
SemperWiki: a semantic personal Wiki

Eyal Oren
eyal.oren@deri.org

Digital Enterprise Research Institute
Galway, Ireland

Abstract. Wikis are collaborative authoring environments, and are very
popular. The original concept has recently been extended in two di-
rections: semantic Wikis and personal Wikis. Semantic Wikis focus on
better retrieval and querying facilities, by using semantic annotations
of pages. Personal Wikis focus on improving usability and on provid-
ing an easy-to-use personal information space. We combine these two
developments and present a semantic personal Wiki. Our application
SemperWiki offers the usability of personal Wikis and the improved re-
trieval and querying of semantic Wikis. Users can annotate pages with
RDF together with their normal text.The system is extremely easy-to-
use, provides intelligent navigation based on semantic annotations, and
responds instantly to all changes.

1 Introduction

The amount of information we process, maintain, search, and use in our daily
work is enormous. All this information is contained in our desktop, our personal
working space. Efficiently and effectively retrieving the relevant information from
our desktop is currently a problem, especially since many related pieces of infor-
mation are spread over various applications that do not communicate with each
other (e.g. some emails, documents, appointments, and websites on the same
topic).

Adding semantic annotations to desktop data could alleviate this problem
and offer better retrieval possibilities [2, 5]. By annotating data on the desktop
in a semantic language such as RDF we get (i) a uniform data format for the
separate pieces of information, (ii) integration of information pieces based on
URIs, (iii) enhancement of information with background knowledge in ontologies.

Semantic annotations add application-independent meaning and structure
to data; they allow better retrieval of our desktop data. To some extent, these
annotations can be provided by special application wrappers that know the
structure and semantics of some particular application data and can export this
in RDF. But the user will also have to make manual annotations, because the
semantics of some information chunk is not always available or derivable from
the application data.

For example, a wrapper can export meeting appointments from a calendar
application into RDF, but if the user wants to annotate the participants, topic,



discussion, and outcome of the meeting, he will have to add these annotations
manually because these data are not available in the calendaring application.
Also, if the user wants to relate the meeting agenda and the meeting notes to the
meeting appointment, he will have to add these annotations manually (because
again, the application wrapper cannot make these relations automatically).

But adding semantic annotations to information pieces requires effort. Users
will only make this effort if they benefit from it. Manually annotating data should
therefore be easy and rewarding, since users will otherwise not annotate their
desktop data. If we want the user to add annotations, we need to entice him to
do so.

We present a desktop application that does exactly this: it entices users to
create semantic data. This semantic personal Wiki (SemperWiki) serves as a
personal information system. It is extremely easy to use and provides instant
gratification for adding semantic annotations.

SemperWiki is a best-of-breed between semantic Wikis and personal Wikis,
two orthogonal extensions to the original Wiki concept. Personal Wikis focus on
extreme ease of use; semantic Wikis focus on improved retrieval and navigation.
Combining them offers the usability of personal Wikis and the gratification of
semantic Wikis.

SemperWiki is not limited to the annotation of desktop data; it is a general-
purpose tool for creating and using semantically annotated data that addresses
a basic prerequisite towards a better desktop: helping and enticing users to add
semantic annotations. It can be used as a stand-alone semantic information
system or as user interface of a semantic desktop system.

The paper is structured as follows: first we shortly recall the original idea of
a Wiki in section 2. Then we review the characteristics of semantic Wikis in
section 3 and personal Wikis in section 4, and we analyse the functionality of
several Wiki systems in section 5. We introduce the concept of semantic personal
Wikis and the SemperWiki application in section 6, and conclude with points
for future work.

2 Wikis

Wiki Wiki Webs were first introduced by Leuf and Cunningham [4]. Wikis are
interlinked web sites that can be collaboratively edited by anyone. Pages are
written in a simple syntax so that even novice users can easily edit pages. The
syntax consists of simple tags for creating links to other Wikipages and textual
markups such as lists and headings.

The user interface of most Wikis consists of two modes: in reading mode,
the user is presented normal webpages that can contain pictures, links, textual
markup, etc. In editing mode, the user is presented an editing box displaying the
Wiki syntax of the page (containing the text including the markup tags). During
editing, the user can request a preview of the page, which is then rendered by
the server and returned to the user.



Many Wiki engines exist for anyone who wants to setup a Wiki, most of these
engines are open-source. Many sites run a Wiki as a community venue, enabling
users to discuss and write on topics. For example, many open-source projects
have a documentation Wiki, where users can collaboratively add documentation
about the project. The burden of editing is thus shared over the whole commu-
nity, while still allowing anybody to quickly find relevant documentation (which
is harder in e.g. a forum or bulletin board). Popular Wikis such as Wikipedia1

can grow very fast, since interested visitors can edit and create pages at will.
Wikis are inherently server-based which has the advantage of user platform

independence (users only need a browser) but the disadvantage of requiring a
round-trip for all changes2. For example, after each edit the page is committed
back to the server, and the newly rendered page is returned to the user. Although
the usability of most Wikis is good compared to other web applications (being
simple and fast), the need for server round-trips is a disadvantage compared to
desktop applications.

A problem with large Wikis is finding relevant information. Since almost
all the information in current Wikis is textual, the only possibility to locate
relevant information is a full-text search on some keywords. The only semantics
of pages lies in the links between pages. Indeed almost all Wiki engines generate
navigational benefits from these links: one can see all pages linking to the current
one, and go to these related pages. But this navigation through related pages
is quite limited, and does not address the need for more intelligent information
retrieval.

3 Semantic Wikis

Several systems have been developed that enable users of Wikis to semantically
annotate the information they publish in the Wiki. They enable users to struc-
ture and annotate the content of pages; they reward the user for doing so by
adding navigational possibilities to these annotated pages.

3.1 Examples

We list some examples of semantic Wikis. We discuss only those systems that
are being actively developed or that have been published about.

Platypus Platypus Wiki is a Wiki that is augmented with semantic technologies
[7]. Users can annotate information about pages by constructing RDF triples of
the form (page, predicate, object). The subject of the triple is always the current
page, the predicate and object can be resources.

In Platypus the editing interface consists of three pane: one pane contains
the page text in Wiki syntax, the other two contain RDF statements about the
1 http://www.wikipedia.org
2 approaches exist to enhance user experience by communicating in the background,

but these do still not compare to the usability possibilities of a desktop application.



page. Writing text on a page and writing semantic annotations are therefore
distinct activities in the Wiki, and the user has to consciously switch between
editing normal text and editing semantic annotations.

Platypus offers a query interface, separated from the normal page view. The
query possibilities are rich, and the background knowledge in the ontologies is
used in retrieving all answers to the queries. This inferencing capability means
that users can retrieve information that was not added explicitly but derived by
the system.

Platypus Wiki is an initial attempt to augment Wikis with semantics, all
pages in the Wiki can be annotated in RDF, and these annotations can be
queried. But Platypus does not directly entice the user to annotate pages: first,
there is no direct added benefit from annotating (because one needs to make a
separate query to see the results of annotating), and secondly annotating requires
much user action: it is a separate activity, different from the normal writing.

Shawn Shawn [1] can be seen as semantic Wiki that addresses Platypus’ short-
comings in both writing semantic annotations and in rewarding users for these
annotations.

In Shawn authors write the normal text and the semantic annotations at the
same time, in the same input field. Semantic annotations are syntactically distin-
guished from normal text by having the following form: predicate:object. All
such statements are converted to RDF triples using the page on which they ap-
pear as subject. One can for instance have a page called Shakespeare, containing
some text about the life of Shakespeare and his work. One line in the text may
read authorOf: Hamlet, which will be interpreted as the triple (Shakespeare
authorOf Hamlet). This style of semantic authoring poses very little burden on
the writer; users are free to embed semantic annotations at will and can do so
while writing the normal text.

Annotating pages leads to instant gratification for users in two ways: navi-
gational links are generated from the annotations and all semantic annotations
can be queried.

Shawn generates sidebar links (both forwards and backwards) from the se-
mantic annotations. For example, using the triple about Shakespeare and Ham-
let, the page Shakespeare would show a sidebar link to Hamlet (authorOf),
and the page Hamlet would show a sidebar link to Shakespeare (authorOf).
If Hamlet was annotated with rdfs:type Book then the page would also show
links to other books in the system. Users thus get rewarded for adding annota-
tions: pages contain more information than explicitly written.

Shawn also allows users to query for pages containing certain statements
using predicate=object; one can omit the predicate retrieving all pages that
have some predicate with the specified object, and one can specify conjunc-
tive queries by concatenating these statements. For example, authorOf=Hamlet
would retrieve the page Shakespeare. Queries can be embedded in page text,
prompting a live query each time the page is viewed. Users can thus create a
persistent view of the data.



3.2 Characteristics

To summarise, semantic Wikis have Wiki syntax for page authoring and use RDF
for annotation of pages. Users can annotate subtype relationships of pages and
predicate:object statements having the page as subject. Based on the semantic
annotation intelligent navigation can be offered, such as dynamic sidebar links
to pages related via some predicate. Querying of the annotated data is possible
through a (simple or powerful) query language.

4 Personal Wikis

An orthogonal extension of the original Wiki idea is the concept of a personal
Wiki. Personal Wikis focus on providing extreme usability for personal informa-
tion management. They are desktop applications and do in general not offer col-
laboration functionality. They serve as very lightweight note-taking programs,
allowing users to related notes to each other by Wiki links. Although at first
hand it seems self-contradictory with the collaborative nature of a Wiki, several
of these applications have quickly become quite popular.

4.1 Examples

Tomboy Tomboy3 is an open-source note-taking Wiki for the Gnome desktop
(Linux) and very popular in this community. It is a very simple application:
each note can be linked to other notes, or to email addresses and URLs. As
in a normal Wiki, these links can be traversed; additionally there is a menu of
recently accessed notes. Tomboy offers a full-text search to find relevant notes.

Tomboy is globally available in the desktop: it sits on the menu bar and
one can open it with a single keystroke. Notes are automatically saved on each
change, and there is an full undo stack for each note. These usability features
explain its popularity: one can very quickly take notes in it, by just pressing the
global key, typing some text, and pressing Escape to close it. There is no need
for opening an application, opening a note, saving it, and rendering the result;
all that happens on-the-fly.

Newton Newton4 is another open-source personal Wiki for the Gnome desktop.
It supports richer Wiki syntax than Tomboy, allowing for example numbered
and bulleted lists. On the other hand, it is slower in usage: there is a editing
mode and a viewing mode. In editing mode one sees the Wiki syntax, in viewing
mode the page is rendered.

3 http://www.beatniksoftware.com/tomboy/
4 http://newton.sf.net/



WikidPad WikidPad5 is a personal Wiki for Windows. It has a two-pane layout,
showing a tree of all pages on the left hand side, and the current page on the right
hand side. It supports a simple Wiki syntax for links and simple page markup,
it has an auto-complete feature for Wikilinks, and supports full-text search.
Users can assign categories to pages (to organise them), and annotate pages
with arbitrary attributes (such as priority, or status of an item); these attributes
can be used for aggregate views (e.g. all pages that contain todo items) or for
changing system behaviour (e.g. export only pages marked as public).

VoodooPad VoodooPad6 is a commercial application for MacOSX. It shows re-
cently changed notes, backlinks from the current note to all that mention it,
full-text search, auto-complete for Wikilinks. Additionally one can embed sim-
ple sketches into notes, and assigning categories to notes (to retrieve them more
easily). VoodooPad also integrates with the MacOSX address-book: actions such
as sending emails can be performed on recognised email addresses.

4.2 Characteristics

We summarise the characteristics of these various systems. Personal Wikis focus
on quick note-taking like scenarios; they commit to ease-of-use by being simple
and lightweight, and offering unlimited undo and real autosave. They are simple
and have a limited functionality: users can type text, link notes, and perform
full-text searches. Personal Wikis are tightly integrated in the desktop (global
keybinding, system tray, application integration) and are thus desktop-specific.

5 Functionality analysis

We compile a list of possible functionality based on this analysis of existing
applications and ideas about Wikis and their extensions. This list will serve as
a requirements analysis for our semantic personal Wiki.

We can distinguish three main groups of functionality: functionality of au-
thoring, retrieval, and navigation.

Authoring describes the available functionality to write, edit, and remove in-
formation; we distinguish Wiki syntax (for text layout), instant save (anni-
hilating the need for explicit saving), full undo, global keybindings (making
the application instantly available throughout the desktop), and application
integration (allowing to reuse data available in other applications).

Retrieval describes the available functionality to retrieve available information;
we distinguish full-text search, simple, powerful, and embedded queries, and
logical inferencing (that returns implicit information).

5 http://www.jhorman.org/WikidPad/
6 http://flyingmeat.com/voodoopad



Navigation describes the available functionality to navigate through the sys-
tem; we distinguish Wikilinks, intelligent navigation (using implicit informa-
tion), keyboard navigation (enabling fast navigation), and instant update of
the navigational entities (annihilating the need for explicit saving or refresh-
ing).

Table 1 list these requirements in the above order, and indicate the level of
support in the discussed systems.

Wiki syntax instant save full undo global keys app. integration

Wikis x
Platypus x
Shawn x
Tomboy x x x x
Newton x
WikidPad x
VoodooPad x x

(a) Authoring.

full-text simple query power query embedded query inferencing

Wikis x
Platypus x x x x
Shawn x x x x
Tomboy x
Newton x
WikidPad x
VoodooPad x

(b) Retrieval

Wiki links intelligent navigation key navigation instant updates

Wikis x
Platypus x
Shawn x x
Tomboy x x x
Newton x
WikidPad x
VoodooPad x x

(c) Navigation

Table 1: Capabilities of Wiki systems

6 Semantic Personal Wikis

Both extensions of the original Wiki concept offer distinct advantages. Semantic
Wikis offer a better retrieval rate through intelligent navigation and querying,



but have mediocre usability. They are slow to start, since one needs to start a
browser, surf to the Wiki, and wait for the server. They are slow in usage, since
one needs to explicitly save and commit all changes, and wait for the required
server round-trip. And they cannot offer a high-level of desktop and application
integration since they are user platform independent; this enlarges the group of
possible users but decreases the user experience. Personal Wikis address all these
usability issues, and are specifically built to offer a very good user experience;
on the other hand, they do not offer collaboration functionality.

A semantic personal Wiki is a combination between the best aspects of se-
mantic Wikis and personal Wikis. It offers the usability of a personal Wiki,
allowing users to quickly and unobtrusively write and semantically annotate
pages. The semantic annotations are intermixed within the normal text, allevi-
ating the need for a conscious change of mode. The Wiki entices users to add
annotations by providing direct rewards in terms of intelligent navigation.

Such a semantic personal Wiki can be seen as a personal information system
or as a lightweight ontology editor. It is not aimed towards collaborative work,
but on providing usability and gratification: attracting people to use it and add
semantics to their information.

6.1 SemperWiki

SemperWiki7 is our implementation of a semantic personal Wiki; it is an open-
source application developed for the Gnome desktop. We will give an overview
of the system and explain its features in detail.

Overview The user interface of SemperWiki is shown in figure 1. On the left
hand side the user can edit pages, on the right hand side the user can navigate;
there is no separation between authoring mode and navigation mode. A page can
consist of normal text, links to other pages or websites, and semantic annotations.

On the right hand side of the figure we see the navigation bar. This bar con-
tains various ways to navigate through the system. First we see a “find” section,
that allows users to query the system for pages containing certain statements.
Below the “find” section links to various relevant pages are displayed. In this
screenshot it only show the section “All pages”, containing all pages currently
in the system, other screenshots show more links as more relevant information
is found by the system. Finally we see a history navigation section, that allows
users to go back and forth in their navigation history; this feature is very useful
if we “jump” into a link to edit some information, and then want to jump back
again to where we were before.

Each page represents one resource and annotations state a property about
that resource. SemperWiki stores some semantic information about the re-
sources that are described on its pages, using the ontology shown in figure 2.
Each resource is represented as a page, each page can contain some text and can
have several outgoing links. Other information about a resource is added by the
user (the standard graph is enlarged with the semantic annotations).
7 see http://semperwiki.org/.

http://semperwiki.org/


Fig. 1: SemperWiki user interface

Fig. 2: SemperWiki ontology



SemperWiki stores all information in RDF8; we do this for two reasons:
RDF is a very flexible representation and allows us to store various information
about resources, and secondly RDF statements form the building blocks of the
Semantic Web. The collection of triples that SemperWiki stores form a valid
RDF model and can directly be exchanged with others.

In the RDF model, each page is identified by a URI, which is formed by
prefixing its title with the base URI of the Wiki (defined by the user). Figure 3
shows the RDF triples that are stored about the page Start; for readability we
have left out several triples.

Fig. 3: RDF statements about the page “Start”

Syntax Figure 1 contains ordinary text, including links to other pages in this
Wiki. We also see some semantic markup, stating that the author of this page is
a resource in this Wiki (namely the page EyalOren), that the publisher is DERI,
and that the topic is “Explanation”.

For the semantic annotations we use a simple syntax. A statement is written
on a line by itself and consists of a predicate followed by an object. Such a state-
ment is expanded to a triple using the URI of the page as a subject. Predicates
are resources, objects are resources or literals. Resources can be written as their
full URIs, with prefix notation, or as Wikilinks. Wikilinks are expanded using

8 http://www.w3.org/RDF/

http://www.w3.org/RDF/


the Wiki base URI, prefixed URIs are expanded using namespace abbreviations;
these abbreviations are configurable through a preference dialogue.

The syntax (for respectively a full URI, a internal Wiki link, a prefix ab-
breviation, and a literal) is as follows: [fullURI], [[WikiLinks]], prefix:
localname, ‘‘literal’’.

Navigation SemperWiki offers various ways to navigate to a page. First, one
can click on any Wikilink to jump to a page. Second, if one knows the name of
the page, pressing Ctrl-G will ask for the name and jump directly to it. Third,
the history buttons can be used to go back and forth through visited pages.
Fourth, the navigation sidebar will automatically show links to various related
pages that can be visited by clicking on them; the next section explains how it
works. And finally, one can query for any page containing statements by typing
a predicate and/or object in the find section. An example query for all things
written by John Irving is shown in figure 4, where the system found two relevant
pages.

Fig. 4: Using the “find” section

SemperWiki is designed to help users navigate quickly and efficiently to
their information. Therefore all actions in SemperWiki can be triggered by key-
board commands. These shortcuts can be accessed by typing Ctrl-H, as shown
in figure 5. Also, as can be seen in figure 1, all links are assigned mnemonics
(the underlined first letter) which triggers them with a keyboard command; for
example Alt-D directly jump to the Done page.



Fig. 5: Getting help

Dynamic Sidebar The links on the sidebar are generated automatically based
on the available semantic information in the system. We show sets of pages that
are related to the current one, and order these relations by the size of the sets of
related pages. We show the most specific pages first (the smallest set of related
pages), and gracefully decrease the amount of correspondence until we show all
pages.

For example, the page Garp will show all books that also have John Irving
as author (see figure 6). If there are any other predicates:objects in common we
also show them, such as other books that are published by Random House.

Then we show for example all pages that are of the same rdfs:type; for
Garp we show all other books in the system. This set is shown later, because it
contains more results than those books that also have the same author as Garp.

We also display pages that have a reversed relation to the current one (but in
a different colour). For example, the sidebar of the page Book would show links
to all books.

Instant Response Everything in SemperWiki behaves instantly. All changes to
all pages are saved instantly, without any user interaction. Likewise, the current
page and location are saved instantly. Together this means the user can leave
the system at any time (by pressing Esc and return the next time exactly where
he left it.

All links are found and tagged while the user is typing them, without any need
for saving or refreshing the page. All sidebar links are updated instantly upon
any change in the page. This means that while a user is adding information to



Fig. 6: Pages related to Garp

the page, the sidebar link is continuously up-to-date. If a user adds to some page
the statement dc:author "John Irving", the sidebar immediately updates to
show other books by John Irving.

Having an instantly responding user interface greatly enhances the user ex-
perience. We can provide this responsiveness by caching all querying results and
by using efficient regular expressions to parse the typed text. Currently, the sys-
tem is very fast but we need to evaluate its scalability in terms of the size of the
knowledge base.

Implementation The system is targeted at the Gnome desktop. As discussed,
targeting a specific desktop is a trade-off between offering more users a lesser
experience or offering less users a better experience, in which we have chosen the
latter.

SemperWiki is implemented in Ruby9, using the GTK10 windowing toolkit
for the graphical programming. It uses Redland11 for RDF storage and retrieval.
It currently consists of around 500 lines of code, many of which are related to
programming the graphical widgets.

Redland is a mature RDF store, but it is still quite small so that it can
be easily embedded in an application. It supports language bindings for many

9 http://ruby-lang.org
10 http://www.gtk.org/
11 http://librdf.org/

http://ruby-lang.org
http://www.gtk.org/
http://librdf.org/


different languages, including Ruby. We have also considered YARS [3], but at
its current state it does not offer enough functionality.

The choice for the Gnome desktop was a personal one, but it is also the
default desktop of Ubuntu, currently the fastest growing Linux distribution.
The GTK toolkit is the default toolkit of the Gnome desktop, it is consistent
and easy to use. Furthermore, it has excellent Ruby bindings.

The choice for Ruby was made for development speed. As an interpreted
language it allows one to program very fast and develop prototypes very easily.

7 Evaluation

We can not evaluate SemperWiki against other semantic personal Wikis, as
we are unaware of other systems. Also, we cannot do a user-based analysis of
our tool, since the tool does not have an active user base yet. However, we can
compare our current functionality against the functionality analysis in section 5.

It is clear that SemperWiki offers very little functionality in querying. That
is actually on purpose: since we have no good solution for a simple but powerful
query interface, we currently prefer the navigation sidebar: it is much easier
to use. Furthermore, we can see that SemperWiki supports all encountered
navigational capabilities, and almost all authoring capabilities; the missing “full
undo” is actually planned for imminent implementation. Support for desktop
application integration might an interesting discussion point for this workshop.

Wiki syntax instant save full undo global keys app. integration

SemperWiki x x x

full-text simple query power query embedded query inferencing

SemperWiki x

Wiki links intelligent navigation key navigation instant updates

SemperWiki x x x x

Table 2: Capabilities of SemperWiki

8 Conclusion

Managing the amount of information in our personal desktops is a challenge.
The idea of a Semantic Desktop addresses this challenge by semantically anno-
tating information chunks on our desktop, allowing better retrieval of relevant
information. Since these semantic annotations have to be (partially) added by
users, one must entice them to do so.



We have presented the idea of semantic personal Wikis to allow and en-
courage users to create semantic data. We have incorporated ideas from both
semantic and personal Wikis: semantic Wikis focus on improved retrieval and
navigation, personal Wikis focus on usability.

Our application SemperWiki allows users to manage their information: they
create pages that contain both normal text and semantic annotations at the same
time. They are instantly rewarded for these annotations by improved navigation
possibilities. The system is simple, easy to use and responds instantly to all
changes.

For future work we aim to address several issues. First, currently pages and
resources have a one-to-one correspondence: each resource is represented by ex-
actly one page. This makes annotations easier: statements are made using only
a predicate and object, the subject is always the URI of the page. However, it
makes editing complex data cumbersome since one needs to edit a new page for
each resource, and it poses problems with blank nodes. Furthermore it prohibits
making statements about external resources since all subjects have to be Wiki
pages. We aim to decouple the relation between pages and resources, thereby
allowing annotations of arbitrary resources (internal and external) and more
complex statements.

Secondly, we want to improve the query and navigation interface, such that
it is still easy to use and yet allows experienced users to make more powerful
queries. For example, the list of related pages in the dynamic sidebar could be
very long and we currently do not provide means to shorten or search through
this list. For this we will look into related work such as the Longwell browser in
the Simile project [6].

Finally, we aim to investigate possibilities to share the authored RDF data
with others, either by publishing it on a persistent web location, or by sharing it
over a peer-to-peer network with other users of SemperWiki. That way, what
starts as a contradiction-in-terms for private use (a personal Wiki) returns to
the Semantic Web.

Acknowledgements: this material is based upon works supported by the Science
Foundation Ireland under Grant No. 02/CE1/I131. We thank Knud Möller and
Stefan Decker for valuable discussions, and the anonymous referees for their
suggestions of improvement.

References

[1] D. Aumueller. Semantic authoring and retrieval within a wiki. In Proceedings
of the European Semantic Web Conference (ESWC). 2005.

[2] S. Decker and M. Frank. The social semantic desktop. Tech. Rep. 2004-05-02,
DERI, 2004.

[3] A. Harth and S. Decker. Optimized index structures for querying RDF from
the web. In Proceedings of the 3rd Latin American Web Congress. 2005.

[4] B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing on
the Internet. Addison-Wesley, 2001.



[5] L. Sauermann. The Gnowsis – Using Semantic Web Technologies to build a
Semantic Desktop. Master’s thesis, Vienna University of Technology, 2003.

[6] V. Sinha and D. Karger. Magnet: Supporting navigation in semistructured
data environments. In Proceedings of SIGMOD 2005. 2005.

[7] R. Tazzoli, P. Castagna, and S. E. Campanini. Towards a semantic wiki wiki
web. In Proceedings of the International Semantic Web Conferenc (ISWC).
2004.


	SemperWiki: a semantic personal Wiki
	Eyal Oren eyal.oren@deri.org

