
Keywords and RDF Fragments: Integrating
Metadata and Full-Text Search in Beagle++

Tereza Iofciu, Christian Kohlschütter, Wolfgang Nejdl, Raluca Paiu

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{iofciu,kohlschuetter,nejdl,paiu}@l3s.de

1 Introduction

Full-text search engines and metadata repositories have so far investigated very
different approaches to search, mainly due to their separate and different storage
systems for information and data. As we have argued in previous papers, though,
integrating full-text and metadata search capabilities is crucial for powerful se-
mantic desktop search systems [3]. Semantic metadata is able to represent im-
portant contextual information on the desktop and provide both more research
results (better recall) as well as more sophisticated ranking (better precision)
compared to simple full-text search.

Recently, integrating databases and information retrieval technologies has
been discussed by different research groups. [1] motivates the need for sys-
tems which integrate DB and IR querying capabilities, especially in the case
of searching in libraries, where librarians are forced to switch between full-text
and database search functionalities. An interesting approach to querying semi-
structured data such as XML has been presented in [2], which introduces the
notion of XML fragments to be used as parts of queries, inspiring part of the
work described in the current paper. A system building on RDF is Magnet, which
is presented in [4]. It supports näıve-user navigation of structured information
via a domain-independent search framework and user interface. Magnet can be
used both for browsing RDF as well as XML collections of data.

In our context we want to achieve integrated full-text and metadata search
on the desktop including two important functionalities present in current search
engines or IR systems, namely the possibility to return results which only par-
tially match the query and to rank results accordingly. In contrast to this, usual
database queries return all results as an unranked set of hits.

2 Searching with RDF Fragments

2.1 The Vector Space Model

For conducting full-text search, it is common to use the well-known Vector Space
Model (VSM). An important aspect of this model is that documents and queries



2

have the same structure. This means that, when searching full-text document col-
lections, the queries are compared to full-text documents, just as two documents
are. The results are then ranked according to the similarity of the documents
with the query. The relevance of a document d for a specific query q is computed
by using a similarity function such as the cosine measure:

ρ(q, d) =

∑
t∈q∩d wq(t) ∗ wd(t)

‖q‖ ∗ ‖d‖
(1)

The similarity ρ(q, d) is computed in a t-dimensional space, t being the num-
ber of different terms appearing in all documents. wx(t) stands for the weight
of term t in x, x representing the document or the query. This can be boolean
(0 = not in document, 1 = contained) or, for instance, defined by the TF·IDF
measure. The latter normalizes the impact of frequent/infrequent words in a doc-
ument per division of a term’s occurrences in a specific document by the number
of overall documents the term is contained in. Looking closer at this similarity
function, the reader can notice that results do not necessarily have to include
all query terms. If they do not include at least one, though, the similarity will
be zero. In contrast to the Euclidean distance, in the cosine similarity function
only those terms influence the similarity value which occur in both vectors.

2.2 Searching both Full-Text and Metadata

How do we generalize the vector space model to a semantic desktop search
scenario? The key idea here is to consider extended documents which consist
both of full-text and of metadata, and allow the user query for these documents
in an integrated way. Figure 1 shows such an extended document, with an RDF
graph representing the metadata associated to the document.

Fig. 1. A searchable document, consisting of full-text and reachable metadata

A query containing full-text and RDF metadata properties can then be
expressed in the same way as a small document, including both keywords and
RDF fragments. This approach offers a very easy-to-use query language. For
example, if we consider the natural-language query: “Return the papers which
I received from Bob via an email attachment, considering RDF indexing”, this
can be expressed by the following RDF fragment query:



3

“RDF indexing” /storedFrom/attachedTo/receivedFrom Bob.

If Alice remembers that the paper Bob sent to her has been presented at a
VLDB conference, she can use this additional information to refine her query.
So, the query now is “Return the papers which I received from Bob via email,
considering RDF indexing, and that have been presented at VLDB”, which is
represented as an RDF fragment query as follows:

“RDF indexing” /storedFrom/attachedTo/receivedFrom Bob.
/presentedAt VLDB.

It is useful to support approximate and imprecise metadata queries as well.
For example, in the previous query, Alice could have erred on the name of the
conference. So articles presented at SIGIR, which matched the keyword and
receivedFrom restrictions, should be also returned as hits, though with a smaller
rank. In addition, we should also return appropriate documents if a metadata
path has only been specified incompletely (for example, /receivedFrom Bob).

2.3 Semantics of RDF Fragment Queries

Besides providing an intuitive and integrated way to query for full-text and meta-
data, we also want to be able to efficiently support indexing and searching on
the desktop using a single VSM-based full-text search engine like Lucene. Based
on the vector space model, we will then consider a document a potential result
if it has a non-null similarity with the corresponding query. In addition to the
basic vector space model functionalities, we also support additional restriction
operators commonly used in full-text search engines: MUST, MUST NOT and
PHRASE operators. Just like any other term, a phrase can be prefixed with the
MUST or MUST NOT operator sign (+ or -), to force its appearance/absence,
or be enclosed in double quotes for the PHRASE operator to force a list of key-
words to appear consecutively. If a term/phrase is not signed, its appearance is
desired but not inevitable (i.e. an implicit SHOULD operator).

If we compare these query capabilities to relational query languages, our
query model supports the operators selection and projection, as well as union,
intersection and set difference. The only operator not supported is the join,
which however only precludes queries such as ‘Find papers from authors who
cite themselves’, seldomly thought of by search engine users.

3 Indexing and Querying of Full-text and Metadata

3.1 Background: Lucene and Beagle Indexing

We are building our search infrastructure on Beagle which is a GNOME project
for indexing and searching resources on the desktop. Beagle uses Lucene as
high performance full-text search engine, which is a multi-purpose information



4

retrieval library for adding indexing and search capabilities to various applica-
tions. Lucene can index and search any data that can be converted to a textual
representation.

At the core of all full-text search engines is high performance indexing, i.e.
processing the original data into highly efficient cross-reference lookup tables in
order to facilitate rapid searching. A common way of implementing the vector
space model is to store terms in inverted indices, associating them with the
documents they are contained in as well as including the corresponding TF and
IDF values.

3.2 Indexing Metadata to Support RDF Fragment Queries

The default approach to index metadata as used in Beagle is to define one field
per metadata predicate; full-text and document URIs are also stored as fields.
This idea is not suitable for metadata paths. Adding one field per path is not
possible as the paths can contain a lot of different predicates, determined only
at runtime. Furthermore, the ability to rank documents by metadata literals is
lost because the TF·IDF measure used by the vector space model does not span
across fields.

Our approach uses one single “metadata” field for all metadata associated to
a document. For each directly associated statement, we store both predicate and
object of the statement as text in this field. This makes storage independent of
any underlying RDF schema, as the predicates are represented as terms rather
than field names. To describe more complex contexts, we store predicate paths.
These paths represent the properties which are not directly annotated to the
document, but can be reached by following a path in the RDF graph starting
from the document node via subject–predicate–object connections. RDF frag-
ments can be matched using phrase queries on the metadata field, and results are
returned almost instantaneously, as querying reduces to a lookup in the Lucene
index.

4 Experiments

Our test dataset consisted of 150 publications, with metadata extracted from
the CiteSeer database and some additional one regarding email information. We
considered a community of three people, Alice, who has stored and indexed her
publications on her desktop, and Bob and Chris from whom she received some
of them. We have created additional annotations referring to the affiliation of
some authors as well as regarding the source of the documents. We assumed 10
documents received as email attachments from Chris and 21 received from Bob.
Publications are related to each other through citation, and are linked to persons
by authorship or source relations. Paths are materialized up to literals, but not
including other documents.

In our first experiment we searched for a document about Web Communities.
If we search with this phrase only in the full-text, we get as hits the documents



5

119, 61 and 41 in this order and with similar rankings. If we add the title re-
strictions to the query we get 61, 119 and 14 with relevant differences in the
ranking values. If we specify that the metadata query is mandatory, with the
MUST operator, we only get document 61, ‘Self Organization and Identification
of Web Communities’.

In the second experiment we search for the phrase “semantic web” in the
text field and get 24 documents. If we want to get documents written by persons
affiliated to MIT we can narrow the search area by adding the keyword “MIT”
to the text query. This approach returns 13 documents. If we add the metadata
query ‘/creator/affiliatedTo MIT.’ or just ‘/affiliatedTo MIT.’, we get only two
documents.

In the third experiment we search for documents received from “Chris Conti”
and we got 10 hits, then we searched for documents received from “Bob Doe”
and we got 21 hits. When we did a cross search, for documents received from
“Chris Doe” we obtained no hits, which is exactly what we wanted to achieve.

In the first experiment, explicit metadata search has a big impact on ranking.
Without the metadata restriction, Lucene TF·IDF scores were between 0.04 and
0.07. After adding the metadata phrase to the query, the first document (the
one containing the keywords in the title) had a ranking of 0.1471. The terms
“web” and “communities” appear less in the text field than in the metadata
field. Together with the fact, that the metadata field is much smaller than the
full-text field, the ranking considers matches in the metadata field much more
important than in the full-text field.

5 Conclusions & Current Work

This paper has presented an integrated approach to indexing and querying full-
text and metadata information which is both intuitive for the user and efficient
to implement. It achieves this by building on top of a common full-text search
engine and by only slightly modifying the usual Google-like search interface to
allow the specification of RDF fragments as part of the query. Additionally,
our approach provides inexact matching of user queries and ranking of results,
evaluating metadata matches the same way as full-text matches, with the ability
to return results even for incomplete and over-constrained metadata queries.

References

1. S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram, and G. Weikum. Report
on the DB/IR Panel at SIGMOD 2005. In SIGMOD, June 2005.

2. D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer. Searching XML
Documents via XML fragments. In SIGIR, New York, USA, 2003.

3. S. Ghita W. Nejdl P. Chirita, R. Gavriloaie and R. Paiu. Activity Based Metadata
for Semantic Desktop Search. In ESWC, Greece, May 2005.

4. V. Sinha and D. R. Karger. Magnet: Supporting Navigation in Semistructured Data
Environments. In SIGMOD, June 2005.


