
Additively Weighted Voronoi Diagrams for Optimal
Sequenced Route Queries∗

Mehdi Sharifzadeh and Cyrus Shahabi

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
[sharifza, shahabi]@usc.edu

Abstract

The Optimal Sequenced Route (OSR) query
strives to find a route of minimum length start-
ing from a given source location and pass-
ing through a number of typed locations in a
specific sequence imposed on the types of the
locations. In this paper, we propose a pre-
computation approach to OSR query in vector
spaces. We exploit the geometric properties of
the solution space and theoretically prove its
relation to Additively Weighted Voronoi dia-
grams. Our approach recursively accesses these
diagrams to incrementally build the optimal se-
quenced route. Our experimental results ver-
ify that our pre-computation approach outper-
forms the previous index-based approaches in
terms of query response time.

1 Introduction

Suppose that we are planning a Saturday trip in town
as following: first we intend to visit a shopping center
in the afternoon to check the season’s new arrivals, then
we plan to dine in an Italian restaurant in early evening,
and finally, we would like to watch a specific movie at
late night. Naturally, we intend to drive the minimum
overall distance to these destinations. In other words,
we need to find the locations of the shopping center
si, the Italian restaurant rj , and the theater tk that
shows the specific movie, which driving toward them
considering the sequence of the plan shortens our trip
(in terms of distance or time). Note that in this ex-
ample, a time constraint enforces the order in which
these destinations are to be visited; we usually do not
have dinner in the afternoon, or do not go for shopping

∗This research has been funded in part by NSF grants
EEC-9529152 (IMSC ERC), IIS-0238560 (PECASE), IIS-0324955
(ITR), and unrestricted cash gifts from Google and Microsoft.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Proceedings of the third Workshop on STDBM
Seoul, Korea, September 11, 2006

1 2 3 4 5 6 7 8 9 10 11 12

2

1

4

3

6

5

8

7 s
3

s
2

s
1

s
4

r
2

r
1

r
3

t
3

t
1

t
2

q

Figure 1: 3 different types of point sets

at late night. This type of query is also essential in
other application domains such as crisis management,
air traffic flow management, supply chain management,
and video surveillance.

We call this type of query, where the order of the se-
quence in which some points must be visited is enforced
and cannot be changed, the Optimal Sequenced Route
or OSR query. Similar types of the planning queries
have received recent attention by the database commu-
nity [5, 9, 3, 2] to solve problems in the domains of
air traffic flow and supply chain management, which
shows the importance of these query types. We use the
first example described above as our running example
throughout the paper. Figure 1 shows three different
types of point sets shown by white, black and gray cir-
cles, which represent shopping centers, Italian restau-
rants, and theaters, respectively, and a starting point
q (shown by 4). The distance between two points is
their Manhattan distance. Here, the route (q, s1, r1, t1)
(shown with solid lines in the figure) with the length
of 12 units is the optimum answer to our query. One
can show that OSR query may not be optimally an-
swered by simply performing a series of independent
nearest neighbor queries at different locations (e.g., 15-
unit length route (q, s2, r2, t2)).

We, for the first time, introduced the OSR query in
[8] and proposed two online approaches for vector and
metric spaces (e.g., road networks). The R-LORD al-
gorithm of [8] subsequently performs range queries uti-
lizing an R-tree index structure to filter out the points
that cannot possibly be on the optimal route, and then
builds the optimal route in reverse sequence (i.e., from

GENESIS
텍스트 상자
33

ending to the starting point). In this paper, we exploit
the geometry of the OSR problem space to propose a
novel pre-computation algorithm which utilizes Voronoi
diagrams for processing OSR queries in vector spaces.
In our running examples, we use Manhattan distance
in R2 which is a representative of the network distance
if the road network consists of a set of north-south and
east-west roads [1].

1.1 Contributions

Assume that we are only interested in the optimal se-
quenced routes that follow a fixed sequence M . For
example, assume that this fixed sequence for Figure 1
is (white, black, grey). Suppose we can partition the
space of points of interest (e.g., R2) into regions each
including all the points with a common OSR. For in-
stance, in Figure 1, there are many points similar to q
for which the optimal sequenced route to a white, then
a black, and finally a grey point is the route (s1, r1, t1).
Suppose that our partitioning identifies the region in-
cluding these points. Furthermore, assume that the
partitioning also identifies the region corresponding to
each and every possible route (si, rj , tk) to a white, a
black, and a grey point. Assume that we associate and
store all regions and their corresponding OSRs. There-
fore, for a given starting point q we can address the OSR
query with sequence M by simply locating the unique
region that includes q and reporting its correspond-
ing optimal sequenced route. In Section 3, we prove
that such partitioning exists as an Additively Weighted
Voronoi diagram, a specific type of general Voronoi di-
agrams. We theoretically exploit interesting properties
of these diagrams which makes them appropriate data
structures for efficient OSR query processing.

We enhance the above query processing approach by
exploiting an interesting property of OSRs proved in
Lemma 1 (see Section 3). The lemma states that if
(s1, r1, t1) is q’s optimal route to a white, a black, and
a grey point, then (r1, t1) is s1’s optimal route to a
black and then a grey point. Recursively, (t1) is r1’s
optimal route to a grey point. Lemma 1 enables us to
avoid storing the complete OSR corresponding to each
region of the diagram for a given sequence M ; we store
only the first point of the OSR for each region of the
Voronoi diagram (e.g., s1 for the region corresponding
to (s1, r1, t1)). Instead, we require to compute and store
the Voronoi diagrams corresponding to all suffixes of M .

For instance, to answer queries with sequence
(white, black, grey) in Figure 1, our approach re-
quires the diagrams corresponding to three sequences
(white, black, grey), (black, grey), and (grey). We re-
fer to these diagrams as the OSR-Voronoi family of se-
quence (white, black, grey). Now, we iteratively process
a given OSR query. For the starting point q, we first
find s1, the white point associated with the region in-
cluding q in the diagram of (white, black, grey). Then,
we find r1, the black point stored with the region in-
cluding s1 in the diagram of (black, grey). Finally, we
seek for t1, the grey point corresponding to the region

including r1 in the diagram of (grey). Now, the final
OSR of q is the route (s1, r1, t1), which includes s1, r1,
and t1 in the order of their retrieval.

Our OSR query processing using Voronoi diagrams
best suits the applications where the sequences of
user’s interest are known in advance. This allows pre-
computation of the corresponding diagrams. Notice
that using the OSR-Voronoi family of a sequence M ,
we can address OSR queries of all suffix sequences
of M . Through extensive experiments with a real-
world dataset, we show that our approach significantly
outperforms the R-LORD approach proposed in [8]
in terms of response time. We also show that the
off-line process used to build the OSR-Voronoi fam-
ily of a single sequence is reasonably fast. With a
given sequence M , this pre-computation phase takes
O(

∑|M |
i=1 |UMi

| log |UMi
|) computation steps.

2 Preliminaries

2.1 Formal Problem Definition

In this section, we describe the terms and notations
used in [8] to formally define the OSR query. We use
the same notations throughout the paper .

Let U1, . . . , Un be n sets, each containing points in a
d-dimensional space Rd, and D(., .) be a distance met-
ric defined in Rd where D(., .) obeys the triangular in-
equality. To illustrate, in the example of Figure 1, U1,
U2, and U3 are the sets of black, white, and gray points,
representing restaurants, shopping centers and theaters,
respectively. We first define the following four terms.
Definition 1: Given n, the number of point sets Ui, we
say M = (M1,M2, . . . , Mm) is a sequence if and only if
1 ≤ Mi ≤ n for 1 ≤ i ≤ m. That is, given the point
sets Ui, a user’s OSR query is valid only if she asks for
existing location types. For the example of Figure 1
where n = 3, (2, 1, 2) is a sequence (specifying a shop-
ping center, a restaurant, and a shopping center), while
(3, 4, 1) is not a sequence because 4 is not an existing
point set. We use sfx(M, i) = (Mi+1, . . . , Mm) to refer
to the suffix of M with size m− i.
Definition 2: We say R = (p1, p2, . . . , pr) is a route
if and only if pi ∈ Rd for each 1 ≤ i ≤ r. We use
p ⊕R = (p, p1, . . . , pr) to denote a new route that starts
from starting point p and goes sequentially through p1

to pr. The route p ⊕R is the result of adding p to the
head of route R. We use sfx(R, i) = (pi+1, . . . , pr) to
refer to the suffix of R with size r − i.
Definition 3: We define the length of a route R =
(p1, p2, . . . , pr) as

L(R) =
r−1∑

i=1

D(pi, pi+1) (1)

Note that L(R) = 0 for r = 1. For example, the length
of the route (s2, r2, s3) in Figure 1 is 4 units where D
is the L1 norm (i.e., Manhattan distance).
Definition 4: Let M = (M1,M2, . . . , Mm) be a se-
quence. We refer to the route R = (p1, p2, . . . , pm) as a

GENESIS
텍스트 상자
34

sequenced route that follows sequence M if and only if
pi ∈ UMi

where 1 ≤ i ≤ m. In Figure 1, (s2, r2, s3) is a
sequenced route that follows (2, 1, 2) which means that
the route passes only through a white, then a black and
finally a white point.

Now, we formally define the OSR query.
Definition 5: For a given starting point q in Rd and
the sequence M = (M1,M2, . . . , Mm), the Optimal
Sequenced Route (OSR) Query, Q(q, M), is defined
as finding a sequenced route R = (p1, . . . , pm) that fol-
lows M where the value of the following function L is
minimum over all the sequenced routes that follow M :

L(q, R) = D(q, p1) + L(R) (2)

Note that L(q, R) is in fact the length of route Rq =
q ⊕ R. Throughout the paper, we use Q(q,M) =
(p1, p2, . . . , pm) to denote the answer to the OSR query
Q. Without loss of generality, we assume that this opti-
mal route is unique for given q and M . For the example
in Section 1 where (U1, U2, U3) = (black, white, gray),
M = (2, 1, 3), and D(., .) is the shortest path distance,
the answer to the OSR query is Q(q, M) = (s1, r1, t1).

One special variation of OSR is when the user asks
for an optimal sequenced route that ends in a given
destination q′. A special case of this query is where
she intends to return to her starting location q. This
variation of OSR can simply be addressed by defining
a new point set Un+1 = {q′} and a new sequence M ′ =
(M1, . . . ,Mm, n + 1). Consequently, Q(q,M ′) will be
the optimal route following M which ends in q′.

Table 1 summarizes the notations we use throughout
the paper.

2.2 Voronoi Diagrams

The general Voronoi diagram of a given set S including
points in Rd partitions the space into regions each in-
cluding all points with a common closest point in the
given set according to a distance metric d(., .). The re-
gion corresponding to the point p contains all the points
q ∈ Rd for which we have

∀p′ ∈ S, p′ 6= p ⇒ d(q, p) ≤ d(q, p′) (3)

The equality holds for the points on the borders of p’s
and p′’s regions. Incorporating arbitrary distance met-
rics d(., .) in the above equation results in different vari-
ations of Voronoi diagrams. Figure 2 shows the stan-
dard Voronoi diagram of nine points in R2 where the
distance metric is Euclidean. We refer to the region
V (p) containing the point p as its Voronoi cell. We also
refer to point p as the generator of Voronoi cell V (p).

Now assume that S is a set of points p ∈ Rd each
assigned a weight w(p) ∈ R. We define the distance
metric d(x, p) as D(x, p) + w(p) where D(., .) denotes
a distance metric. Without loss of generality, we as-
sume that D(., .) is Euclidean distance. The Additively
Weighted (AW) Voronoi diagram of the points in S
with respect to distance function D(., .) is defined us-
ing Equation 3. Here, the cell corresponding to point p

p

V(p)

Figure 2: The standard Voronoi diagram of 9 points,
the point p and its Voronoi cell V (p)

Figure 3: The AW-Voronoi diagram of 13 points each
labeled with its positive weight

contains all the points q ∈ Rd for which we have

∀p′ ∈ S, p′ 6= p ⇒ D(q, p)+w(p) ≤ D(q, p′)+w(p′) (4)

Figure 3 illustrates the AW-Voronoi diagram of a set of
13 points labeled with their positive weights.

The Computational Geometry literature generally
uses negative weights in Equation 4 to define the AW-
Voronoi diagrams. When negative weights are assigned
to points p, their AW-Voronoi diagram can be seen as
the standard Voronoi diagram of a set of d-dimensional
balls each centered at a point p with a radius equal to
the absolute value of w(p). Here, the set S includes
balls such as b centered at a point p. The distance
d(q, b) between a ball b and the point q outside b is the
smallest Euclidean distance between q and any point in-
side b. The literature uses this view to define the AW-
Voronoi diagram of the centers of a set of balls (e.g.,
disks in R2) [6]. Each region of the space is assigned
to a unique ball which is the common closest ball of all
points inside that region. Figure 4 illustrates defining
the AW-Voronoi diagram of five points with negative
weights w(p) < 0 using five corresponding disks. Here,
d(q, c), the distance of a point q to a disk c centered at
p with radius r = −w(p) is defined as D(q, p) − r. As
the figure shows, point q which is inside the cell of disk
c (corresponding to point p) is closer to disk c than to
disk c′. It also shows that some points such as p′′ have
empty cells. That is, no point in the space is closer to
the disk c′′ than to any other disk.

The AW-Voronoi diagram demonstrates the follow-
ing properties:

Property AWV-1 With Euclidean distance (i.e. L2

norm) as metric D(., .) in Equation 4, the cell edges
are either straight lines or hyperbolic curves [6].

GENESIS
텍스트 상자
35

Symbol Meaning Symbol Meaning

Ui a point set in Rd |Ui| cardinality of the set Ui

n number of point sets Ui D(., .) distance function in Rd

M a sequence, = (M1, . . . , Mm) |M | m, size of sequence M = number of items in M
Mi i-th item of M R route (p1, p2, . . . , pr), where pi is a point
|R| r, number of points in R pi i-th point in R
L(R) length of R q ⊕ R route Rp = (q, p1, . . . , pr) where R = (p1, . . . , pr)
sfx(R, i) route (pi+1, . . . , pr), a suffix of R sfx(M, i) sequence (Mi+1, . . . , Mm), a suffix of M
L(q, R) L(q ⊕ R), length of the route q ⊕ R

Table 1: Summary of notations

q

p

p'

c'

c
c''

p''

-w(p)

d(q,c)

Figure 4: The AW-Voronoi diagram of five disks (i.e.,
five points with negative weights). Here, the distance
function D(., .) is Euclidean.

Hence, these curved cells are not convex polygons
as the cells of general Voronoi diagrams. Using
Manhattan distance (i.e. L1 norm), all edges be-
come straight lines.

Property AWV-2 The arbitrary numeric values of
weights can result in empty cells [6]. We refer to
the generator point of an empty cell as a trivial
point.

Property AWV-3 The AW-Voronoi diagram of n
points consists of at most O(n) connected edges
[7].

3 OSR and AW-Voronoi Diagrams

Assume that we are only interested in the optimal se-
quenced routes that follow a fixed sequence M (i.e.,
Q(q, M) for points such as q). Suppose we can partition
the space Rd into regions each including all the points q
with a common OSR. That is, for any two points x and
y inside the same region, we have Q(x,M) = Q(y, M).
Assume that for each region, we pre-compute this com-
mon OSR. Furthermore, we store all regions and their
corresponding OSRs for the given sequence M . There-
fore, for a given starting point q we can address the
query Q(q, M) by simply locating the region including
q and reporting its corresponding optimal route.

In this section, we show that the above partitioning
which facilitates processing OSR queries exists as an

AW-Voronoi diagram. We prove that a unique property
of optimal sequenced routes enables us to employ this
partitioning. First, we prove Lemma 1 which states that
the optimal route from pi that follows a suffix of the
original sequence M is the same as the corresponding
suffix of the optimal route from q that follows M .

Lemma 1. Given the sequence M = (M1, . . . , Mm)
and the starting point q, if Q(q,M) = R = (p1, . . . , pm),
then for any 1 ≤ i < m, we have Q(pi,M

′) = sfx(R, i)
where M ′ = sfx(M, i).

Proof. The proof is by contradiction. Assume that
Q(pi, M

′) = R′ = (p′1, . . . , p
′
m−i). Obviously

sfx(R, i) = (pi+1, . . . , pm) follows sequence M ′, there-
fore we have L(pi, R

′) < L(pi, (pi+1, . . . , pm)). We add
L(q, (p1, . . . , pi)) to the both sides of this inequality to
get:

L(q, (p1, . . . , pi, p
′
1, . . . p

′
m−i)) < L(q, (p1, . . . , pm))

The above inequality shows that the answer to
Q(q, M) must be (p1, . . . , pi, p

′
1, . . . , p′m−i) which clearly

follows sequence M . This contradicts our assumption
that Q(q, M) = (p1, . . . , pm).

This property of the OSRs implies that only the last
point of the optimal sequenced route Q(q, M) (i.e., pm)
must necessarily be the closest point of UM to its pre-
vious point in the route (i.e., pm−1).

Here, we utilize the special case of Lemma 1 for the
first point of the route (i.e., p1 for i = 1). For instance,
if the optimal route from point q to a white, a black,
and a grey point is (s1, r1, t1), then the optimal route
from the point s1 to a black then a grey point is (r1, t1)
(see Figure 1). Therefore, if we identify the white point
s1 with which the optimal route from q to a white, a
black, then a grey point starts (i.e., the first point of
the route) and we know that the optimal route from
s1 to a black and then a grey point is (r1, t1), we have
found the optimal route from q (we just append s1 to
the head of (r1, t1)). The following lemma identifies this
first point.

Lemma 2. Given the sequence M and the starting
point q, if there exists a point p1 ∈ UM1 so that
∀p′1 ∈ UM1 , p

′
1 6= p1

D(q, p1)+L(p1, Q(p1,M
′)) < D(q, p′1)+L(p′1, Q(p′1, M

′))
(5)

where M ′ = sfx(M, 1), then the optimal route Q(q,M)
starts with p1 which is followed by the points in
Q(p1,M

′) (i.e., Q(q, M) = p1 ⊕Q(p1, M
′)).

GENESIS
텍스트 상자
36

Proof. The proof is by contradiction. Assume that
Q(q, M) = (p′1, . . . , p

′
m) starts with p′1 6= p1. By def-

inition, the length of q ⊕ Q(q, M) is minimum over all
the routes which follow sequence M . It is clear that the
route p1 ⊕Q(p1, M

′) follows M , so we have

L(q, (p1 ⊕Q(p1, M
′))) ≥ L(q,Q(q,M)) (6)

Lemma 1 states that we have Q(p′1,M
′) = (p′2, . . . , p

′
m)

where M ′ = sfx(M, 1). Hence, we get

Q(q, M) = p′1 ⊕Q(p′1,M
′) (7)

Therefore, we replace Q(q, M) in Equation 6 to get

L(q, p1 ⊕Q(p1,M
′)) ≥ L(q, p′1 ⊕Q(p′1,M

′)) (8)

Finally, we use the definition of function L() to change
Equation 8 as follows for the point p′1 6= p1:

D(q, p1)+L(p1, Q(p1,M
′)) ≥ D(q, p′1)+L(p′1, Q(p′1, M

′))
(9)

The above inequality contradicts the one given in the
assumption of the lemma.

In the example of Figure 1, U1, U2, and U3 are the
sets of black, white, and gray points, respectively. For
the sequence M = (2, 1, 3), we have M ′ = (1, 3) and

Q(s1,M
′) = (r1, t1), Q(s2,M

′) = (r3, t3),

Q(s3, M
′) = (r1, t1), Q(s4,M

′) = (r1, t1)

D(q, s1) + L(s1, Q(s1,M
′)) = 3 + (7 + 2) = 12

D(q, s2) + L(s2, Q(s2,M
′)) = 2 + (3 + 9) = 14

D(q, s3) + L(s3, Q(s3,M
′)) = 4 + (8 + 2) = 14

D(q, s4) + L(s4, Q(s4,M
′)) = 5 + (9 + 2) = 16

According to Lemma 2, the OSR of q to a white, a black
and a grey point starts with s1 followed by Q(s1,M

′) =
(r1, t1).

We now strive to find the locus of all points in space
whose OSR that follows a given sequence starts with a
point p1 and hence all share a common OSR for that
sequence. In Figure 1, for any white point si, there
are points such as q whose optimal routes given the
sequence (white, black, grey) start with si. Notice that
the rest of their optimal route is the same (e.g., (r1, t1)
for s1) and depends only on the location of point si and
the given sequence (e.g., (black, grey)).

Theorem 1. Let M = (M1,M2, . . . , Mm) be a given
sequence and M ′ = sfx(M, 1). The locus of all points q
with a common optimal sequenced route Q(q, M) which
starts with p1 is inside p1’s cell in the AW-Voronoi di-
agram of the set of points in UM1 where the weight of
each point p is w(p) = L(p,Q(p, M ′)). Their common
optimal route is Q(q, M) = p1 ⊕Q(p1,M

′).

Proof. Let the set S = UM1 and w(p) = L(p,Q(p,M ′)).
According to the definition of the AW-Voronoi cell of
p1 given by Equation 4, for the point q inside this cell
we get ∀p′1 ∈ UM1 , p

′
1 6= p1

D(q, p1)+L(p1, Q(p1,M
′)) < D(q, p′1)+L(p′1, Q(p′1, M

′))

Therefore, according to Lemma 2 the optimal route
Q(q, M) is p1 ⊕Q(p1,M

′) which clearly starts with p1,
the generator of the Voronoi cell including q.

Given a sequence M , we refer to the AW-Voronoi
diagram of the points p in UM1 using the weights
w(p) = L(p,Q(p, M ′)) where M ′ = sfx(M, 1), as the
OSR-Voronoi diagram of the sequence M . Fig-
ure 5a illustrates the OSR-Voronoi diagram of se-
quence (white, black, grey) (i.e., M = (2, 1, 3)). The
distance function D(., .) is Manhattan distance and
each white point si is labeled with its weight (i.e.,
L(si, Q(si, (1, 3))). The OSR-Voronoi diagram has
some interesting properties whose proofs are omitted
due to lack of space:

Property OSRV-1 All points in the OSR-Voronoi di-
agram of the sequence M (any p ∈ UM1) have pos-
itive weights.

Property OSRV-2 Given the sequence M , if for the
points p and p′ ∈ UM1 we have Q(p,M ′) =
Q(p′,M ′) = (p2, . . . , pm) and D(p, p2) = D(p, p′)+
D(p′, p2) where M ′ = sfx(M, 1), then p is a triv-
ial point in OSR-Voronoi diagram of sequence M .
That is, the Voronoi cell of p is empty and no OSR
that follows M starts with p.

4 OSR Query Processing using OSR-
Voronoi Diagrams

In this section, we describe our OSR query process-
ing approach that utilizes OSR-Voronoi diagrams de-
fined in Section 3. Assume that we have already built
the OSR-Voronoi diagram of a given sequence M . The
user asks for the OSR Q(q, M) given a starting point
q. Subsequently, we locate the Voronoi cell which con-
tains q in the OSR-Voronoi diagram of M . According
to Theorem 1, the OSR of q starts with the genera-
tor of this cell (e.g., s1 in Figure 5a). This point is
then followed by the result of another OSR query (i.e.,
Q(s1, M

′)). If we already knew the answer to this sec-
ond query, we immediately report user’s desired route
as s1⊕Q(s1,M

′). Now the problem is that the we need
the OSR-Voronoi diagram of sequence M ′ to answer the
second OSR query. Repeating the same reasoning for
M ′ verifies that we will require the OSR-Voronoi dia-
grams of all suffixes of the original sequence M . That
is, to find the OSR which follows M = (M1, . . . , Mm)
we need the OSR-Voronoi diagrams of all sequences
(Mi, . . . , Mm) for all 1 ≤ i ≤ m. We refer to these dia-
grams as the OSR-Voronoi family of M . For instance,
to answer queries with sequence (white, black, grey) in

GENESIS
텍스트 상자
37

1 2 3 4 5 6 7 8 9 10 11 12

2

1

4

3

6

5

8

7

10

12
9

11

s
3

s
2

s
1

s
4

q

1 2 3 4 5 6 7 8 9 10 11 12

2

1

4

3

6

5

8

7 s
3

s
2

s
1

s
4

r
2

r
1

r
3

2

11

9

1 2 3 4 5 6 7 8 9 10 11 12

2

1

4

3

6

5

8

7

r
2

r
1

r
3

t
3

t
1

t
2

Figure 5: The OSR-Voronoi diagrams of a) the sequence (white, black, grey) , b) the sequence (black, grey), and
c) the sequence (grey) using the white points in Figure 1

Function ComputeOSR(point q, sequence M)
Returns route

1. V (p) = the cell containing q in the OSR-Voronoi diagram of M
2. p = the generator of V (p)
3. if |M | = 1 then
4. return (p)
5. else
6. return p⊕ ComputeOSR(p, sfx(M, 1))

Figure 6: Computing OSR for query Q(q, M)

Figure 1, we require the OSR-Voronoi diagrams of se-
quences (white, black, grey), (black, grey), and (grey).
Notice that the OSR-Voronoi family of a sequence can
also be used to answer OSR queries of any suffix of that
sequence.

4.1 Query Processing

Here, we assume that we have already built the OSR-
Voronoi family of a given sequence M . Subsequently,
we employ this set of diagrams to answer the OSR query
Q(q, M). Section 4.2 shows how we recursively build all
these diagrams.

We describe our query processing approach using
the example of Figure 1. Notice that here the se-
quence is (white, black, grey) and the distance func-
tion D(., .) is Manhattan distance. We have already
built and loaded the OSR-Voronoi diagrams of se-
quences (white, black, grey), (black, grey), and (grey)
illustrated in Figures 5a, 5b, and 5c, respectively. No-
tice that the last diagram is the standard Voronoi di-
agram on grey points as the OSR of a point q which
follows the sequence (grey) is simply the closest grey
point to q (see Lemma 1 for i = m − 1). First, we lo-
cate the cell containing q in the OSR-Voronoi diagram
of (white, black, grey). Following Theorem 1, our OSR
starts with s1, the generator of this cell (see Figure
5a). The rest of the OSR is the same as the OSR of s1

which follows (black, grey). Hence, we next find r1, the
generator of the cell containing s1 in the OSR-Voronoi
diagram of (black, grey) shown in Figure 5b. Finally,
we find the closest grey point to r1 as the generator
of the cell containing r1 in the OSR-Voronoi diagram
of (grey) (see Figure 5c). The OSR of point q which
follows sequence (white, black, grey) is (s1, r1, t1) built
using the three subsequently retrieved points. Figure
6 shows the pseudo-code of our OSR query processing
approach as a recursive function ComputeOSR(point,
sequence).

4.2 Data Structures

The OSR-Voronoi diagrams are instances of AW-
Voronoi diagrams whose weights are constrained by
geometry. Therefore, we build them using any al-
gorithm for building AW-Voronoi diagrams. The al-
gorithm proposed by Karavelas and Yvinec [4] com-
putes the diagram of n points in O(n log n) steps.
Our approach utilizes the OSR-Voronoi diagrams of
all suffixes of a sequence M to find the OSRs that
follow M . Therefore, to answer queries with se-
quence (white, black, grey) in Figure 1, we require
the OSR-Voronoi diagrams of this sequence together
with those of sequences (black, grey) and (grey). In
general, for a given sequence M , we require |M |
OSR-Voronoi diagrams of all suffixes of M to answer
Q(q, M). Hence, the pre-computation phase takes
O(

∑|M |
i=1 |UMi | log |UMi |) computation steps.

We incrementally build the OSR-Voronoi family of
(white, black, grey) as follows. First, we build the OSR-
Voronoi diagram of (grey) shown in Figure 5c which
is simply the standard Voronoi diagram of the set of
grey points T = {t1, t2, t3} with respect to Manhattan
distance [6]. Second, for each black point ri we find
the generator grey point of the cell containing ri in this
OSR-Voronoi diagram. In Figure 5c, each black point
is connected to its corresponding grey generator by a
solid line. We assign the distance between the point
ri and its corresponding grey point to the weight of ri.
For instance, we assign w(r1) = 2. Third, we build
the OSR-Voronoi diagram of (black, grey) using the set
of black points R = {r1, r2, r3} and their weights (see
Figure 5b). Similar to the previous step, for each white
point si we locate rx, the generator of the cell which
contains si in the diagram built in this step and assign
D(si, rx) + w(rx) to the weight of si. For example, the
weight of s1 is 7 + 2 = 9. Finally, we build the OSR-
Voronoi diagram of (white, black, grey) using the set of
white points S = {s1, s2, s3, s4} with respect to their
corresponding weights (see Figure 5a). Figure 7 shows
the pseudo-code of the above algorithm.

Once we computed the OSR-Voronoi family of a
sequence, we require to store the boundaries of the
Voronoi cells corresponding to each OSR-Voronoi dia-
gram of the family. However, with Euclidean distance,
these boundaries consist of curved edges and hence can-
not be stored as simple polygons. This problem can be

GENESIS
텍스트 상자
38

Function BuildOSRVoronois(sequence M = (M1, . . . , Mm))
Returns OSR-Voronoi diagrams

1. OSRV ((Mm)) = the standard Voronoi diagram of UMm
2. for each p in UMm
3. w(p) = 0
4. i = m− 1
5. while i > 0 do {
6. M ′ = sfx(M, i)
7. for each p in UMi

{
8. V (p′) = the cell containing p in the OSRV (M ′)
9. p′ = the generator of V (p′)
10. w(p) = D(p, p′) + w(p′)

}
11. OSRV (sfx(M, i− 1)) = the AW-Voronoi diagram of UMi
12. i = i− 1

}
13. return OSRV ’s

Figure 7: Incrementally building the data structures
required to answer the OSR query Q(q,M)

solved in the two following ways. Each solution guar-
antees that given a starting point q, we can easily de-
termine the cell containing q.

1. The cells are approximated by convex polygons
and consequently these polygons are stored. The
polygons are also indexed by a spatial index struc-
ture such as R-tree. Therefore, the cell containing
the starting point q is easily retrieved by a spatial
contains() query. This solution introduces an er-
ror in OSR query processing proportional to the
approximation error.

2. Instead of storing the cells, the neighborhood graph
of the cell generators is stored (similar to Delaunay
graph for the general Voronoi diagrams [6]). Ver-
tices of the graph are the generators of the OSR-
Voronoi diagram of M . There is a graph edge
connecting p and p′ iff V (p) and V (p′) have com-
mon boundaries. Now, to determine the inclusion
of a starting point q in a cell, we start traversing
the graph from any vertex p. We iteratively visit
the vertex p′, the neighbor of the current vertex p
which minimizes D(q, p′) + w(p′) among p’s neigh-
bors and p itself. When no such a vertex is found,
q is inside the Voronoi cell of the current vertex p.

5 Performance Evaluation

We conducted several experiments to evaluate the per-
formance of our proposed approach. We compared the
query response time of our Voronoi-based approach (de-
noted by OSRV) with that of our R-LORD algorithm
proposed in [8]. We also evaluated our new OSRV ap-
proach with respect to its overall time required to build
the OSR-Voronoi family of a given query. We evaluated
OSRV by investigating the effect of the following two
parameters on its performance: 1) size of sequence M
in Q(q, M) (i.e., number of points in the optimal route),
and 2) cardinality of the datasets (i.e.,

∑n
i=1 |Ui|).

We used a real-world dataset which is obtained from
the U.S. Geological Survey (USGS) and consists of
950, 000 locations of different businesses (e.g., schools)
in the entire country. Table 2 shows the characteristics
of this dataset. In our experiments, we randomly se-
lected sets of 40K, 70K, 250K and 500K, and 950K

Points Size Points Size
Hospital 5,314 Building 15,127
Summit 69,498 Cemetery 109,557
Church 127,949 School 139,523
Populated place 167,203 Institution 319,751

Table 2: USGS dataset

points from this dataset. We used CGAL’s implemen-
tation of [4] to implement the OSR-Voronoi diagrams 1.
We ran 1000 OSR queries from random starting points
on a DELL Precision 470 with Xeon 3.2 GHz processor
and 3GB of RAM.

In the first set of experiments, we study the perfor-
mance of OSRV in terms of query time. Figure 8a shows
the query response time for our OSRV and R-LORD ap-
proaches when the number of points in optimal route
(i.e., |M |) varies from 3 to 12. All the required diagrams
fit in main memory, so the reported time represents
CPU time. While the figure depicts the experimental
results on 250K USGS dataset, the trend is the same
with those of our other datasets with different cardi-
nalities. Figure shows that OSRV always outperforms
R-LORD. As expected, R-LORD performs slower with
the bigger sequences as it requires more range queries
on the R-tree. In contrast, OSR query with OSRV has
almost no cost in time. OSRV’s response time is unno-
ticeably increasing as OSRV consists of a sequence of
only |M | point locations on our efficient AW-Voronoi
diagrams.

Figure 8b illustrates the result of our second set of
experiments on the impact of the cardinality of the
dataset on the efficiency of OSRV. We varied the cardi-
nality of our real datasets from 40K to 950K and ran
OSR queries of sequence size |M | = 6. Figure 8b shows
that OSRV’s performance is not much affected by the
dataset size and verifies the scalability of OSRV. This
is while the processing time of R-LORD moderately in-
creases for larger datasets. For example, R-LORD’s
query response time is 0.09 seconds for 40, 000 points,
and it increases by a factor of 16 when the number of
points increases to 950, 000 by a factor of 24. Conse-
quently, OSRV is the superior approach although R-
LORD also exhibits a reasonable performance for large
datasets.

The last experiment aims to measure the time re-
quired to build the diagrams in the OSR-Voronoi family
of a given sequence. Note that this is a batch process
which is performed off-line. Figure 8c illustrates the av-
erage build time for different sizes of the sequence M for
250K dataset. Moreover, Figure 8d depicts the result
of the same experiment for different dataset cardinali-
ties when the sequence size is 6. Figure 8c shows that
it takes only 9 minutes to build 12 OSR-Voronoi dia-
grams needed for the OSR query of a sequence of size
12. However, Figure 8d shows that despite its excellent
performance for small datasets, OSRV’s procedure for
building the OSR-Voronoi family of a sequence of size
6 takes about 36 minutes for the 950K dataset. This
is still a reasonable performance for an off-line process.

1http://www.cgal.org/

GENESIS
텍스트 상자
39

0.0

0.2

0.4

0.6

0.8

3 6 9 12

No of points in route (|M|)

R
es

p
o

n
se

 t
im

e
(s

ec
)

R-LORD

OSRV

0.0

0.4

0.8

1.2

1.6

40 70 250 500 950

Dataset cardinality (K)

R
es

p
o

n
se

 t
im

e
(s

ec
)

R-LORD

OSRV

0

1

2

3

4

5

6

7

8

9

10

3 6 9 12

No of points in route (|M|)

B
u

il
d

 t
im

e
(m

in
)

0

5

10

15

20

25

30

35

40

40 70 250 500 950

Dataset cardinality (K)

B
u

il
d

 t
im

e
(m

in
)

a) Query cost vs. b) Query cost vs. c) Build cost vs. d) Build cost vs.
sequence size (250K) cardinality (|M | = 6) sequence size (250K) cardinality (|M | = 6)

Figure 8: Experimental results on the performance of OSRV

We believe that upgrading main-memory AW-Voronoi
diagrams to their secondary-memory versions will sig-
nificantly improve OSRV’s off-line performance for large
datasets.

6 Related Work

In an independent research, Li et al. [5] studied Trip
Planning Queries (TPQ), a class of queries similar to
our OSR query. With a TPQ, the user specifies a
subset (not a sequence) of location types R and asks
for the optimal route from her starting location to a
specified destination which passes through at least one
database point of each type in R. In particular, TPQ
eliminates the sequence order of OSR to define a new
query. Consequently, finding accurate solutions to TPQ
becomes NP-hard as the size of candidate space signif-
icantly grows. The paper proposes several approxima-
tion methods to provide near-optimal answers to TPQs.
In theory, OSR algorithms are able to address address
TPQ queries. This can be done by running any OSR
algorithm |R|! times, each time using a permutation of
point types in R as the sequence M and returning the
optimal route among all the resulted routes. This expo-
nentially complex solution is inefficient in practice. The
approximation algorithms of [5] are designed to handle
the exponential growth of the problem’s search space.

Terrovitis et al. [9] addressed k-stops shortest path
problem for spatial databases. The problem seeks for
the optimal path from a starting location to a given des-
tination which passes through exactly k intermediate
points of the location database. The k-stops problem is
a specialized case of OSR queries. To be specific, OSR
reduces a k-stops problem to query Q(q, M) where q is
the starting location, M = (1, . . . , 1), |M | = k, and U1

is the single given point set representing the location
database. The destination is considered by the varia-
tion of the above OSR query described in Section 2.1.
A major drawback is that [9] only considers Euclidean
space.

7 Conclusions and Future work

We studied the problem space of the OSR query in vec-
tor spaces. We exploited the geometric properties of
the solution space and identified the AW-Voronoi di-
agrams as its corresponding geometric representation.
In particular, we proved that given a sequence M the

locus of all points with a common optimal sequenced
route R is the cell of the first point of R in a AW-
Voronoi diagram whose weights depend on the sequence
M . Based on our theoretical findings, we proposed a
novel OSR query processing approach using a family of
pre-computed AW-Voronoi diagrams. Through exper-
iments with a real-world dataset, we showed that our
approach significantly outperforms the previous solu-
tions to OSR query in terms of response time.

While in this paper we adapted AW-Voronoi dia-
grams for OSR queries, we believe that these diagrams
can also be used to answer a variation of OSR query
where the sequence is not important (TPQ problem [5]).
An orthogonal problem is studying efficient algorithms
to store the AW-Voronoi diagrams in secondary storage.

References

[1] Y. Du, D. Zhang, and T. Xia. The Optimal-Location
Query. In Proceedings of SSTD’05, pages 163–180, 2005.

[2] C. du Mouza, P. Rigaux, and M. Scholl. Efficient Eval-
uation of parameterized pattern queries. In Proceedings
of CIKM’05, pages 728–735. ACM, 2005.

[3] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J.
Tsotras. Complex Spatio-Temporal Pattern Queries. In
Proceedings of VLDB’05, pages 877–888, 2005.

[4] M. I. Karavelas and M. Yvinec. Dynamic Additively
Weighted Voronoi Diagrams in 2d. In Proceedings of
the 10th Annual European Symposium on Algorithms
(ESA’02), pages 586–598, London, UK, 2002. Springer-
Verlag.

[5] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S.-H. Teng. On Trip Planning Queries in Spatial Data-
bases. In Proceedings of SSTD’05, pages 273–290.
Springer, August 2005.

[6] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spa-
tial Tessellations, Concepts and Applications of Voronoi
Diagrams. John Wiley and Sons Ltd., 2nd edition, 2000.

[7] Y. Ostrovksy-Berman. Computing Transportation
Voronoi Diagrams in Optimal Time. In Proceedings of
the 21st European Workshop on Computational Geome-
try (EWCG’05), pages 159–162, 2005.

[8] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The
Optimal Sequenced Route. The VLDB Journal, 2006.
To appear.

[9] M. Terrovitis, S. Bakiras, D. Papadias, and K. Moura-
tidis. Constrained Shortest Path Computation. In Pro-
ceedings of SSTD’05, pages 181–199. Springer, August
2005.

GENESIS
텍스트 상자
40

