,
463-472.

[13] S. Saltenis, C. S. Jensen, S. T. Leutenegger, M.
A. Lopez. Indexing the Positions of Continuously
Moving Objects. In SIGMOD, 2000, 331-342.

[14] Y. Tao, D. Papadias, J. Sun. The TPR*-Tree: An
Optimized Spatiotemporal Access Method for Pre-
dictive Queries. In VLDB, 2003, 790-801.

[15] X. Xiong, W. G. Aref. R-trees with Update
Memos. In ICDE, 2006, 22.

[16] M. L. Yiu, Y. Tao, N. Mamoulis. The Bdual−Tree:
Indexing Moving Objects by Space-Filling Curves
in the Dual Space. To appear in Very Large Data
Base Journal, 2006.

GENESIS
텍스트 상자
16

A Spatio-Temporal Database Model on Transportation

Surveillance Videos

Xin Chen and Chengcui Zhang
Dept. of Computer and Information Sciences, University of Alabama at Birmingham,

Birmingham AL 35294, USA
{chenxin, zhang}@cis.uab.edu

Abstract

With the rapid growth of multimedia data, there is
an increasing need for robust multimedia database
model. Such a model should be able to index
spatio-temporal data thus efficient access to data
whose geometry changes over time can be
provided. In this paper, a spatio-temporal
multimedia database model for managing
transportation surveillance video data is proposed.
The objective is to build a spatio-temporal database
schema for transportation surveillance videos, in
which queries can be answered easily and
efficiently. The proposed spatio-temporal model
for transportation surveillance videos combines the
strength of two general-purpose spatio-temporal
multimedia database models - the Multimedia
Augmented Transition Network model (MATN)
and the Common Appearance Interval (CAI)
model. While MATN model is good at modeling
the replay of the multimedia presentation and the
spatial-temporal relations of semantic objects in the
video, it is not efficient in modeling or querying
the trajectories of moving objects. In the mean
time, while Common Appearance Interval (CAI)
model can be used to better answer trajectory-
based queries, it explicitly stores the spatial
relations of pairs of objects in the model, which is
considered redundant in transportation video
databases. The proposed model bases its structure
on MATNs and adopts the concept of CAI to
segment transportation surveillance videos. Since
this model is motivated by transportation
surveillance applications, it has some domain
specific features. It models each traffic light phase
in a MATN-like network and models the
corresponding video segment using CAIs. In
addition, CAIs are further divided into sub-
intervals and modeled by the sub-network structure
in MATNs. In this paper, the proposed model,
together with a brief introduction of the vehicle
extraction/tracking/classification, is presented with

its formal definition and some sample queries. The
advantages of our model in comparison with other
models are also demonstrated.

1. Introduction
While spatio-temporal applications (Intelligent
Transportation Systems, health, climate changes, etc.)
have only recently attracted researchers in this field, most
of the existing work has concentrated on general-purpose
spatio-temporal database models and query
languages[2][3][5][6]. The existing models all have their
advantages in modeling certain aspects of the data.
However, none of them are “jack-of-all-trades” without
any redundancy or lost of any efficiency. Since different
spatio-temporal applications may have different emphasis
on the properties and queries of the domain-specific data,
there is a need for designing domain-specific spatio-
temporal database model.

In building an intelligent transportation system, a large
amount of transportation surveillance videos are collected
via surveillance cameras. Various algorithms are proposed
to analyze these video data. However, it is still a
challenge to store and manage these videos with an
efficient indexing and querying schema. In addition, it is
necessary to build an integrated system that captures a
comprehensive set of requirements which are needed in
building a transportation surveillance video database.
Such requirements include the extraction of vehicle
objects from surveillance videos, vehicle tracking, vehicle
classification, and spatio-temporal modeling that provides
efficient data indexing and querying for transportation
domain. To our best knowledge, there is no such system
in this field that is sophisticated enough to manage video
data efficiently in transportation surveillance domain. One
of the research directions in spatio-temporal database
management is to incorporate data streams and evaluate
continuous queries over data streams [9] [10] [11]. For
example, in [9], Mouza et al. proposes a data model for
reporting continuous queries based on mobility pattern
matching. Continuous queries are managed as a discrete
process relying on events related to the moves of objects.
Several general-purpose spatio-temporal models for video
databases are proposed in [2][3][5][6]. However, since
different spatio-temporal applications may have different
emphasis on the properties and queries of the domain-

--

Proceedings of the 3rd Workshop on STDBM

Seoul, Korea, September 11, 2006

17

specific data, there is still a need for designing domain-
specific spatio-temporal models. In this paper, we
proposed a spatio-temporal multimedia database model
for storing, indexing, and querying transportation
surveillance videos. It is worth mentioning that the
proposed work focuses on designing a conceptual model,
which serves as a basis for defining entities, attributes,
and relationships. As this is our initial work, details such
as GUI interface, physical layers, access strategy or
operations will be addressed separately in our future
work.

In our previous work, we proposed a vehicle
extraction, vehicle tracking, and vehicle classification
framework [4] [8] for indexing transportation surveillance
videos. With this framework, each distinct vehicle can be
automatically identified at diffident locations in a video
frame. The object-level information such as the bounding
box and the centroid can be recorded and stored in the
database for future queries. However, it would be
unnecessary to record such information in each frame as it
will introduce a lot of redundancy in the database.
Therefore, an intuitive method is to segment a video into
meaningful segments and only record the “key frames”.
Transportation surveillance video segmentation is not as
easy a task as that for regular videos such as movies, since
it is hard to detect video shots or events in the continuous
transportation surveillance video sequences. In L. Chen’s
CAI model [2], a video segmentation concept -- Common
Appearance Interval (CAI) is proposed, which has some
flavor of a video shot in a movie. In this concept, each
video segment is endowed with some “semantic” meaning
in terms of temporality and spatial relations. This concept
is adopted in the proposed model in this paper. In L.
Chen’s CAI model, the spatial relations of pairs of objects
are recorded. This makes it convenient to query the spatial
relation of two objects. However, if there are n objects
appearing in the frame, there will be Cn

2 pairs of records
in the database. Since the spatial relations of vehicles are
not the frequent query targets in the transportation video
database, this will introduce a lot of redundancy. In this
paper, we follow the basic idea of S.-C. Chen’s MATN
(Multimedia Augmented Transition Network) model [3]
in solving this problem.

MATN model is good at modeling the replay of
multimedia presentations. It also provides an efficient
mechanism in modeling the spatial relations of semantic
objects in the video. One disadvantage of MATN is that it
cannot be efficiently applied to modeling the trajectories
of moving objects. However, trajectories of vehicles are
often queried in a transportation video database.
Therefore, in our model, MATN is adjusted to suit our
specific needs.

The MATN model proposed by S.-C. Chen [3] and L.
Chen’s CAI model [2] are two general-purpose models.
Our proposed model combines the strength of these two
models. We base our structure on MATN and adopt the
concept of CAI to segment traffic videos. Motivated by

our specific application, our model has some features
neither of the two general-purpose models has. The
proposed model models each traffic phase in a MATN-
like main network and models the corresponding video
segment using CAIs. While the main network models the
spatio-temporal relations of vehicle objects at a coarser
level, CAIs can capture more details of such relations. In
addition, since MATN uses the concept of Multimedia
Input Strings (MISs) as the input of an MATN model, we
further extend its definition to model CAIs in MATN’s
main network. CAIs are further divided into sub-intervals
and modeled by the sub-network structures in MATNs.
The direction information of a moving vehicle rather than
the spatial relation between two vehicle objects is
recorded in our model. This is due to the fact that
transportation video database queries are more often
concerned with a moving vehicle’s driving direction than
its spatial relation with another object. We argue that in
this type of applications, there is no need to store a huge
amount of redundant information that is not often queried.

Some background information on transportation
surveillance video processing is introduced in Section 2.
The proposed model is formally defined in Section 3.
Section 4 shows query methods and some sample queries.
Section 5 analyzes the advantages of the proposed model.
Section 6 concludes the paper.

2. Transportation surveillance video

processing

In this section, the processing of transportation
surveillance videos is introduced to provide some
background information on building an intelligent
transportation system. In our previous work [4], an
unsupervised segmentation method called the
Simultaneous Partition and Class Parameter Estimation
(SPCPE) algorithm, coupled with a background learning
and subtraction method, is used to identify the vehicle
objects in a traffic video sequence [8]. The technique of
background learning and subtraction is used to enhance
the basic SPCPE algorithm in order to better identify
vehicle objects in traffic surveillance videos. Figure 1
shows an example of the segmentation result of a vehicle
with background extracted. The rectangular area is the
Minimal Bounding Rectangle (MBR) of the vehicle that is
represented by (xlow, ylow) and (xhigh, yhigh) -- the
coordinates of the bottom right point and the upper left
point of the MBR. (xcentroid, ycentroid) are the coordinates of
that vehicle segment’s centroid. It is used for tracking the
positions of vehicles the across video frames.

Figure 1 An example vehicle segment.

(xcentroid, ycentroid)

(xlow, ylow)

(xhigh, yhigh)

18

The framework in [4] has the ability to track moving
vehicle objects (segments) within successive video
frames. By distinguishing the static objects from mobile
objects in the frame, tracking information can be used to
determine the trails of vehicle objects. The last phase of
the framework is to classify vehicle objects into different
classes such as SUVs, pick-up trucks, and cars, etc. The
classification algorithm is based on Principal Component
Analysis.

With this framework, lots of useful data and
information is generated. This provides a basis for an
intelligent transportation system. The whole process is
automatic. In this paper, a spatio-temporal database model
is proposed to further organize, index and query these
information.

3. Model definition
While the proposed model is a combination of S.-C. Chen
et al.’s MATN model [3] and L. Chen’s CAI model [2],
its general structure is based on MATN. Therefore, in this
section, we will start from introducing the basic idea of
MATN model. Following that, the formal definition of
our model is presented.

3.1 MATN model

Multimedia Augmented Transition Network (MATN)
model originates from the Augmented Transition Network
(ATN) [1] which is used for natural language processing.
The inputs of an ATN are sentences that are composed of
words. Similarly, in MATN, the inputs are Multimedia
Input Strings that can be denoted by regular expressions.
An MATN model simulates a finite state automaton in
that it is constructed by nodes (states), arcs, inputs and
transition functions. However, unlike finite state
automaton, MATN allows recursions and has the
condition/action tables. Recursions allow the user to play
the desired video segments repeatedly. Condition/action
tables are especially useful in an online environment.
With the limitation of bandwidth, the user can choose to
play some parts of the video when condition permits or
get compressed version of the video. That is, an MATN
can control the synchronization and Quality of Service
(QoS) of multimedia streams. Another important feature
of an MATN is its support for sub-networks. These
features of MATN make it more powerful and effective
than finite state automaton. It is worth mentioning that
MATN not only can be used to model the spatio-temporal
relations of multimedia streams in multimedia
presentations but also can support multimedia database
searching when spatio-temporal relations of multimedia
objects are concerned. In this paper, we focus on the
spatio-temporal modeling and multimedia database
searching capability of MATN models.

3.2 The proposed model

MATN is a general purpose spatio-temporal model. To
fit the specific needs of transportation video modeling, the
original MATN model needs to be adjusted. This is for

the ease of searching and querying the transportation
video database. For example, velocity and driving
direction are two very important properties of a moving
vehicle but they are not explicitly modeled in a MATN
model. In L. Chen’s CAI model, a concept called
Common Appearance Interval is defined to model an
interval where a certain set of objects appear in the frame
together. We incorporate this concept into our model.
CAIs can be automatically generated from the tracking
and segmentation phase.In the proposed model, moving
vehicles are explicitly modeled, which correspond to the
moving objects in CAI model. A Common Appearance
Interval is further broken down into sub-intervals in
which the relative positions (as defined in MATN models)
of vehicles remain unchanged.

In MATN models, the spatial relations of moving
vehicles are recorded based on 27 three dimensional
relative positions. That is, the 3-D space is evenly divided
into 27 positions with one of them being the reference
position. The coordinates of moving vehicles are then
compared with this reference position to decide their
relative positions. The details of these 27 positions are
shown in Figure 2, where position #1 is the reference
position. The first and the third columns indicate the
relative position numbers, while the second and the fourth
columns are the relative coordinates. (xt

,, yt, zt) and (xs, ys,
zs) represent the X-, Y-, and Z-coordinates of the
reference position and the position of a vehicle object,
respectively. The ‘ ’ symbol means the difference
between two coordinates is within a threshold value. For
example, the relative position number 25 indicates an
object’s X- and Y-coordinates (xs and ys) are greater than
that (xt, yt) of the reference position, while their Z-
coordinates are approximately the same. We adopt this
approach in modeling the spatial relations of moving
vehicle objects. In the proposed model, the center of a
video frame is chosen to be the reference position and
each vehicle object is mapped to a point object
represented by its centroid as illustrated in Figure 1. The
centroid point of each vehicle object is then used to derive
the relative position of that object to the reference
position. However, it is worth mentioning that we only
use the 2-D relative positions in MATN models as the z
values (or the depth information) of all vehicle objects in
a 2-D video sequence are zeros. Therefore, there are only
9 relative positions in our model, which are used to record
the relative positions of vehicles in a video frame at a
coarse granularity. More or fewer numbers may be used
to divide an image or a video frame into sub-regions to
allow more fuzzy or more precise queries as necessary.

For this specific application, the driving direction of a
vehicle is also recorded. However, there is no need to
record this information for all video frames as this will
introduce a large amount of inter-frame redundancy. Only
the changes of directions between intervals are computed
and recorded in the proposed model.

19

Before the formal definition of the proposed model is
presented, we first define the terms and concepts that will
be used in the rest of the paper.
Definition 1. A Vechile Object (VO) is a 3-tuple (OID,

MBR, VSFs). ID is the unique identifier of a distinct
vehicle in the database. MBR is the Minimal Bounding

Rectangle of the Vehicle Object. (xlow, ylo, zlow) and (xhigh,
yhigh, zhigh) are the 3-D coordinates of the bottom right
point and the upper left point of the rectangle. The
coordinates of the centroid of the MBR is used to
determine the object’s relative position in 27 positions.
However, since only 2-D information is available, we will
use the 9 positions as shown in Figure 2 only. VSFs stands
for Vehicle Segment Features, which can be used for
vehicle classification and tracking purpose. In our
previous work [4], a set of vehicle features based on
Principle Component Analysis was proposed actually
used in our vehicle classification framework to decide the
vehicle type (cars, pick-up trucks, SUVs, etc.)

Definition 2. Traffic Light Phase (TLP) is a segment of
the traffic video during which there is no traffic light
change. It is denoted by a 4-tuple (PID, PSF, PEF,
META). PID is the ID of the video segment. PSF is the
starting frame of the traffic light phase; PEF is the ending
frame of the phase; META is the meta-data of this phase.
It includes the allowed driving directions, the duration of
the phase, etc.

Definition 3. Traffic Video Clip (TVC) is a contiguous
trunk of traffic video. It consists of TLPs and can be
denoted as a 2-tuple (CID, META). CID is its clip ID.
META is the meta-data of this clip which can include such
information as the time the clip is shot, the
road/intersection location, camera settings, etc.

TVCs, TLPs and VOs are the constituting units of a
transportation surveillance video database with VO being
the smallest unit. Next we will give the formal definition
of the proposed model and explain in detail how it can be
used for transportation video database modeling.

Number Relative Coordinates Number Relative Coordinates Number Relative Coordinates

1 xs xt, ys yt, zs zt 10 xs<xt, ys yt, zs zt 19 xs>xt, ys yt, zs zt

2 xs xt, ys yt, zs<zt 11 xs<xt, ys yt, zs<zt 20 xs>xt, ys yt, zs<zt

3 xs xt, ys yt, zs>zt 2 xs<xt, ys yt, zs>zt 21 xs>xt, ys yt, zs>zt

4 xs xt, ys<yt, zs zt 13 xs<xt, ys<yt, zs zt 22 xs>xt, ys<yt, zs zt

5 xs xt, ys<yt, zs<zt 14 xs<xt, ys<yt, zs<zt 23 xs>xt, ys<yt, zs<zt

6 xs xt, ys<yt, zs>zt 15 xs<xt, ys<yt, zs>zt 24 xs>xt, ys<yt, zs>zt

7 xs xt, ys>yt, zs zt 16 xs<xt, ys>yt, zs zt 25 xs>xt, ys>yt, zs zt

8 xs xt, ys>yt, zs<zt 17 xs<xt, ys>yt, zs<zt 26 xs>xt, ys>yt, zs<zt

9 xs xt, ys>yt, zs>zt 18 xs<xt, ys>yt, zs>zt 27 xs>xt, ys>yt, zs>zt

Figure 2 Three dimensional relative positions for vehicle objects.

3.3 Formal Definition of the proposed model

For convenience, we call the proposed model TVDM
(Transportation Video Database Model). TVDM can be
formally defined as follows.
Definition 4. A TVDM is an 8-tuple (,m ,s , ,

,mQ ,sQ ,F S). sm , are the alphabets of the traffic

video streams that can be expressed by regular
expressions. The meaning of the regular expression
symbols used in this model is illustrated in Table 1.

Table 1. Meaning of Regular Expression Symbols
Symbol Meaning

Unquoted Characters Non-terminal symbols
‘…’ Terminal symbols

= Is defined as
[…] Optional symbols

{…}+ One or more repetitions
{…} Zero or more repetitions

& Concurrent
…|… Or

; Rule terminator
, Concatenation

[c1 – c2] ASCII Characters

1. m is the Transportation Video Stream alphabet in the

main network. A Transportation Video Stream in the main
network is a Common Appearance Interval (CAI) as
proposed in L. Chen’s CAI model [2]. A CAI is an
interval in which vehicle objects VO1, VO2, …, VOm

appear all together. A new CAI starts when there is a new
vehicle appears in the video or an old one disappears in
the video or both. Therefore, a CAI is a media stream that
can be expressed in regular expressions,

CAI = CID, PID, CAID, {OID, [‘&’]};
CID = ‘C’, {‘0’-‘9’};
PID = ‘P’, {‘0’-‘9’};
CAID = ‘CA’, {‘0’-‘9’};
OID = ‘O’, {‘0’-‘9’};

where ‘&’ means concurrent appearance of multiple
vehicle objects, CID, PID, CAID, and OID stand for the
ID’s of Clip, Phase, CAI and Object(s).

2. s is the Transportation Video Stream alphabet in the

sub-network. A Transportation Video Stream in the sub-
network corresponds to a sub-interval of a CAI. In the
proposed model, sub-network models a CAI in a way that
a CAI is further divided into sub-intervals. In each sub-
interval, the relative positions of all objects in the CAI

remain unchanged. We call such an interval CAIsub.
Therefore, we have

CAIsub = CID, PID, CAID, CAISUBID, {OID, (‘1’ | ‘2’ | …|
‘27’), (‘N’ | ‘NW’ | ‘NE’ | ‘S’ | ‘SW’ | ‘SE’ | ‘E’ |
‘W’), [‘&’]};

CAISUBID = ‘CAS’, {‘0’-‘9’};

From the above regular expression, we can see that in
each CAIsub, a vehicle object is denoted by an object ID
followed by a number and a symbol. The number is one

13 4 22

1 1910

7 2516

Y

Z

X

20

of the 27 3-D relative positions as illustrated in Figure 1.
(‘N’ | ‘NW’ | ‘NE’ | ‘S’ | ‘SW’ | ‘SE’ | ‘E’ | ‘W’) denotes
the moving direction of that vehicle object, where N
stands for north, NW stands for northwest and so forth.
The driving direction can be induced from the change of
relative positions between sub-intervals. This direction
information is kept here for easily capturing the trajectory
of a vehicle which is frequently queried in transportation
video database.
3. is the special input symbol alphabet. = {&&, ||, ~,
*, , }. The meaning of these special symbols is shown

in Table 2. These symbols are used in querying the
transportation video database.

Table 2. Special Input Symbols
Symbol Meaning

&& Logical And
|| Logical Or
~ Logical Not
* Wildcard

Arithmetic operators such as ‘+’, ‘-’…

Condition operators such as ‘<’, ‘>’, ‘= =’, ‘!=’…

4. Qm is the set of nodes (states) in the main network.
Each node in Qm is defined as a 4-tuple (NID, FID, OIDin,

OIDout). NID is the node ID. FID is the frame ID. This
frame is the starting frame of the next CAI that is on the
outgoing arc of this node (state). OIDin is the list of IDs of
the vehicle objects that newly appear in the next CAI.
OIDout is the list of IDs of the vehicle objects that
disappear in the next CAI. However, these two lists cannot
be both empty. If both of them are empty, there is no new
CAI generated.

5. Qs corresponds to a sub-network. It is defined as a 2-
tuple (NIDsub, FID). NIDsub is the ID of a node in the
subnetwork. Each node is associated with a FID which is
a frame ID. This frame is the starting frame of the next
CAIsub that is on the outgoing arc of this node (state).

6. is a set of the transition functions from one node
(state) to another. In the proposed model, two nodes are
connected by an arc that is denoted by a transportation
video stream. : mm QCAIQ or ssubs QCAIQ .

7. F is the set of final states, where sm QQF .

8. S is the set of starting states, where sm QQS .

3.4 Modeling spatio-temporal relations in

transportation video database with TVDM

In this section, the above-defined TVDM is applied to
model a transportation video database. Details will be
explained in an example shown in a TVDM diagram
(Figure 3).

In the diagram, circles are nodes/states of the network.
For simplicity, only the node ID is shown in the figure.
However, the identification of a node is also dependent on
the traffic light phase and the video segment it is in. The
network flow can be easily traced by following the arcs
(arrows) in the diagram. The solid arcs are the flow in the
main network while the dotted ones are in the sub-
network. Each arc can be distinguished by the unique
traffic media stream on it. Again for simplicity, the full
name of each vehicle object in the video streams
(CAI/CAIsub) is not given in the figure. Instead, characters
such as ‘A’ and ‘B’ are used as the symbols to represent
the vehicle objects.

Figure 3. TVDM diagram

In this example, a traffic video clip shot at a major
intersection is modeled. A video frame is divided into
nine 2-D sub-regions. The entire traffic video clip is
divided into phases according to the change of traffic
lights. Each phase can be modeled with a network as
shown in Figure 3. By connecting each such network with
an arc, the network of the entire traffic video clip can be

set up. There are two key frames shown in this figure.
FID2, FID3 are the IDs of the two frames which are the
turning points of two consecutive CAIs. Starting from the
node NID3, two new vehicle objects (E and F) move into
the scene, signifying the end of the previous CAI and the
beginning of the next CAI. The video stream between

21

NID2 and NID3 is denoted as ‘A&B&C&D’, meaning the
concurrent appearance of vehicle objects A, B, C and D.

In the sub-network originating from NID2 and ending
at NID3, the corresponding traffic video stream
(A&B&C&D) is further modeled by the vehicle objects’
relative positions and driving directions. Each such sub-
stream is called a CAIsub in which the relative positions of
all vehicle objects remain unchanged. For example, the
first arc of this subnetwork carries the sub-stream
(A10E&B10E&C7E&D16E) in which vehicle A is in
position 10 heading east; vehicle B is in position 10
heading east; vehicle C is in position 7 heading east;
vehicle D is in position 16 also heading east. The arc
originating from NIDsub2 is the sub-stream in which
vehicle A is still in position 10 but heading northeast;
vehicle B is still in position 10 heading east; vehicle C has
moved to position 25 and is still heading east; vehicle D
has moved to position 7 heading east. In this traffic light
phase, we can tell that vehicles are either driving
west/east or northeast i.e. left turn. By storing this
information in the meta-data of each traffic light phase,
the vehicles driving toward illegal directions can be easily
detected.

In the following sections, we will discuss the
transportation video database queries with the proposed
model and explore some typical scenarios that may be of
users’ interest in querying the transportation video
database.

4. Transportatino video database queries

4.1 Multimedia Input String

As introduced in Section 3.1, the inputs of MATN models
are Multimedia Input Strings (MIS) together with
condition/action tables. An MIS is to simulate the input of
an ATN, which is a natural language sentence. In MATN,
there are two types of basic inputs. One is
“Control_Command”. It represents a control message that
may occur during the multimedia presentation. A
“Control_Command” is composed of conditions and
actions. For example, a “Control_Command” can be “if
the bandwidth < , display the compressed version of the
specified media stream”. “Bandwidth < ” is the condition
and “display the compressed version of the specified
media stream” is the action. However, since multimedia
presentation is not the focus of this paper, we concentrate
on the other type of multimedia input strings which is
“Media_Stream”. In this paper, we designed our own
input strings by following the basic idea of MATN’s
“Media_Stream”. It has been used in Section 3 to define
the traffic video stream in a CAI or CAIsub.

Query strings are constructed based on
Media_Streams. Query strings are used as the query input
of the proposed model for querying the transportation
video database. They include some special input symbols
which have special meanings. The list of such symbols is
in Table 2. For example, the symbol ‘||’ means one of the
conditions on the two sides has to be satisfied.

“CAI.(A&B)||CAI.(A&C)” is the query string used to find
CAIs containing “A&B” or “A&C”.
“CAIsub.(A*N&B*S)” means moving vehicles A and B
are in the same CAIsub with A driving northward and B
driving southward. “*” is the wild card symbol meaning
that A and B can be in any relative positions. It is obvious
that the first query string can easily find its matches (or no
match) in the main network. The answer to the second
query string can only be found in sub-networks of the
model. However, the search shall start from the main
network to find all video streams containing “A&B” and
delve into the sub-network thereafter.

4.2 Object oriented transportation video database

management and sample queries

In [7], a spatio-temporal model is proposed and integrated
into ODBMS. Since our model also targets on modeling
traffic video objects, we argue that ODBMS is suitable for
transportation video databases.

In the proposed model, there are 6 classes of objects.
The class names and properties are illustrated in Table 3,
which is a generalization of the definitions introduced in
Section 3. The first three classes are defined in
Definitions 1, 2, and 3. The NODE class is defined in the
formal definition of TVDM. For CAI/CAIsub class, there
are four important properties i.e. the starting node (NIDs)
and the ending node (NIDe) in the main network, the
starting nodes (NID/NIDsub) in the main/sub network, and
the traffic video streams in main/sub network as defined
in Section 3.3. The FRAME class contains the actual
video frames in the definition of nodes of the network. Its
properties include FID (frame ID), the Video Clip it is in
i.e. CID and the actual frame in the form of an image file.
A VO object corresponds to a distinct vehicle object. For
example, if there is a vehicle object A, A.OID is its ID.
Note that the MBR property in VO class is actually a list
<mbrf1, mbrf2, …, mbrfn> denoting the MBR property of a
VO across the frames f1, f2, …, fn.

Table 3. Objects and Properties
Class Properties

VO OID MBR VSF
TLP PID, PSF, PEF, META
TVC CID, META

NODE NID, OIDin, OIDout, FID
CAI/CAIsub NIDs, NIDe, NID/NIDsub, Media_Stream

FRAME FID, CID, Frame

4.3 Sample queries

In order to test the effectiveness of the proposed spatio-
temporal model, some typical transportation video
database queries are studied in this section. In
transportation video database, the user is often more
interested in retrieving video data through queries on
vehicle objects’ properties and spatio-temporal relations
among them.
Query Example 1. Given one vehicle, find all the

vehicles north to it.

This is a simple query in which only the information of
spatial relations between vehicles is needed. Suppose this

22

vehicle A is in position 1 and the target vehicle is B. The
user can issue this query using a high-level language
which will then be translated into a Media_Stream
together with some arithmetic and logic operations:

CAIsub.(A1*&B4*)||

(CAIsub.(A1*&B1*)&&

(B.mbr(CAIsub.NIDsub.FID).y < A.mbr(CAIsub.NIDsub.FID).y))

The meaning of the above expression is that in some
CAIsub, vehicle object A is in position 1 and B is in
position 4 OR both A and B are in position 1 with the y-
coordinate of B’s centroid less than that of A’s. It does
not matter in what directions the two vehicles are moving.
In either of these two situations, B is considered north to
A. In the CAI model [2], the spatial positions between
each pair of vehicle objects are recorded explicitly in the
database. Therefore, for Query Example 1, there would be
no need to compute the relation between B.mbr.y and
A.mbr.y. Our model did not adopt this approach. In both
the CAI model and our model, each vehicle object’s
coordinates (bounding box and centroid) are already
stored in MBR. Therefore, it is easy to compute the
relative spatial relation between two vehicle objects.
However, our model chooses to store the spatial relation
between pairs of vehicle objects at a coarser granularity.
That is, for each vehicle object, only its relative position
to the reference position is stored. If two vehicle objects
happen to fall into the same position relative to the
reference position, their spatial relation is examined on
the run to avoid storing too much information in the
database. This can reduce the redundancy in
transportation surveillance video database, since the
queries on spatial relations of vehicles are not as often as
on vehicles’ moving trajectories.
Query Example 2. Two vehicles are meeting each

other with one from northwest and another from

south east.
CAIsub.(A*NW&B*SE) &&

(Dist(A.mbr(CAIsub.NIDsub.FID).high, B.mbr(CAIsub.NIDsub.FID).low)<

Dist(A.mbr(CAIsub.NIDsub.FID).low, B.mbr(CAIsub.NIDsub.FID).high))

Dist(C1, C2) is the subroutine to calculate the distance
between two points whose coordinates are C1 and C2.
A.mbr.high is the coordinates of the upper left corner of
A’s MBR and A.mbr.low is the coordinates of the bottom
right corner. The meanings of B.mbr.low, A.mbr.low and
B.mbr.high are similar.

Query Example 3. Find vehicles that are speeding.

(A.OID Node1.OIDin)&&(Node2.OIDout A.OID) &&

(dist(A.mbr(Node1.FID).centroid, A.mbr(Node2.FID).centroid) /

((Node2.FID – Node1.FID) / TVC.META.FR) >)

This query can be conducted on the main network.
Node1 and Node2 are two nodes in the main network
where one of the incoming vehicles in Node1 is an
outgoing vehicle in Node2. From the frame IDs of these
two nodes, the number of frames in between can be
calculated, which is divided by the frame rate
(TVC.META.FR). In this way, the average velocity of the

vehicle when passing the intersection can be calculated. If
a vehicle’s velocity is larger than , the allowed
maximum speed, this vehicle is considered speeding.
“dist(A.mbr(Node1.FID).centroid, A.mbr(Node2.FID).centroid)” is
the subroutine that computes the travel distance of the
vehicle in passing this intersection. “FR” in
TVC.META.FR” means the frame rate (frs/sec) which is
stored in the meta-data of that video clip.
Query Example 4. Find vehicles that take a U-turn.

((CAIsub1.(A*S)&&CAIsub2.(A*N))||

(CAIsub1.(A*N)&&CAIsub2.(A*S))||

(CAIsub1.(A*E)&&CAIsub2.(A*W))||

(CAIsub1.(A*W)&& CAIsub2.(A*E))||

(CAIsub1.(A*NW)&& CAIsub2.(A*SE))||

(CAIsub1.(A*SE)&& CAIsub2.(A*NW))||

(CAIsub1.(A*NE)&& CAIsub2.(A*SW))||

(CAIsub1.(A*NE)&& CAIsub2.(A*SW))) &&

((CAIsub2.NIDsub.FID – CAIsub1.NIDsub.FID)/ TVC.META.FR <)

In this query, the sub-networks are searched for any
vehicle that drives toward opposite directions within
reasonable time duration when passing the intersection.

Query Example 5. Find vehicles that drive toward

illegal direction in the traffic light phase when only

north-bound and south-bound vehicles are allowed.

~(CAIsub.(A*S)||CAIsub.(A*N))

The south-bound and the north-bound allowed directions
are information extracted from the meta-data of that
traffic light phase. According to this information, we can
detect vehicles driving at wrong directions by using
similar queries as the above.

Query Example 6. Find vehicles that stop at some

time.
CAI.(A*)&&

(dist(A.mbr (CAI.NIDs.FID).centroid, A.mbr (CAI.NIDe.FID).centroid)

/

((CAI.NIDs.FID –CAI.NIDe.FID) / TVC.META.FR) == 0)

A vehicle’s velocity when passing the intersection
cannot be zero. Otherwise, it is considered to have
stopped. This can be used in identifying accidents or
traffic jams. If one or more vehicles stay still for a long
consecutive sequence of CAIs, there might be an accident
or jam occurring in the intersection.

Query Example 7. Given a vehicle A that is driving

eastward, find a vehicle B that overtakes A.

(CAIsub1.(A*E&B*E)&&

(B.mbr(CAIsub1.NIDsub.FID).x<A.mbr(CAIsub1.NIDsub.FID).x)&&

(B.mbr(CAIsub1.NIDsub.FID).y A.mbr (CAIsub1.NIDsub.FID).y))&&

(CAIsub2.(A*E&B*E)&&

(B.mbr(CAIsub2.NIDsub.FID).x>A.mbr(CAIsub2.NIDsub.FID).x)&&

(B.mbr(CAIsub2.NIDsub.FID).y A.mbr (CAIsub2.NIDsub.FID).y))

The condition of an overtaking is that both vehicles are
driving in the same direction with one behind another.
The one behind overtakes the other by using an empty
lane next to the lane both vehicles are on. Therefore,
initially the x-coordinate of A (the leading vehicle) is
larger than that of B’s. After overtaking, A’s x-coordinate

23

is smaller than that of B’s. As the whole process may not
finish within one CAIsub, CAIsub1, and CAIsub2 do not have
to be two consecutive intervals (the same applies to all the
previous queries.) However, we do need to find out the
closest pair of CAIsub2 and CAIsub1, since any CAIsub

after/before CAIsub2/CAIsub1 with A and B in it may also
satisfy the above conditions.

5. Advantages
The goal of this paper is not to design a master-of-all
spatiotemporal database model, which is often not
feasible. Instead, the proposed model in this paper is
domain-specific. That is, it focuses on modeling the
transportation surveillance video database. Targeting at
the specific characteristics of transportation video, the
proposed model can extract, index, and store the key
information in the video. With these information stored in
the database, transportation video data can be efficiently
accessed and queried. This is one of the major advantages
of our model.

The proposed model combines the strength of two
general purpose spatio-temporal database models –
MATN and CAI. We follow MATN’s basic structure as
well as its way of modeling spatial relations among
objects. The key concept in L. Chen’s model – CAI is also
adopted in our model. This provides a way in partitioning
transportation videos into “meaningful” segments and
extracting the spatio-temporal information out of that. By
combining the advantages of the two general-purpose
models, our proposed model can better meet the needs of
a transportation surveillance video database.

More specifically, motivated by this specific
application, the proposed model only stores information
that is frequently queried. Therefore, unlike CAI model,
the proposed model does not record spatial relations
between each pair of moving objects as this is not the
frequent query type in the transportation video database.
Furthermore, this will introduce redundancy into the
database. The proposed model only records the relative
spatial-relation of moving objects at a coarse granularity
based on MATN model. The direction information of a
moving vehicle is also recorded since this is a big concern
of the user’s queries. For example, the illegal driving
direction and U-turn can be easily detected in our model,
while it is not that easy in either the MATN or the CAI
model. In order to further extract useful information from
the video, CAIs are further divided into sub-intervals in
which all moving vehicles’ relative positions remain
unchanged. We call this sub-interval CAIsub. This sub-
division enables us to model the video streams at a finer
granularity instead of simply using CAIs.

6. Conclusion
This paper proposed a spatio-temporal multimedia
database model for transportation surveillance video. The
formal definition of the model provides the basis for
constructing a transportation surveillance video database,

which is a key in building an Intelligent Transportation
System. The proposed model combines the strength of
two general-purpose spatio-temporal models –MATN and
CAI. The proposed model is also adjusted to suit the
specific needs of this specific application. To avoid
redundancy, only the frequently queried information is
stored in the database. Thus the extraction of key
information from the transportation video is performed in
a way to facilitate queries in this specific domain. With
this model design, data indexing and database queries can
be performed more efficiently.

8. References
[1] Woods, W. Transition network grammars for natural

language analysis. Comm. ACM, vol. 13, pp.591-602, Oct.
1970.

[2] Chen, L., and Özsu, M. T. Modeling of video objects in a
video database. In Proc. of IEEE International Conference

on Multimedia, Lausanne, Switzerland, August 2002,
pp.217-221.

[3] Chen, S.-C., and Kashyap, R. L. A spatio-temporal
semantic model for multimedia database systems and
multimedia information systems. IEEE Transactions on

Knowledge and Data Engineering, vol. 13, no. 4, pp. 607-
622, July/August 2001.

[4] Zhang, C., Chen, X., and Chen, W.-B. A PCA-based
vehicle classification framework. IEEE International

Workshop on Multimedia Databases and Data

Management, in conjunction with IEEE International

Conference on Data Engineering (ICDE 2006), April 8,
2006, Atlanta, Georgia, USA.

[5] Day, Y.F., Dagtas, S., Iino, M., Khokhar, A., and Ghafoor,
A. Object-oriented conceptual modeling of video data. In
Proc. of Eleventh International Conference on Data

Engineering (ICDE), March 1995, pp. 401-408.
[6] Wasfi, A.K., and Arif, G. An approach for video meta-data

modeling and querying processing. In Proc. of ACM

Multimedia, 1999, pp. 215-224.
[7] Li, J.Z., Özsu, M. T., and Szafron, D. Modeling of moving

objects in a video database. In Proc. of IEEE International

Conference on Multimedia Computing and Systems, pp.
336-343, 1997.

[8] Chen, S.-C., Shyu, M.-L. , Peeta, S., and Zhang, C.
Learning-Based spatio-temporal vehicle tracking and
indexing for transportation multimedia database systems”,
IEEE Transactions on Intelligent Transportation Systems,
vol. 4, no. 3, pp. 154-167, September 2003.

[9] Mouza, C., and Rigaux P. Mobility patterns. In Proc. of

2nd Workshop on Spatio-temporal Database Management

(STDBM’04), Toronto, Canada, August 30th, 2004.
[10] Babu, S., and Widom, J. Continuous queries over data

streams. In Proc. of SIGMOD Record, September 2001.
[11] Mokbel, M. F., Xiong, X., Hammad, M. A., and Aref, W.

G. Continuous query processing of spatio-temporal data
streams in PLACE. In Proc. of Second Workshop on

Spatio-temporal Database Management (STDBM’04),

Toronto, Canada, August 30th, 2004.

24

Predicted Range Aggregate Processing in Spatio-temporal
Databases

Wei Liao, Guifen Tang, Ning Jing, Zhinong Zhong

School of Electronic Science and Engineering, National University of Defense Technology
Changsha, China

liaoweinudt@yahoo.com.cn

Abstract
Predicted range aggregate (PRA) query is an
important researching issue in spatio-temporal
databases. Recent studies have developed two
major classes of PRA query methods: (1)
accurate approaches, which search the common
moving objects indexes to obtain an accurate
result; and (2) estimate methods, which utilize
approximate techniques to estimate the result
with an acceptable error.

In this paper, we present a novel accurate
prediction index technique, named PRA-tree, for
range aggregation of moving objects. PRA-tree
takes into account both the velocity and space
distribution of moving objects. First, the velocity
domain is partitioned into different velocity
buckets, and moving objects are classified into
different velocity buckets by their velocities, thus
objects in one bucket have similar velocities.
Then we use aTPR-tree, which is based on the
basic TPR-tree structure and added with
aggregate information in intermediate nodes, to
index objects in each bucket. PRA-tree is
supplemented by a hash index on IDs of moving
objects, and exploits bottom-up deletion
algorithm, thus having a good dynamic
performance and concurrency. Also new PRA
query methods with a more precise branch-and-
bound searching strategy are developed for PRA-
tree. Extensive experiments confirm that the
proposed methods are efficient and practical.

1. Introduction
Traditional research in spatio-temporal databases often
aims at predicted query, which retrieves the moving
objects lying inside a multidimensional hyper-rectangle in
future. In many scenarios (e.g., statistical analysis, traffic
monitoring, etc.), however, users are interested only in
summarized information about such objects, instead of
their individual properties. Consider, for example, a

spatio-temporal database managing the vehicles in a city,
results of predicted queries (e.g., finding all vehicles in
the center) are meaningless (due to continuous object
movements), while the aggregate information (the number
of vehicles) is usually stable and measurable (e.g., finding
the number of vehicles across the center during the next 5
minutes) [1], [2].

Specifically, given a set S of moving points in the d-
dimensional space, a predicted range aggregate (PRA)
query returns a single value that summarizes the set

SR ⊆ of points in a d-dimensional hyper-rectangle qR and
a future time interval (or a future timestamp) qT according
to some aggregation function (e.g., count, max, min, sum,
average). In this paper, we consider predicted range
distinct count queries on multidimensional moving points,
where the result is the size of R (e.g., the number of
vehicles in an area qR and a future time interval (or a
future timestamp) qT), but the solutions can apply to any
other aggregation mentioned above with straightforward
adaptation.

1.1 Motivation

A PRA query can be trivially processed as an ordinary
query, i.e., by first retrieving the qualifying objects and
then aggregating their properties. This approach assumes
that the server manages the detailed information of
moving objects using a (typically disk-based) spatio-
temporal access method [3], [4], [5], however, incurs
significant overhead since, the objective is to retrieve only
a single value (as opposed to every qualifying object).
The most popular aggregate indexes [6], [7] aim at
estimating the PRA results. These approaches are
motivated by the fact that approximate aggregates with
small error are often as useful as the exact ones in practice,
but can be obtained much more efficiently. In particular,
such estimation methods require only a fraction of the
dataset or a small amount of statistics and are significantly
faster than exact retrieval. In this paper, we focus on
accurate PRA queries processing with a novel aggregate
index.

1.2 Contributions

In this paper, we propose a new indexing method, called
predicted range aggregate tree (PRA-tree), for efficient

--
Proceedings of the 3rd Workshop on STDBM
Seoul, Korea, September 11, 2006

GENESIS
텍스트 상자
25

PRA queries processing. The PRA-tree takes into account
the distribution of moving objects both in velocity and
space domain. First, the velocity domain is partitioned
into velocity buckets, and moving objects are classified
into different velocity buckets by their velocities, thus
objects in one bucket have similar velocities. Then we use
aTPR-tree, which is based on the basic TPR-tree structure
and added with aggregate information in intermediate
nodes, to index the objects in each bucket. We supplement
the PRA-tree by a hash index constructed on the IDs of
moving objects, and develop a bottom-up deletion
algorithm to obtain good dynamic performance and
concurrency. Finally, we present novel algorithms that use
a more precisely branch-and-bound searching strategy for
PRA queries based on PRA-tree.

The rest of the paper is organized as follows: Section
2 reviews previous work related to ours. Section 3
provides the problem definition and an overview of the
proposed methods. Section 4 presents the PRA-tree index
structure and its construction, insertion, deletion and
update techniques. Section 5 elaborates algorithms for
PRA queries. Section 6 evaluates the proposed methods
through extensive experimental evaluation. Finally,
Section 7 concludes the paper.

2. Related Work
Section 2.1 discusses the most popular TPR-tree index,
while Section 2.2 overviews the aggregate R-tree (aR-tree)
which motivates our solution.

2.1 The TPR-tree

a) MBRs at time 0 b) MBRs of at time 1

Figure 1 MBRs of TPR-tree

The TPR-tree is an extension of the R-tree that can
answer predicted queries on dynamic objects. The index
structure is very similar to R-tree, and the difference is
that the index stores velocities of elements along with
their MBRs in nodes. The leaf node entry contains not
only the position of moving objects but also their
velocities. Similarly, an intermediate node entry also
stores MBRs and velocity vector VBRs of its child nodes.
As in traditional R-tree, the extents of MBR are such that
tightly encloses all entries in the node at construction time.
The velocity vector of the intermediate node MBR is
determined as follows: (i) the velocity of the upper edge is
the maximum of all velocities on this dimension in the

sub-tree; (ii) the velocity of the lower edge is the
minimum of all velocities on this dimension. This ensures
that the MBR always encloses the underlying objects, but
it is not necessarily tight all the time. The TPR-tree
inherits the problems related to the R-tree, such as overlap
and dead space. Since the index structure is dynamic, its
query performance degrades quickly with time. The
algorithms for insertion and deletion are also similar to R-
tree, while the TPR-tree uses time-parameterized metrics
for parameters such as the area, perimeter, and distance
from the centroid [4]. For example, Figure 1a) shows the
MBRs and their velocities of TPR-tree at construction
time 0, and Figure 1b) shows MBRs of the same TPR-tree
at future time 1.

2.2 The Aggregate R-tree (aR-tree)

The aR-tree [8] improves the conventional R-tree by
adding aggregate information into intermediate nodes.
Figure 2a) shows an example, where for each intermediate
entry, in addition to the minimum bounding rectangle
(MBR), the tree stores the number of objects in its subtree
(i.e., count aggregate function). To answer a RA query q
(the shaded rectangle), the root R is first retrieved and its
entries are compared with q. For every entry, there are
three cases: 1) The MBR of the entry (e.g., e1) does not
intersect q, and thus its subtree is not explored further. 2)
The entry partially intersects q (e.g., e2) and its child
nodes are fetched to continue the search. 3) The entry is
contained in q (e.g., e3), then we simply add the aggregate
number of the entry (i.e., 3 for e3) without accessing its
subtree. As a result, only two node accesses (R and R2)
are necessary, while a conventional R-tree (i.e., without
the aggregate numbers) would also visit R3. The cost
savings increase with the window of the query, which is
an important fact because in practice RA queries often
involve large rectangles.

Figure 2 The aR-tree

3 Preliminary and Overview
We start with a concrete definition of aggregate query in
spatio-temporal databases before presenting the PRA-tree
index. By definition, a spatiotemporal object is a unified
object with spatial and temporal extent [2]. A pure spatial
object can be a point, a line, or a region in two or three-
dimensional space. The position and/or shape either
changes continuously (e.g., the motion of vehicles) or
discretely (e.g., the shrink of forest) with time. In this
paper we concentrate on the points (moving objects),
which have continuously moving positions, in two-
dimensional space. In spatio-temporal databases, a

GENESIS
텍스트 상자
26

moving object is represented as <Loc, Vec, A1, A2…An>,
where Loc, Vec denote the position and velocity vector
respectively, and A1, A2…An denote the non-spatial
properties of this object.

An aggregate function takes a set of tuples and returns
a single value that summarizes the information contained
in the set of tuples. Spatio-temporal aggregate query first
retrieves the qualifying objects that satisfy a spatio-
temporal query predicate and returns aggregation
information (e.g., count, average) on the non-spatial
properties of objects.

Given a range query q(qR,qT), which obtains the
objects lying in the query window qT and space area qR,
and a moving objects dataset P, a spatio-temporal query
predicate Sel(P) can be expressed as
Sel(P)={pi| RiT qtpthatsuchqt ∈∈∃)(}. Especially, if qT=tf,
where tf denotes a future timestamp, then the query q is a
predicted timestamp range query. Generally, the query
space area is a static rectangle. Therefore, we can define
predicted range aggregate query as the following.

Definition 1 (predicted range aggregate query). Given
a dataset P, in which each tuple is represented as <Loc,
Vec, A1, A2,…,An>, where the domain of Ai is Di, and a
aggregate function aggn DDDDf →××× K21: , where Dagg

denote the range of f. then an predicted range aggregate
query can be defined as follows:

f(q,P)=f(Sel(P))=f({pi| RiT qtpthatsuchqt ∈∈∃)(}).
Similar to the aR-tree, we enhance the conventional

TPR-tree by keeping aggregate information in
intermediate nodes. To answer a PRA query q(qR,qT), the
root node is first retrieved and its entries are compared
with q. For every entry, there are three cases: 1) the MBR
of this entry does not intersect query area qR all through
the query time qT, then this subtree is not visited further; 2)
the entry is totally contained in the query area qR during
qT , and we simply add the aggregate information without
accessing its subtree; 3) the entry partially intersects the
area qR during qT , then its child nodes need to be fetched
and continue searching until the leaf. Using this approach,
the cost of processing PRA queries can be significantly
reduced.

However, the TPR-tee is constructed merely in the
space domain, and slightly considering the velocity
distribution of moving objects. At construction time,
TPR-tree index clusters objects mainly according to their
spatial proximity into different nodes; however, the
velocities of objects in the same page are always
discrepant greatly. The minority of objects with higher
velocity make the velocity-bounding rectangle (VBR)
relatively larger. In addition, the MBR will increase
extremely with time, causing deterioration of the query
performance and dynamic maintenance. Actually, in most
applications PRA queries often visit unnecessary
intermediate TPR-tree nodes due to the extremely large
MBRs and massive dead space.

Figure 3 shows the moving objects in two dimensional
space with velocity vector (10, 0) and (-10, 0) for example.
Figure 3 a) illustrates the MBRs of TPR-tree constructed
merely in space domain. Obviously, the MBRs of
intermediate TPR-tree nodes extend extremely along the
horizontal direction, thus incurring the degradation of
query performance. Therefore, an effective aggregate
query indexing technique needs to consider the
distribution of moving objects in both velocity and space
domain to avoid the deterioration of query and dynamic
performance.

Motivated by this, we propose a predictive range
aggregate tree (PRA-tree) index structure. First, the
velocity domain is partitioned into buckets with about the
same objects number. Then moving objects are classified
into different velocity buckets by their velocities, and
objects with similar velocities are clustered into one
bucket. Finally, an aTPR-tree structure is presented for
indexing moving objects in each bucket.

Figure 3 b) and c) shows the MBRs of PRA-tree that
considers the distribution of velocity domain. The moving
objects are classified into two velocity buckets. The
bucket1 (as shown in figure 3 b)) contains the moving
objects with velocity vector (10, 0), while bucket2 (as
shown in figure 3 c)) contains the moving objects with
velocity vector (-10, 0). As seen, the MBR of each bucket
moves with time, but the shapes of MBR keep unchanged.
So PRA-tree can hold a good query performance during
all the future time.

Figure 3 MBRs of PRA-tree

In addition, existing TPR-tree update algorithms work
in a top-down manner. For each update, one index
traversal to locate the item for deletion and another
traversal to insert a new item are needed. The deletion
operation affects the disk I/O cost greatly, for the MBRs
of TPR-tree become looser with time, thus incurring lots
of area overlaps between MBRs, and the searching
operation for deletion needs to visit all the TPR-tree nodes
at worst case. The top-down approach for visiting the
hierarchical structure is very simple, and easy for dynamic
maintenance. Nevertheless, for TPR-tree like index
structures, the area between intermediate node MBRs
inevitably overlaps each other (which is not occurred in
other traditional indexes such B-tree), so that the top-
down searching strategy is inefficient in nature. This
manner results in the deterioration of TPR-tree, and is not
suitable in frequent update applications. Motivated by this,
we exploit the bottom-up delete strategy to improve the
dynamic performance of PRA-tree.

GENESIS
텍스트 상자
27

Figure 4The structure of PRA-tree

4. The PRA-tree
Section 4.1 discusses the structure of PRA-tree, while
Section 4.2 provides the construction method, Section 4.3
gives the insertion, deletion and update techniques,
Section 4.4 evaluates the effect factors of PRA-tree
performance.

4.1 The PRA-tree Structure

Specifically, in PRA-tree structure we keep the basic
TPR-tree index structure and add aggregate summary into
its intermediate nodes to make a new index, the aggregate
TPR-tree (aTPR-tree). The entries in aTPR-tree are
organized as vector <MBR, VBR, Agg, ptr>, where MBR,
VBR, Agg, ptr denote the space area, velocity range,
aggregate information of this node and pointer to its
subtree respectively. In addition, we introduce a main
memory linear queue for management of velocity buckets,
the items of which are formed as <MBR, VBR, Agg, tpr>,
where MBR, VBR, Agg, tpr denote the space area, velocity
range, aggregate information of this bucket and pointer to
its corresponding aTPR-tree respectively. To improve the
dynamic performance of PRA-tree, we supplement a disk-
based hash index structure to access the leaf node of
PRA-tree directly. Further, we modified the original TPR-
tree node item as vector <entry，…, entry, parentptr>,
where entry denotes the child nodes contained in this node,
and parentptr denotes the physical address of its parent
node. Compared with node page size, the space
consumption by pointer parentptr is trivial, and its effect
on the fanout of PRA-tree is ignorable.

Figure 4 illustrates the PRA-tree structure. The top
right corner is a velocity bucket queue, in which each item
describes the MBR, VBR and aggregate information (i.e.,
count) of its corresponding aTPR-tree. The bottom right
corner is a hash index constructed on IDs of moving
objects, the item is defined as vector <oid, ptr>, where oid
denotes the identifier of moving objects, and ptr denotes
physical offset of the object entry in leaf node; the left of
Figure 4 is the aTPR-tree structures pointed to by the
velocity bucket queue. In this figure, the pointer to parent
node is not clearly depicted for concision.

4.2 Construction

We use spatio-temporal histograms as mentioned in [9] on
two velocity dimensions to compute the velocity buckets
number and their velocity range. The main idea is to
divide the moving objects set into different partitions with
about the same objects number. Then the algorithm scans
the set of moving objects in sequence, and inserts objects
into the aTPR-tree pointed to by corresponding bucket
according to their velocities. To avoid redundant disk I/Os
caused by frequent insertion one by one, construction
algorithm exploits the bulk loading technique [9] to
construct the aTPR-tree. However, unlike the traditional
bulk loading method, the construction algorithm must
compute and store the aggregate information in the
intermediate nodes.

The foremost problem for PRA-tree is to choose the
number of velocity buckets. With too few velocity
buckets the PRA-tree can not gain the optimal query and
dynamic maintenance performance, while too many
velocity buckets may cause shifts between velocity
buckets when update, thus resulting in the deterioration of
index structure. So choosing a proper number of velocity
buckets can make the query and dynamic performance of
PRA-tree optimal. In the experimental section, we
evaluate the effect of velocity buckets number on the
query and dynamic maintenance performance.

4.3 Insertion , Deletion and Update

The insertion algorithm is straightforward. When inserting
a new moving object into the PRA-tree index, the
algorithm first scans the main-memory velocity bucket
queue to find the bucket that contains this object, and the
aTPR-tree related to this bucket can be obtained by the
pointer in the queue item. Then a new object entry is
produced and inserted into a suitable leaf node using the
standard TPR*-tree insertion algorithm. Finally, a new
item is produced and inserted into the hash index. If
overflow occurs while insertion, the aTPR-tree node must
be split with the method mentioned in [4]. In addition, the
algorithm must modify the aggregate information of this
bucket and aTPR-tree nodes along the searching path.

To delete an object entry from the PRA-tree, a simple
straight approach is to first find the velocity bucket that

GENESIS
텍스트 상자
28

contains this object and delete the object entry from the
aTPR-tree with standard deletion algorithm. However,
usually the searching path for deletion may be several, so
the algorithm must keep the searching path to perform
another operation to complete the modification of
aggregate information along the path, thus causing
redundant disk I/Os. Motivated by this, we exploit the
bottom-up deletion strategy like [10] to improve the
deletion performance. The deletion algorithm first locates
the leaf node that holds the object entry with hash index,
and then deletes the entry from this leaf node directly.
Then the algorithm ascends the branches of PRA-tree by
the pointer parentptr until the root node, and modifies the
MBR, VBR and aggregate information of intermediate
nodes along the path meanwhile. Finally, the
corresponding object item in the hash index must be
deleted to reflect the change and also the bucket item
related to this aTPR-tree must be modified.

The update algorithm uses the standard deletion-
insertion mechanism in TPR-tree. The algorithm first
deletes the old entry from the PRA-tree and then inserts a
new entry into the PRA-tree.

4.4 Effects on Index Performance

PRA-tree partitions moving objects into velocity buckets
that do not overlap each other in velocity domain. So the
index can perform a good concurrency when a large
amount of concurrent dynamic operations occur.
Obviously, the concurrency improves with the number of
velocity buckets. However, with too large a bucket
number the index structure is prone to instability. That is
to say, because the velocity range of each bucket is too
small, when an object is updated, the likely object’s shift
from one bucket to another bucket may cause excessive
disk I/Os. In addition, limited by the system memory, and
considering the space and velocity distribution uncertainty
of moving objects, too many velocity buckets do not
reduce node accesses for processing PRA query.
Therefore, PRA-tree with a proper number of velocity
buckets can obtain the optimal query and update
performance.

The cost of maintain the velocity bucket queue is
inexpensive. The queue is constructed along with PRA-
tree, when dynamic operations such as insertion and
deletion occurred, the summary in which must also be
updated. The queue is pinned in main memory, thus
decrease the visiting cost greatly. And the space
consumed by velocity queue is rather small and ignorable.

5 The Predicted Range Aggregate Query
Algorithm
We now illustrate the algorithm for answering a predicted
range aggregate query with PRA-tree. There are two types
of queries: predicted time-slice range aggregate query and
predicted window range aggregate query, which have

been thoroughly surveyed in [1]. For example, we
consider the following queries: i) “how many cars are
expected to appear at the center of city 10 minutes from
now?” and ii) “how many cars are expected to cross the
center of city during the next 5 minutes?” Section 5.1
presents the algorithm for queries as case 1, and section
5.2 details the algorithm for queries as case2.

5.1 Predicted Time-slice Aggregate Range Query
(PTRA Query)

PTRA query returns the aggregate information of objects
that will fall in a rectangle at a future timestamp based on
the current motion of moving objects. Obviously,
according to the current MBR and VBR of each node in
PRA-tree, we can get the MBR of this node at future
timestamp, and then an aggregate range search is
implemented under the PRA-tree at this timestamp.

Specifically, given a PTRA query q(qR,qT), the
algorithm first scans the velocity bucket queue, and for
each bucket we can get whether any object in this bucket
lies in the query area qR at timestamp qT according to the
bucket’s MBR and VBR. If qR does not intersect the space
area covered by a velocity bucket at future timestamp qT,
the aTPR-tree pointed by this bucket need not to be
visited. Or else if qR contains the space area covered by a
velocity bucket at future timestamp qT, the aggregate
information is returned from the bucket item directly and
added to the query result. Otherwise, if qR intersects the
space area covered by a velocity bucket at qT, the
corresponding aTPR-tree is obtained and then from the
root point, the algorithm recursively computes the
topological relation between the MBR of this node at
future timestamp qT and query area qR. If the MBR is
contained in qR, then the algorithm adds the aggregate
information in this node to the query result, or else if the
MBR does not intersect qR each other, then the node is
skipped; otherwise this subtree is explored further until
the leaf level.

5.2 Predicted Window Aggregate Range Query
(PWRA Query)

PWRA query returns the aggregate information of objects
that will fall in a query rectangle at a future time window
based on current motion of moving objects. To answer a
PWRA query, a straightforward method is to judge
whether the MBR of current node is totally contained in
the query area at some future time. If true, then the
algorithm only adds the aggregate information without
visiting this subtree; or else if the MBR of this node does
not intersect the query area at any future time, then this
node is skipped. Otherwise, this subtree is explored
further. This approach will access nodes whose MBR
partially intersect the query area while the moving objects
enclosed in totally lie in the query area at different
timestamp (as shown in figure 5),thus causing excessive
disk I/Os.

GENESIS
텍스트 상자
29

 Motivated by this, we present an enhanced predictive
range aggregate query (EPRA) algorithm with a more
precise branch and bound criterion. Before introducing
the EPRA algorithm, we give the following lemmas.

Lemma 1 Given a moving rectangle R with fixed edge
velocities and a static query rectangle q, let Φ≠∩ Rq . If
the four vertices of R lie in the query area q at different
future timestamps, then the moving points enclosed in R
will lie in the query area q during the future time.

Proof: As an illustration of Lemma 1, consider Figure
5 where the relationship between R(a, b, c, d) and query q
is shown as case a) and case b), since Φ≠∩ Rq .
Supposing the VBR of R is< +−+−

yyxx vvvv ,,, >, then the
direction of VBR can only be depicted as in Figure 5 a)
and b), for vertices a, b, c and d will lie in q at future time.

In case a), c has the velocity < +−
yx vv , >, for Rp∈∀

point p has the velocity < yx vv , >, where −> xx vv

and +< yy vv . If c lies in q at future timestamp tc, then c
must cross the line l2 and not cross the line l3 at tc. So that
for point p, it must have crossed line l2 before tc and still
not cross line l3, the p lies in q at some timestamp before
tc.

In case b): for a, b and c will lie in q at future times,
obviously at least either b or c must lies in q at some
future timestamp ts with d, then at ts the topological
relationship between R and q can be illustrated as Figure 5
a). According to the discussion above, we can conclude
that every point enclosed in R will lie in q at some future
timestamp.

Figure 5 Topological relations between R and q

Lemma 2 Given a moving rectangle R with fixed edge
velocities and a static query rectangle q, let Φ=∩ Rq . If
the four vertices of R lie in the query area q at different
future timestamps, then the moving points enclosed in R
will lie in the query area q during the future time.

Proof: Supposing vertex d to be the first point that will
lie in the query q, then at this timestamp the topological
relationship between R and q can be shown as in Figure 5.
So according to Lemma 1, we can deduce Lemma 2.

Heuristic 1: Given an intermediate entry E and a PRA
query q(qR,qT), the subtree of E totally satisfy query q if
the vertices of MBR in entry E lie in query area qR during
future time qT. If true, the query algorithm only returns the
aggregate information of E without accessing its subtree.

Heuristic 1 reduces the searching cost considerably,
while incurring rather small computational overhead.
Specifically, the algorithm first scans the velocity bucket

queue, according to the current MBR and VBR of this
bucket, the future timestamps when each vertex lies in the
query area qR can computed. If all the vertices can lie in
qR during the query window qT, then the algorithm only
need to return the aggregate information of this bucket; or
else if none of the vertices will lie in qR during the query
window qT, then the algorithm skips this bucket;
otherwise the bucket is explored further. Similarly, when
searching the aTPR-tree, from the root point the
timestamps when four vertices of MBR in each node lie in
qR is computed. If all the vertices can lie in qR during the
query window qT, then the algorithm only need to return
the aggregate information of this node; or else if none of
the vertices will lie in qR during the query window qT,
then the algorithm skips this node; otherwise this subtree
is explored further.

The Algorithm 1 describes the pseudo-code for
processing PWRA query as follows:

Algorithm 1
Input: a PWRA query q(qR,qT), output: Agg(q)

1. Initialize Agg(q), set 0)(←qAgg
2. For each item E in the velocity bucket queue
3. Compute the timestamps when each vertex lies in qR;
4. If all the timestamps lie between qT
5. Then AggEqAggqAgg .)()(+← ;
6. Else if none of the timestamps lies between qT
7. Then skip E;
8. Else get the aTPR-tree pointed by this bucket item E;
9. from the root point, for each entry E in this node
10. Compute the timestamps when each vertex lies in qR;
11. If all the timestamps lie between qT
12. Then AggEqAggqAgg .)()(+←
13. Else if none of the timestamps lies between qT
14. then skip E
15. Else explore the subtree recursively until leaf level
16. Compute the aggregate information in leaf node E
17. Set AggEqAggqAgg .)()(+←
18. End if
19. End for
20. End if
21. End for
 End algorithm 1

6 Experimental Results and Performance
Analysis

6.1 Experimental Setting and Details

In this section, we evaluate the query and update
performance of PRA-tree with aTPR-tree and TPR*-tree.
We use the Network-based Generator of Moving Objects
[11] to generate 100k moving objects. The input to the
generator is the road map of Oldenburg (a city in
Germany). An object appears on a network node, and
randomly chooses a destination. When the object reaches
its destination, an update is reported by randomly
selecting the next destination. When normalize the data
space to 10000×10000, the default velocity of objects is

GENESIS
텍스트 상자
30

equal to 20 per timestamp. At each timestamp about 0.8
% moving objects update their velocities. The PRA
queries are generated as follows: i) the query spatial
extent qRlen is set as 100×100,400×400,800×800,1200
×1200,1600×1600 respectively, and the starting point of
its extent randomly distributes in (10000-qRlen)×(10000-
qRlen).ii) the query time window is [Tisu，Tisu+qTlen]
(Tisu is the time when the query is presented), where
qTlen=20,40,60,80,100 respectively. The query perform-
ance is measured as the average number of node accesses
in processing ten PRA queries with the same parameters.
The update performance is measured as the average node
accesses in executing 100 moving objects updates.

Table 1 summarizes the parameters of PRA-tree
exploited for the workload. For all simulations, we use a
Celeron 2.4GHz CPU with 256MByte memory.

Table 1 PRA-tree parameters
Parameter Value Description
Number
of buckets

25/50/100/1
50/200/250

The velocity domain is split
into 5×5, 5×10, 10×10, 10×15,
and 10×25 respectively.

Page size 1k The page size of PRA-tree.
Fanout 21 The average fanout of PRA-tree

in intermediate node.
Average
height

3 The average height of PRA-
tree.

6.2 Performance Analysis

We compare the query and update performance of PRA-
tree, TPR*-tree and aTPR-tree by node accesses. In order
to study the deterioration of the indexes with time, we
measure the performance of PRA-tree, aTPR-tree and
TPR*-tree, using the same query workload, after every 5k
updates.

0 400 800 1200 1600
0

60

120

180

240
0 400 800 1200 1600

0

60

120

180

240

N
od

e
ac

ce
ss

es

qRlen

 TPR*-tree
 aTPR-tree
 PRA-tree

20 40 60 80 100
0

90

180

270

360
20 40 60 80 100

0

90

180

270

360

N
od

e
ac

ce
ss

es

qTlen

 TPR*-tree
 aTPR-tree
 PRA-tree

a) qTlen=50 b) qRlen=1000

Figure 6 comparison of PTRA query performance

Figure 6 a) and b) shows the PTRA query cost as a
function of qRlen and qTlen respectively. In Figure 6 a)
we fix the parameter qTlen=50 and in Figure 6 b) we fix
the parameter qRlen=1000. As seen, the query
performance of PRA-tree works best and TPR*-tree
exhibits a worst performance. This is because PRA-tree is
constructed both on the space and velocity domain, the
area of MBRs overlap relatively less than those of aTPR-
tree and TPR*-tree, thus having a good query
performance. While TPR*-tree and aTPR-tree may visit
many unnecessary nodes for the massive overlaps
between area of MBRs with time, causing a worse query

performance. In addition, the larger the query range area,
the better the PTRA query performance of PRA tree, for
the intermediate nodes in PRA-tree store the aggregate
information of this subtree, thus reducing the node
accesses needed by TPR*-tree. The aTPR-tree holds a
relative worse performance than PRA-tree for its larger
MBRs with time.

0 400 800 1200 1600
0

200

400

600

800
0 400 800 1200 1600

0

200

400

600

800

N
od

e
ac

ce
ss

es

qRlen

 TPR*-tree
 aTPR-tree
 PRA-tree

20 40 60 80 100
0

400

800

1200

1600
20 40 60 80 100

0

400

800

1200

1600

N
od

e
ac

ce
ss

es

qTlen

 TPR*-tree
 aTPR-tree
 PRA-tree

a) qTlen=50 b) qRlen=1000

Figure 7 comparison of PWRA query performance

Figure 7 a) and b) shows the PWRA query cost as a
function of qRlen and qTlen respectively. In Figure 7 a)
we fix the parameter qTlen=50 and in Figure 7 b) we fix
the parameter qRlen=1000. As seen, the query
performance of PRA-tree works best and TPR*-tree
exhibits a worst performance. This is because the MBRs
PRA-tree overlap relatively less than those of aTPR-tree
and TPR*-tree, thus having a good query performance.
While TPR*-tree and aTPR-tree may visit many
unnecessary nodes for the massive overlaps between area
of MBRs with time. Furthermore, PRA-tree exploits more
precise branch-and-bound strategy, thus having a best
performance.

5k 10k 15k 20k 25k
0

200

400

600

800

1000
5k 10k 15k 20k 25k

0

200

400

600

800

1000

N
od

e
ac

ce
ss

es

Number of updates

 TPR*-tree
 aTPR-tree
 PRA-tree

5k 10k 15k 20k 25k
0

10

20

30

40

50
5k 10k 15k 20k 25k

0

10

20

30

40

50
N

od
e

ac
ce

ss
es

Number of updates

 TPR*-tree
 aTPR-tree
 PRA-tree

 a) update cost b) query cost
Figure 8 comparison of update& query performance

Figure 8 compares the average PRWA query and
update cost as a function of the number of updates. As
shown in figure 8 a), the node accesses needed in PRA-
tree update execution are far less than TPR*-tree and
aTPR-tree. And PRA-tree and TPR*-tree have nearly
constant update cost This is because PRA-tree exploits the
bottom-up deletion strategy, avoiding the excessive node
accesses for deletion search, while TPR*-tree and aTPR-
tree process update in top-down manner, needing more
node accesses.

Figure 8 b) shows the node accesses in processing one
PWRA query as function of an interval of 5k updates
when fixing the parameters qTlen=50 and qRlen=1000. It
is clear that the query cost increases with the number of
updates. The PRA-tree has a slow increasing query cost,
while the cost of TPR*-tree and aTPR-tree increase

GENESIS
텍스트 상자
31

significantly. This is because the MBRs of PRA-tree
extend less than those of TPR*-tree and aTPR-tree, so the
degradation is not much expensive.

0 50 100 150 200 250
160

170

180

190

200
0 50 100 150 200 250

160

170

180

190

200

N
od

e
ac

ce
ss

es

Number of velocity buckets

 PRA-tree

0 50 100 150 200 250
5

10

15

20
0 50 100 150 200 250

5

10

15

20

N
od

e
ac

ce
ss

es

Number of velocity buckets

 PRA-tree

 a) effect on update cost b) effect on query cost

Figure 9 effect of velocity bucket number

Figure 9 shows the effect of velocity buckets number
on PWRA query and update performance of PRA-tree.
We fix the parameters qTlen=50 and qRlen=1000. As
shown in Figure9 a), the update cost of PRA-tree increase
slightly with the number of velocity buckets, because the
small velocity bucket window causes the shift of moving
objects between buckets, thus incurs excessive node
accesses. From Figure 9 b) we can see, the PWRA query
performance will degrade with too many buckets, this is
because of, as mentioned earlier, the uncertainty of
moving objects distribution in velocity and space, the
probability of overlaps between the area covered by
velocity buckets and query region don’t decrease linearly
as expected. However, it may bring more TPR-tree node
accesses. In this experiment, we set the number of
velocity bucket equal to 25.

7. Conclusion
This paper investigates the problem of PRA queries. Our
contribution is a novel indexing method, referred to as
predicted range aggregate R-tree (PRA-tree). PRA-tree
considers the distribution of moving objects both in
velocity and space domain. First, we partition the velocity
domain into velocity buckets, and then we use aTPR-tree
to index the moving objects in each bucket. To support
frequent updates a supplemented hash index on leaf nodes
is added to PRA-tree. Also an extended bottom-up
deletion algorithm is developed for PRA-tree.

An open problem is to extend our work to support
large scale of concurrent PRA queries efficiently. Further,
the PRA query results need to be revaluated for the
frequent object updates, so developing novel incremental
algorithms for PRA queries is also an interesting work.

References

[1] Yufei Tao and Dimitris Papadias, Range Aggregate
Processing in Spatial Databases. IEEE TKDE,
NO.12, pp.1555-1570, 2004.

[2] Ine´s Fernando Vega Lo´pez, Richard T. Snodgrass,
and Bongki Moon. Spatiotemporal Aggregate

Computation: A Survey. IEEE TKDE, NO.2,
pp.271-286, 2005.

[3] Simonas Saltenis, Christian S. Jensen, et al..
Indexing the Positions of Continuously Moving
Objects. Proc. SIGMOD Conf., pp.331-342, 2000.

[4] Tao Y., Papadias D., and Sun J.. The TPR*-Tree:
An Optimized Spatio-Temporal Access Method for
Predictive Queries. Proc. VLDB Conf., pp.790-801,
2003.

[5] Jignesh M. Patel, Yun Chen, V. Prasad Chaka.
STRIPES: An Efficient Index for Predicted
Trajectories. Proc. SIGMOD Conf., pp.635-646,
2004.

[6] Yufei Tao, Dimitris Papadias, Jian Zhai, and Qing
Li. Venn Sampling: A Novel Prediction Technique
for Moving Objects. Proc. Int’l Conf. Data Eng.,
pp.680-691, 2005.

[7] Yufei Tao, Jimeng Sun, Dimitris Papadias.
Selectivity Estimation for Predictive Spatio-
Temporal Queries. Proc. Int’l Conf. Data Eng.,
pp.417-428, 2003.

[8] M. Jurgens and H. Lenz. The Ra*-Tree: An
Improved R-Tree with Materialized Data for
Supporting Range Queries on OLAP-Data. Proc.
DEXA Workshop, 1998.

[9] Bin Lin and Jianwen Su. On bulk loading TPR-tree.
Proc. IEEE Conf. Mobile Data Management
(MDM), pp.114-124, 2004.

[10] M. Lee, W. Hsu, C. Jensen, B. Cui, and K. Teo.
Supporting Frequent Updates in R-Trees: A
Bottom-Up Approach. Proc. VLDB Conf., pp.608-
619, 2003.

[11] Thomas Brinkhoff. A Framework for Generating
Network-Based Moving Objects. GeoInformatica,
Vol.6 (2), pp.153-180, Kluwer, 2002.

GENESIS
텍스트 상자
32

Additively Weighted Voronoi Diagrams for Optimal
Sequenced Route Queries∗

Mehdi Sharifzadeh and Cyrus Shahabi

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
[sharifza, shahabi]@usc.edu

Abstract

The Optimal Sequenced Route (OSR) query
strives to find a route of minimum length start-
ing from a given source location and pass-
ing through a number of typed locations in a
specific sequence imposed on the types of the
locations. In this paper, we propose a pre-
computation approach to OSR query in vector
spaces. We exploit the geometric properties of
the solution space and theoretically prove its
relation to Additively Weighted Voronoi dia-
grams. Our approach recursively accesses these
diagrams to incrementally build the optimal se-
quenced route. Our experimental results ver-
ify that our pre-computation approach outper-
forms the previous index-based approaches in
terms of query response time.

1 Introduction

Suppose that we are planning a Saturday trip in town
as following: first we intend to visit a shopping center
in the afternoon to check the season’s new arrivals, then
we plan to dine in an Italian restaurant in early evening,
and finally, we would like to watch a specific movie at
late night. Naturally, we intend to drive the minimum
overall distance to these destinations. In other words,
we need to find the locations of the shopping center
si, the Italian restaurant rj , and the theater tk that
shows the specific movie, which driving toward them
considering the sequence of the plan shortens our trip
(in terms of distance or time). Note that in this ex-
ample, a time constraint enforces the order in which
these destinations are to be visited; we usually do not
have dinner in the afternoon, or do not go for shopping

∗This research has been funded in part by NSF grants
EEC-9529152 (IMSC ERC), IIS-0238560 (PECASE), IIS-0324955
(ITR), and unrestricted cash gifts from Google and Microsoft.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Proceedings of the third Workshop on STDBM
Seoul, Korea, September 11, 2006

1 2 3 4 5 6 7 8 9 10 11 12

2

1

4

3

6

5

8

7 s
3

s
2

s
1

s
4

r
2

r
1

r
3

t
3

t
1

t
2

q

Figure 1: 3 different types of point sets

at late night. This type of query is also essential in
other application domains such as crisis management,
air traffic flow management, supply chain management,
and video surveillance.

We call this type of query, where the order of the se-
quence in which some points must be visited is enforced
and cannot be changed, the Optimal Sequenced Route
or OSR query. Similar types of the planning queries
have received recent attention by the database commu-
nity [5, 9, 3, 2] to solve problems in the domains of
air traffic flow and supply chain management, which
shows the importance of these query types. We use the
first example described above as our running example
throughout the paper. Figure 1 shows three different
types of point sets shown by white, black and gray cir-
cles, which represent shopping centers, Italian restau-
rants, and theaters, respectively, and a starting point
q (shown by 4). The distance between two points is
their Manhattan distance. Here, the route (q, s1, r1, t1)
(shown with solid lines in the figure) with the length
of 12 units is the optimum answer to our query. One
can show that OSR query may not be optimally an-
swered by simply performing a series of independent
nearest neighbor queries at different locations (e.g., 15-
unit length route (q, s2, r2, t2)).

We, for the first time, introduced the OSR query in
[8] and proposed two online approaches for vector and
metric spaces (e.g., road networks). The R-LORD al-
gorithm of [8] subsequently performs range queries uti-
lizing an R-tree index structure to filter out the points
that cannot possibly be on the optimal route, and then
builds the optimal route in reverse sequence (i.e., from

GENESIS
텍스트 상자
33

ending to the starting point). In this paper, we exploit
the geometry of the OSR problem space to propose a
novel pre-computation algorithm which utilizes Voronoi
diagrams for processing OSR queries in vector spaces.
In our running examples, we use Manhattan distance
in R2 which is a representative of the network distance
if the road network consists of a set of north-south and
east-west roads [1].

1.1 Contributions

Assume that we are only interested in the optimal se-
quenced routes that follow a fixed sequence M . For
example, assume that this fixed sequence for Figure 1
is (white, black, grey). Suppose we can partition the
space of points of interest (e.g., R2) into regions each
including all the points with a common OSR. For in-
stance, in Figure 1, there are many points similar to q
for which the optimal sequenced route to a white, then
a black, and finally a grey point is the route (s1, r1, t1).
Suppose that our partitioning identifies the region in-
cluding these points. Furthermore, assume that the
partitioning also identifies the region corresponding to
each and every possible route (si, rj , tk) to a white, a
black, and a grey point. Assume that we associate and
store all regions and their corresponding OSRs. There-
fore, for a given starting point q we can address the OSR
query with sequence M by simply locating the unique
region that includes q and reporting its correspond-
ing optimal sequenced route. In Section 3, we prove
that such partitioning exists as an Additively Weighted
Voronoi diagram, a specific type of general Voronoi di-
agrams. We theoretically exploit interesting properties
of these diagrams which makes them appropriate data
structures for efficient OSR query processing.

We enhance the above query processing approach by
exploiting an interesting property of OSRs proved in
Lemma 1 (see Section 3). The lemma states that if
(s1, r1, t1) is q’s optimal route to a white, a black, and
a grey point, then (r1, t1) is s1’s optimal route to a
black and then a grey point. Recursively, (t1) is r1’s
optimal route to a grey point. Lemma 1 enables us to
avoid storing the complete OSR corresponding to each
region of the diagram for a given sequence M ; we store
only the first point of the OSR for each region of the
Voronoi diagram (e.g., s1 for the region corresponding
to (s1, r1, t1)). Instead, we require to compute and store
the Voronoi diagrams corresponding to all suffixes of M .

For instance, to answer queries with sequence
(white, black, grey) in Figure 1, our approach re-
quires the diagrams corresponding to three sequences
(white, black, grey), (black, grey), and (grey). We re-
fer to these diagrams as the OSR-Voronoi family of se-
quence (white, black, grey). Now, we iteratively process
a given OSR query. For the starting point q, we first
find s1, the white point associated with the region in-
cluding q in the diagram of (white, black, grey). Then,
we find r1, the black point stored with the region in-
cluding s1 in the diagram of (black, grey). Finally, we
seek for t1, the grey point corresponding to the region

including r1 in the diagram of (grey). Now, the final
OSR of q is the route (s1, r1, t1), which includes s1, r1,
and t1 in the order of their retrieval.

Our OSR query processing using Voronoi diagrams
best suits the applications where the sequences of
user’s interest are known in advance. This allows pre-
computation of the corresponding diagrams. Notice
that using the OSR-Voronoi family of a sequence M ,
we can address OSR queries of all suffix sequences
of M . Through extensive experiments with a real-
world dataset, we show that our approach significantly
outperforms the R-LORD approach proposed in [8]
in terms of response time. We also show that the
off-line process used to build the OSR-Voronoi fam-
ily of a single sequence is reasonably fast. With a
given sequence M , this pre-computation phase takes
O(

∑|M |
i=1 |UMi

| log |UMi
|) computation steps.

2 Preliminaries

2.1 Formal Problem Definition

In this section, we describe the terms and notations
used in [8] to formally define the OSR query. We use
the same notations throughout the paper .

Let U1, . . . , Un be n sets, each containing points in a
d-dimensional space Rd, and D(., .) be a distance met-
ric defined in Rd where D(., .) obeys the triangular in-
equality. To illustrate, in the example of Figure 1, U1,
U2, and U3 are the sets of black, white, and gray points,
representing restaurants, shopping centers and theaters,
respectively. We first define the following four terms.
Definition 1: Given n, the number of point sets Ui, we
say M = (M1,M2, . . . , Mm) is a sequence if and only if
1 ≤ Mi ≤ n for 1 ≤ i ≤ m. That is, given the point
sets Ui, a user’s OSR query is valid only if she asks for
existing location types. For the example of Figure 1
where n = 3, (2, 1, 2) is a sequence (specifying a shop-
ping center, a restaurant, and a shopping center), while
(3, 4, 1) is not a sequence because 4 is not an existing
point set. We use sfx(M, i) = (Mi+1, . . . , Mm) to refer
to the suffix of M with size m− i.
Definition 2: We say R = (p1, p2, . . . , pr) is a route
if and only if pi ∈ Rd for each 1 ≤ i ≤ r. We use
p ⊕R = (p, p1, . . . , pr) to denote a new route that starts
from starting point p and goes sequentially through p1

to pr. The route p ⊕R is the result of adding p to the
head of route R. We use sfx(R, i) = (pi+1, . . . , pr) to
refer to the suffix of R with size r − i.
Definition 3: We define the length of a route R =
(p1, p2, . . . , pr) as

L(R) =
r−1∑

i=1

D(pi, pi+1) (1)

Note that L(R) = 0 for r = 1. For example, the length
of the route (s2, r2, s3) in Figure 1 is 4 units where D
is the L1 norm (i.e., Manhattan distance).
Definition 4: Let M = (M1,M2, . . . , Mm) be a se-
quence. We refer to the route R = (p1, p2, . . . , pm) as a

GENESIS
텍스트 상자
34

sequenced route that follows sequence M if and only if
pi ∈ UMi

where 1 ≤ i ≤ m. In Figure 1, (s2, r2, s3) is a
sequenced route that follows (2, 1, 2) which means that
the route passes only through a white, then a black and
finally a white point.

Now, we formally define the OSR query.
Definition 5: For a given starting point q in Rd and
the sequence M = (M1,M2, . . . , Mm), the Optimal
Sequenced Route (OSR) Query, Q(q, M), is defined
as finding a sequenced route R = (p1, . . . , pm) that fol-
lows M where the value of the following function L is
minimum over all the sequenced routes that follow M :

L(q, R) = D(q, p1) + L(R) (2)

Note that L(q, R) is in fact the length of route Rq =
q ⊕ R. Throughout the paper, we use Q(q,M) =
(p1, p2, . . . , pm) to denote the answer to the OSR query
Q. Without loss of generality, we assume that this opti-
mal route is unique for given q and M . For the example
in Section 1 where (U1, U2, U3) = (black, white, gray),
M = (2, 1, 3), and D(., .) is the shortest path distance,
the answer to the OSR query is Q(q, M) = (s1, r1, t1).

One special variation of OSR is when the user asks
for an optimal sequenced route that ends in a given
destination q′. A special case of this query is where
she intends to return to her starting location q. This
variation of OSR can simply be addressed by defining
a new point set Un+1 = {q′} and a new sequence M ′ =
(M1, . . . ,Mm, n + 1). Consequently, Q(q,M ′) will be
the optimal route following M which ends in q′.

Table 1 summarizes the notations we use throughout
the paper.

2.2 Voronoi Diagrams

The general Voronoi diagram of a given set S including
points in Rd partitions the space into regions each in-
cluding all points with a common closest point in the
given set according to a distance metric d(., .). The re-
gion corresponding to the point p contains all the points
q ∈ Rd for which we have

∀p′ ∈ S, p′ 6= p ⇒ d(q, p) ≤ d(q, p′) (3)

The equality holds for the points on the borders of p’s
and p′’s regions. Incorporating arbitrary distance met-
rics d(., .) in the above equation results in different vari-
ations of Voronoi diagrams. Figure 2 shows the stan-
dard Voronoi diagram of nine points in R2 where the
distance metric is Euclidean. We refer to the region
V (p) containing the point p as its Voronoi cell. We also
refer to point p as the generator of Voronoi cell V (p).

Now assume that S is a set of points p ∈ Rd each
assigned a weight w(p) ∈ R. We define the distance
metric d(x, p) as D(x, p) + w(p) where D(., .) denotes
a distance metric. Without loss of generality, we as-
sume that D(., .) is Euclidean distance. The Additively
Weighted (AW) Voronoi diagram of the points in S
with respect to distance function D(., .) is defined us-
ing Equation 3. Here, the cell corresponding to point p

p

V(p)

Figure 2: The standard Voronoi diagram of 9 points,
the point p and its Voronoi cell V (p)

Figure 3: The AW-Voronoi diagram of 13 points each
labeled with its positive weight

contains all the points q ∈ Rd for which we have

∀p′ ∈ S, p′ 6= p ⇒ D(q, p)+w(p) ≤ D(q, p′)+w(p′) (4)

Figure 3 illustrates the AW-Voronoi diagram of a set of
13 points labeled with their positive weights.

The Computational Geometry literature generally
uses negative weights in Equation 4 to define the AW-
Voronoi diagrams. When negative weights are assigned
to points p, their AW-Voronoi diagram can be seen as
the standard Voronoi diagram of a set of d-dimensional
balls each centered at a point p with a radius equal to
the absolute value of w(p). Here, the set S includes
balls such as b centered at a point p. The distance
d(q, b) between a ball b and the point q outside b is the
smallest Euclidean distance between q and any point in-
side b. The literature uses this view to define the AW-
Voronoi diagram of the centers of a set of balls (e.g.,
disks in R2) [6]. Each region of the space is assigned
to a unique ball which is the common closest ball of all
points inside that region. Figure 4 illustrates defining
the AW-Voronoi diagram of five points with negative
weights w(p) < 0 using five corresponding disks. Here,
d(q, c), the distance of a point q to a disk c centered at
p with radius r = −w(p) is defined as D(q, p) − r. As
the figure shows, point q which is inside the cell of disk
c (corresponding to point p) is closer to disk c than to
disk c′. It also shows that some points such as p′′ have
empty cells. That is, no point in the space is closer to
the disk c′′ than to any other disk.

The AW-Voronoi diagram demonstrates the follow-
ing properties:

Property AWV-1 With Euclidean distance (i.e. L2

norm) as metric D(., .) in Equation 4, the cell edges
are either straight lines or hyperbolic curves [6].

GENESIS
텍스트 상자
35

Symbol Meaning Symbol Meaning

Ui a point set in Rd |Ui| cardinality of the set Ui

n number of point sets Ui D(., .) distance function in Rd

M a sequence, = (M1, . . . , Mm) |M | m, size of sequence M = number of items in M
Mi i-th item of M R route (p1, p2, . . . , pr), where pi is a point
|R| r, number of points in R pi i-th point in R
L(R) length of R q ⊕ R route Rp = (q, p1, . . . , pr) where R = (p1, . . . , pr)
sfx(R, i) route (pi+1, . . . , pr), a suffix of R sfx(M, i) sequence (Mi+1, . . . , Mm), a suffix of M
L(q, R) L(q ⊕ R), length of the route q ⊕ R

Table 1: Summary of notations

q

p

p'

c'

c
c''

p''

-w(p)

d(q,c)

Figure 4: The AW-Voronoi diagram of five disks (i.e.,
five points with negative weights). Here, the distance
function D(., .) is Euclidean.

Hence, these curved cells are not convex polygons
as the cells of general Voronoi diagrams. Using
Manhattan distance (i.e. L1 norm), all edges be-
come straight lines.

Property AWV-2 The arbitrary numeric values of
weights can result in empty cells [6]. We refer to
the generator point of an empty cell as a trivial
point.

Property AWV-3 The AW-Voronoi diagram of n
points consists of at most O(n) connected edges
[7].

3 OSR and AW-Voronoi Diagrams

Assume that we are only interested in the optimal se-
quenced routes that follow a fixed sequence M (i.e.,
Q(q, M) for points such as q). Suppose we can partition
the space Rd into regions each including all the points q
with a common OSR. That is, for any two points x and
y inside the same region, we have Q(x,M) = Q(y, M).
Assume that for each region, we pre-compute this com-
mon OSR. Furthermore, we store all regions and their
corresponding OSRs for the given sequence M . There-
fore, for a given starting point q we can address the
query Q(q, M) by simply locating the region including
q and reporting its corresponding optimal route.

In this section, we show that the above partitioning
which facilitates processing OSR queries exists as an

AW-Voronoi diagram. We prove that a unique property
of optimal sequenced routes enables us to employ this
partitioning. First, we prove Lemma 1 which states that
the optimal route from pi that follows a suffix of the
original sequence M is the same as the corresponding
suffix of the optimal route from q that follows M .

Lemma 1. Given the sequence M = (M1, . . . , Mm)
and the starting point q, if Q(q,M) = R = (p1, . . . , pm),
then for any 1 ≤ i < m, we have Q(pi,M

′) = sfx(R, i)
where M ′ = sfx(M, i).

Proof. The proof is by contradiction. Assume that
Q(pi, M

′) = R′ = (p′1, . . . , p
′
m−i). Obviously

sfx(R, i) = (pi+1, . . . , pm) follows sequence M ′, there-
fore we have L(pi, R

′) < L(pi, (pi+1, . . . , pm)). We add
L(q, (p1, . . . , pi)) to the both sides of this inequality to
get:

L(q, (p1, . . . , pi, p
′
1, . . . p

′
m−i)) < L(q, (p1, . . . , pm))

The above inequality shows that the answer to
Q(q, M) must be (p1, . . . , pi, p

′
1, . . . , p′m−i) which clearly

follows sequence M . This contradicts our assumption
that Q(q, M) = (p1, . . . , pm).

This property of the OSRs implies that only the last
point of the optimal sequenced route Q(q, M) (i.e., pm)
must necessarily be the closest point of UM to its pre-
vious point in the route (i.e., pm−1).

Here, we utilize the special case of Lemma 1 for the
first point of the route (i.e., p1 for i = 1). For instance,
if the optimal route from point q to a white, a black,
and a grey point is (s1, r1, t1), then the optimal route
from the point s1 to a black then a grey point is (r1, t1)
(see Figure 1). Therefore, if we identify the white point
s1 with which the optimal route from q to a white, a
black, then a grey point starts (i.e., the first point of
the route) and we know that the optimal route from
s1 to a black and then a grey point is (r1, t1), we have
found the optimal route from q (we just append s1 to
the head of (r1, t1)). The following lemma identifies this
first point.

Lemma 2. Given the sequence M and the starting
point q, if there exists a point p1 ∈ UM1 so that
∀p′1 ∈ UM1 , p

′
1 6= p1

D(q, p1)+L(p1, Q(p1,M
′)) < D(q, p′1)+L(p′1, Q(p′1, M

′))
(5)

where M ′ = sfx(M, 1), then the optimal route Q(q,M)
starts with p1 which is followed by the points in
Q(p1,M

′) (i.e., Q(q, M) = p1 ⊕Q(p1, M
′)).

GENESIS
텍스트 상자
36

Proof. The proof is by contradiction. Assume that
Q(q, M) = (p′1, . . . , p

′
m) starts with p′1 6= p1. By def-

inition, the length of q ⊕ Q(q, M) is minimum over all
the routes which follow sequence M . It is clear that the
route p1 ⊕Q(p1, M

′) follows M , so we have

L(q, (p1 ⊕Q(p1, M
′))) ≥ L(q,Q(q,M)) (6)

Lemma 1 states that we have Q(p′1,M
′) = (p′2, . . . , p

′
m)

where M ′ = sfx(M, 1). Hence, we get

Q(q, M) = p′1 ⊕Q(p′1,M
′) (7)

Therefore, we replace Q(q, M) in Equation 6 to get

L(q, p1 ⊕Q(p1,M
′)) ≥ L(q, p′1 ⊕Q(p′1,M

′)) (8)

Finally, we use the definition of function L() to change
Equation 8 as follows for the point p′1 6= p1:

D(q, p1)+L(p1, Q(p1,M
′)) ≥ D(q, p′1)+L(p′1, Q(p′1, M

′))
(9)

The above inequality contradicts the one given in the
assumption of the lemma.

In the example of Figure 1, U1, U2, and U3 are the
sets of black, white, and gray points, respectively. For
the sequence M = (2, 1, 3), we have M ′ = (1, 3) and

Q(s1,M
′) = (r1, t1), Q(s2,M

′) = (r3, t3),

Q(s3, M
′) = (r1, t1), Q(s4,M

′) = (r1, t1)

D(q, s1) + L(s1, Q(s1,M
′)) = 3 + (7 + 2) = 12

D(q, s2) + L(s2, Q(s2,M
′)) = 2 + (3 + 9) = 14

D(q, s3) + L(s3, Q(s3,M
′)) = 4 + (8 + 2) = 14

D(q, s4) + L(s4, Q(s4,M
′)) = 5 + (9 + 2) = 16

According to Lemma 2, the OSR of q to a white, a black
and a grey point starts with s1 followed by Q(s1,M

′) =
(r1, t1).

We now strive to find the locus of all points in space
whose OSR that follows a given sequence starts with a
point p1 and hence all share a common OSR for that
sequence. In Figure 1, for any white point si, there
are points such as q whose optimal routes given the
sequence (white, black, grey) start with si. Notice that
the rest of their optimal route is the same (e.g., (r1, t1)
for s1) and depends only on the location of point si and
the given sequence (e.g., (black, grey)).

Theorem 1. Let M = (M1,M2, . . . , Mm) be a given
sequence and M ′ = sfx(M, 1). The locus of all points q
with a common optimal sequenced route Q(q, M) which
starts with p1 is inside p1’s cell in the AW-Voronoi di-
agram of the set of points in UM1 where the weight of
each point p is w(p) = L(p,Q(p, M ′)). Their common
optimal route is Q(q, M) = p1 ⊕Q(p1,M

′).

Proof. Let the set S = UM1 and w(p) = L(p,Q(p,M ′)).
According to the definition of the AW-Voronoi cell of
p1 given by Equation 4, for the point q inside this cell
we get ∀p′1 ∈ UM1 , p

′
1 6= p1

D(q, p1)+L(p1, Q(p1,M
′)) < D(q, p′1)+L(p′1, Q(p′1, M

′))

Therefore, according to Lemma 2 the optimal route
Q(q, M) is p1 ⊕Q(p1,M

′) which clearly starts with p1,
the generator of the Voronoi cell including q.

Given a sequence M , we refer to the AW-Voronoi
diagram of the points p in UM1 using the weights
w(p) = L(p,Q(p, M ′)) where M ′ = sfx(M, 1), as the
OSR-Voronoi diagram of the sequence M . Fig-
ure 5a illustrates the OSR-Voronoi diagram of se-
quence (white, black, grey) (i.e., M = (2, 1, 3)). The
distance function D(., .) is Manhattan distance and
each white point si is labeled with its weight (i.e.,
L(si, Q(si, (1, 3))). The OSR-Voronoi diagram has
some interesting properties whose proofs are omitted
due to lack of space:

Property OSRV-1 All points in the OSR-Voronoi di-
agram of the sequence M (any p ∈ UM1) have pos-
itive weights.

Property OSRV-2 Given the sequence M , if for the
points p and p′ ∈ UM1 we have Q(p,M ′) =
Q(p′,M ′) = (p2, . . . , pm) and D(p, p2) = D(p, p′)+
D(p′, p2) where M ′ = sfx(M, 1), then p is a triv-
ial point in OSR-Voronoi diagram of sequence M .
That is, the Voronoi cell of p is empty and no OSR
that follows M starts with p.

4 OSR Query Processing using OSR-
Voronoi Diagrams

In this section, we describe our OSR query process-
ing approach that utilizes OSR-Voronoi diagrams de-
fined in Section 3. Assume that we have already built
the OSR-Voronoi diagram of a given sequence M . The
user asks for the OSR Q(q, M) given a starting point
q. Subsequently, we locate the Voronoi cell which con-
tains q in the OSR-Voronoi diagram of M . According
to Theorem 1, the OSR of q starts with the genera-
tor of this cell (e.g., s1 in Figure 5a). This point is
then followed by the result of another OSR query (i.e.,
Q(s1, M

′)). If we already knew the answer to this sec-
ond query, we immediately report user’s desired route
as s1⊕Q(s1,M

′). Now the problem is that the we need
the OSR-Voronoi diagram of sequence M ′ to answer the
second OSR query. Repeating the same reasoning for
M ′ verifies that we will require the OSR-Voronoi dia-
grams of all suffixes of the original sequence M . That
is, to find the OSR which follows M = (M1, . . . , Mm)
we need the OSR-Voronoi diagrams of all sequences
(Mi, . . . , Mm) for all 1 ≤ i ≤ m. We refer to these dia-
grams as the OSR-Voronoi family of M . For instance,
to answer queries with sequence (white, black, grey) in

GENESIS
텍스트 상자
37

1 2 3 4 5 6 7 8 9 10 11 12

2

1

4

3

6

5

8

7

10

12
9

11

s
3

s
2

s
1

s
4

q

1 2 3 4 5 6 7 8 9 10 11 12

2

1

4

3

6

5

8

7 s
3

s
2

s
1

s
4

r
2

r
1

r
3

2

11

9

1 2 3 4 5 6 7 8 9 10 11 12

2

1

4

3

6

5

8

7

r
2

r
1

r
3

t
3

t
1

t
2

Figure 5: The OSR-Voronoi diagrams of a) the sequence (white, black, grey) , b) the sequence (black, grey), and
c) the sequence (grey) using the white points in Figure 1

Function ComputeOSR(point q, sequence M)
Returns route

1. V (p) = the cell containing q in the OSR-Voronoi diagram of M
2. p = the generator of V (p)
3. if |M | = 1 then
4. return (p)
5. else
6. return p⊕ ComputeOSR(p, sfx(M, 1))

Figure 6: Computing OSR for query Q(q, M)

Figure 1, we require the OSR-Voronoi diagrams of se-
quences (white, black, grey), (black, grey), and (grey).
Notice that the OSR-Voronoi family of a sequence can
also be used to answer OSR queries of any suffix of that
sequence.

4.1 Query Processing

Here, we assume that we have already built the OSR-
Voronoi family of a given sequence M . Subsequently,
we employ this set of diagrams to answer the OSR query
Q(q, M). Section 4.2 shows how we recursively build all
these diagrams.

We describe our query processing approach using
the example of Figure 1. Notice that here the se-
quence is (white, black, grey) and the distance func-
tion D(., .) is Manhattan distance. We have already
built and loaded the OSR-Voronoi diagrams of se-
quences (white, black, grey), (black, grey), and (grey)
illustrated in Figures 5a, 5b, and 5c, respectively. No-
tice that the last diagram is the standard Voronoi di-
agram on grey points as the OSR of a point q which
follows the sequence (grey) is simply the closest grey
point to q (see Lemma 1 for i = m − 1). First, we lo-
cate the cell containing q in the OSR-Voronoi diagram
of (white, black, grey). Following Theorem 1, our OSR
starts with s1, the generator of this cell (see Figure
5a). The rest of the OSR is the same as the OSR of s1

which follows (black, grey). Hence, we next find r1, the
generator of the cell containing s1 in the OSR-Voronoi
diagram of (black, grey) shown in Figure 5b. Finally,
we find the closest grey point to r1 as the generator
of the cell containing r1 in the OSR-Voronoi diagram
of (grey) (see Figure 5c). The OSR of point q which
follows sequence (white, black, grey) is (s1, r1, t1) built
using the three subsequently retrieved points. Figure
6 shows the pseudo-code of our OSR query processing
approach as a recursive function ComputeOSR(point,
sequence).

4.2 Data Structures

The OSR-Voronoi diagrams are instances of AW-
Voronoi diagrams whose weights are constrained by
geometry. Therefore, we build them using any al-
gorithm for building AW-Voronoi diagrams. The al-
gorithm proposed by Karavelas and Yvinec [4] com-
putes the diagram of n points in O(n log n) steps.
Our approach utilizes the OSR-Voronoi diagrams of
all suffixes of a sequence M to find the OSRs that
follow M . Therefore, to answer queries with se-
quence (white, black, grey) in Figure 1, we require
the OSR-Voronoi diagrams of this sequence together
with those of sequences (black, grey) and (grey). In
general, for a given sequence M , we require |M |
OSR-Voronoi diagrams of all suffixes of M to answer
Q(q, M). Hence, the pre-computation phase takes
O(

∑|M |
i=1 |UMi | log |UMi |) computation steps.

We incrementally build the OSR-Voronoi family of
(white, black, grey) as follows. First, we build the OSR-
Voronoi diagram of (grey) shown in Figure 5c which
is simply the standard Voronoi diagram of the set of
grey points T = {t1, t2, t3} with respect to Manhattan
distance [6]. Second, for each black point ri we find
the generator grey point of the cell containing ri in this
OSR-Voronoi diagram. In Figure 5c, each black point
is connected to its corresponding grey generator by a
solid line. We assign the distance between the point
ri and its corresponding grey point to the weight of ri.
For instance, we assign w(r1) = 2. Third, we build
the OSR-Voronoi diagram of (black, grey) using the set
of black points R = {r1, r2, r3} and their weights (see
Figure 5b). Similar to the previous step, for each white
point si we locate rx, the generator of the cell which
contains si in the diagram built in this step and assign
D(si, rx) + w(rx) to the weight of si. For example, the
weight of s1 is 7 + 2 = 9. Finally, we build the OSR-
Voronoi diagram of (white, black, grey) using the set of
white points S = {s1, s2, s3, s4} with respect to their
corresponding weights (see Figure 5a). Figure 7 shows
the pseudo-code of the above algorithm.

Once we computed the OSR-Voronoi family of a
sequence, we require to store the boundaries of the
Voronoi cells corresponding to each OSR-Voronoi dia-
gram of the family. However, with Euclidean distance,
these boundaries consist of curved edges and hence can-
not be stored as simple polygons. This problem can be

GENESIS
텍스트 상자
38

Function BuildOSRVoronois(sequence M = (M1, . . . , Mm))
Returns OSR-Voronoi diagrams

1. OSRV ((Mm)) = the standard Voronoi diagram of UMm
2. for each p in UMm
3. w(p) = 0
4. i = m− 1
5. while i > 0 do {
6. M ′ = sfx(M, i)
7. for each p in UMi

{
8. V (p′) = the cell containing p in the OSRV (M ′)
9. p′ = the generator of V (p′)
10. w(p) = D(p, p′) + w(p′)

}
11. OSRV (sfx(M, i− 1)) = the AW-Voronoi diagram of UMi
12. i = i− 1

}
13. return OSRV ’s

Figure 7: Incrementally building the data structures
required to answer the OSR query Q(q,M)

solved in the two following ways. Each solution guar-
antees that given a starting point q, we can easily de-
termine the cell containing q.

1. The cells are approximated by convex polygons
and consequently these polygons are stored. The
polygons are also indexed by a spatial index struc-
ture such as R-tree. Therefore, the cell containing
the starting point q is easily retrieved by a spatial
contains() query. This solution introduces an er-
ror in OSR query processing proportional to the
approximation error.

2. Instead of storing the cells, the neighborhood graph
of the cell generators is stored (similar to Delaunay
graph for the general Voronoi diagrams [6]). Ver-
tices of the graph are the generators of the OSR-
Voronoi diagram of M . There is a graph edge
connecting p and p′ iff V (p) and V (p′) have com-
mon boundaries. Now, to determine the inclusion
of a starting point q in a cell, we start traversing
the graph from any vertex p. We iteratively visit
the vertex p′, the neighbor of the current vertex p
which minimizes D(q, p′) + w(p′) among p’s neigh-
bors and p itself. When no such a vertex is found,
q is inside the Voronoi cell of the current vertex p.

5 Performance Evaluation

We conducted several experiments to evaluate the per-
formance of our proposed approach. We compared the
query response time of our Voronoi-based approach (de-
noted by OSRV) with that of our R-LORD algorithm
proposed in [8]. We also evaluated our new OSRV ap-
proach with respect to its overall time required to build
the OSR-Voronoi family of a given query. We evaluated
OSRV by investigating the effect of the following two
parameters on its performance: 1) size of sequence M
in Q(q, M) (i.e., number of points in the optimal route),
and 2) cardinality of the datasets (i.e.,

∑n
i=1 |Ui|).

We used a real-world dataset which is obtained from
the U.S. Geological Survey (USGS) and consists of
950, 000 locations of different businesses (e.g., schools)
in the entire country. Table 2 shows the characteristics
of this dataset. In our experiments, we randomly se-
lected sets of 40K, 70K, 250K and 500K, and 950K

Points Size Points Size
Hospital 5,314 Building 15,127
Summit 69,498 Cemetery 109,557
Church 127,949 School 139,523
Populated place 167,203 Institution 319,751

Table 2: USGS dataset

points from this dataset. We used CGAL’s implemen-
tation of [4] to implement the OSR-Voronoi diagrams 1.
We ran 1000 OSR queries from random starting points
on a DELL Precision 470 with Xeon 3.2 GHz processor
and 3GB of RAM.

In the first set of experiments, we study the perfor-
mance of OSRV in terms of query time. Figure 8a shows
the query response time for our OSRV and R-LORD ap-
proaches when the number of points in optimal route
(i.e., |M |) varies from 3 to 12. All the required diagrams
fit in main memory, so the reported time represents
CPU time. While the figure depicts the experimental
results on 250K USGS dataset, the trend is the same
with those of our other datasets with different cardi-
nalities. Figure shows that OSRV always outperforms
R-LORD. As expected, R-LORD performs slower with
the bigger sequences as it requires more range queries
on the R-tree. In contrast, OSR query with OSRV has
almost no cost in time. OSRV’s response time is unno-
ticeably increasing as OSRV consists of a sequence of
only |M | point locations on our efficient AW-Voronoi
diagrams.

Figure 8b illustrates the result of our second set of
experiments on the impact of the cardinality of the
dataset on the efficiency of OSRV. We varied the cardi-
nality of our real datasets from 40K to 950K and ran
OSR queries of sequence size |M | = 6. Figure 8b shows
that OSRV’s performance is not much affected by the
dataset size and verifies the scalability of OSRV. This
is while the processing time of R-LORD moderately in-
creases for larger datasets. For example, R-LORD’s
query response time is 0.09 seconds for 40, 000 points,
and it increases by a factor of 16 when the number of
points increases to 950, 000 by a factor of 24. Conse-
quently, OSRV is the superior approach although R-
LORD also exhibits a reasonable performance for large
datasets.

The last experiment aims to measure the time re-
quired to build the diagrams in the OSR-Voronoi family
of a given sequence. Note that this is a batch process
which is performed off-line. Figure 8c illustrates the av-
erage build time for different sizes of the sequence M for
250K dataset. Moreover, Figure 8d depicts the result
of the same experiment for different dataset cardinali-
ties when the sequence size is 6. Figure 8c shows that
it takes only 9 minutes to build 12 OSR-Voronoi dia-
grams needed for the OSR query of a sequence of size
12. However, Figure 8d shows that despite its excellent
performance for small datasets, OSRV’s procedure for
building the OSR-Voronoi family of a sequence of size
6 takes about 36 minutes for the 950K dataset. This
is still a reasonable performance for an off-line process.

1http://www.cgal.org/

GENESIS
텍스트 상자
39

0.0

0.2

0.4

0.6

0.8

3 6 9 12

No of points in route (|M|)

R
es

p
o

n
se

 t
im

e
(s

ec
)

R-LORD

OSRV

0.0

0.4

0.8

1.2

1.6

40 70 250 500 950

Dataset cardinality (K)

R
es

p
o

n
se

 t
im

e
(s

ec
)

R-LORD

OSRV

0

1

2

3

4

5

6

7

8

9

10

3 6 9 12

No of points in route (|M|)

B
u

il
d

 t
im

e
(m

in
)

0

5

10

15

20

25

30

35

40

40 70 250 500 950

Dataset cardinality (K)

B
u

il
d

 t
im

e
(m

in
)

a) Query cost vs. b) Query cost vs. c) Build cost vs. d) Build cost vs.
sequence size (250K) cardinality (|M | = 6) sequence size (250K) cardinality (|M | = 6)

Figure 8: Experimental results on the performance of OSRV

We believe that upgrading main-memory AW-Voronoi
diagrams to their secondary-memory versions will sig-
nificantly improve OSRV’s off-line performance for large
datasets.

6 Related Work

In an independent research, Li et al. [5] studied Trip
Planning Queries (TPQ), a class of queries similar to
our OSR query. With a TPQ, the user specifies a
subset (not a sequence) of location types R and asks
for the optimal route from her starting location to a
specified destination which passes through at least one
database point of each type in R. In particular, TPQ
eliminates the sequence order of OSR to define a new
query. Consequently, finding accurate solutions to TPQ
becomes NP-hard as the size of candidate space signif-
icantly grows. The paper proposes several approxima-
tion methods to provide near-optimal answers to TPQs.
In theory, OSR algorithms are able to address address
TPQ queries. This can be done by running any OSR
algorithm |R|! times, each time using a permutation of
point types in R as the sequence M and returning the
optimal route among all the resulted routes. This expo-
nentially complex solution is inefficient in practice. The
approximation algorithms of [5] are designed to handle
the exponential growth of the problem’s search space.

Terrovitis et al. [9] addressed k-stops shortest path
problem for spatial databases. The problem seeks for
the optimal path from a starting location to a given des-
tination which passes through exactly k intermediate
points of the location database. The k-stops problem is
a specialized case of OSR queries. To be specific, OSR
reduces a k-stops problem to query Q(q, M) where q is
the starting location, M = (1, . . . , 1), |M | = k, and U1

is the single given point set representing the location
database. The destination is considered by the varia-
tion of the above OSR query described in Section 2.1.
A major drawback is that [9] only considers Euclidean
space.

7 Conclusions and Future work

We studied the problem space of the OSR query in vec-
tor spaces. We exploited the geometric properties of
the solution space and identified the AW-Voronoi di-
agrams as its corresponding geometric representation.
In particular, we proved that given a sequence M the

locus of all points with a common optimal sequenced
route R is the cell of the first point of R in a AW-
Voronoi diagram whose weights depend on the sequence
M . Based on our theoretical findings, we proposed a
novel OSR query processing approach using a family of
pre-computed AW-Voronoi diagrams. Through exper-
iments with a real-world dataset, we showed that our
approach significantly outperforms the previous solu-
tions to OSR query in terms of response time.

While in this paper we adapted AW-Voronoi dia-
grams for OSR queries, we believe that these diagrams
can also be used to answer a variation of OSR query
where the sequence is not important (TPQ problem [5]).
An orthogonal problem is studying efficient algorithms
to store the AW-Voronoi diagrams in secondary storage.

References

[1] Y. Du, D. Zhang, and T. Xia. The Optimal-Location
Query. In Proceedings of SSTD’05, pages 163–180, 2005.

[2] C. du Mouza, P. Rigaux, and M. Scholl. Efficient Eval-
uation of parameterized pattern queries. In Proceedings
of CIKM’05, pages 728–735. ACM, 2005.

[3] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J.
Tsotras. Complex Spatio-Temporal Pattern Queries. In
Proceedings of VLDB’05, pages 877–888, 2005.

[4] M. I. Karavelas and M. Yvinec. Dynamic Additively
Weighted Voronoi Diagrams in 2d. In Proceedings of
the 10th Annual European Symposium on Algorithms
(ESA’02), pages 586–598, London, UK, 2002. Springer-
Verlag.

[5] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S.-H. Teng. On Trip Planning Queries in Spatial Data-
bases. In Proceedings of SSTD’05, pages 273–290.
Springer, August 2005.

[6] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spa-
tial Tessellations, Concepts and Applications of Voronoi
Diagrams. John Wiley and Sons Ltd., 2nd edition, 2000.

[7] Y. Ostrovksy-Berman. Computing Transportation
Voronoi Diagrams in Optimal Time. In Proceedings of
the 21st European Workshop on Computational Geome-
try (EWCG’05), pages 159–162, 2005.

[8] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The
Optimal Sequenced Route. The VLDB Journal, 2006.
To appear.

[9] M. Terrovitis, S. Bakiras, D. Papadias, and K. Moura-
tidis. Constrained Shortest Path Computation. In Pro-
ceedings of SSTD’05, pages 181–199. Springer, August
2005.

GENESIS
텍스트 상자
40

On Construction of Holistic Synopses

under the Duplicate Semantics of Streaming Queries

David Toman

D. R. Cheriton School of Computer Science
University of Waterloo, Canada

david@uwaterloo.ca

Abstract

Transaction-time temporal databases and
query languages provide a solid framework
for analyzing the properties of queries over
data streams. In this paper we focus on
issues connected with the construction of
space-bounded synopses that enable answer-
ing of continuous queries over unbounded
data streams. We link the problem to the
problem of query-driven data expiration in
append-only temporal databases and study
space bounds on synopses that are sufficient
and necessary for query answering under du-
plicate semantics.

1 Introduction

A considerable effort to understand many aspects
of query processing over streaming data—data that
is arriving in fragments over time—has been the
topic of research in the last several years, see e.g.,
[2, 3, 4, 8, 9, 10, 12, 13], and many others. These
efforts have mainly focused on efficient processing of
continuous queries—queries evaluated continuously as
more data is arriving on the stream—over unbounded
data streams. A key component of such solutions is the
construction of synopses—data summaries that allow
execution of continuous queries without the need to
buffer or otherwise store the whole history of the data
stream.

The goal of this paper is to show that certain re-
quirements, often rather desirable in such systems—
such as the use of SQL-style duplicate semantics while
maintaining reasonable bounds on the size of the sum-
mary data—are not possible to achieve. The paper

Proceedings of the third Workshop on STDBM

Seoul, Korea, September 11, 2006

then shows how acceptable results can be achieved by
carefully limiting the expressive power of streaming
query languages in which continuous queries are for-
mulated.

As we desire to derive bounds as strong as possi-
ble, we adopt a holistic approach to the construction
of synopses for continuous queries. Unlike other ap-
proaches that construct synopses on a per-physical-
operator basis (e.g., for the so called symmetric joins,
etc., [2]), we develop techniques that tailor the synop-
sis to the complete continuous query—hence the use
of the term holistic synopsis.

Many of the techniques presented in this paper can be
traced to approaches designed to allow efficient data
expiration in transaction-time temporal databases
[15]. The novel contributions of this paper are mainly
concerned with the use of duplicate semantics for
queries and can be summarized as follows:

1. We show that adopting an SQL-style duplicate
semantics for SQL-like streaming queries makes
construction of bounded synopses impossible; in
the general case, the synopses may have to grow
at least linearly with the stream length.

2. We show that for certain limited languages, this
growth can be tamed to a logarithmic factor; that
factor, however, cannot be avoided.

Note that the negative results presented in this pa-
per are based on information-theoretic properties of
queries and thus cannot be improved upon by more
sophisticated algorithms without resorting to approx-
imations. We also contrast these results with simi-
lar results obtained for the set semantics of the same
languages where constant bounds in the length of the
stream can be obtained. In addition to the technical
results, the paper provides a strong parallel between

GENESIS
텍스트 상자
41

techniques developed for transaction-time temporal
databases [7], data expiration [15], and approaches to
efficient evaluation of streaming queries.

The rest of the paper is organized as follows: Sec-
tion 2 provides the basic definitions and shows the links
between streaming queries and temporal databases.
Section 3 shows that in general, duplicate semantics
leads at least to a logarithmic lower bound on the size
of the synopses, measured in the length of the data
stream; it also identifies cases in which allowing dupli-
cates in the data model leads to linear lower bounds on
the size of the synopses needed to answer a continuous
query. Section 4 shows fragments of query languages
for which a logarithmic bound can be achieved. We
conclude with identifying open issues in the area in
Section 5.

2 Background

We first review the relevant definitions in the area of
transaction-time temporal databases and link them to
querying data streams. The presentation in this sec-
tion is based on a chapter on data expiration [15] with
terminology suitably modified to data streams.

2.1 Temporal Queries for Data Streams

We first formalize the notion of data stream as follows.

Definition 2.1 (Data Stream/History) Let σ be
a relational schema. A data stream is a sequence

S = 〈S0, S1, . . . , St, . . .〉

where each St is a multiset of tuples conforming to σ
that have arrived in S at time t. We call the multisets
St states of S at t. We assume discrete integer-like
time with time instants drawn from a linearly ordered
set and allow multiple tuples to arrive at the same time
instant. The data values forming the tuples belong to
the domain of uninterpreted constants; the data do-
main is equipped with equality only. At any particular
finite time t, we have access only to a finite prefix of
S of the form

S(t) = 〈S0, S1, . . . , St〉

We use T(t) and D(t) to denote the active temporal
and data domains of a stream (prefix), respectively.
Note that the active domains change with time as new
data arrives on the stream. The active temporal do-
main T(t) is, in our setting, just the set {0, . . . , t}; the
definition, however, allows to use timestamps from any
linearly ordered set.

Without loss of generality, we present our results for a
single data stream. However, the results immediately

extend to multiple streams, e.g., by coding multiple
streams by values of a distinguished attribute. This
formalization shows that data stream is just a vari-
ant name for an append-only temporal database (often
called a transaction-time temporal database). This ob-
servation allows us to use off-the shelf temporal query
languages to query data streams. In this paper we
use two-sorted first-order logic (2-FOL) to query such
streams:

Definition 2.2 (Streaming/Temporal Queries)
Let S be a data stream. The syntax of first-order
streaming queries over S is given by the following
grammar.

Q ::= S(t, x1, . . . , xk)
| xi = xj | ti < tj | ti = tj | ti > tj

| Q ∧Q | ∃xi.Q | ∃ti.Q | εQ
| Q ∨Q | Q ∧ ¬Q

The εQ subformula stands for duplicate elimination.
In addition, we assume that the queries are range re-
stricted ; this is enforced by requiring the usual restric-
tions on the occurrences of equalities and inequalities
and the variable-compatibility conditions for disjunc-
tions (∨) and negations (∧¬). The semantics of the
queries is defined using the usual Tarskian-style sat-
isfaction relation extended to account for duplication;
we write

S(t), θ, n |= Q

to stand for “the substitution/tuple θ is an answer to Q
with n duplicates, when evaluated over S(t), a prefix of
S”. The full semantics of the above language is given
in Figure 1. In particular, the semantics specifies how
duplicates are handled in queries1. An answer to a
query at time t is the multiset

SQ
t := {θ, . . . , θ︸ ︷︷ ︸

n

| S(t), θ, n |= Q}.

Note that the value n must be unique for a given tuple
θ, i.e., θ(x) functionally determines n. To simplify the
definition, we assume that substitutions not present in
an answer have 0 duplicates.

Again, the query language in Definition 2.2 is just a
temporal query language when the stream is regarded
as finite prefix of a database history. Note also, that

1We utilize a SQL-style definition of duplicates, i.e., a prod-
uct for conjunctions, sum for disjunction (union) and existential
quantification (projection), and difference for range-restricted
negation (set difference).

GENESIS
텍스트 상자
42

S(t), θ, n |= S(t, x1, . . . , xk) if 〈θ(x1), . . . , θ(xk)〉 ∈ Sθ(t) duplicated n times
S(t), θ, 1 |= xi = xj if θ(xi) = θ(xj)
S(t), θ, 1 |= ti < tj if θ(ti) < θ(tj)

S(t), θ1 ◦ θ2,m · n |= Q1 ∧Q2 if S(t), θ1,m |= Q1 and S(t), θ2, n |= Q2

S(t), θ,
∑

v∈D(t) nv |= ∃x.Q if S(t), θ[v/x], nv |= Q

S(t), θ,
∑

s∈T(t) ns |= ∃t.Q if S(t), θ[s/t], ns |= Q

S(t), θ, 1 |= εQ if S(t), θ, n |= Q

S(t), θ, n+m |= Q1 ∨Q2 if S(t), θ,m |= Q1 and S(t), θ, n |= Q2

S(t), θ,max(0,m− n) |= Q1 ∧ ¬Q2 if S(t), θ,m |= Q1 and S(t), θ, n |= Q2

Figure 1: SQL-style Duplicate Semantics for Streaming Queries.

the semantics is defined with respect to the finite por-
tion of the data stream; answering queries over all po-
tential extensions of a stream has been shown unde-
cidable for any reasonably powerful query language [6],
for detailed discussion of this phenomenon see [7].

Definition 2.3 (Continuous Query Answer) Let
Q be a query without free temporal variables. An
answer to a continuous query specified by Q is defined
as a stream

SQ = 〈SQ
0 , S

Q
1 , . . . , S

Q
i , . . .〉

where SQ
t is the answer to Q over the stream prefix

S(t) as defined by the semantics in Figure 1.

The restriction to queries without free temporal vari-
ables is needed to ensure that results of a query form a
proper data stream. This arrangement allows for com-
positionally, possibility of view definitions, etc. Note
also that the representation of duplicates in binary
(i.e., using counts to represent the numbers of dupli-
cates) is a more compact representation than explicitly
duplicating the tuples. Thus all lower bounds derived
in this paper also hold for the SQL-style representa-
tion in unary (i.e., by explicit replication of the tuples
in question).

2.2 Holistic Synopses and Data Expiration

For continuous queries, it is often not feasible to store
the whole data stream in computer storage. Therefore,
streaming systems use summaries called synopses to
remember the parts of the data stream that are nec-
essary to generate subsequent answers to continuous
queries.

Definition 2.4 (Holistic Synopsis) Let Q be a
query over S. A holistic synopsis for Q is a triple
(∅,∆,Γ) that satisfies the following property:

Q〈S0, . . . , St〉 = Γ(∆(St,∆(St−1,∆(. . .∆(S0, ∅))))

for any prefix 〈S0, . . . , St〉 of S. In addition, we require
that the triple (∅,∆,Γ) can be effectively constructed
from Q.

The first two components define the actual holistic
synopsis for Q as a self-maintainable materialized view
of S: the ∅ component tells us what the contents of
this view is in the beginning and the ∆ component tells
us how to update the view when more data arrives in
S. The last component, Γ now generates the answers
to Q only accessing the information in the view. Note
that the definition does not specify what data model
the view uses nor what query languages are used for
the three components of the synopsis. Note that this
definition is essentially the same as the definition of a
data expiration operator for transaction-time temporal
databases [15].

How do we compare Holistic Synopses?

Intuitively, we have replaced the complete prefix of
S with a materialized view defined by the ∅ and ∆
queries. Thus our aim is to minimize the size of the
materialized view in terms of:

1. the length of the data stream S, |T(t)|,

2. the number of distinct values in S, |D(t)|, and

3. the size of Q.

The dependency on the length of the data stream is the
most critical factor. Thus we call a synopsis bounded
if it is bounded by a constant function in the length
of the stream. We call a synopsis log-bounded if it is
bounded by a function logarithmic in |T(t)|.

For streaming query languages that use set seman-
tics, results obtained for temporal databases can be
applied:

Proposition 2.5 ([14]) A bounded holistic synopsis
exists for any two sorted first order streaming (2-FOL)
query under set semantics.

GENESIS
텍스트 상자
43

The above theorem shows that for queries under set
semantics, bounded synopses exist for rather powerful
query languages, in particular for the language intro-
duced in Definition 2.2. The rest of the paper argues
that bounded synopses do not exist when duplicate
semantics is used for the same language and that log-
bounded synopses are the best we can hope for in var-
ious fragments of the first-order language under dupli-
cate semantics.

3 Lower Bounds

Now we are ready to provide simple lower bounds that
show why the use of unrestricted duplicate semantics
for streaming queries may be expensive and, in cer-
tain cases, not feasible at all. An Ω(log |T(t)|) lower
bound has been observed for queries with the counting
aggregate [14]. Similar query, e.g.,

(∃t.S(t, a)) ∧ ¬(∃t.S(t, b)),

that expresses the fact that there were more a’s than
b’s in the stream S, for a and b distinct constants,
yields such bound for queries with duplicates. It is easy
to see using the pigeon-hole principle that a synopsis
for this query needs Θ(log |T(t)|) bits.

However, it turns out that log-bounded synopses
are not sufficient for first-order queries with duplicate
semantics.

Theorem 3.1 There is a first-order query for which
any synopsis is bounded from below by Ω(|T(t)|).

Proof (sketch): Consider the query

ε∃t1, t2.t1 < t2 ∧¬((∃x.S(t1, x)) ∧ ¬(∃x.S(t2, x)))
∧¬((∃x.S(t2, x)) ∧ ¬(∃x.S(t1, x)))

The query expresses the condition two states of S con-
tain the same number of tuples. Now consider a prefix
of a data stream S(t) such that Si contains the value
a duplicated mi times, mi 6= mj for 0 ≤ i 6= j ≤ t. To
be able to answer the above query when the stream is
extended by the state Sn+1 we need at least a set of
values {m0, . . . ,mt}. To represent this set we need at
least

t∑
i=0

log(mi) ≥ t · log(min{m0, . . . ,mt}) ∈ Ω(|T(t)|)

bits.

The unfortunate consequence of this lower bound
is that, in general, the best synopsis for first-order
queries under duplicate semantics are essentially as big
as the original data stream (and thus we may be better
off just storing the stream itself).

4 Upper Bounds

We now investigate cases in which logarithmic bounds
on the size of holistic synopses can be obtained. To this
end, we need to restrict the streaming query languages.
We consider two different fragments of first-order logic:

1. positive first-order queries, and

2. temporal logic queries.

In both cases our aim is to make the proof of The-
orem 3.1 inapplicable. In the first case by disallow-
ing negation and in the second by disallowing multiple
temporal contexts to exist at the same time.

4.1 First-order Temporal Logic Queries

We start with the case of the past fragment of the first-
order temporal logic (FOTL), a logic based on implicit
access to the temporal attribute of tuples using modal
operators. This way the number of coexisting temporal
contexts is limited while still commanding a sufficient
expressive power2. The syntax of the language is de-
fined as follows:

Definition 4.1 (First-order Temporal Logic)
Let S be a data stream. The syntax of FOTL queries
over S is given by the following grammar.

Q ::= S(x1, . . . , xk) | xi = xj

| Q ∧Q | ∃xi.Q | εQ
| Q ∨Q | Q ∧ ¬Q
| Q since Q | 5Q

Note that formulas of FOTL do not use variables rang-
ing over the temporal domain; handling of this aspect
of the queries is encapsulated in the temporal operators
since and 5 (previous time). Thus the semantics is
now defined with respect to an evaluation point using
a satisfaction relation

S(t), θ, s, n |= Q

which, similarly to Definition 2.2, states that the tuple
θ is an answer to Q at time s with n duplicates in S(t).
Note that the time point smay be different from t; this
allows referring to past states of the data stream S in
queries. The semantics of FOTL mimics that of 2-FOL
introduced in Figure 1: all the standard first-order
connectives and quantifiers are evaluated per state of
S (using the so-called snapshot semantics [11]). The
only addition are the rules for handling the temporal

2It has been shown, however, that FOTL is strictly less ex-
pressive fragment of 2-FOL, the language introduced in Defini-
tion 2.2 [1, 16].

GENESIS
텍스트 상자
44

operators; here we need to extend the standard def-
initions to handle duplicates. The semantics of the
since operators (there are two variants to account for
two ways to determine the number of duplicates) is
defined as follows:

S(t), θ, s,maxs2∈T

∑
s1∈T(t)ms1 |= Q1 since1 Q2 if

S(t), θ, ns2 , s2 |= Q2 for some s2 < s, ns2 > 0 and
S(t), θ,ms1 , s1 |= Q1 for all s1 < s2 ≤ s,ms1 > 0

S(t), θ, s,
∑

s2∈T(t) ns2 |= Q1 since2 Q2 if
S(t), θ, ns2 , s2 |= Q2 for some s2 < s, ns2 > 0 and
S(t), θ,ms1 , s1 |= Q1 for all s1 < s2 ≤ s,ms1 > 0

For the previous time operator, 5Q, the duplicate se-
mantics is defined as follows:

S(t), θ, s, n |= 5Q if S(t), θ, s− 1, n |= Q and s > 0

An answer to a continuous query Q at time t is defined
as the multiset

{θ, . . . , θ︸ ︷︷ ︸
n

| S(t), θ, t, n |= Q}.

The two variants, since1 and since2, differ in the way
they handle duplicates: since1 counts the maximal
number of the answers θ satisfying Q1 since Q2 was
true; since2 counts the number of times the tuple θ
satisfies Q2 such that Q1 was true since then3.

Additional temporal connectives can be derived
from the since and 5 operators; again, the handling
of duplicates is the only concern here.

Example 4.2 The sometime in the past (3) connec-
tive can be defined as follows:

31Q=true since1 Q
32Q=true since2 Q

The two variants differ again in how duplication of
results is defined: in the first case it indicates how
far in the past was the earliest Q has been and the
second case how many times Q has been true in the
past4. Again additional connectives can be defined by
combining the above two. For example, should we wish
to know how far in the past the latest Q was we can
write (¬Q) since1 Q.

3Similar to the duplicate semantics for SQL, this is just a
particular a way of choosing how many duplicates are in an an-
swer to a particular query. The definitions above work correctly
with the rest of the technical development in this paper. A com-
prehensive study of various possibilities to define duplication of
tuples for temporal queries is beyond the scope of this paper.

4Assuming the constant true is not duplicated.

Note that one might be tempted to define the duplicate
semantics or the sometime in the past (3) operator,
e.g., as follows:

S(t), θ, t, n |= 3Q if S(t), θ, s, n |= 3Q for some s < t.

This definition would seemingly allow formulating the
query “were there two time instants with the same
number of elements in the stream?”. However, it is
important to see that such a definition is incompatible
with the definition of duplicate semantics: it allows
assigning two different duplicities to the same tuple—
this is illegal under the duplicate semantics.

Synopses for FOTL

To define a synopsis for a given FOTL formula we use
the following identities:

Lemma 4.3 Let S be a data stream and Q1 and Q2

FOTL queries. Then

S(t), θ, s, n+m |= Q1 since1 Q2 if

– S(t), θ, s− 1, n |= Q1 since1 Q2 and

– S(t), θ, s,m |= Q1.

S(t), θ, s,m |= Q1 since1 Q2

– S(t), θ, s− 1, n |= Q2,

– S(t), θ, s− 1, l 6|= Q1 since1 Q2, and

– S(t), θ, s,m |= Q1.

S(t), θ, s, n+m |= Q1 since2 Q2 if

– S(t), θ, s− 1, n |= Q1 since2 Q2,

– S(t), θ, s− 1,m |= Q2, and

– S(t), θ, s, l |= Q1.

S(t), θ, s,m |= Q1 since2 Q2 if

– S(t), θ, s− 1, n 6|= Q1 since2 Q2,

– S(t), θ, s− 1,m |= Q2, and

– S(t), θ, s, l |= Q1.

S(t), θ, s, n |= Q1 since2 Q2 if

– S(t), θ, s− 1, n |= Q1 since2 Q2,

– S(t), θ, s− 1,m 6|= Q2, and

– S(t), θ, s, l |= Q1.

Proof (sketch): Immediate from the definitions.

With the help of these identities we can modify the ap-
proach to bounded checking of past FOTL constraints
[5] as follows:

GENESIS
텍스트 상자
45

Definition 4.4 Let Q be a FOTL query and
{α1, . . . , αk} all of its temporal subformulas (i.e., for-
mulas rooted by a temporal operator). We define aux-
iliary views Rαi , one for each of the subformulas αi.
The attributes of Rαi correspond to the free variables
in αi with an additional distinguished integer-valued
attribute n that accounts for the duplication of tuples.

The auxiliary views are initialized to an empty set
each (this formally corresponds to the ∅ component
of the synopsis) and then, whenever a new state of S
arrives, the views are rematerialized using the rules
in Lemma 4.3 (the ∆ component). To evaluate the
temporal subformulas in the preconditions of the rules
we use the current and new instances of the auxiliary
views (this imposes an ordering on the execution of the
re-materializations). An answer to Q (the Γ compo-
nent) is derived by executing Q after all its temporal
subformulas have been replaced by the auxiliary views.

Theorem 4.5 Let Q be a FOTL query. Then the in-
stances of views constructed using Definition 4.4 form
a log(|T(t)|)-bounded holistic synopsis for Q.

Proof (sketch): Every time a new data state arrives
on S, it is sufficient to access only the t-th and (t−1)st
states of the auxiliary materialized views and the last
state of S. The size of the auxiliary views depends on
the size of the query (number of temporal subqueries),
the size of the active data domain |D(t)| at time t, and
log(|T(t)|) due to the necessity to keep the counters
counting the numbers of duplicates.

The above upper bound matches the lower bound from
Section 3 as the query “have there been more a values
than b values in the stream S” can be formulated in
FOTL using the formula

(32S(a)) ∧ ¬(32S(b)).

Thus the above technique is (worst-case) optimal up
to a constant factor (w.r.t. |T(t)|).

Example 4.6 The auxiliary views for the query
above are R32S(a)(n) and R32S(b)(n); note that both
the views have single integer attribute as the original
subqueries are closed formulas.

The ∆ operator is defined as

R
32S(a)
t := {n+m | S(t),m, t |= S(a),

R(t), n, t− 1 |= R32S(a)}

where the stream R is the stream generated for the
auxiliary relations. Similar definition is used for

R32S(b)(n). Note that as streams, the auxiliary re-
lations in this example are 0-ary—conceptually they
contain the true tuple duplicated an appropriate num-
ber of times; the actual binary representations there-
fore contain just one integer value each.

The Γ part is then defined as R32S(a) ∧ ¬R32S(b).

4.2 Conjunctive and Positive Queries

Queries in FOTL provide a powerful way of querying
data streams. They also generalize the so called win-
dowed queries in a natural way. However, there is a
mismatch between streaming query languages that use
SQL-like syntax (with explicit access to the time in-
stant attributes [2]) and FOTL. Indeed, [1, 16] show
that the later are strictly less expressive. Also, the
lower bound for 2-FOL in Section 3 compared to the
upper bound for FOTL in Section 4 show, that this
discrepancy cannot be repaired by adopting duplicate
semantics.

In this section we therefore look on common sublan-
guages of 2-FOL, namely on conjunctive queries (CQ)
and unions of conjunctive queries (UCQ). We show
that, in these cases the technique developed for FOTL
can be adopted to CQ and UCQ.

Definition 4.7 (Conjunctive Query) A conjunc-
tive query is an expression of the form

∃t1, . . . , tk, ȳ.S(t1, x̄1),∧ . . . ∧ S(tk, x̄k) ∧ φ ∧ ψ

where x̄i are vectors of data variables, ϕ is a conjunc-
tion of equalities over the data variables and ψ a order-
ing condition over the temporal variables. The query
can be potentially prefixed by duplicate elimination.

Note that we require the answers to CQ not to contain
any free temporal variables in order for them to serve
as continuous queries over data streams.

The construction of synopses for CQ proceeds in
two steps:

1. First a given CQ is rewritten to an equivalent
union of CQs, such that the condition ψ in each
of the constructed queries imposes a linear order
among the variables t1, . . . , tk.

2. Second, each of the above queries is translated
to FOTL and then the synopsis construction for
FOTL is used.

This approach is supported by the following two lem-
mas:

Lemma 4.8 Let Q be a CQ of the form

∃t1, . . . , tk, ȳ.S(t1, x̄1),∧ . . . ∧ S(tk, x̄k) ∧ φ ∧ ψ.

Then there is a finite set of CQ such that

GENESIS
텍스트 상자
46

• the (duplicate preserving) disjunction of these CQ
is equivalent to the original CQ and

• the subformulas ψ in these queries impose a linear
order on valuations of the variables t1, . . . , tk.

Proof (sketch): Let Ψ be the set of all formulas that
express linear orders over t1, . . . , tk consistent with ψ.
This set is finite and due to the law of excluded middle,
no two elements of Ψ can be made true by the same
valuation. Thus the set of CQ

{∃t1, . . . , tk, ȳ.S(t1, x̄1),∧ . . .∧S(tk, x̄k)∧φ∧ϕ | ϕ ∈ Ψ}

fulfills the requirements of the Lemma.

Thus, for each two variables, we have ti < tj , ti = tj ,
or ti > tj . This allows us to construct a FOTL formula
by using the32 connective to simulate the inequalities.
Hence the following Lemma:

Lemma 4.9 Let Q be a CQ of the form

∃t1, . . . , tk, ȳ.S(t1, x̄1),∧ . . . ∧ S(tk, x̄k) ∧ φ ∧ ϕ.

in which ϕ imposes a linear order on the temporal vari-
ables t1, . . . , tk. Then there is an equivalent formula
in FOTL.

Proof (sketch): We replace the CQ by a FOTL
query of the form

∃ȳ.3(S(x̄i1) ∧ . . . ∧ S(x̄il
)∧

3(S(x̄j1) ∧ . . . ∧ S(x̄jl′) ∧ . . .
3(S(x̄k1) ∧ . . . ∧ S(x̄kl′′)∧) . . .))

where the subscripts i1, . . . , il refer to those conjuncts
in the original query that are first in the linear or-
dering of temporal variables, j1, . . . , jl′to the second,
and k1, . . . , kl′′ to the last, i.e., the linear order of the
temporal variables was

ti1 = . . . = til
> tj1 = . . . = tjl′ > . . . > tk1 = . . . = tkl′′

in ϕ.

We finish the construction by applying the approach
to construction of bounded synopses introduces in Sec-
tion 4.1. The use of this approach for UCQ is imme-
diate.

5 Conclusion

In this paper we have shown that duplicate seman-
tics causes a severe difficulties in constructing bounded
synopses for processing continuous queries. Indeed,

even simple queries may require a synopsis (linearly)
proportional to the length of the original stream—
which defeats the usefulness of such synopsis. We
have also developed restricted fragments of streaming
queries that allow logarithmically-bounded synopses
to be used and shown how such synopses can be con-
structed.

5.1 Future Directions of Research

There are many directions of research to pursue in this
direction. Among these are:

Alternatives to standard duplicate semantics.
In this paper we mainly considered the standard
SQL-style approach of defining duplicate seman-
tics of queries. However, beyond compatibility
concerns, there is no principal reason why other
numerical functions, such as the “min” and
“max” functions, couldn’t be used to define the
duplicate semantic for conjunctions and dis-
junctions, respectively. The main open question
is whether a plausible duplicate semantics for
first-order queries to which Theorem 3.1 doesn’t
apply exists.

2-FOL queries with log-bounded synopses.
We have shown two sublanguages of 2-FOL
queries for which log-bounded synopses can be
constructed. However, it is not clear whether
it is possible to syntactically characterize those
2-FOL queries (possibly up to query equivalence)
for which log-bounded synopses exist.

Aggregates. Another question relates to the possi-
bility of introducing aggregate functions into the
query language—again, the best lower bounds we
know today are logarithmic in the length of the
stream. However, the techniques proposed in this
paper cannot cope with aggregates mainly as ag-
gregate functions introduce new domain elements.

Possible and certain answers. Yet another direc-
tion of research is to study fragments of query
languages for which the possible result semantics
is viable.

Also, the focus of this paper was on developing tech-
niques that allow precise answers to continuous queries
to be computed. Another direction of research is to
consider appropriate ways to approximate the answers
and trade-offs between quality of the approximations
and space needed for storing synopses. While there
has been a large amount of work in this area, sur-
veying the issues connected with approximate query
answers is beyond the scope of this paper.

GENESIS
텍스트 상자
47

References

[1] Serge Abiteboul, Laurent Herr, and Jan Van den
Bussche. Temporal Versus First-Order Logic to
Query Temporal Databases. In ACM Symposium
on Principles of Database Systems, pages 49–57,
1996.

[2] Arwind Arasu, Shivnath Babu, and Jennifer
Widom. The CQL Continuous Query Lan-
guage: Semantic Foundations and Query Execu-
tion, 2003.

[3] Ahmed Ayada and Jeffrey F. Naughton. Static
Optimization of Conjunctive Queries with Sliding
Windows Over Infinite Streams. In ACM SIG-
MOD International Conference on Management
of Data, pages 419–430, 2004.

[4] Brian Babcock, Shivnath Babu, Mayur Datar,
Rajeev Motwani, and Jennifer Widom. Models
and Issues in Data Stream Systems. In ACM Sym-
posium on Principles of Database Systems, pages
1–16, 2002.

[5] J. Chomicki. Efficient Checking of Temporal In-
tegrity Constraints Using Bounded History En-
coding. ACM Transactions on Database Systems,
20(2):149–186, June 1995.

[6] J. Chomicki and D. Niwinski. On the Feasibility of
Checking Temporal Integrity Constraints. Jour-
nal of Computer and System Sciences, 51(3):523–
535, December 1995.

[7] J. Chomicki and D. Toman. Temporal Databases.
In M. Fischer, D. Gabbay, and L. Villa, editors,
Handbook of Temporal Reasoning in Artificial In-
telligence, pages 429–467. Elsevier Foundations of
Artificial Intelligence, 2005.

[8] Lukasz Golab and M. Tamer Özsu. Processing
sliding window multi-joins in continuous queries
over data streams. In International Conference on
Very Large Data Bases (VLDB), pages 500–511,
2003.

[9] Jaewoo Kang, Jeffrey F. Naughton, and Stratis
Viglas. Evaluating Window Joins over Un-
bounded Streams. In International Conference on
Data Engineering (ICDE), pages 341–352, 2003.

[10] Flip Korn, S. Muthukrishnan, and Yunyue Zhu.
Checks and Balances: Monitoring Data Quality
Problems in Network Traffic Databases. In Inter-
national Conference on Very Large Data Bases
(VLDB), pages 536–547, 2003.

[11] Richard T. Snodgrass, I. Ahn, G. Ariav, D. Ba-
tory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kafer, N. Kline,

K. Kulkarni, T. Y. C. Leung, N. Lorentzos, J. F.
Roddick, A. Segev, M. D. Soo, and S. A. Sri-
pada. TSQL2 Language Specification. SIGMOD
Record, 23(1):65–86, March 1994.

[12] Utkarsh Srivastava and Jennifer Widom.
Memory-Limited Execution of Windowed Stream
Joins. In International Conference on Very Large
Data Bases (VLDB), pages 324–335, 2004.

[13] Nesime Tatbul, Ugur Cetintemel, Stanley B.
Zdonik, Mitch Cherniack, and Michael Stone-
braker. Load Shedding in a Data Stream Man-
ager. In International Conference on Very Large
Data Bases (VLDB), pages 309–320, 2003.

[14] David Toman. Expiration of Historical
Databases. In International Symposium on
Temporal Representation and Reasoning, pages
128–135. IEEE Press, 2001.

[15] David Toman. Logical Data Expiration. In Jan
Chomicki, Gunter Saake, and Ron van der Mey-
den, editors, Logics for Emerging Applications of
Databases, chapter 7, pages 203–238. Springer,
2003.

[16] David Toman and Damian Niwinski. First-Order
Queries over Temporal Databases Inexpressible in
Temporal Logic. In International Conference on
Extending Database Technology, Avignon, France,
1996.

GENESIS
텍스트 상자
48

Mining Long, Sharable Patterns in Trajectories of

Moving Objects

Gyozo Gidófalvi / Torben Bach Pedersen

Geomatic aps / Aalborg University
gyg@geomatic.dk / tbp@cs.aau.dk

Abstract

The efficient analysis of spatio–temporal data,
generated by moving objects, is an es-
sential requirement for intelligent location–
based services. Spatio-temporal rules can be
found by constructing spatio–temporal bas-
kets, from which traditional association rule
mining methods can discover spatio–temporal
rules. When the items in the baskets are
spatio–temporal identifiers and are derived
from trajectories of moving objects, the dis-
covered rules represent frequently travelled
routes. For some applications, e.g., an intel-
ligent ridesharing application, these frequent
routes are only interesting if they are long
and sharable, i.e., can potentially be shared
by several users. This paper presents a data-
base projection based method for efficiently
extracting such long, sharable frequent routes.
The method prunes the search space by mak-
ing use of the minimum length and sharable
requirements and avoids the generation of
the exponential number of sub–routes of long
routes. A SQL–based implementation is de-
scribed, and experiments on real life data
show the effectiveness of the method.

1 Introduction

In recent years Global Positioning Systems (GPS) have
become increasingly available and accurate in mobile
devices. As a result large amounts of spatio–temporal
data is being generated by users of such mobile devices,
referred to as moving objects in the following. Tra-
jectories of moving objects, or trajectories for short,
contain regularities or patterns. For example, a per-
son tends to drive almost every weekday to work ap-
proximately at the same time using the same route.
The benefits of finding such regularities or patterns is
many–fold. First, such patterns can help the efficient

Proceedings of the third Workshop on STDBM

Seoul, Korea, September 11, 2006

management of trajectories. Second, they can be used
to facilitate various Location–Based Services (LBS).
One LBS example is an intelligent rideshare applica-
tion, which finds sharable routes for a set of commuters
and suggests rideshare possibilities to them, is consid-
ered. Such a rideshare application can be one possible
solution to the ever increasing congestion problems of
urban transportation networks.

Patterns in trajectories for an intelligent rideshare
application are only interesting if those patterns are
sharable by multiple commuters, are reoccurring fre-
quently, and are worthwhile pursuing, i.e., are long
enough for the savings to compensate for the coordi-
nation efforts. The discovery of Long, Sharable Pat-
terns (LSP) in trajectories is difficult for several rea-
sons. Patterns do not usually exist along the whole
trajectory. As a example, consider two commuters A
and B living in the same area of town, leaving for
work approximately the same time, and working in
the same part of town. Given the underlying road
network and traffic conditions, for a given support
threshold the middle part of the trips of the two com-
muters may be frequent, the initial and final parts may
not. In recent work [4] a general problem transfor-
mation method, called pivoting, was proposed for the
analysis of spatio–temporal data. Pivoting is the pro-
cess of grouping a set of records based on a set of
attributes and assigning the values of likely another
set of attributes to groups or baskets. Pivoting ap-
plied to spatio–temporal data allows the construction
of spatio–temporal baskets, which can be mined with
traditional association rule mining algorithms. When
the items in the baskets are spatio–temporal identifiers
and are derived from trajectories, the discovered rules
represent frequently travelled routes. While there ex-
ist several efficient association rule mining methods [6],
the straight–forward application of these algorithms to
spatio–temporal baskets representing trajectories is in-
feasible for two reasons. First, all sub–patterns of fre-
quent patterns are also frequent, but not interesting,
as longer patterns are preferred. Second, the support
criterion used in association rule mining algorithms
is inadequate for a rideshare application, i.e., a fre-

49

quent itemset representing a frequent trajectory pat-
tern, may be supported by a single commuter on many
occasions and hence presents no rideshare opportunity.

In this paper, to overcome the above difficulties of
finding LSPs in trajectories, a novel method is given.
According to a new support criterion, the proposed
method first efficiently filters the trajectories to con-
tain only sub-trajectories that are frequent. Next, it
removes trajectories that do not meet the minimum
length criterion. Then it alternates two steps until
there are undiscovered LSPs. The first step entails
the discovery of a LSP. The second step entails the fil-
tering of trajectories by the previously discovered pat-
tern. An advantage of the proposed method is the ease
of implementation in commercial Relational Database
Management Systems (RDBMSes). To demonstrate
this, a SQL–based implementation is described. The
effectiveness of the method is demonstrated on the
publicly available INFATI data, which contains tra-
jectories of cars driving on a road network.

The herein presented work is novel in several as-
pects. It is the first to consider the problem of mining
LSPs in trajectories. It describes a novel transforma-
tion, and the relationship between the problem of min-
ing LSPs in trajectories and mining frequent itemsets.
Finally, it describes an effective method with a simple
SQL–implementation to mine such LSPs in trajecto-
ries.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 describes the
transformation, the use of the framework in frequent
itemset mining, and formally defines the task of min-
ing LSPs in trajectories. he proposed algorithm and a
SQL–based implementation for mining such patterns
is described in Section 4. Section 5 presents experi-
mental results. Finally Section 6 concludes and points
to future research.

2 Related work

Frequent pattern mining is a core field in data min-
ing research. Since the first solution to the problem
of frequent itemset mining [1, 2], various specialized
in–memory data structures have been proposed to im-
prove the mining efficiency, see [6] for an overview. It
has been recognized that the set of all frequent item-
sets is too large for analytical purposes and the infor-
mation they contain is redundant. To remedy this, two
modification to the task have been proposed: mining
of Closed Frequent Itemsets (CFI) and mining of max-
imal frequent itemsets. A frequent itemset X is closed
if no itemset Y exists with the same support as X such
that X ⊂ Y . A frequent itemset X is maximal if no
frequent itemset Y exists such that X ⊂ Y . Prominent
methods that efficiently exploit these modifications to
the problem are MAFIA, GenMax, CLOSET(+), and
CHARM [6]. Later in the paper, a relationship be-
tween the problems of mining LSPs in trajectories

and mining CFIs are described. While CFI mining
methods can be modified to find the desired solution
that meets the sharable criterion, they employ com-
plex data structures and their implementation is quite
involved; hence their augmentation is difficult. In par-
ticular, a projection-based CFI mining algorithm that
employs an in–memory FP-tree to represent itemsets,
would need to be modified at every node to maintain
a set of distinct objects at that have transactions as-
sociated with them that support the itemset that is
represented by the node. In comparison, the herein
presented method –building on work presented in [11]–
exploits the power of commercial RDBMSs, yielding a
simple, but effective solution.

Since trajectories are temporally ordered sequences
of locations, sequential pattern mining [3] naturally
comes to mind. However, a straight forward inter-
pretation of trips as transactions and application of
a state–of–the–art closed frequent sequential pattern
mining algorithm [15] does not yield the desired so-
lution, since in this case sequences of frequent sub-
trajectories would be found. Furthermore, since the
trajectories can contain hundreds of items, closedness
checking of frequent itemsets even for prominent meth-
ods would be computationally expensive. Interpret-
ing single elements of trajectories as transactions and
applying closed sequential pattern mining could find
frequent sub–trajectories. However a number of prob-
lems arise. First, to meet the sharable criterion, the
in–memory data structures would need similar, non-
trivial augmentation as described above. Second, since
patterns in trajectories could be extremely long, even
state–of–the–art sequential mining methods [12, 15]
would have a difficulties handling patterns of such
lengths. Third, patterns in trajectories repeat them-
selves, which cannot be handled by traditional se-
quential pattern mining algorithms. The extraction
of spatio–temporal periodic patterns from trajectories
is studied in [9], where a bottom–up, level–wise, and
a faster top–down mining algorithm is presented. Al-
though the technique is effective, the patterns found
are within the trajectory of a single moving object. In
comparison, the herein presented method effectively
discovers long, sharable, periodic patterns.

Moving objects databases are particular cases of
spatio–temporal databases that represent and man-
age changes related to the movement of objects. A
necessary component to such databases are specialized
spatio–temporal indices such as the Spatio–Temporal
R–tree (STR–tree) and Trajectory–Bundle tree (TB–
tree) [7]. An STR-tree organizes line segments of a tra-
jectory according to both their spatial properties and
the trajectories they belong to, while a TB–tree only
preserves trajectories. If trajectories are projected to
the time–of–day domain, STR–tree index values on
the projected trajectories could be used as an alter-
native representation of trajectories. While this ap-

50

proach would reduce the size of the problem of mining
LSPs in trajectories, it would not solve it. In compar-
ison, the herein presented method solves the problem
of mining LSPs in trajectories, which is orthogonal,
but not unrelated to indexing of trajectories.

In [13] a way to effectively retrieve trajectories in
the presence of noise is presented. Similarity func-
tions, based on the longest sharable subsequence, are
defined, facilitating an intuitive notion of similarity
between trajectories. While such an efficient similar-
ity search between the trajectories will discover similar
trajectories, the usefulness of this similarity in terms of
length and support would not be explicit. In compar-
ison, there herein proposed method returns only pat-
terns that meet the user–specified support and length
constraints. Furthermore, the trajectory patterns re-
turned by our method are explicit, as opposed to the
only implicit patterns contained in similar trajectories.

3 Long, sharable patterns in trajecto-
ries

The following section describes a novel transformation
of raw trajectories. This transformation allows (1) the
formulation of the problem of mining LSPs in trajec-
tories in a framework similar to that used in frequent
itemset mining, (2) to establish a relationship between
the two problems.

3.1 From trajectories to transactions

The proposed transformation of raw trajectories con-
sists of three steps: identification of trips, projection of
the temporal dimension, and spatio–temporal region
substitution. It is assumed that locations of moving
objects are sampled over a long history. That is, a
raw trajectory is a long sequence of (x, y, t) measure-
ments at regular time intervals.

Identification of trips

A trip is a temporally consecutive set or se-
quence of measurements such that for any measure-
ment mi in the sequence, the sum of spatial dis-
placement during the k measurements immediately
following mi, denoted dk, is larger than some user–
defined displacement, δ. Trips can be identified
in a straight–forward manner by linearly scanning
through a trajectory, and calculating dk using a look–
ahead window of k measurements. That is, scanning
through the total trajectory from the beginning, the
first measurement for which dk > δ, signals the begin-
ning of the first trip. Consecutive measurements are
part of this trip until a measurement is reached for
which dk ≤ δ, which signals the end of the first tra-
jectory. Trips following the first trip are detected in
the same fashion from the remaining part of the total
trajectory. Figure 1(a) shows three example trips that
are derived from the total trajectory of one moving
object.

0 5 10 15 20 25 30 35 40

0

5

10

15
Mon 8:00

Tu 8:00

Wed 8:00

x−dimension

y−dimension

ti
m

e
−

d
im

e
n

s
io

n
 /

 d
a

te
−

ti
m

e
 d

o
m

a
in

trip 1

trip 2

trip 3

d
k
 > δ → start of trip 1

d
k
 < δ → end of trip 1

(a) Identification of trips in
raw trajectories

0 5 10 15 20 25 30 35 40

0

5

10

15
8:00

8:05

8:10

8:15

8:00

8:00

8:30

8:35

x−dimension
y−dimension

ti
m

e
−

d
im

e
n

s
io

n
 /

 t
im

e
−

o
f−

d
a

y
 d

o
m

a
in

spatio−temporal region

(b) Time–of–day projection and
spatio–temporal region substi-
tution

Figure 1: From trajectories to transactions

Projection of the temporal dimension

Since frequent patterns within a single object’s tra-
jectory are expected to repeat themselves daily, the
temporal dimension of the so identified trips is pro-
jected down to the time–of–day domain. This pro-
jection is essential to discover the daily periodic na-
ture of patterns in trajectories. Mining patterns with
other periodicity can be facilitated by projections of
the temporal domain to appropriate finer, or coarser
levels of granularity. Finer levels of granularity can be
used to detect patterns with shorter periodicity. For
example, a delivery person might use a different route
depending on the time–of–hour knowing that at the
given time of the hour certain traffic conditions arise,
which make an otherwise optimal delivery route sub–
optimal. The detection of these patterns in delivery
routes requires the projection of the temporal dimen-
sion to the time–of–hour domain. Conversely, coarser
levels of granularity can be used to detect patterns
with longer periodicity. For example, a person might
visit his bank only at the end of pay periods. The de-
tection of this pattern requires the projection of the
temporal dimension to the day–of–month domain. Fi-
nally, to discover the pattern that the above mentioned
person makes these visits to his bank Saturday morn-
ings following the end of pay periods, requires the pro-
jection of the temporal domain to a combination of the
day–of-month, the day–of-week, and the part–of-day
domains. Performing different projections is part of
the inherently iterative and only semi-automatic pro-
cess of doing data mining when the exact format of the
patterns searched for is not known beforehand. Figure
1(b) shows the projection of the temporal dimension
to the time–of–day domain for the three trips identi-
fied in Figure 1(a). Since the projection of a single
database record is a constant operation, the total pro-
cessing time of this transformation step is optimal and
linear in the number of database records.

Spatio–temporal region substitution

Trajectories are noisy. One source of this noise is
due to imprecise GPS measurements. From the point
of view of patterns in such trajectories, slight devia-
tion of trajectories from the patterns can be viewed as
noise. Examples of such deviations could be due to a
few minute delay, or to the usage of different lanes on

51

A

C

B

GFE

D

KJIH L

8:00

8:158:10

8:00

8:05

8:058:05

8:10

8:25

8:20

8:25

8:20

8:25

8:35

8:30

8:35

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

8:05

Figure 2: Illustration of the sample trajectory DB

the route. Hence, while a person might be driving from
home to work at approximately the same time of day
using approximately the same route, the chance of two
identical trajectories is highly unlikely. Consequently,
patterns in raw trajectories are few and certainly not
long. Thus, patterns have to be mined in trajecto-
ries represented in a generalized way, yielding general
patterns in trajectories. To achieve this generalization
of trajectories, individual (x, y, t) measurements of a
trajectory are discretized and mapped to the spatio–
temporal regions they fall into. Thus, a generalized
trajectory is constructed by substituting (x, y, t) mea-
surements with the spatio–temporal regions they map
to. If within a trajectory multiple (x, y, t) measure-
ments map to the same spatio–temporal region, they
are substituted with a single instance of the corre-
sponding spatio–temporal region. The box in Fig-
ure 1(b) represents such a spatio–temporal region.
Since spatio–temporal substitution of a single data-
base record can be achieved using simple arithmetics
from the spatial and temporal coordinates, the pro-
cessing time of this transformation step is optimal and
linear in the number of database records.

3.2 Example trajectory database

Figure 2 visualizes a sample trajectory database. It
shows the trajectories of trips of 5 moving objects,
which were derived using the three transformation
steps described in Section 3.1. For clarity, the tem-
poral dimension is projected down to the 2D–plane.
Spatio–temporal regions are defined by the square cells
and a five minute interval centered around time in-
stances written inside the square. Each connected line
represents specific trips of a particular object. The
number of times that trip was performed by the ob-
ject is represented in the width of the line, and is also
written in parenthesis next to the object name in the
legend. For example, the trip trajectory associated
with object 3 was performed 4 times by the object.
The object was in spatial regions HD, HC, HB, IB, and
IC during time intervals 8:05± 2.5 minutes, 8:10± 2.5
minutes, 8:15 ± 2.5 minutes, 8:20 ± 2.5 minutes, and

8:25 ± 2.5 minutes, respectively. In the following a
spatio-temporal region will be referred to by its con-
catenated values of the cell identifiers along the x– and
y–axis, and the corresponding time instance denoting
the center of the time interval of the spatio–temporal
region. Hence, trips associated with object 3 will be
denoted by the a sequence {HD8:05, HC8:10, HB8:15,
IB8:20, IC8:25}. Furthermore, the trajectory database
T is assumed to be in a relational format with schema
〈oid, tid, item〉, where item is a single item, that is
part of the transaction tid associated with object oid.
Hence, each of the four trips of object 3 is represented
by 5 unique rows in T .

3.3 Problem statement

After performing the three above transformation steps,
the data set can be represented in a database T con-
taining tuples 〈oid, tid, s〉, where oid is an object iden-
tifier, tid is a trip identifier, and s is a sequence
of spatio–temporal region identifiers. Since spatio–
temporal region identifiers contain a temporal com-
ponent, the sequence s can, without loss of informa-
tion, be represented as a set of spatio–temporal region
identifiers. Conforming to the naming convention used
in the frequent itemset mining framework, a spatio–
temporal region identifier will be equivalently referred
to as an item, and a sequence of spatio–temporal re-
gion identifiers will be equivalently referred to as a
transaction. Let X be a set of items, called an item-
set. A transaction t satisfies an itemset X iff X ⊆ t.
Let STX denote the set of transactions that satisfy X.
The following definitions are emphasized to point out
the differences between the frequent itemset mining
framework and the one established here.

Definition 1 The n–support of an itemset X in
T , denoted as X.supp(n), is defined as the number of
transactions in STX if the number of distinct oids as-
sociated with the transactions in STX is greater than
or equal to n, and 0 otherwise. The n–support of

an item i in T , denoted as i.supp(n), is equal to the
n–support of the itemset that contains only i.

Definition 2 The length of an itemset X, denoted
as |X|, is defined as the number of items in X.

Definition 3 An itemset X is n–frequent in T if
X.supp(n) ≥ MinSupp, and X is long if |X| ≥
MinLength, where MinLength, MinSupp, and n are
user–defined values.

Definition 4 An itemset X is n–closed if there ex-
ists no itemset Y such that X ⊂ Y and X.supp(n) =
Y.supp(n).

The task of mining LSPs in trajectories can be de-
fined as finding all long, n–closed, n–frequent itemsets.
Itemsets that meet these requirements are also referred
to as LSPs, or just patterns.

52

A

C

B

GFE KJIH L

8:158:10

8:10

8:25

8:20

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

8:05

(a) The sample DB after STEP 1

A

C

B

GFE KJIH L

8:158:10 8:258:20

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

8:05

(b) The sample DB after STEP 2

A

C

B

GFE KJIH L

8:158:10 8:258:20

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

8:05

(5,5)

(5,11)

(0,8)

(5,11)(5,11)(5,5)(5,11)

(c) STEP 3: Item–conditional sample DB
TF |FC8:05 and pattern discovery

Figure 3: Illustration of steps 1, 2, and 3

4 Projection–based LSP mining

Now let us turn to the description of the proposed me-
thod for mining LSPs in trajectories. This description
is based on a number of observations, each of which
is associated with a particular step in the method. In
related technical report [5], these observations are also
stated as lemmas, and their corresponding proofs show
the correctness and completeness of the method. To
demonstrate the simplicity of the implementation in
a RDBMS, for each step a simple SQL–statement is
given. The effect of each step is also illustrated on
the previously introduced sample trajectory database
assuming MinLength = 4, MinSupp = 2, and n = 2.

STEP 1: Filtering infrequent items

Items, i.e., spatio–temporal regions that are not fre-
quent in T cannot be part of a LSP. Hence as first step
of the method, T is filtered such that it contains items
with n–support larger than or equal to MinSupp.

The first step can be formulated in two SQL state-
ments:

INSERT INTO F (item, i_cnt)
SELECT item, count(*) i_cnt FROM T
GROUP BY item HAVING COUNT(DISTINCT oid) >= n

AND COUNT(*) >= MinSupp

CREATE VIEW TFV AS
SELECT T.oid, T.tid, T.item
FROM T, F
WHERE T.item = F.item

The first statement finds items that meet the unique
support criterion. The second statement constructs a
filtered view of T , called TFV, in which transactions
only contain the items found by the previous state-
ment.

The effects of the first step are illustrated in Fig-
ure 3(a). Spatio–temporal regions, which are part of
trajectories that belong to less than 2 distinct objects,
are removed from trajectories. From the point of view
of an intelligent rideshare application these spatio–
temporal regions are uninteresting, since these parts
of the trajectories cannot be shared by any objects,
i.e., are not sharable.

STEP 2: Filtering of short transactions

Transactions, i.e., trip trajectories, having less than
MinLength frequent items cannot satisfy a LSP. Hence,

the second step of the method further filters TFV
and constructs TF that only contain transactions that
have at least MinLength number of items.

The second step can be formulated in one SQL
statement:

INSERT INTO TF (tid, oid, item)
SELECT tid, oid, item FROM TFV
WHERE tid IN

(SELECT tid FROM TFV GROUP BY tid
HAVING COUNT(item) >= MinLength)

The sub–select is used to find trip identifiers that have
at least MinLength number of items. The outer part
of the statement selects all records belonging to these
trip identifiers and inserts them into TF.

The effects of the second step are illustrated in Fig-
ure 3(b). In particular, the remaining sharable parts
of trips belonging to objects 3 and 5 are deleted, be-
cause the length of them is not greater than or equal
to MinLength, which is 4 in the example. Also, note
that although in this case items HB8:15 and IB8:20
did not become infrequent in TF, they lost n–support.

Before stating further observations and continuing
with the development of the proposed method it is im-
portant to note the following. The set of discoverable
LSPs from T is equivalent to the set of discoverable
LSPs from TF. This is ensured by first two observa-
tions. Since further steps of the proposed method will
discover LSPs from TF, these two observation ensure
the correctness of the method so far. However, it is
also important to note that not all transactions in TF
necessarily satisfy a LSP. This is due to the sequen-
tiality of the first two steps. After the first step all
the remaining items in transactions are frequent items.
Then, in the second step, some of these transactions,
which are not long, are deleted. Due to this deletion a
frequent item in the remaining long transactions may
become non–frequent, which in turn may cause some
transactions to become short again. While there is no
simple solution to break this circle, note that the cor-
rectness of the first and second steps are not violated
since the deleted items and transactions could not have
satisfied a LSP.

STEP 3: Item–conditional DB projection

For the following discussion, adopted from [10], let
an item–conditional database of transactions, equiva-
lently referred to as an an item–projected database, be

53

A

C

B

GFE KJIH L

8:158:10 8:25

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

(a) The sample DB after STEP 5

A

C

B

GFE KJIH L

8:158:10 8:25

8:35

8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

(8,11)

(8,8)

(8,11)(8,11)(8,11)

(b) Item–conditional DB TF |LA8:35 and
PDD

A

C

B

GFE KJIH L

8:158:10 8:25 8:30

OBJ. 1 (2) OBJ. 5 (6)OBJ. 4 (5)OBJ. 3 (4)OBJ. 2 (3)

(c) Sample DB after the second PDD

Figure 4: Illustration of Pattern Discovery and Deletion phases

defined as:

Definition 5 Let T be a database of transactions, and
i an item in T . Then, the item–conditional database
of transactions, is denoted as T|i and contains all the
items from the transactions containing i.

The construction of an item–conditional database of
transactions can be formulated in a single SQL state-
ment as:

INSERT INTO T_i (oid, tid, item)
SELECT t1.oid, t1.tid, t1.item
FROM TF t1, TF t2
WHERE t1.tid = t2.tid and t2.item = i

Given n frequent items in T , the problem of finding
CFIs can be divided into n subproblems of finding the
CFIs in each of the n item–projected databases [10].
Using the divide–and–conquer paradigm, each of these
n subproblems can be solved by recursively mining the
item-projected databases as necessary.

STEP 4: Discovery of the single most frequent

closed itemset

Since i is in every transaction of the item–projected
database T|i, and hence has maximum n–support, the
items in T|i can be grouped in two: items that have the
same n–support as i, and items that have n–support
less than that of i. The set of items that have the same
n–support in the T|i as i is the Single Most Frequent
Closed Itemset (SMFCI) in T|i. The fourth step of the
method discovers this SMFCI.

The fourth step can be formulated in two SQL state-
ments:

INSERT INTO FT_i (item, i_cnt)
SELECT item, COUNT(*) i_cnt FROM T_i
GROUP BY item
HAVING COUNT(DISTINCT oid) >= n

SELECT item FROM FT_i
WHERE i_cnt = (SELECT MAX(i_cnt) FROM FT_i)

The first statement derives n–support of n–frequent
items in the item–projected database, while the second
statement selects those items from these n–frequent
items that have maximum n–support.

Figure 3(c) shows the effects of projecting TF based
on the item FC8:05. The numbers in parentheses show
the n–support of the items in TF |FC8:05 and TF re-
spectively. The SMFCI that is immediately discovered
from TF |FC8:05 is {FC8:05, GB8:10, HB8:15, IB8:20,

JB8:25, KB8:30}. LA8:35 is the only item that is in
TF |FC8:05, but is not in the discovered SMFCI. Since
further projecting TF |FC8:05 on LA8:35 yields a data-
base of transactions where no item meets the minimum
n–support criterion, the discovered SMFCI is the only
CFI present in TF |FC8:05. Since the discovered SMFCI
meets both the minimum length and an minimum n–
support criteria it is a pattern.

STEP 5: Deletion of unnecessary items

The subproblems that are recursively solved by the
method presented so far are overlapping. That is to
say, viewed from a top level, a CFI that has n items is
at least once discovered in each of the n corresponding
item–projected databases. To eliminate this redun-
dancy, both in the mining process and the result set,
observe that an item j can be deleted from TF if it has
the same n–support in TF |i as in TF. The intuition
behind the observation is the following. If j has the
same n–support in TF |i as in TF, it implies that all
the transactions in TF that satisfy j are also present
in TF |i. Thus, the set of patterns containing j, which
can be discovered from TF, can also be discovered from
TF |i.

The fifth step can be formulated in two SQL state-
ments:
INSERT INTO FT_i (item, i_cnt)
SELECT item, count(*) i_cnt FROM T_i
GROUP BY item
HAVING COUNT(DISTINCT oid) >= n

DELETE FROM TF WHERE TF.item IN
(SELECT F.item FROM F, FT_i
WHERE F.item = FT_i.item
AND F.i_cnt = FT_i.i_cnt)

The first statement counts the n–support of items in
TF |i. The second statement deletes all items in TF
that have the same n–support in TF as in TF |i.

Figure 4(a) shows the effects of deleting the un-
necessary items after the mining of TF |FC8:05. Since
items FC:8:05 and IB8:20 have the same n–support
in TF |FC8:05 as in TF, shown in Figure 3(c), they are
deleted from TF. Items remaining in TF are shown in
Figure 4(a).

Item-projection ordered by increasing n–

Support

A LSP p in T , containing items i1 . . . ik, can be dis-
covered from any one of the item–projected databases

54

T|i1 , . . . , T|ik
. Steps 4 and 5 of the proposed method

assure that p will be discovered from exactly one of
these item–projected databases, but the method pre-
sented so far does not specify which one. While this
point is irrelevant from the point of view of correctness,
it is crucial from the point of view of effectiveness.

To illustrate this, assume that i1.supp(n) <
i2.supp(n) < . . . < ik.supp(n). If projections are per-
formed in decreasing order of item n–support, then,
first T|ik

is constructed, then T|ik|ik−1
is constructed

from it, and so on, all the way to T|ik|ik−1|...|i1 , from
which finally p is discovered. If on the other hand,
projections are performed in increasing order of item
n–support, then p is discovered from the first item–
projected database that is constructed, namely T|i1 .

Assume that p and its qualifying (k− l+1) (at least
l–long) sub–patterns are the only LSPs in T . Then
during the whole mining process, the total number of
projections in the decreasing processing order is Pdec =
k, whereas in the increasing processing order the total
number of projections is only Pinc = k − l + 1. If k
and l are comparable and large, then Pdec ≫ Pinc .
Similar statements can be made about the total size
of the projected databases in both cases. Hence, item–
projection should be performed in increasing order of
item n-support.

Alternating pattern discovery and deletion

Alternating steps 3, 4 and 5, all patterns can be
discovered in a recursive fashion. The sequential ap-
plication of these steps is referred to as a Pattern Dis-
covery and Deletion phase (PDD). Mining terminates
when all items have been deleted from TF.

Figures 3(c) and 4(a) shows the effects of the first
of these PDD phases. Figures 4(b) and 4(c) show
the effect of the next pattern PDD phase. Since af-
ter the first PDD phase LA8:35 has the lowest n–
support in TF, namely 8, it is chosen as the next
item to base the database projection on. Figure 4(b)
show TF |LA8:35 with the corresponding n–support of
the items in TF |FC8:05 and TF respectively. Since
all the items have the same n–support in TF |FC8:05

as LA8:35, namely 8, the closed itemset {GB8:10,
HB8:15, JB8:25, KB8:30, LA8:35} is discovered. Since
this closed itemset both meets the minimum length
and n–support requirements it is recorded as a pat-
tern. In the deletion part of this PDD phase, item
LA8:35 is deleted from TF as the only item that have
the same n–support in TF |LA8:35 as in TF. The results
of this deletion are shown on Figure 4(c).

The third and final PDD phase is implicitly shown
in Figure 4(c). Since after the second PDD phase all
the items in TF have the same n–support, the next
projection is performed on any one of the items, i,
and the resulting item–projected database, TF |i, is
identical to the current state of TF, depicted on Fig-
ure 4(c). Since all the items in TF |i have the same
n–support as i, the closed itemset {GB8:10, HB8:15,

A

C

B

GFE KJIH L

8:158:10 8:258:20

8:35

8:30

PAT. 1: O(1,2), S(5), L(6)

8:05

PAT. 2: O(1,5), S(8), L(5) PAT. 3: O(1,2,5), S(11), L(4)

Figure 5: Three patterns in the sample DB

JB8:25, KB8:30} is discovered. Since this closed item-
set meets both the minimum length and n–support re-
quirements, it is recorded as a pattern. Finally, items
having the same n–support in TF |i as in TF, which in
this case means all the items in TF |i, are deleted from
TF. After this deletion part of the final PDD phase,
TF becomes empty and the mining terminates. Figure
5 shows the three patterns that are discovered during
the mining. Supporting oids, n–supports, and length
for each discovered patterns are shown in the legend.

LSP mining algorithm

Using the observations and the associated steps,
the complete algorithm for mining LSPs in trajecto-
ries is given in Figure 6. Since item–projected data-
bases are constructed at every level of the recursion
and are modified across levels when deleting unnec-
essary items, the level of recursion L is passed as an
argument in the recursive procedure, and is used as
a superscript to associate databases to the levels they
were constructed in.

Lines 2 and 3 in the MineLSP procedure represent
step 1 and 2 of the method, and they construct the fil-
tered database of transactions at the initial level, level
0. Line 4 processes frequent items in TF 0 in ascending
order of n–support. Line 5 represent step 3 of the me-
thod, and for each such frequent item i, it constructs
the item–conditional database of transactions TF 0

|i at
level 0. Line 6 calls procedure FindLSP to extract all
LSPs from TF 0

|i recursively.

Lines 2 and 3 in the FindLSP procedure represent
steps 1 and 2 of the method, and they construct the
filtered database of transactions at the current level
L. Line 4 represents step 4 of the method, and it finds
the SMFCI P in TFL

long . Line 5 represents step 5 of
the method, and it deletes all items from the filtered
database of transactions of the previous level, TFL−1

long ,

that have the same n-support in TFL−1
long as in TFL

freq ,
the current level. Lines 6 and 7 check if the single
most frequent closed itemset P meets the minimum
requirements and store it accordingly. Lines 8 and 9
processes frequent items in TFL

long , which are not in
P , in ascending order of n–support. Line 10 represent
step 3 of the method, and for each such frequent item
i it constructs the item–conditional database of trans-

55

(1) procedure MineLSP (T , MinSupp, MinLength, n)

(2) TF0

freq ← MinSupportFilter (T , MinSupp, n)

(3) TF0

long ← MinLengthFilter (TF0

freq , MinLength)

(4) for each freq item i in TF0

long ordered by asc n–supp

(5) TF0

|i ← ConstructConditionalDB (TF0

long , i)

(6) FindLSP (TF0

|i, 1, MinSupp, MinLength, n)

(7) end for each

(1) procedure FindLSP (T ,L,MinSupp,MinLength,n)

(2) TFL

freq ← MinSupportFilter (T , MinSupp, n)

(3) TFL

long ← MinLengthFilter (TFL

freq , MinLength)

(4) (P, P.supp(n)) ← FindSMFCI (TFL

long)

(5) TF
L−1

long
← DeleteUnnecessaryItems (TF

L−1

long
, TFL

freq)

(6) if P.supp(n) ≥ MinSupp and |P | ≥ MinLength

(7) StorePattern (P , P.supp(n))

(8) for each freq item i in TFL

long ordered by asc n–supp

(9) if i is not in P

(10) TFL

|i ← ConstructConditionalDB (TFL

long , i)

(11) FindLSP (TFL

|i, L + 1, MinSupp, MinLength, n)

(12) end for each

Figure 6: The LSP algorithm

actions TFL
|i at the current level L. Finally, line 11

recursively calls procedure FindLSP to find LSPs in
TFL

|i at the next level.

The structure and functionality of procedures
MineLSP and FindLSP have a significant overlap.
While the two functions can be merged into one, the
separation of the two is used to emphasize the facts
that (1) DeleteUnnecessaryItems presumes the exis-
tence of databases constructed at the previous level,
and (2) FindSMFCI correctly operates only on an
item–projected database, and hence it can only be ap-
plied at level 1 and above.

Several implementation details are worth mention-
ing. First, DeleteUnnecessaryItems deletes items from
TFL−1

long based on the n–support of items in TFL
freq ,

not TFL
long . This is important, as it was noted that

MinLengthFilter decreases the n–support of items in
TFL

freq , thereby possibly making an unnecessary item
appear to be necessary. Second, arguments to func-
tions and operands in statements are logical, i.e., the
functions and statements can be more efficiently imple-
mented using previously derived tables. For example,
both FindSMFCI and DeleteUnnecessaryItems are im-
plemented using previously derived n–support count
tables not the actual trajectory tables. Third, simple
shortcuts can significantly improve the efficiency of the
method. For example, during the derivation of TFL

freq ,

if the number of unique frequent items in TFL
freq is less

than MinLength, no further processing is required at
that level, since none of the CFIs that can be derived
from TFL

freq are long. To preserve clarity, these simple
shortcuts are omitted from Figure 6.

5 Experimental evaluation

The proposed method was implemented using MS-
SQL Server 2000 running on Windows XP on a 3.6GHz
Pentium 4 processor with 2GB main memory. The me-
thod was tested on the publicly available INFATI data
set, which comes from intelligent speed adaptation ex-
periments conducted at Aalborg University. This data
set records cars moving around in the road network of
Aalborg, Denmark over a period of several months.
20 distinct test cars and families participated in the
INFATI experiment; Team–1 consisting of 11 cars op-
erated between December 2000 and January 2001 and
Team–2 consisting of 9 cars operated between Febru-
ary and March 2001. Each car was equipped with a
GPS receiver, from which GPS positions were sampled
every second whenever the car was operated. Addi-
tional information about the experiment can be found
in [8].

The method presented in Section 3.1 identifies trips
from continuous GPS measurements, which is not the
case in the INFATI data. Hence in this case, a trip
was defined as sequence of GPS readings where the
time difference between two consecutive readings is less
than 5 minutes. Using the definition, the INFATI data
contains 3699 trips. After projecting the temporal di-
mension to the time–of–day domain and substituting
the noisy GPS readings with 100 meter by 100 me-
ter by 5 minutes spatio-temporal regions, the resulting
trajectory database has the following characteristics.
There are 200929 unique items in the 3699 transac-
tions. The average number of items in a transaction is
approximately 102. The average n–support of 1–, 2–,
and 3–frequent items is 1.88, 4.2 and 6.4 respectively.
Notice that the averages only include the n–supports
of 1–, 2–, and 3– frequent items.

Two sets of experiments were performed, each
varying one of the two parameters of the algorithm,
MinSupp and MinLength. The performance of the al-
gorithms was measured in terms of processing time
and working space required, where the working space
required by the algorithm was approximated by the
sum of the rows in the projected tables that were con-
structed by the algorithm. Both measures were evalu-
ated in an absolute and a relative, per pattern, sense.
Figures 7(a), 7(c), and 7(e) show the results of the
first set of experiments, where MinSupp = 2, n = 2
and MinLength is varied between 120 and 530. Lower
settings for MinLength were also tested, but due to
the very low MinSupp value these measurement were
terminated after exceeding the 2 hour processing time
limit. Noting the logarithmic scale in Figure 7(a) it is
evident that both the running time and the working
space required by the algorithm exponentially increase
as the MinLength parameter is decreased. Examining
the same quantities in a relative, per pattern sense,
Figure 7(e) reveals that the average running time and
average working space required per pattern is approx-

56

100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

MinLength

to
ta

l
p
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

Absolute Time and Space Performace vs MinLength

100 150 200 250 300 350 400 450 500
10

2

10
4

10
6

10
8

to
ta

l
w

o
rk

in
g
 s

p
a
c
e
 (

#
 o

f
ro

w
s
)

working space

processing time

(a) Absolute time and space

5 10 15 20 25 30 35
10

0

10
2

10
4

Absolute Time and Space Performace vs MinSupp

to
ta

l
p
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

MinSupp

10
0

10
5

10
10

to
ta

l
w

o
rk

in
g
 s

p
a
c
e
 (

#
 o

f
ro

w
s
)

processing time

working space

(b) Absolute time and space

10
0

10
1

10
2

10
3

10
4

Number of Patterns and Ineffective Projections vs MinLength

#
 o

f
p
a
tt
e
rn

s

MinLength
100 150 200 250 300 350 400 450 500

10
0

10
1

10
2

10
3

10
4

#
 o

f
in

e
ff
e
c
ti
v
e
 p

ro
je

c
ti
o
n
sineffective projections

patterns

(c) Number of patterns

10
0

10
2

10
4

10
6

Number of Patterns and Ineffective Projections vs MinSupp

#
 o

f
p
a
tt
e
rn

s

MinSupp
5 10 15 20 25 30 35

10
0

10
1

10
2

10
3

#
 o

f
in

e
ff
e
c
ti
v
e
 p

ro
je

c
ti
o
n
sineffectibe projections

patterns

(d) Number of patterns

100 150 200 250 300 350 400 450 500
0

20

40
Relative Time and Space Performace vs MinLength

p
ro

c
e
s
s
in

g
 t
im

e
 p

e
r

p
a
tt
e
rn

 (
s
e
c
)

MinLength

0

5000

10000

w
o
rk

in
g
 s

p
a
c
e
 p

e
r

p
a
tt
e
rn

 (
#
 o

f
ro

w
s
)processing time

working space

(e) Relative time and space

5 10 15 20 25 30 35
0

2

4
Relative Time and Space Performace vs MinSupp

p
ro

c
e
s
s
in

g
 t
im

e
 p

e
r

p
a
tt
e
rn

 (
s
e
c
)

MinSupp

0

2000

4000

w
o
rk

in
g
 s

p
a
c
e
 p

e
r

p
a
tt
e
rn

 (
#
 o

f
ro

w
s
)processing time

working space

(f) Relative time and space

Figure 7: Performance evaluation for various
MinLength (a,c,e) and MinSupp (b,d,f) settings

imately linearly decreasing as the MinLength param-
eter is decreased. The presence of the two irregular
bumps in Figure 7(e) can be explained in relation to
the number of patterns found, and the number of in-
effective projections that yield no patterns, shown in
Figure 7(c). The sharp increases in relative process-
ing time and working space are due to the fact that
the algorithm is unable to take some of the shortcuts
and it performs relatively more ineffective projections
yielding no pattern discovery. The sharp decreases can
be explained by the presence of an increasing number
of patterns that share the total pattern discovery cost.

Similar observations can be made about the second
set of experiments, shown in Figures 7(b), 7(d), and
7(f), where MinLength = 50, n = 2 and MinSupp
is varied between 7 and 33. For example, the sharp
decrease in relative processing time in Figure 7(f) when
going from MinSupp = 33 to MinSupp = 32 is simply
due to the sudden appearance of patterns in the data
for the given parameters. While there is only 1 pattern
for MinSupp = 33, and an order of magnitude more
number of patterns for MinSupp = 32, the projections
performed and hence the absolute processing time to
discover these patterns is approximately the same in
both cases. Hence, the relative processing time for
MinSupp = 33 is an order of magnitude larger than
that for MinSupp = 32.

Figure 8(a) shows a 50–fold down–sampled version

4500

5000

5500

6000

6500

6.1

6.2

6.3

6.4

x 10
4

0

1

2

3

4

x 10
4

X−coor (100m)

Trajectories of 20 moving objects in INFATI

Y−coor (100m)

T
im

e
 (

5
m

in
)

(a) Moving object trajectories

5000
5200

5400
5600

5800
6000

6.2

6.25

6.3

6.35

6.4

x 10
4

800

1000

1200

1400

1600

1800

2000

X−coor (100m)Y−coor (100m)

T
im

e
−

o
f−

d
a

y
 (

5
m

in
)

(b) 28 discovered LSPs

Figure 8: LSP discovery results in INFATI

of the trajectories of the 20 moving objects in the IN-
FATI data set. While some regularities are apparent
in it to the human eye, to find LSPs in it seems like a
daunting task. Figure 8(b) shows 28 LSPs in it that
are at least 200 long, sharable for at least 2 distinct
objects, and have a support of at least 2.

In conclusion, the experiments show that the me-
thod is effective and robust to changes in the user–
defined parameter settings, MinLength and MinSupp,
and is a useful analysis tool for finding LSPs in moving
object trajectories.

6 Conclusions and future work

The herein presented work, for the first time, considers
the problem of mining LSPs in trajectories, and trans-
forms it to a framework similar to that used in frequent
itemset mining. A database projection based method,
and its simple SQL–implementation is presented for
mining LSPs in trajectories. The effectiveness of the
method is demonstrated on a real world data set.

The large number of patterns discovered are diffi-
cult to analyze. To reduce this number, future work
will consider the mining of a compressed patterns in
trajectories [14].

In future work, we also plan to perform additional
experiments on larger real world data sets when such
become available. These experiments will include the
investigation of scale–up properties of the algorithm as
the number of moving objects are increasing and/or
as the granularity of the spatio–temporal regions is
varied.

Acknowledgments

This work was supported in part by the Danish Min-
istry of Science, Technology, and Innovation under
grant number 61480.

References

[1] R. Agrawal, T. Imilienski, and A. Swami. Mining Asso-
ciation Rules between Sets of Items in Large Databases.
In Proc. of SIGMOD, pp. 207–216, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of VLDB, pp. 487–499, 1994.

[3] R. Agrawal and R. Srikant. Mining Sequential Pat-
terns. In Proc. of ICDE, pp. 3–14, 1995.

57

[4] G. Gidofalvi and T. B. Pedersen. Spatio-Temporal Rule
Mining: Issues and Techniques. In Proc. of DaWaK,
pp. 275–284, 2005.

[5] G. Gidofalvi and T. B. Pedersen. Mining Long,
Common Patterns in Trajectories of Moving
Objects. A DB Technical Report (15), 2006:
www.cs.auc.dk/DBTR/DBPublications/DBTR-15.pdf

[6] B. Goethals. Survey on frequent pattern mining.
citeseer.ist.psu.edu/goethals03survey.html

[7] C. S. Jensen, D. Pfoser, and Y. Theodoridis. Novel Ap-
proaches to the Indexing of Moving Object Trajecto-
ries. In Proc. of VLDB, pp. 395-406, 2000.

[8] C. S. Jensen, H. Lahrmann, S. Pakalnis, and S.
Runge. The INFATI data. Time Center TR–79, 2004:
www.cs.aau.dk/TimeCenter

[9] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. W. Cheung. Mining, Indexing, and
Querying Historical Spatiotemporal Data. In Proc. of

KDD, pp. 236–245, 2004.
[10] J. Pei, J. Han, and R. Mao. CLOSET: An efficient

algorithm for mining frequent closed itemsets. In Proc.

of DMKD, pp. 11-20, 2000.
[11] X. Shang, K.-U. Sattler, and I. Geist. Efficient Fre-

quent Pattern Mining in Relational Databases. In Proc.

of LWA, pp. 84–91, 2004.
[12] I. Tsoukatos and D. Gunopulos. Efficient Mining of

Spatiotemporal Patterns. In Proc. of SSTD, pp. 425–
442, 2001.

[13] M. Vlachos, D. Gunopoulos, and G. Kollios. Discover-
ing Similar Multidimensional Trajectories. In Proc. of

ICDE, pp. 673–685, 2002.
[14] D. Xin, J. Han, X. Yan, and H. Cheng. Mining Com-

pressed Frequent-Pattern Sets. In Proc. of VLDB, pp.
709–720, 2005.

[15] X. Yan, J. Han, and R. Afshar. CloSpan: Mining
closed sequential patterns in large datasets. In Proc.

of SDM, pp. 166–177, 2003.

58

Fusion Based Methodology for Spatial Clustering

Pavani Kuntala and Vijay V. Raghavan

The Center for Advanced Computer Studies

University of Louisiana at Lafayette, LA 70504-4330

pavani@louisiana.edu, raghavan@cacs.louisiana.edu

Abstract

 In this paper, a novel clustering algorithm is

proposed to address the clustering problem

within both spatial and non-spatial domains by

employing a fusion-based approach. The motiva-

tion for this work is to overcome the limitations

of the existing spatial clustering methods. In

most conventional spatial clustering algorithms,

the similarity measurement mainly takes the

geometric attributes into consideration. However,

in many real applications, there is a need to fuse

the information from both the spatial and the

non-spatial attributes. The goal of our approach

is to create and optimize clusters, such that the

data objects satisfy both spatial and non-spatial

similarity constraints. The proposed algorithm

first captures the spatial cores having the highest

structure and then employs an iterative, heuristic

mechanism to determine the optimal number of

spatial cores and non-spatial clusters that exist in

the data. Such a fusion-based framework allows

for comparing clusters in spatial and non-spatial

contexts. The correctness and efficiency of the

proposed clustering algorithm is demonstrated on

real world data sets.

1. Introduction and Motivation for Spatial

Clustering

Clustering is one of the prominent data mining tasks,

which has been studied in detail[14]. Spatial data mining

or knowledge discovery in spatial databases refers to the

extraction, from spatial databases, of implicit knowledge,

spatial relations, or other patterns that are not explicitly

stored [6]. The large size and high dimensionality of spa-

tial data make the complex patterns that lurk in the data

hard to find. It is expected that the coming years will wit-

ness very large number of objects that are location-

enabled to varying degrees. Spatial clustering has been

used as an important process in the areas such as geo-

graphic analysis, exploring data from sensor networks,

traffic control, and environmental studies. Spatial data

clustering has been identified as an important technique

for many applications and several techniques have been

proposed over the past decade based on density-based

strategies, random walks, grid based strategies, and brute-

force exhaustive searching methods[8]. This paper deals

with spatial clustering using a fusion-based approach.

Spatial data is about instances located in a physical space.

Spatial clustering aims to group similar objects into the

same group considering spatial attributes of the object.

The existing spatial clustering algorithms in literature fo-

cus exclusively either on the spatial distances or minimiz-

ing the distance of object attributes pairs. i.e., the loca-

tions are considered as another attribute or the non-spatial

attribute distances are ignored. Much activity in spatial

clustering focuses on clustering objects based on the loca-

tion nearness to each other[12]. Finding clusters in spatial

data is an active research area, and the current non-spatial

clustering algorithms are applied to spatial domain, with

recent application and results reported on the effective-

ness and scalability of algorithms [9, 12]. One of the ear-

liest and most prominent clustering algorithms applied for

spatial data mining are partition based approaches. Parti-

tioning algorithms are best suited to such problems where

minimization of a distance function is required and a

common measure used in such algorithms is the Euclidian

distance. Recently new set of spatial clustering algorithms

has been proposed, which represents faster method to find

clusters with overlapping densities. DBSCAN,

GDBDCAN and DBRS are density-based spatial cluster-

ing algorithms, but they each perform best only on par-

ticular types of datasets[12]. However, these algorithms

also ignore the non-spatial attribute participation and re-

quire user defined parameters. For large-scale spatial da-

tabases, the current density based cluster algorithms can

be found to be expensive as they require large volume of
--

Proceedings of the 3rd Workshop on STDBM

Seoul, Korea, September 11, 2006

59

memory support due to its operations over the entire data-

base. Another disadvantage is the input parameters re-

quired by these algorithms are based on experimental

evaluations. There is a large interest in addressing the

automation of the general purpose clustering approach

without user intervention[13]. However, it is difficult to

adapt these algorithms to spatial data.

Spatial dimensions (e.g., latitude and longitude) cannot

simply be treated as two additional non-spatial dimen-

sions because of several important reasons. Spatial data

are generally multi-dimensional, requires the adoption of

real-world dissimilarity measures, and are autocorrelated.

Spatial data includes topological relationships. These dis-

tinctions put spatial and non-spatial data into different

categories with far-reaching implications for conceptual,

processing, and storage issues. General-purpose clustering

methods mainly deal with non-spatial feature spaces and

have very limited power in recognizing spatial patterns

that involve identification of dense spatial neighborhoods.

In section 2 we present the proposed fusion based spatial

clustering. The results of the application of proposed

clustering on real-world problems are examined in section

3. The conclusions are presented in section 4.

2. Proposed Fusion-Based Spatial Clustering

Data fusion is a process in which the available data is

combined to find representations of higher quality. The

U.S. Department of Defense [2] stated that “data fusion is

a multilevel, multifaceted process dealing with the auto-

matic detection, association, correlation, estimation, and

combination of data and information from multiple

sources.” More recent concepts of data fusion are dis-

cussed in [11]. Data Fusion is used in different context in

different fields. For example in fields of sensors and im-

age analysis it is viewed as target clustering problem [4].

We illustrate in our proposed approach, that effective data

fusion can be achieved through clustering and vice versa.

The method proposed for the fusion is a two step proce-

dure comprising the following steps: (i) an initial phase

for locating the initial spatial cores based on the spatial

densities and (ii) an optimization phase for finding the op-

timal spatial and non-spatial fusion. In the initialization

phase, we find the initial data tessellation, called spatial

cores, based on spatial densities. The second phase is the

fusion of spatial and non-spatial constraints. The goal of

the optimization phase is to iteratively provide an intuitive

grouping of the data objects, such that these groups satisfy

both the spatial and non-spatial constraints. In every itera-

tion of the optimization phase, we check if the algorithm

is improved. The algorithm is considered improved, when

the spatial distance is minimized and the non-spatial dis-

similarity is also minimal in each spatial partition. Next,

we describe the details of the initialization and optimiza-

tion phases of our proposed algorithm.

2.1 Initialization

We apply a density-based approach to get reasonable

neighborhood for the spatial core initialization process.

These approaches hold that, for given radius each object

within a cluster, the neighborhood of a give cluster must

exceed a specified threshold. Density clustering methods

depend on the proper selection of the neighborhood size

and the density size. Without prior knowledge of the

structure of the input data set, proper parameter selection

is cumbersome.

The initialization step of our proposed algorithm differs

from the existing approaches mainly in the following two

aspects.

Instead of choosing a fixed radius, we employ a heuristic

approach to find a sequence of varying neighborhoods to

catch the cluster structures of the input data.

The clusters are grown in the direction of maximum

movement of objects. Here we assume the object is at-

tracted to the strongest neighbor, which is the neighbor

with highest densities.

We assume the input data set X is

},...,,...,,{ 21 ni XXXXX , where
iX is an object repre-

sented as a vector of non-spatial features, and is the to-

tal number of objects.

n
d

idijiii XXXXX).,,..,,(,..21 ,

where is the total number of non-spatial features,

and represents the value of attribute of object

d

ijX j
iX .

Let LLLL ,..., 21 be the set of spatial locations in the

data space. The set of objects at location s , are sL

XXniiXlXlL siip
,",'1|})(),...,({ "'

. If we assume

each location as a representation of singleton set of ob-

jects, i.e., one object per location, the object information

at any location can be represented as)(iXl . That is, the

cardinality of is the same as the cardinality of L X , i.e.,

n . We scan the input data set X once to find the spa-

tial densities of each object, within a neighbourhood of

radius . Let z be the number of spatial cores, and set it

to a small value initially. Initially we find the area of the

minimum bounding rectangle of the objects, and tessellate

the data into z cores. For each object
iX we find the den-

sity i of that object as the number of the other objects

that are within a geometric neighbourhood of radius .

Initially, we assume that the objects are uniformly distrib-

uted among all initial spatial cores, and the spatial clusters

have a uniform neighborhood area. This initial assump-

tion makes the algorithm independent of the input order of

the data, and provides a better approach, than partitioning

the data using random seeds. Note that in later stages of

our algorithm, the number of cores varies based on the op-

timization stage. At this stage, since we are finding dense

60

partitions based only on spatial dimensions, a Minimum

Bounding Rectangle, MBR provides a good approxima-

tion for the total area of the objects.

Minimum Bounding Rectangles: The initial tessellation

of data is based on Minimum Bounding Rectangles.

MBRs have been used extensively to approximate objects

in spatial data structures and spatial reasoning, because

they need only two objects for their representation; in par-

ticular, for a set of objects , where , is rep-

resented as an ordered pair . Such approxi-

mations naturally extended to finding topological

relations[7]. correspond to the lower left,

and the upper right object of the MBR that covers all ob-

jects

'X XX ' 'X

'

2

'

1 , XlXl

'

2

'

1 , XlXl

'X . and are called the edge objects.'

1 Xl '

2 Xl

Definition 1. Given a set of objects , let 'X
'Xl =

 and l = be the in-

tervals of , created by projecting all the objects on
spatial dimensions and , respectively. The MBR of the

set of objects X’ is defined as the domain

 , where =

'

2

'

1 , XlXl 'X '

2

'

1 , XlXl

'X

''

2

'

1 ;, XXlXl '

1 Xl '

1

'

1 , XlXl , and

 = , and l'

2 Xl '

2

'

2 , XlXl 1 ('X) <= <= l2

('X) l1 ('X) <= <= l2 ('X).

Initial Tessellation of Data Space: We define dense re-

gion as a set of data objects, clustered using only spatial

information. The density cluster as defined by Ester et. al

in[3], requires both surrounding radius of an object ,

within which at least neighboring objects should be

found. The main differences between our proposed spatial

core approach and the current density clustering ap-

proaches are: 1) Our proposed algorithm heuristically cal-

culates the radius , and, 2) the dense regions are evolved

only in the direction in which the objects naturally grow.

We propose a heuristic approach to compute . Assume

that objects are uniformly distributed in the clusters are

equally separated in the MBR. Then assuming the clusters

are circular, = f(MBR,z) =)()1(XAz where

'XA is the area of the MBR . By em-

ploying such a heuristic approach, we can find clusters

where the data points are not densely packed and hence

might have a low

''

2

'

1 ;, XXlXl

.

Since the number of spatial clusters evolve as the algo-

rithm evolves, and the shapes of the clusters change, these

assumptions are good to estimate the initial cores. The

densities of all the objects within radius are calculated

and sorted. Let iX be the object with the maximum den-

sity. We assign all the objects within radius of to one

spatial cluster. For the other 1z clusters we grow the

cluster in the direction of its movement. This allows for

outlier detection and identifying a dense region that is sur-

rounded by another uniformly distributed sparse region.

Any objects belonging to , and not part of initial dense

regions are considered as unclassified objects. In the op-

timization stage detailed in next section, the objects in the

above initial cores and unclassified objects are optimized

to arrive at the clusters satisfying both the spatial and non-

spatial constraints.

'X

2.2 Optimization

The optimization stage aims at dynamically combining

the best features of both spatial and non-spatial distances

in the manner of alternating, fusing spatial and non-spatial

clusters, and arriving at heuristically computed number of

spatial cores and non-spatial clusters. We introduce some

more notations and definitions to explain the concepts of

cores and -clusters. In previous section we mentioned

that each data object iX is a vector of d non-spatial fea-

tures. We define -clusters are clusters satisfying non-

spatial optimization criterion, and core as a representation

of a set of objects which satisfy the spatial constraints.

i.e., all objects in a core are geometrically proximate.

Definition 2. A - cluster is a set of objects which

are homogenous only in non-spatial dimensions and are

well-separated from the other -clusters only in non-
spatial dimensions.

fC

The non-spatial distances are dependent on the application

domain and types of features. Assuming jiijns XXd , is

the non-spatial distance function, and is the non-

spatial optimization function, the objective function

for - clusters is to minimize

nsOpt

fjij

k

f

n

i

d

j
nsns ZXdKXOpt ,),(

1 1 1

,

where X represents the object matrix, K is the cluster

membership matrix, and k is the number of -clusters.

The following statements hold when we refer to two kinds

of centers, gravity and centroid as defined in definition 4.

The geometrical centers of the spatial cores or -clusters

will be referred to as the gravity. The centers based on

non-spatial features, of spatial cores or -clusters, will be

referred to as centroid. is the centroid of the -

cluster , and is the centroid value of non-spatial fea-

fZ

f fjZ

61

ture for -cluster . The centroid is the average

of the non-spatial characteristics.

j f fZ

Definition 3. A core is a combination of - clusters.

Two distinct cores can have the - clusters that are non-

spatially similar. Each - cluster of a core indicates the

objects in a core that are non-spatially homogenous and

well-separated from the other - clusters in the core.

represents a - cluster in core .

rC

r

fC rC

The following criterion holds for cores and - clusters.

1. kfzrC
r

f ...1;...1,

2. kzC
z

r

k

f

r

f1 1

3. rrzrrCC rr ,,1,

4. ffkffCC
r

f

r

f ,,1,

5. kC
z

r

r

f1

Let object iX belonging to core be represented as

, and object

rC

r

iX iX belonging to -cluster be repre-

sented as .

r

fC

rf

iX

Definition 4. The gravity rZ for core (rC or for -

cluster) , is defined as the geometrical center for

the set of objects in the core (or -clusters) . It is com-

puted as the mean of the locations of all objects in the
core.

r

fZ

r

fC

r

p

i

r

i
r

p

Xl

Z 1

)(

 ,

where is the number of objects in . rp rC

The objective function for core rC is to minimize the

spatial distances among the -clusters belonging to that

core. Depending on spatial dimensions, any spatial dis-

tance metric, for example rectilinear distance function[1]

for two dimensional spatial features can be used to find

the spatial proximity. Assuming is the spa-

tial distance function, and is the spatial optimiza-

tion function, the objective function for core is to

minimize

iisp XXd ,

spOpt

rC

r fq

f

p

i

r

f

rf

ins

r

fsp ZXdCOpt
1 1

,)(,

where is the number of -clusters in a core and

is the number of objects in -cluster .

rq rC

fp
r

fC

The intuition of the fusion approach is to use the informa-

tion derived from spatial proximity distance to merge-split

the non-spatial clusters and vice-versa. We define the dis-

tance function for the fusion based approach as

,)),(),((2/1

11
aa

tt
ff

k

sp

z
rr

nsfusion ZZdZZdd

where };..1{, ttztt and };..1{, aazaa . After, the

initial clusters have been created, the optimization phase

of the algorithm iteratively tries to improve the object dis-

tribution among the cores and the non-spatial distribution

of the -clusters. i.e.,).min()(fusionfusion dXOpt

The pseudo code of clustering based on co-learning and

fusion of spatial and non-spatial algorithm is depicted as

shown in Fig. 1. In the beginning of the optimization

phase, we consider each dense region formed in the ini-

tialization phase as a core. A representative non-spatial

-cluster is found for each core. All the objects belong-

ing to a representative cluster should satisfy the following

criteria.

}|...1:{)(fi

r

iri

r

f CXCXpiXCrep ,

where

ffkffZXdZXdiffCX

rrzrrZXdZXdiffCX

fr

ins

fr

insfi

r

isp

r

isp

r

i

;,1;,,

;,1;,,

',

i.e., find the objects that have the non-spatial characteris-

tics similar to the centroid of the current core. In the itera-

tive phase of the optimization algorithm, new cores and

-clusters are formed based on defined merge-split rules.

Each object iX is categorized as follows: C-Similar, -

similar, and joint. C-Similar implies that the object is spa-

tially proximate to the same core but not to any of the ex-

isting -clusters, i.e., it is non-spatially similar to the ob-

ject closest to the gravity of the unclassified objects. -

similar implies that the object is similar to a -cluster but

not geometrically proximate to existing cores, i.e., it is

geometrically proximate to the object closest to the cen-

troid of unclassified objects. An object is considered joint

if and only if it is similar to an existing -cluster of a

core. All the unclassified objects after each iteration,

which satisfy the joint criteria, are merged with the exist-

ing -cluster of a core. All the objects of a core which

are C-similar, are considered as tentative -clusters of

the core that they are geometrically proximate. Similarly

all objects, which are -similar, form new tentative

cores. Based on the MBRs, if the tentative cores are non-

overlapping they are considered singleton cores, and are

merged with a core whose gravity is closer than the grav-

ity of the unclassified objects. If not singleton, and the

MBRs are overlapping, a new core is formed. After each

iteration of the optimization phase, we compute the new

fusion distance, and if the rate of decrease dfusion is greater

62

than the percentage of unclassified objects, we terminate

the algorithm.

The algorithm is guaranteed to converge, because the dfu-

sion ensures that the points are geometrically proximate to

only one core, and non-spatially proximate to only one -

cluster of a core, at any given time. An added benefit of

the above fusion based clustering process is that the cores

can be explored to retrieve region specific -clusters.

Further we can compare two cores, by comparing the -

clusters of any two given cores.

Algorithm Optimize
Input : Initial cores of objects
Output: Spatial Cores and -clusters in each core
Step 1:
 Initial z dense regions;
 Find the gravities and centroids of each core;
Step 2:
 df_prev = dfusion;
 Find the rep -clusters, , of each core;)(r

fCrep
 Compute C-similar, -similar, and joint;
Step 3:
 For all unclassified objects {
 Add the joint objects to existing -cluster of a core;
 In each core, create -clusters with all objects c- similar;
 Create tentative cores with all objects -similar;
}
Step 4:
 if non-overlapping singleton cores {
 merge with an existing core;}
 compute dfusion;
Step 5:
 Find representative - clusters)(r

fCrep
 Objects that do not belong to core or -cluster
 considered unclassified;
 if [(df_prev -dfusion)/ df_prev -dfusion]> [unclassified / n)]
 go to step 2
 else exit;

 }

Figure 1. Algorithm Optimize

3. Experimental Evaluation and Results

Comprehensive experiments were conducted to assess the

accuracy and efficiency of the proposed approach. By

comparing to existing algorithms, such as purely spatial

clustering (GraviClust[5]), Non-Spatial(k-means), and

spatial clustering algorithm with partial capability to sup-

port non-spatial attributes(GDBSCAN), we demonstrate

accuracy of the proposed approach. Our choice of com-

parative algorithms is based on their effectiveness and

popularity in literature. Since our algorithm emphasizes

on the need for looking at both the spatial distances and

attribute values, we evaluate our algorithm in the three

evaluation setups, as shown in section 3.1.

We evaluated both the effectiveness and efficiency of our

approach using two real world datasets. In the spatial

clustering literature, there are no fixed benchmarking

datasets for evaluation of the algorithms. Our choice of

datasets is based on the number of non-spatial dimen-

sions, and the distribution of classes in both spatial and

non-spatial dimensions. To demonstrate the functionality

of the fusion based approach, we will details the experi-

ments conducted using a data set with two spatial dimen-

sions. Next, we show our experimental results on high-

dimensional data sets to show the scalability of our ap-

proach.

The first data set is US census tract housing data. The ob-

servations contain 4 non-spatial attributes land area, popu-

lation, median per capita income, median year built, as well

as the latitude and longitude of the centroid of the tract

from the 1990 Census. This resulted in 57,647 observations

with complete data. The associated class information is the

log of the median price of housing. After looking at the

Gaussian distribution of the class values, we binned the log

of median price of housing into 7 classes. The class distri-

bution for this dataset is equally influenced by the spatial

and non-spatial features. The second data set is a multi-

variate GIS data set. The actual forest cover type for a

given observation (30 x 30 meter cell) was determined

from US Forest Service (USFS) Region 2 Resource Infor-

mation System (RIS) data. Independent variables were de-

rived from data originally obtained from US Geological

Survey (USGS) and USFS data. The total number of in-

stances (observations) are around 500,000. The attributes

are distributed as 54 columns of data. The data represents 7

types of forest cover types. We found for this data set the

class distribution is spatially biased.

3.1 Evaluation Metrics

Since the final results of an algorithm are clusters based

on the fusion of different distance metrics, our evaluation

metric should be independent of any particular distance

metric. We identified three evaluation criterion to measure

the quality of our clusters.

1. Cluster Accuracy: r-value (purity). The r-value as de-

fined in [10] is
c

i
ianr

1

1 ,

where, c stands for the number of classes , ai denotes the

number of objects of the cluster i with the largest repre-

sentation in class i, and n is the total number of objects in

the database. This criterion measures the degree of corre-

spondence between the resulting clusters and the classes

assigned a priori to each object.

2. Total number of cluster assignment errors: Number of

objects that co-occur in a class versus that appear in dif-

ferent clusters.

3. Number of clusters found: Total number of cores or

clusters discovered versus the actual number of classes in

the data.

63

3.2 Effectiveness

In this section, we demonstrate the effectiveness of our

algorithm, in comparison to the KM, GDBSCAN and

GraviClust, and for varying data set sizes. We chose the

census dataset to demonstrate the effectiveness our algo-

rithm, since the natural grouping of the data is equally in-

fluenced by the spatial and non-spatial features.

We varied the dataset sizes by gradually increasing the

size of a region. We incrementally increased the longitude

by one degree, thus obtaining varying data set sizes (and

number of classes). This provides a natural spatial parti-

tion of the data, without losing the inherent spatial and

non-spatial information. Instead if we have chosen ran-

dom samples of the objects in census data, the spatial in-

formation would become meaningless. Table 1 shows the

data set sizes and the number of classes of each sample.

Table 1. Sample Data Set Sizes and Number Of Classes

Degrees of Longitude Number of Objects Number of Classes

4 694 5

4.2 1191 5

5 1931 5

6 2750 6

7 5984 6

8 7953 6

10 11841 7

13 15615 7

Table 2 illustrates the effectiveness of our algorithm in

comparison with traditional k-means(KM) and the

GDBSCAN algorithm. Higher r-value indicates better ac-

curacy. Since the competitor algorithms are input order

and parameter dependent, we heuristically chose the set-

tings that resulted in maximum accuracy for the competi-

tors.

Table 2. Accuracy of the clusters based on r-value

DataSet
Size

KM GDBSCAN
Gravi-
Clust

Proposed
Fusion
based Clus-
tering

(Cores)

Proposed Fu-
sion based
Clustering
(-Clusters)

694 0.49424 0.20749 0.56052 0.69308 0.67147
1191 0.39463 0.59446 0.69353 0.82284 0.70109
1931 0.37856 0.56499 0.4811 0.90005 0.6753
2750 0.31927 0.39673 0.41127 0.80655 0.51709
5984 0.30348 0.52741 0.39205 0.8735 0.54596
7953 0.26619 0.58758 0.4382 0.87476 0.55363
1184 0.31771 0.50452 0.45182 0.91031 0.56397

The last two columns of Table 2, are the accuracy results

separately for the cores and -clusters. The values in

these columns illustrate that the cores we obtained are ef-

fective, considering either the spatial or non-spatial con-

straints. The high accuracy values of cores in comparison

with the -clusters illustrate that the way the classes (in

this case the range of house prices) are grouped, are based

more on their spatial coordinates than the non-spatial fea-

tures.

The next effectiveness measure is cluster assignment er-

rors. Table 3 and Fig. 2 illustrate the number of misclas-

sified objects using varying approaches. From Table 3

and Fig. 2 we observe by using fusion based approach the

number of objects misclassified are significantly lower

than the competitor algorithms. Note that even though k-

means used the spatial attributes it performed very poorly

in comparison to the proposed fusion based approach.

Table 3. Total Number of Misclassified objects

#Objects KM GDBSCAN GraviClust
Proposed Fusion
Based Clustering

694 351 550 305 213

1191 721 483 365 211

1931 1200 840 1002 193

2750 1872 1659 1619 532

5984 4168 2828 3638 757

7953 5836 3280 4468 996

11841 8079 5867 6491 1062

Percentage of Misclassified objects

0

20

40

60

80

100

694

119
1

193
1

275
0

598
4

795
3

118
41

Number of Objects

M
is

c
la

s
s

if
ie

d
 O

b
je

c
ts

 (
%

)

KM

GDBSCAN

GraviClus t

Proposed Fus ion

Based Clus tering

Figure 2. The percentage of misclassified objects

The final evaluation of effectiveness is based on the num-

ber of discovered clusters. Table 4 demonstrates the

number of spatial partitions we found, are closer to the ac-

tual number of classes in the original data. In each core

there are varying numbers of -clusters, since all the re-

gions might not have same number of classes (in this case

household price range).

Table 4. The Number of Actual Classes Compared to The Num-
ber of Discovered Cores/ -Clusters

DataSize
Actual
Classes

Number of
discovered
Cores

Non-Spatial
Clusters /Core

Number of Dis-
covered Clusters

108 4 3 (3,1,2) 3
694 5 5 (4,3,1,1) 4
1191 5 6 (5,4,4,3,1) 6
1931 5 8 (5,4,3,1,1) 6
2750 6 8 (2,3,2,1,1) 6
5984 6 5 (3,2,2) 5

3.3 Efficiency

As we iterate for an optimal solution, the number of data

objects that need to be clustered decreases significantly.

Hence our algorithm is more efficient, because the algo-

rithm works on progressively reduced problem space. The

64

efficiency can be further improved by using spatial in-

dexing for the core clustering. Fig. 3 illustrates the effi-

ciency of our algorithm in comparison to the other spatial

clustering algorithms.

Figure 3. Execution Time in Seconds on Dataset1 with Varying

Number of Objects

The efficiency results as applied on forest dataset are il-

lustrated Table 5. Here we show the iterations as opposed

to time in secs, because we keep the dataset size constant

to 5000 points, and vary the number of classes. Here it

can be seen that the proposed approach converges much

faster than KM. The iterations do not apply for

GDBSCAN as it is a single pass algorithm.

Table 5. DataSet 2: Number of iterations for convergence for 3,5&
7 clusters

#Classes KM GraviClust Proposed Fusion Based Cluster-
ing

3 14 12 11
5 21 20 19
7 46 17 15

In Table 6, we summarize the characteristics of our pro-

posed approach to some of the other classes of clustering

algorithms supporting spatial features.

Table 6. Advantages of the Proposed Fusion based Spatial
Clustering

Distance

Metrics

K-

required

Detects

Noise

Requires

parame-

ters/thresho

lds

Arbitary

shape clus-

ters

Support

for In-

cremental

Partition
Spatial ,or,
Non-Spatial

Y N Y N Y

Density
Non-Spatial

Filter
N Y Y Y N

Gravity Spatial Y N Y N N
Proposed

Fusion
Clustering

Fusion
Based

N Y N Y Y

4. Conclusions

In this paper, we proposed an iterative and automated spa-

tial clustering algorithm based on the spatial and non-

spatial attribute fusion. The experimental evaluation

shows that our approach is more effective than the exist-

ing approaches, which either consider location attribute

as if it is another non-spatial feature, or ignore non-spatial

attribute information altogether. The proposed clustering

and employs a heuristic approach to find the optimal

number of spatial core clusters. We also proposed a fusion

based metric to find the optimal clusters and a stopping

criterion for algorithm convergence. In summary, the pro-

posed algorithm has following characteristics : insensitive
to input order; automatic, that is the number of clusters

need not be specified as input; iteratively clusters the data

based on fusion of spatial and non-spatial attributes; intui-
tive spatial cluster comparison; permits the use of sepa-

rate distance metrics for spatial and non-spatial features.

is automated because it does not require any user input,

5. References

Leiserson, and R. L. Rivest, Introduc-

[2] ," 1991.

-

[4] uang and T.-M. Tu, "A Target Fusion-Based Ap-

[5] ty

[6] iscovery of Spatial Association

[7] s, Y. Theodoridis, T. Sellis, and M. Egenhofer,

[8] B. G. Lees, "Paradigms for Spatial and Spa-

[9] dias, and N. Mamoulis, "An Effi-

[10] rahatis, "Generalizing the K-

[11] me Terms of Reference in Data Fusion," IEEE

Census Data: Execution Time in Seconds

0

5 0

10 0

15 0

2 0 0

2 5 0

3 0 0

Number of objects

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

GDBSCAN 0.561 2.011 4.629 8.51 42.488 67.16 126.11 256.06

GraviClus t 0.654 1.309 2.899 5.393 15.321 23.504 88.59 159.19

Proposed Fus ion

Based Clus tering

0.374 0.78 2.057 4.24 13.046 17.377 55.312 118.23

694 1191 1931 2750 5984 7953 11841 15615

[1] T. H. Cormen, C. E.

tion to Algorithms: MIT Press, 1990.

U. S. D. o. Defence, "Data fusion lexicon

[3] M. Ester, H. P. Kriegel, J. Sander, and X. X, "A Density

Based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise," Proc. 2nd International Conference

on Knowledge Discovery and Data Mining, pp. 226-231,

1996.

P. S. H

proach for Classifying High Spatial Resolution Imagery,"

Proc. 2003 IEEE Workshop on Advances in Techniques for

Analysis of Remotely Sensed Data, pp. 175 - 181, 2003.

M. Indulska and M. E. Orlowska, "Data Clustering: Gravi

Based Spatial Clustering," Proc. 10th ACM International

Symposium on Advances in Geographic Information Sys-

tems, pp. 125 - 130, 2002.

K. Koperski and J. Han, "D

Rules in Geographic Information Databases," Proc. 4th In-

ternational Symposium on Large Spatial Databases, pp. 47-

66, 1995.

D. Papadia

"Topological Relations in the World of Minimum Bound-

ing Rectangles: A study with R-trees," Proc. ACM

SIGMOD International Conf. on Management of Data, pp.

92-103, 1995.

J. Roddick and

tio-Temporal Data Mining," in Geographic Data Mining

and Knowledge Discovery, H. Miller and J. Han, Eds.:

Taylor & Francis, 2001.

Y. Tao, J. Zhang, D. Papa

cient Cost Model for Optimization of Nearest Neighbor

Search in Low and Medium Dimensional Spaces," IEEE

Transactions on Knowledge and Data Engineering, vol. 16,

no. 10, pp. 1169-1184, 2004.

D. K. Tasoulis and M. N. V

Windows Clustering Algorithm in Metric Spaces," Mathe-

matical and Computer Modelling (accepted for publica-

tion), 2005.

L. Wald, "So

Transactions on Geoscientific Remote Sensing, vol. 37, no.

3, pp. 1190-1193, 1999.

65

[12] X. Wang and H. J. Hamilton, "Clustering Spatial Data in

the Presence of Obstacles," International Journal on Artifi-

cial Intelligence Tools, vol. 14, no. 1-2, pp. 177-198, 2005.

[13] Y. Xie, V. V. Raghavan, P. Dhatric, and X. Zhao, "A New

Fuzzy Clustering Algorithm For Optimally Finding Granu-

lar Prototypes," International Journal of Approximate Rea-

soning, vol. 40, no. 1-2, pp. 109-124, 2005.

[14] R. Xu and D. Wunsch, II, "Survey of clustering algo-

rithms," IEEE Transactions on Neural Networks, vol. 16,

no. 3, pp. 645- 678, 2005.

66

A Storage Scheme for Multi-dimensional Databases Using

Extendible Array Files

Ekow J. Otoo and Doron Rotem

Lawrence Berkeley National Laboratory
1 Cyclotron Road

University of California

Berkeley, CA 94720, USA
ekw,@hpcrd.lbl.gov,d rotem@lbl.gov

Abstract

Large scale scientific datasets are generally mod-
eled as k-dimensional arrays, since this model is

amenable to the form of analyses and visualiza-

tion of the scientific phenomenon often investi-
gated. In recent years, organizations have adopted

the use of on-line analytical processing (OLAP),

methods and statistical analyses to make strate-
gic business decisions using enterprise data that

are modeled as multi-dimensional arrays as well.

In both of these domains, the datasets have the
propensity to gradually grow, reaching orders of

terabytes. However, the storage schemes used

for these arrays correspond to those where the ar-
ray elements are allocated in a sequence of con-

secutive locations according to an ordering of ar-
ray mapping functions that map k-dimensional in-

dices one-to-one onto the linear locations. Such

schemes limit the degree of extendibility of the ar-
ray to one dimension only. We present a method

of allocating storage for the elements of a dense

multidimensional extendible array such that the
bounds on the indices of the respective dimen-

sions can be arbitrarily extended without reorga-

nizing previously allocated elements. We give
a mapping function F∗(), and its inverse F −1

∗ (),
for computing the linear address of an array el-

ement given its k-dimensional index. The tech-
nique adopts the mapping function, for realizing

an extendible array with arbitrary extendibility in

main memory, to implement such array files. We
show how the extendible array file implementa-

tion gives an efficient storage scheme for both sci-
entific and OLAP multi-dimensional datasets that

are allowed to incrementally grow without incur-

ring the prohibitive costs of reorganizations.

Proceedings of the third Workshop on STDBM

Seoul, Korea, September 11, 2006

1 Introduction

Datasets used in large scale scientific applications, are gen-
erally modeled as multidimensional arrays and matrices.

Matrices are 2-dimensional rectangular array of elements

(or entries) laid out in rows and columns. Although the
logical view of a rectangular array of elements need not be

the same as the actual physical storage, the elements of the

arrays are mapped into storage locations according to some
linearization function of the indices. An array file is simply

a file of the elements of an array in which the k-dimensional

indices of the elements map into linear consecutive record
locations in the file. The mapping of k-dimensional in-

dices to linear addresses may either be by a computed ac-

cess function, an indexing mechanism, or a mixture of both.
Operations on these array files involve accessing and ma-

nipulating sub-arrays (or array chunks) of one or more of
these array files. Such models for manipulating datasets

are typical in large scale computing performed by various

Scientific and Engineering Simulations, Climate Modeling,
High Energy and Nuclear Physics, Astrophysics, Compu-

tational Fluid Dynamics, Scientific Visualization, etc.

On-line analytical processing (OLAP) and decision
support systems depend highly on efficiently computing

statistical summary information from multi-dimensional

databases. A view of the dataset as a multi-dimensional
array model forms the basis for efficient derivation of sum-

mary information. The literature distinguishes OLAP on

relational model of data called ROLAP and that on multi-
dimensional model termed MOLAP.

Consider a dataset that maintains monitored values of
temperature at defined locations given by the latitude and

longitude at various time-steps. Figure 1 illustrates a

simple multi-dimensional view of a sample data as a 3-
dimensional array A[4][3][3] with assigned ordinal coor-

dinates. The entries shown in the cells correspond to the

linear addresses of the cells as the relative displacements
from cell A〈0,0,0〉.

Each cell stores the temperature value (not shown) as

the measure. Suppose we wish to maintain information on

67

sales of some enterprise that has stores at different loca-
tions. The locations are defined by their spatial coordinates

of latitude and longitude often abbreviated as Lat/Long.

The sales information recorded for say three consecutive
months can be represented by Figure 1 which gives the

same view of the data as before but with values for sales as
the measures. A multi-dimensional array correctly models

the dataset in both domains of scientific applications and

MOLAP. Further common characteristics associated with
multi-dimensional model of data under these domains are

that:

1. The data incrementally grow over time by appending
new data elements. These may reach orders of ter-

abytes, as in data warehousing.

2. The datasets are mainly read-only. However, they may
be subject to expansions in the bounds of the dimen-

sions, e.g., as new monitoring locations are enabled or

new stores are opened.

3. The number of dimensions (i.e., the rank) of the array

may be extended.

4. The array representation can be either dense or sparse.

In the illustration of Figure 1, the array may grow by

appending data for new time-steps. When new locations

are added, the bounds of the Lat/Long dimensions may be
required to be extended. The mapping function depicted in

the above figure (represented by the label inside each cell)

corresponds to that of conventional array mapping that al-
lows extendibility in one dimension only; namely the di-

mension in the mapping scheme that is least varying. We
desire an array addressing scheme that allows extensions in

both the bound and rank of the array file and also efficiently

manages sparse arrays. In this paper we address primarily
the storage scheme for managing dense extendible array

efficiently. We discuss how the technique is tailored for

handling sparse arrays as well without detailed experimen-
tation due to space limitation.

Over the years special file formats have been extensively

studied and developed for storing multi-dimensional array
files that support sub-array accesses in high performance

computing. These include NetCDF [10], HDF5 [7] and

disk resident array (DRA) [11]. DRA is the persistent
counterpart of the distributed main memory array structure

called Global Array [12]. Except for HDF5, these array
files allow for extendibility only in one dimension. We say

an array file is extendible if the index range of any dimen-

sion can be extended by appending to the storage of pre-
viously allocated elements, so that new elements can be

addressed from the newly adjoined index range. The ad-

dress calculation is done without relocating elements of the
previously allocated elements and without modifying the

addressing function.

Let A[N0][N1] . . . [Nk−1], denote a k-dimensional array
where N j,0 ≤ j < k−1, is the bound on the indices of di-

mension j. An element, denoted by A〈i0, i1 . . . , ik−1〉, is ref-

erenced by a k-dimensional index 〈i0, i1 . . . , ik−1〉. Let L =

{ℓ0, ℓ1 . . . , ℓM−1}, be a sequence of consecutive storage lo-

cations where M = ∏
k−1
j=0 N j. An allocation (or mapping)

function F (), maps the k-dimensional indices one-to-one,

onto the sequence of consecutive indices {0,1, . . . ,M−1},
i.e., F : N0 ×N1 × ·· ·×Nk−1 → {0,1, . . . ,M− 1}. Given

a location index j, the inverse mapping function F −1(j),
computes the k-dimensional index 〈i0, i1 . . . , ik−1〉 that cor-
responds to j. The significance of inverse mapping func-

tions have not been much appreciated in the past but has

important use in computing the addresses of the neighbors
of an element given its linear storage address and also for

managing a general k-dimensional sparse array as opposed

to sparse matrices which is 2-dimensional.

Modern programming languages provide native support
for multidimensional arrays. The mapping function F ()
is normally defined so that elements are allocated either
in row-major or column major order. We refer to arrays

whose elements are allocated in this manner as conven-

tional arrays. Conventional arrays limit their growth to only
one dimension. We use the term row-major order in a gen-

eral sense, beyond row-and-column matrices, to mean an

order in which the leftmost index of a k-dimensional index
is the least varying. This is also sometimes referred to as

the lexicographic order. A column-major order refers to an

ordering in which the rightmost index varies the slowest.

In conventional k-dimensional arrays, efficient compu-
tation of the mapping function is carried out with the aid

of a vector that holds k multiplicative coefficients of the

respective indices. Consequently, an N-element array in k-
dimensions, can be maintained in O(N) storage locations

and the computation of the linear address of an element,
given its k-dimensional coordinate index, is done in time

O(k) since this is done by k− 1 multiplications and k− 1

additions. We achieve similar efficiency in the management
of extendible arrays by maintaining vectors of multiplying

coefficients each time the array expands. The computation

of the linear address, corresponding to a k-dimensional in-
dex, uses these stored vectors of coefficients. The vectors

of multiplicative coefficients maintain records of the his-

tory of the expansions and are organized into Axial-Vectors.
There is one Axial-Vector for each dimension and holds en-

tries that we refer to as expansion records. The fields of an

expansion record are described later.

Consider a k-dimensional array of N elements and
after some arbitrary extensions dimension j maintains

E j records of the history of expansion for dimension
j. Our approaches computes the linear address from

the k-dimensional index in time O(k + ∑
k−1
j=0E j) using

O(k ∑
k−1
j=0E j) additional space.

The technique being presented in this paper can be

adopted by compiler developers for generating mapping
functions for dense multidimensional extendible arrays in

memory as well. The Standard Template Library (STL) in

C++ also provides support for resizable vectors. However,
the general technique for allowing array extensions without

the extensive cost of reallocating storage is what we desire.

The approach we propose may be used in implementing

68

special libraries such as the Global Array (GA) library [12]
and the disk resident array (DRA) [11] that manage dense

multidimensional arrays.

To handle sparse arrays, we adopt the technique of ar-

ray chunking [4, 7, 5], where the linear address of a chunk
is computed as for a dense array. The generated address

forms the key of an array chunk that is used in an index

scheme that stores only non-empty chunks. Partial chunks
can be further compressed and grouped into physical buck-

ets to maintain efficient storage utilization. A thorough dis-

cussion of our approach is in a follow-up paper.

The main contributions in this paper are:

• A definition of a mapping function for extendible ar-

rays that is applicable for both dense in-core arrays
and out-of-core arrays. We call the approach the The

Axial-Vector method. The general principle is not

new. The idea was first proposed with the use of
an auxiliary array. However, the storage overhead

using an auxiliary array could be prohibitive. The
new Axial-Vector method obviates the storage over-

head and also gives a new method for computing the

linear addresses.

• When extremely large array files are generated and

stored, any dimension can still be expanded by ap-

pending new array elements without the need to re-
organize the already allocated storage which could be

of the order of terabytes.

• The mapping function proposed in this paper incurs
very little storage overhead and can be used as a re-

placement for the access function for array files such

as NetCDF and the data chunks in the HDF5 file for-
mat.

• We discuss an extension of the technique to handle
sparse extendible arrays for both in-core and out-of-

core arrays.

The organization of this paper is as follows. In the next

section we present some details of the definition of the
mapping function for dense multidimensional extendible

arrays in main memory since the same mapping function

is adopted for accessing elements of extendible array files.
In section 3 we describe how an array file is implemented.

We describe how sparse multidimensional array files are

managed in section 4. We give some experimental com-
parison of the array mapping functions for extendible and

conventional arrays in section 5. We conclude in section 6

and give some directions for our future work.

2 The Mapping Function for an Extendible
Array

2.1 Addressing Function for a Conventional Array

First we explore some details of how conventional arrays

are mapped onto consecutive storage locations in memory.

Consider a k-dimensional array A[N0][N1] . . . [Nk−1], where

N j,0 ≤ j < k−1, denote the bounds of the index ranges of
the respective dimensions. Suppose the elements of this ar-

ray are allocated in the linear consecutive storage locations

L = {ℓ0, ℓ1 . . . , ℓM−1}, in row-major order according to the
mapping function F (). In the rest of this paper, we will

always assume row-major ordering and for simplicity we
will assume an array element occupies a unit of storage. A

unit of storage could be one word of 4 bytes, a double word

of 8 bytes, etc. An element A〈i0, i1, . . . ik−1〉 is assigned to
location ℓq, where q is computed by the mapping function

defined as

q = F (〈i0, i1, . . . ik−1〉) = i0 ∗C0 + i1 ∗C1 + · · ·+ ik−1 ∗Ck−1

where C j =
k−1

∏
r= j+1

Nr,0 ≤ j ≤ k−1.

(1)

and A〈0,0, . . .0〉 assigned to ℓ0.

In most programming languages, since the bounds of
the arrays are known at compilation time, the coefficients

C0,C1, . . . ,Ck−1 are computed and stored during code gen-

eration. Consequently, given any k-dimensional index,
the computation of the corresponding linear address using

Equation 1, takes time O(k).
Suppose we know the linear address q of an array ele-

ment, the k-dimensional index 〈i0, i1, . . . ik−1〉 correspond-

ing to q can be computed by repeated modulus arith-

metic with the coefficients Ck−2,Ck−3, . . . ,C1 in turn, i.e.,
F −1(q) → 〈i0, i1, . . . ik−1〉. When allocating elements of a

dense multidimensional array in a file, the same mapping
function is used where the linear address q gives the dis-

placement relative to the location of the first element in the

file, in units of the size of the array elements. The limita-
tion imposed by F is that the array can only be extended

along dimension 0 since the evaluation of the function does

not involve the bound of N0.
We can still circumvent the constraint imposed by F

by shuffling the order of the indices whenever the array is

extended along any dimension. The idea of extending the
index range of a dimension is simply to adjoin a block (or a

hyperslab) of array elements whose sizes on all dimensions

remain the same except for the dimension being extended.

2.2 The Mapping Function for an In-Core Extendible

Array

The question of organizing an extendible array in mem-

ory, such that the linear addresses can be computed in the

manner similar to those of a static array described above,
is a long standing one [15]. Some solutions exist for

extendible arrays that grow to maintain some predefined

shapes [14, 15]. A solution was proposed that uses an aux-
iliary array [13] to keep track of the information needed to

compute the mapping function. In [16], a similar solution

was proposed that organized the content of the auxiliary
array with a B-Tree. The use of auxiliary arrays can be

prohibitively expensive in storage depending on the pattern

of expansions of the array. We present a new approach to

69

organizing the content of the auxiliary array with the use
of Axial-Vectors. The idea of using axial-vectors to replace

the auxiliary array was introduced in [20] but only for 2-

dimensional arrays. The method introduced maintains the
same information as in the auxiliary-array approach and

does not generalize easily to k-dimensional arrays. Fur-
thermore since it requires that information be stored for

each index of any dimension, the method incurs the same

prohibitive cost for certain array shapes. The method intro-
duced in this paper avoids these problems. First we show

how an in-core extendible array is organized with the aid of

axial-vectors since the same mapping function is used for
array files.

2.3 The Axial-Vector Approach for Extendible Arrays

Consider Figure 2a that shows a map of the storage allo-
cation of 3-dimensional extendible array. We denote this

in general as A[N∗
0][N

∗
1][N

∗
2], where N

∗
j represents the fact

that the bound has the propensity to grow. In this paper
we address only the problem of allowing extendibility in

the array bounds but not its rank. The labels shown in the

array cells represent the linear addresses of the respective
elements, as a displacement from the location of the first

element.

Suppose initially the array is allocated as A[4][3][1],
where the corresponding axes of Latitude, Longitude and

Time have the instantaneous respective bounds of N
∗
0 =

4,N∗
1 = 3 and N

∗
3 = 1. The array was extended by one time-

step followed by another time-step. The sequence of the

two consecutive extensions along the same time dimension,
although occurring at two different instances, is considered

as an uninterrupted extension of the time dimension. Re-

peated extensions of the same dimension, with no interven-
ing extension of a different dimension, is referred to as an

interrupted extension and is handled by only one expansion
record entry in the axial-vector.

The labels shown in the array cells represent the linear

addresses of the respective elements. For example, in Fig-
ure 2a the element A〈2,1,0〉 is assigned to location 7 and

element A〈3,1,2〉 is assigned to location 34. The array was
subsequently extended along the longitude axis by one in-

dex, then along the latitude axis by 2 indices and then along

the time axis by one time-step. A hyperslab of array el-
ements can be perceived as an array chunk (a term used

in [17, 7]), where all but one of the dimensions of a chunk

take the maximum bounds of their respective dimensions.

Consider now that we have a k-dimensional extendible

array A[N∗
0][N

∗
1] . . . [N

∗
k−1], for which dimension l is ex-

tended by λl , so that the index range increases from N
∗
l

to N
∗
l + λl . The strategy is to allocate a hyperslab of ar-

ray elements such that addresses within the hyperslab are
computed as displacements from the location of the first

element of the hyperslab. Let the first element of a hy-

perslab of dimension l be denoted by A〈0,0, . . . ,N∗
l , . . . ,0〉.

Address calculation is computed in row-major order as

before, except that now dimension l is the least varying

dimension in the allocation scheme but all other dimen-

sions retain their relative order. Denote the location of
A〈0,0, . . . ,N∗

l , . . . ,0〉 as ℓM
∗
l

where M
∗
l = ∏

k−1
r=0(N

∗
r). Then

the desired mapping function F∗() that computes the ad-

dress q∗ of a new element A〈i0, i1, . . . ik−1〉 during the allo-

cation is given by:

q∗ = F∗(〈i0, i1, . . . ik−1〉) = M
∗
l +(il −N

∗
l)C

∗
l +

k−1

∑
j=0
j 6=l

i jC
∗
j

where C∗
l =

k−1

∏
j=0
j 6=l

N
∗
j and C∗

j =
k−1

∏
r= j+1

r 6=l

N
∗
r

(2)

We need to retain for dimension l the values of M
∗
l - the

location of the first element of the hyperslab, N
∗
l - the fisrt

index of the adjoined hyperslab, and C∗
r ,0 ≤ r < k - the

multiplicative coefficients, in some data structure so that
these can be easily retrieved for computating an element’s

address within the adjoined hyperslab. The axial-vectors

denoted by Γ j[E j],0 ≤ j < k, and shown in Figure 2b, are
used to retain the required information. E j is the number of

stored records for axial-vector Γ j . Note that the number of
elements in each axial-vector is always less than or equal

to the number of indices of the corresponding dimension.

It is exactly the number of uninterrupted expansions. In the
example of Figure 2b, E 0 = 2,E 1 = 2, and E 2 = 3.

The information of each expansion record of a dimen-

sion is a record comprised of four fields. For dimen-
sion l, the ith entry denoted by Γl〈i〉 consists of Γl〈i〉.N

∗
l ;

Γl〈i〉.M
∗
l ; Γl〈i〉.C[k] - the stored multiplying coefficients

for computing the displacement values within the hyper-
slab; and Γl〈i〉.Sil - the memory address where the hyper-

slab is stored. Note however that for computing record ad-

dresses of array files, this last field is not required, since
new records are always allocated by appending to the exist-

ing array file. In main memory an extendible array may be

formed as a collection of disjoint hyperslabs since a block
of memory acquired for each new hyperslab may not nec-

essarily be contiguous to a previously allocated one. Con-

tiguiety in memory allocation is only guranteed for unin-
trrupted expansion of a dimension, i.e., when the same di-

mension is repeatedly expanded.

Given a k-dimensional index 〈i0, i1, . . . , ik−1〉, the main
idea in correctly computing the linear address is in deter-

mining which of the records Γ0〈z0〉,Γ1〈z1〉 . . .Γk−1〈zk−1〉,
has the first maximum starting address of its hyperslab. The
index z j is given by a modified binary search algorithm that

always gives the highest index of the axial-vector where the
expansion record has a maximum starting address of its hy-

perslab less than or equal to i j.

For example, suppose we desire the linear address of

the element A〈4,2,2〉, we first note that z0 = 1,z1 = 0, and

70

Array Address Inverse addr. Storage

Method calculation calculation overhead

Conventional O(k) O(k) 0

Axial Vectors O(k+
k log(k +E)
−k logk) O(k + logE) O(kE)

Table 1: Summary of features of extendible array realiza-

tion.

z2 = 1. We then determine that

M
∗
l = max(Γ0〈1〉.M

∗
0,Γ1〈0〉.M

∗
1,Γ2〈1〉.M

∗
2)

= max(48,−1,12);
(3)

from which we deduce that M
∗
l = 48, l = 0,and N

∗
l = N

∗
0 =

4. The computation F∗(〈4,2,2〉) = 48+12× (4−4)+3×
2 + 1×2 = 48 + 0 + 6 + 2 = 56. The value 56 is the linear

address relative to the starting address of 0. The main char-

acteristics of the extendible array realization is summarized
in the following theorem

Theorem 2.1. Suppose that in a k-dimensional extendible

array, dimension j undergoes E j, uninterrupted expan-

sions. Then if E = ∑
k−1
j=0E j, the complexity of comput-

ing the function F∗() for an extendible array using axial-

vectors is O(k + k log(k +E)− k logk), using O(kE) worst

case space.

Proof. The worst case sizes of the axial-vectors occur if

each dimension has the same number of uninterrupted ex-
pansions; i.e., E j = E /k. The evaluation of F∗() involves

k logE j followed by k multiplications k additions and 1

subtraction, giving a total of O(k + k(log(1 + E /k))) =
O(k + k log(k +E)− k logk).

The additional space requirement for the k axial-vectors

is O((k + 3)∑
k−1
j=0E j) = O(kE).

Given a linear address q∗, it is easy to find, an entry

in the axial vectors that has the maximum starting address
less than or equal to q∗ using a modified binary search algo-

rithm as in the address computation. The repeated modulus

arithmetic as described in section 2.1 is then used to extract
the k-dimensional indices. We state without a formal proof

the following.

Theorem 2.2. Given a linear address q of an element of

an extendible array realized with the aid of k axial-vectors,

the the k-dimensional index of an element is computable by

the function F −1
∗ in time O(k + logE).

The main results of the extendible array realization are

summarized in Table 1.

3 Managing Multidimensional Extendible
Array Files

An array file is simply a persistent storage of the corre-

sponding main memory resident array in a file, augmented
with some meta-data information, either as a header in the

same file or in a separated file. We will consider array files

as formed in pairs: the primary file Fp and the meta-data
file Fm. For extremely large files, the content in memory at

any time is a subset, or a subarray of the entire disk resident

array file. Scientific applications that process these arrays
consider array chunks as the unit of data access from sec-

ondary storage. Most high performance computations are

executed as a parallel program either on a cluster of work-
stations or on massively parallel machines. The model of

the data is a large global array from which subarrays are

accessed into individual workstations. The subarrays of in-
dividual nodes together constitute tiles of the global array.

Actual physical access of array elements is carried out in
units of array chunks for both dense and sparse arrays. We

discuss this in some detail in the next section.

For the subsequent discussions, we will ignore most of
the details of the organization of the array files and also the

details of the structure of the array elements. For simplicity,
we consider the array files as being composed of fixed size

elements, where each element is composed of a fixed num-

ber of attributes. Each attribute value has a corresponding
ordinal number that serves as the index value. Mapping of

attribute values to ordinal numbers is easily done for array

files. The primary file Fp, contains elements of the multidi-
mensional array that continuously grows by appending new

data elements whenever a dimension is extended. For ex-

ample, a dimension corresponding to time may be extended
by the addition of data from new time-steps. A meta-data

file Fm stores the records that correspond to the axial vec-

tors. The contents of the meta-data file Fm are used to re-
construct the memory resident axial vectors. Each expan-

sion of a dimension results in an update of an axial vector

and consequently the meta-data file as well.

Suppose an application has already constructed the

memory resident axial vectors from the meta-data file, then
the linear address of an element (i.e., a record), of the ar-

ray file given its k-dimensional coordinates, is computed

using the mapping function F∗(). Essentially, F∗() serves
as a hash function for the elements of the array file. Con-

versely, if the linear address q∗, of an element is given and
one desires the neighbor element that lies some units of co-

ordinate distances along some specified dimensions from

the current, such an element can be easily retrieved with
the aid of the inverse function F −1

∗ (). First we compute

the k-dimensional coordinate values from F −1
∗ (q), adjust

the coordinate values along the specified dimensions and
compute the address of the desired element by F∗(). The

relevant algorithms for these operations are easily derived

from the definitions of the functions presented in the pre-
ceding sections. One of the main features of our scheme

is that when extremely large array files are generated, each

dimensions can still be expanded by appending new array

71

elements without the need to reorganize the allocated stor-
age of the files.

Two popular data organization schemes for large scale

scientific datasets are NetCDF [10] and HDF5 [7]. The
NetCDF maintains essentially an array file according to a

row-major ordering of the elements of a conventional array.

Consequently, the array can only be extended in one dimen-
sion. The technique presented in this paper can be easily

adopted as the mapping function of the NetCDF storage

scheme to allow for arbitrary extensions of the dimensions
of the NetCDF file structure, without incurring any addi-

tional access cost. HDF5 is a storage scheme that allows ar-

ray elements to be partitioned in fixed size sub-arrays called
data-chunks. A chunk is physically allocated on secondary

storage and accessed via a B+-tree index. Chunking allows
for extendibility of the array along any dimension and also

for the hierarchical organization of the array elements, i.e.,

elements of a top level array is allowed to be an array of
a refined higher resolution and so on. The mapping func-

tion introduced can be used as a replacement of the B+-tree

indexing scheme for the HDF5 array chunks. Other appli-
cations of the mapping function introduced here include its

use for the Global-Arrays [12] data organization and Disk-

Resident-Array files [11].

4 Managing Sparse Extendible Array Files

Besides the characteristics that multi-dimensional
databases incrementally grow over time, they also

have the unkind property of being sparse. Techniques

for managing large scale storage of multi-dimensional
data have either addressed the sparsity problem of the

array model [2, 3, 4, 5, 17, 18] or the extendibility prob-

lem [16, 19] but not both simultaneously. The sparsity
of multidimensional array is managed by array chunking

technique. An array chunk is defined as a block of data

that contains extents of all dimensions from a global
multi-dimensional array. Even for dense array, an array

chunk constitutes the unit of transfers between main
memory and secondary storage.

Figure 3a shows a 3-dimensional array partitioned into

chunks using index-intervals of 3. Addressing elements of

the array is computed in two levels. The first level address
computation gives the chunk address of the element. The

second level address is computed as the displacement of the

array element within the array chunk. The extendible array
addressing method maps the k-dimensional index of each

chunk into a Table Map. The table map of the chunks con-

tains pointers to the physical addresses of the data blocks
that hold chunks. An array chunk forms the unit of data

transfer between secondary storage and main memory. A
table map pointer is set to null if the chunk holds no array

elements. As in extendible hashing, the use of table map to

address chunks guarantees at most 2 disk accesses to locate
a chunk. Array chunks that have less than some defined

number of array elements can be compressed further.

The table map is one of the simplest techniques for han-

dling sparse extendible array but suffers from the prob-

lem of a potential exponential growth for high dimen-
sional datasets. Instead of a table map for maintaining ar-

ray chunks, we use a dynamically constructed PATRICIA

trie [9] to manage the table map of the chunks. Other meth-
ods of handling sparse multi-dimensional arrays have been

described in [4, 8]. Some of the techniques for handling
sparse matrices [1] can also be adopted.

4.1 Alternative Methods for Addressing Array

Chunks

The use of a table map for locating the physical locations
of array chunks relaxes the need for directly addressing ar-

ray elements with an extendible array mapping function.

One can further relax this constraint by doing away with
the extendible array mapping function entirely. Rather, a

method for constructing a unique address I〈i0,...ik0
〉 of an ar-

ray chunk from the k-dimensional index 〈i0, . . . ik0
〉 is all

that is required. One such method is given by concatenat-

ing the binary representation of the coordinate indices of an
array chunk. The unique address generated is then used in

an index scheme such as a B+-tree, to locate the physical

chunk where an array element is stored. This approach is
actually implemented in the HDF5 storage format. There

are two problems with this approach;

1. Either the k-dimensional index or the generated iden-

tifier for the chunk must be stored with the chunk. For
the latter case, an inverse function for computing the

k-dimensional chunk index from the chunk identifier
is needed but is less space consuming.

2. It does not handle both memory resident array and
disk resident arrays uniformly.

In general the table map can be replaced with any index-

ing scheme that maintains O(N) chunk address for exactly

N non-empty chunks. The use of a PATRICIA trie guar-
antees that. Using extendible array mapping function for

computing the linear address of a chunk has the advantage

of:

1. giving us a uniform manner of managing extendible
arrays resident both in-core and out-of-core.

2. allowing the replacement of the global k-dimensional

address of an array element by one which only defines

its linear location within an array chunk and yet en-
ables us to compute the global k-dimensional index

from the linear address.

4.2 Operations on Multidimensional Array Files

Besides the creation of the multi-dimensional array files,
and operations for reading, writing (i.e., accessing) and

appending new element, the application domain dictates

the type of operations the array files are subjected to.
While multi-dimensional OLAP applications see the effi-

cient computation of the Cube operator [6, 21] as a sig-

nificant operation, applications in other scientific domains

72

require efficient extractions of sub-arrays for analysis and
subsequent visualization. In both domains, efficiently ac-

cessing elements of a sub-array is vital to all computations

carried out.

The mapping function provides direct addressing for ar-

ray chunks and subsequently to the array elements. A

naive approach to performing sub-array extraction opera-
tion would be to iterate over the k-dimensional coordinates

of the elements to be selected and retrieve each array el-

ements independently. Suppose the cardinality of the re-
sponse set of the first selection class is ℜ. The naive ap-

proach performs ℜ independent disk accesses. But one can

do better than this worst case number of disk accesses. An
efficient method for processing any of the above queries

is to compute the chunk identifies of the element; and for
each chunk retrieved, extract all elements the chunk that

satisfies the request. Due to space limitation, detailed dis-

cussions on the structures, algorithms and experiments on
extendible sparse multidimensional arrays is left out in this

paper.

5 Performance of Extendible Array Files

The theoretical analysis of the mapping function for ex-

tendible arrays indicates that it is nearly of the same order
of computational complexity as that of conventional arrays.

The main difference being the additonal time requied by the

mapping function for an extendible array to perform binary
searches in the axial-vectors. We experimentally tested this

by computing the average access times of both the conven-

tional array and extendible array for an array size of ap-
proximately 108 elements of double data types. We varied

the rank of the array from 2 to 8 while keeping the size of

the array about the same. We plotted the average time over
10000 random element access for static arrays. These ex-

periments were run on a 1.5GHz AMD Athlon processor

running Centos-4 Linux with 2GByte memory. Figure 4a
show the graphs of the access times averaged over 10000

element access.

The graphs indicate that for static arrays, the cost of
computing the extendible array access function varies more

significantly with the rank of the array than for the conven-

tional array access function. Even though the complexity
of computing the access functions are both O(k), the ex-

tendible array access function shows strong dependence on

the array’s rank k due to the fact that k binary searches are
done in the axial-vectors.

We also considered the impact on the average access

cost when the arrays undergo interleaved expansions. The
experiment considered arrays of ranks 2 and 3 where the

initial array size grew from about 10000 elements to about

106 elements. For each sequence of about 10000 accesses
the array is allowed to undergo up to 16 expansions. A

dimension selected at random, is extended by a random

integer amount of between 1 and 10. Each time the con-
ventional array is extended, the storage allocation is reor-

ganized. The average cost of accessing array elements with

interleaved expansions is shown in Figure 4b. Under this

model, we find that the average cost of accessing array el-
ements for extendible arrays is significantly less than for

conventional arrays that incur the additional cost of reorga-

nization.

Similar experiments were conducted, for accessing ele-
ments of array files instead of memory resident arrays. Fig-

ure 5a compares the average time to access elements for 2,

3 and 4 dimensional static files. There is very little varia-
tion in the times of the conventional and extendible array

functions. However, when these times are computed with

interleaved expansions, the extendible array clearly outper-
forms the conventional array methods by several orders of

magnitude. Figure 5b shows the graphs for 2,3 and 4-

dimensional extendible array files only. The extra time and
storage required to reorganize the conventional array files

with interleaved expansions become prohibitive as the ar-

ray becomes large. One can infer from these results that, in
handling large scale dense multi-dimensional dataset that

incrementally grow by appending elements, the extendible
array mapping function should be the choice for addressing

storage.

We should mention that a competitive model for com-

parisons of multi-dimensional array file implementations

should be with the HDF5 data schemes. Our implementa-
tion currently does not include array caching of data pages

which the HDF5 implementation uses. Work is still ongo-

ing to add main memory buffer pools for data caching at
which time a fair comparison would be made.

6 Conclusion and Future Work

We have shown how a k-dimensional extendible array file
can be used to implement multi-dimensional databases.

The technique applies to extendible arrays in-core just as

much as for out-of-core extendible arrays that can be either
dense or sparse. The method relies on a mapping func-

tion that uses information retained in axial-vectors to com-

pute the linear storage addresses from the k-dimensional
indices. Given the characteristics of multi-dimensional

databases that they incrementally grow into terabytes of

data, developing a mapping function that does not require
reorganization of the array file as the file grows is a desir-

able future.

The method proposed is highly appropriate for most sci-

entific datasets where the model of the data is perceived
typical as large global array files. The mapping function

developed can be used to enhance current implementations

of array files such as NetCDF, HDF5 and Global Arrays.
Work is still on-going to incorporate our proposed solution

to multidimensional array libraries and to extend the tech-

nique for multi-dimensional datasets whose dimensions or
ranks are allowed to expand. We are also conducting com-

parative studies on the different techniques for managing

sparse multi-dimensional extendible arrays.

73

Acknowledgment

This work is supported by the Director, Office of Lab-

oratory Policy and Infrastructure Management of the U.

S. Department of Energy under Contract No. DE-AC03-
76SF00098. This research used resources of the National

Energy Research Scientific Computing (NERSC), which is

supported by the Office of Science of the U.S. Department
of Energy.

References

[1] J. Demmel, J. Dongarra, A. Ruhe, and H. van der
Vorst. Sparse Matrix Storage Formats, in Templates

for the solution of algebraic eigenvalue problems: A

practical guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[2] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F.

Naughton. Caching multidimensional queries using
chunks. In Proc. ACM-SIGMOD, 1998, pages 259–

270, 1998.

[3] P. Furtado and P. Baumann. Storage of multidimen-

sional arrays based on arbitrary tiling. In Proc. of 15th

Int’l. Conf. on Data Eng. (ICDE’99), page 480, Los
Alamitos, CA, USA, 1999. IEEE Computer Society.

[4] S. Goil and A. N. Choudhary. Sparse data storage

schemes for multidimensional data for olap and data
mining. Technical Report CPDC-TR-9801-005, Cen-

ter for Parallel and Dist. Comput, Northwestern Univ.,

Evanston, IL-60208, 1997.

[5] S. Goil and A. N. Choudhary. High performance mul-

tidimensional analysis of large datasets. In Int’l. Wk-

shp on Data Warehousing and OLAP, pages 34–39,

1998.

[6] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pira-

hesh. Data cube: A relational aggregation operator

generalizing group-by, cross-tab, and sub-totals. J.

Data Mining and Knowledge Discovery, 1(1):29–53,

1997.

[7] Hierachical Data Format (HDF) group. HDF5

User’s Guide. National Center for Supercomput-

ing Applications (NCSA), University of Illinois,
Urbana-Champaign, Illinois, Urbana-Champaign, re-

lease 1.6.3. edition, Nov. 2004.

[8] Nikos Karayannidis and Timos Sellis. Sisyphus: The
implementation of a chunk-based storage manager for

olap data cubes. Data snf Knowl. Eng., 45(2):155–

180, 2003.

[9] D. E. Knuth. The Art of Computer Program-

ming: Fundamental Algorithms, volume 1. Addison-

Wesley, Reading, Mass., 1997.

[10] NetCDF (Network Common Data Form) Home Page.
http://my.unidata.ucar.edu/content/software/netcdf/index.html.

[11] J. Nieplocha and I. Foster. Disk resident arrays: An

array-oriented I/O library for out-of-core computa-

tions. In Proc. IEEE Conf. Frontiers of Massively

Parallel Computing Frontiers’96, pages 196 – 204,

1996.

[12] J. Nieplocha, R. J. Harrison, and R. J. Littlefield.

Global Arrays: A nonuniform memory access pro-
gramming model for high-performance computers.

The Journal of Supercomputing, 10(2):169 – 189,

1996.

[13] E. J. Otoo and T. H. Merrett. A storage scheme for
extendible arrays. Computing, 31:1–9, 1983.

[14] M. Ouksel and P. Scheuermann. Storage mappings

for multidimensional linear dynamic hashing. In Pro-

ceedings of the Second ACM SIGACT-SIGMOD Sym-

posium on Principles of Database Systems, pages 90

– 105, Atlanta, March 1983.

[15] A. L. Rosenberg. Allocating storage for extendible

arrays. J. ACM, 21(4):652–670, Oct 1974.

[16] D. Rotem and J. L. Zhao. Extendible arrays for
statistical databases and OLAP applications. In 8th

Int’l. Conf. on Sc. and Stat. Database Management

(SSDBM ’96), pages 108–117, Stockholm, Sweden,
1996.

[17] S. Sarawagi and M. Stonebraker. Efficient organiza-

tion of large multidimenional arrays. In Proc. 10th

Int’l. Conf. Data Eng., pages 328 – 336, Feb 1994.

[18] Kent E. Seamons and Marianne Winslett. Physical
schemas for large multidimensional arrays in scien-

tific computing applications. In Proc. 7th Int’l. Conf.

on Scientific and Statistical Database Management,
pages 218–227, Washington, DC, USA, 1994. IEEE

Computer Society.

[19] T. Tsuji, A. Isshiki, T. Hochin, and K. Higuchi. An

implementation scheme of multidimensional arrays
for molap. In DEXA, Workshop, pages 773 – 778, Los

Alamitos, CA, USA, 2002. IEEE Computer Society.

[20] T. Tsuji, H. Kawahara, T. Hochin, and K. Higuchi.

Sharing extendible arrays in a distributed environ-
ment. In IICS ’01: Proc. of the Int’l. Workshop on

Innovative Internet Comput. Syst., pages 41–52, Lon-
don, UK, 2001. Springer-Verlag.

[21] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An
array-based algorithm for simultaneous multidimen-

sional aggregates. In Proc. ACM-SIGMOD Conf.,
pages 159–170, 1997.

74

Lat.

Long.

0
1

23
4

5
6

7
8

9
10

11

12
13

1415
16

1718
19

2021
22

23

Time

0

1

2

0

1

2

3

0
1

2

24
25

26
27

28
2930

31
3233

34
35

Figure 1: A Lat., Long. and Time 3-D model of the data

Lat.

0
1

23
4

5
6

7
8

9
10

11

Time

0

0

1

2

3

0
1

2

2

24
25

26
27

28
2930

31
3233

34
35

12
13

1415
16

1718
19

2021
22

23

1

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

3

72
73

74
76

77
7880

81
8284

85
86

75

79

83

87
88

89
90

9192
93

94
95

3

4

5

(a) A storage allocation a 3-dimensional array

varying in both space and time

Dimension

Lat.

Long.

Time

0; 0; 3 1 1 S0

0; 0; 0 0 0 S0

0; 0; 0 0 0 S0 1; 12; 3 1 12 S1

3; 36; 3 12 1 S2

4; 48; 12 3 1 S3

3; 72; 4 1 24 S4

Axial Vectors

Memory address pointer of hyperslab

Starting index of dimension

Starting address of hyperslab

Vector of values of multiplying coefficents

(b) The corresponding 3 distinct Axial-Vectors

Figure 2: An example of the storage allocation scheme of

a 3-D extendible array

(a) A 3-dimensional array partitioned into

chunks

y

y

y

0

1

2

z

z

z

0

1

2

x x x
0 1 2

......

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
26

C
23

C
20

C
0

C
1

C
2

C
26

Table Map of Array Chunks

C
25

0 1 2 25 26

(b) Chunked Array with its Table Map

Figure 3: An allocation scheme of a 3-D sparse extendible

array

75

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

2 3 4 5 6 7 8

A
v

e
ra

g
e

 R
e

tr
ie

v
a

l
C

o
s

t
(i

n
 m

s
e

c
)

 Number of Dimensions

Average Access Time for Double

Conventional Array
Extendible Array

(a) Element access costs for static array

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500000 1e+06 1.5e+06 2e+06 2.5e+06

A
v

e
ra

g
e

 C
o

s
t

o
f

A
c

c
e

s
s

 (
in

 m
s

e
c

)

Size of Array in # Array Elements

Avg. Access Time with Interleaved Expansions

Conventional Array 2D
Extendible Array 2D

Conventional Array 3D
Extendible Array 3D

(b) Element access costs with interleaved extensions

Figure 4: Average time to access an element in an array of

type double

 0

 1

 2

 3

 4

 5

4-Dim3-Dim2-Dim

E
le

m
e

n
t

A
cc

e
ss

 T
im

e
 (

m
ic

ro
 s

e
c)

3.14

3.47

3.10

3.64

3.18

3.87

Conventional Array Function
Extendible Array Function

(a) Access cost from a static array file

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200000 400000 600000 800000 1e+06

A
v

e
ra

g
e

 T
im

e
 t

o
 A

c
c

e
s

s
 (

in
 m

s
e

c
)

File Size in Number of Array Elements

Avg. Element Access Time from Array File
 with Interleaved Expansions

2-D Array File
3-D Array File
4-D Array File

(b) Access cost from a file with interleaved extensions

Figure 5: Average time to access an element from an ex-

tendible array file of type double

76

	CoverPage20060812.pdf
	Committee-Contents.pdf
	1(pp1-8).pdf
	2(pp9-16).pdf
	3(pp17-24).pdf
	4(pp25-32).pdf
	5(pp33-40).pdf
	6(pp41-48).pdf
	7(pp49-58).pdf
	8(pp59-66).pdf
	9(pp67-76).pdf

