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Abstract

In this paper we explore three approaches
to assigning Gene Ontology semantic clas-
sifications to abstracts from the PubMed
database: lexical lookup, information re-
trieval and machine learning. To eval-
uate the approaches we use two “gold”
standards derived from the yeast genome
database (SGD). While evaluation pro-
vides insights into the three approaches, it
also reveals the difficulties in constructing
a suitable gold standard for this task.

1 Introduction

Text mining may be described as the process
of revealing information, regularities, patterns or
trends in textual data. As such it draws upon
a variety of fields, including information extrac-
tion (IE), information retrieval (IR), natural lan-
guage processing (NLP), knowledge discovery
from databases (KDD) and traditional data min-
ing (DM) (Hearst, 1999). Text mining is of partic-
ular interest to the biological scientist because of
the on-going explosive growth of the biomedical
literature. With literature being published at ever
increasing rates, it is becoming more and more
difficult for the researcher to keep abreast of de-
velopments in his own area or to make connec-
tions with related areas. Text mining attempts to
address these problems in various ways. For ex-
ample, through extractive processes, facts or terms
may be extracted from papers and made avail-
able for searching or automatic linking; through
structuring processes, papers may be automati-
cally grouped or organised based on content, facil-
itating conceptual access to large numbers of sci-
entific papers.

We consider this latter approach here. The cur-
rent nomenclature for genes and proteins is di-
verse and frequently almost ad hoc in its nature,

making it very difficult to relate structurally or
functionally similar genes and proteins across dif-
ferent species. In order to begin to integrate the
knowledge about these shared biological entities,
a common descriptive framework is required and
this is the challenge that the Gene Ontology (GO)
seeks to undertake (Gene Ontology Consortium,
2000). GO itself consists of three separate ontolo-
gies, each describing a particular facet of molec-
ular biology: molecular functionality, biological
processes and cellular components. The annota-
tion of the biomedical literature with terms from
GO could provide a semantic overview of the lit-
erature and a way of organising the knowledge it
contains. However, given the rapid growth in the
biomedical literature, manual annotation with GO
codes is not feasible. Some automatic method of
annotation would be of significant interest, both
for model organism database curators who are in-
creasingly using GO as an important part of their
annotations, and also for the biological scientist
for whom GO annotations of papers could be used
to deliver conceptual level search and browsing
tools. We address the task of annotating papers
from the biomedical literature with Gene Ontol-
ogy in this paper.

2 The Task and Related Work

2.1 GO and the Use of GO
GO consists of almost 20,000 terms organised into
three separate ontologies.1 Each term consists of a
name, a unique identifier (GO code), an indication
of which ontology it belongs to, an optional list of
synonyms (of various types) and a textual gloss or
definition. For example:

Term name: isotropic cell growth
Accession: GO:0051210
Ontology: biological process
Synonyms: related: uniform cell growth
1See http://www.geneontology.org/.



Figure 1: Gene, GO annotation, Reference and Evidence Code relationships with SGD

Definition: The process by which a cell
irreversibly increases in size uniformly in
all directions. In general, a rounded cell
morphology reflects isotropic cell growth.

These terms are organised into a directed
acyclic graph, whose edges indicate the semantic
relation IS-A-TYPE-OF, so that for all terms, if a
child term describes a gene product, then all its
parent terms must also apply to that gene product.
Note that GO does not list or reference gene prod-
ucts directly; rather it provides a controlled vocab-
ulary for describing them.

One common use for GO terms is to asso-
ciate them with genes or gene product entries in
model organism or protein databases. For ex-
ample, databases such as the Drosophila Genome
Database (FlyBase)2, the Saccharomyces Genome
Database (SGD)3 and the Mouse Genome
Database (MGD)4 associate one or more GO an-
notations with each gene in the database. Each GO
annotation has one or more references to the litera-
ture,providing support for the annotator’s decision
to link this GO code to this gene. Each reference
given in support of a GO assignment also has an
evidence code associated with it, which provides
a characterisation of the type of evidence the ref-
erence gives for this GO code assignment. These
complex relations are illustrated in Figure 1.

This usage of GO codes is prototypical. GO
was not designed, first and foremost, as an index-
ing scheme for texts (as were the Medical Subject

2See http://flybase.bio.indiana.edu/.
3See http://www.yeastgenome.org/.
4See http://www.informatics.jax.org/.

Headings or MeSH). However, this does not mean
that doing so is not a worthwhile, if difficult task
Associating one or more GO codes with a text if
the text is “about” the function/process/component
identified by the code would provide a domain-
specific approach to organising the text collection.
One issue is whether to assign GO terms at the
level of the whole document or to assign them
to textual sub-units (paragraphs, sentences, gene
names) to which they may more specifically apply.
We have focused on the task of assigning codes to
the biomedical (PubMed) abstracts, as this task is
challenging and useful in its own right.

2.2 Related work

Raychaudhuri et al. (2002) address the task of as-
sociating GO codes with genes by first associat-
ing GO codes with documents and then assign-
ing a specific GO code to a gene if a sufficient
number of documents mentioning the gene have
had the GO code associated with them. They treat
GO code assignment to documents as a document
classification task and evaluate maximum entropy,
Naive Bayes and nearest-neighbours approaches.
To evaluate they assemble a corpus of roughly
20,000 PubMed abstracts associated with one or
more of 21 GO terms/categories. This is done
by searching PubMed for each GO term’s corre-
sponding MeSH heading and title words. On the
document-level task, the maximum entropy ap-
proach proves best, obtaining 72.8% classification
accuracy over the 21 categories.

GO-KDS (Smith and Cleary, 2003) uses a Naive
Bayes-like machine learning algorithm called the



Weighted Confidence Learner (WCL), Bayes, de-
veloped specifically for the task of annotating
PubMed articles with GO terms. Taking only
words as document features, GO-KDS uses a scor-
ing function to rank each document within each
GO category. Category membership is then deter-
mined by applying a score threshold for each cat-
egory. GO-KDS was trained using gene/protein
databases that employ GO terms and also have
references to MEDLINE papers (initially some
26,500 documents with 3700 GO terms were
used). It was evaluated on approximately the same
data as Raychaudhuri et al.’s (2002) approach and
attained a classification accuracy of 70.5%. GO-
KDS has the advantage of being extremely ef-
ficient, an important consideration given its in-
tended use in a commercial product suite.5

GoPubMed is another tool designed to anno-
tate PubMed abstracts with GO terms (Doms and
Schroeder, 2005). A local sequence alignment al-
gorithm is used based on a weighted term match-
ing between GO terms and strings in the abstracts
that permits words to be dropped and ranks certain
words more highly than others. No evaluation of
this work is reported.

Kiritchenko et al. (2005) present a method for
assigning GO codes to biomedical texts. They
treat GO term assignment as a text categorisation
problem and approach it using the AdaBoost.MH
algorithm. The novelty in their work lies in treat-
ing the problem as a hierarchical text categorisa-
tion task and in introducing a new evaluation mea-
sure for hierarchical categorisation tasks that gives
credit to partially correct classifications. Several
evaluation results are provided but it is not obvious
whether the same algorithm is being compared us-
ing different evaluation measures, or different al-
gorithms using the same measure. Also, with re-
gard to the creation of a gold standard for eval-
uation purposes, the authors seem unconcerned
about the completeness issues that are raised be-
low in section 3.

The BioCreAtIvE challenge (Hirschman et al.,
2005) was held to provide a set of common evalua-
tion tasks to assess the state of the art for text min-
ing applied to biological problems. Task 2 focused
on the automatic assignment of GO to human pro-
teins. In subtask 2.1 participants were given an
article, a protein and a GO code, where the arti-
cle justifies the assignment of the GO code to the

5See http://www.go-kds.com/

protein, and required to find evidence text in the
article supporting the assignment. In subtask 2.2
participants were given protein-article pairs plus
the number of GO code assignments supported by
the article, and required to find the GO code(s) that
should be assigned to the protein based on the ar-
ticle. 200 full-text articles manually annotated by
curators were used as the test set. Results indi-
cated no systems are ready for practical use as yet.

3 Gold Standards and Data Sets

Two gold standards were created for assessment
purposes. The first uses the GO annotations in the
Saccharomyces Genome Database(SGD) (Cherry
et al., 1997) (later referred to as SGD Abstracts);
the second addresses problems of completeness in
the first by manually extending it with mentions of
GO terms (later referred to as IC Abstracts).

3.1 SGD Abstracts Gold Standard

As described in section 2.1, SGD records for each
(yeast) gene a list of GO terms manually curated to
that gene. Each such assignment of a GO term to
a gene has associated with it one or more literature
references that provide support for the assignment.

The annotated gene list from SGD is turned into
a Gold Standard for our GO tagging task by ex-
tracting all references to PubMed articles from the
list and assigning to each article the GO terms in
the context of which the article was referenced
in the list. The resulting Gold Standard contains
4922 PMIDS (PubMed identifiers) and 2455 GO
terms, forming 10485 PMID-GO term pairs.

The advantage of creating a Gold Standard in
this way is that the information is readily available
from SGD; no further annotation work is required
and the resulting Gold Standard can be used as
a common benchmark since it is available to all.
Moreover, other model organism databases can be
used to assemble additional Gold Standards in the
same way.

However, a major disadvantage of using SGD
to create a Gold Standard for GO tagging is that
the list of gene-GO term assignments is incom-
plete for our particular task. First of all, for a given
assignment, the list does not necessarily contain
all papers supporting that assignment. Secondly,
since the SGD curation process concentrates on
citing evidence for assigning GO terms to genes,
the list may miss GO terms which are not directly
involved in assignments, but which can neverthe-



less be legitimately attached to a paper according
to our task description (see section 2.1). As a con-
sequence, the Gold Standard will be incomplete:
for any given paper it will generally not provide
the complete set of GO terms that should be as-
signed to the paper. This means that the Gold Stan-
dard can only be used as a weak measure for recall
(a system with higher recall is a better system, but
100% recall does not mean perfection). Any pre-
cision figures computed from this Gold Standard
cannot be interpreted in a meaningful way.

A further disadvantage of the SGD-based Gold
Standard is that the information in SGD is derived
from full papers, whereas our system has access
to abstracts of papers only. Hence, there will be
GO terms in the Gold Standard which can only be
found by reading the full paper. We cannot reason-
ably expect our system to find these terms. This
feature of the SGD Gold Standard affects the max-
imum recall obtainable by our GO Tagger.

3.2 IC Abstracts Gold Standard

To address these problems, a second gold stan-
dard was created. First, the original SGD Gold
Standard was filtered to keep only the abstracts in
which a reference to all the GO terms assigned to
that paper could be found in either the title or ab-
stract text. This aimed to resolve the issue of as-
signments being made on the basis of the full pa-
per rather than just the abstract.

Then an attempt was made to find new GO
terms referred to in the title or abstract text but
not included in the original SGD Gold Stan-
dard. To attempt this manually is an extremely
challenging task, not least because it requires a
thorough knowledge of GO. Therefore a semi-
automated process was employed using a fuzzy
lookup method to identify candidate references to
GO terms and then manually post-process these
candidate references to filter out those considered
invalid and to select the correct GO term when ref-
erences in the text overlapped. This resulted in a
gold standard with 785 PMIDs and 1006 GO terms
forming 5170 PMID-GO term pairs.

The annotations for the IC abstracts are more
complete, though still not entirely so; they still
contain only those GO terms which are directly
mentioned in the text rather than being semanti-
cally inferred. A second problem with the IC ab-
stracts set is that it was semi-automatically gener-
ated using a lexical lookup system. This means

that, apart from the initial GO terms annotated
by the SGD, all the GO terms annotated will be
present as actual mentions within the text and so
amenable to extraction by the same lexical lookup
approach that was used to find them.

4 Approaches to the Task

We have tested three approaches to the problem of
annotating biomedical abstracts with GO codes.

4.1 Lexical lookup Using Termino

The first approach to the GO annotation task is
based on lexical lookup. A text is assigned a par-
ticular GO identifier if the corresponding name oc-
curs in the text. Texts that contain multiple names
are annotated with multiple GO identifiers.

The lexical lookup method is simple and fast.
While it suffers from the obvious drawback that
GO names are not selected because they are strings
that occur in natural text, but rather because they
are appropriate concept names, this approach is a
sensible baseline and additionally can supply fea-
tures to be used in a machine learning approach.

The implementation of the lexical lookup
method is based on Termino, a flexible, large-scale
terminological resource supporting term process-
ing for text mining applications (Harkema et al.,
2004). Termino contains a database holding large
numbers of terms and information about these
terms, which can imported from existing termino-
logical resources such as UMLS and GO. Efficient
recognition of terms in text is achieved through the
use of finite state recognisers which are compiled
from contents of the database.

For the GO tag application, we harvested all
18270 names from the Gene Ontology (version
120120051108), with their GO identifiers and
Ontology attributes and imported these into Ter-
mino’s database. Synonyms were not included.
Names of obsolete GO terms were imported, but
flagged, so that they can be excluded from recog-
nition if desired. The term recogniser derived from
the GO data is case-insensitive and performs “sim-
ple” morphological analysis (e.g., cells is recog-
nised as a variant of cell, but mitochondrial, mito-
chondria is not reduced to mitochondrion).

4.2 GO Assignment as an IR Task

Our second approach was to treat GO code assign-
ment as a nearest neighbours task using an Infor-
mation Retrieval (IR) system to determine proxim-



ity. For each GO term, a “GO document” was de-
rived from the GO ontology. Each GO document
consists of the GO term name, its definition, and
its synonyms. This document collection was in-
dexed using Lucene.6 A given biomedical abstract
is annotated with GO terms by supplying the body
of the abstract to Lucene as a query, which will
return a rank-ordered set of the most similar GO
documents. The top ranked GO documents, whose
scores are higher than a given threshold, are used
as the GO assignments for the “query” abstract.

In addition to treating each document as “flat”,
i.e. independent of other GO nodes in the ontol-
ogy, we also tried a hierarchical variant, in which
each GO document also inherits all the GO term
names, definitions and synonyms from its parents.

Each GO document, for either variant, goes
through a series of standard preprocessing proce-
dures – tokenization, stopword removal, case nor-
malisation, and stemming – and is then indexed
by Lucene. The same procedures are applied to
the query abstracts from which a query is derived
by boolean ORing the words.

Two variants of the GO ontologies were used:
the full version, which contains some 18270
nodes, and an abbreviated ontology authored by
the SGD curators (Yeast GO slim). Both GO vari-
ants were indexed, with and without hierarchical
variations, to give four potential search indices.

4.3 GO Assignment Using ML

The third approach explores the possibilities of us-
ing machine learning. The task was considered
to be one of classification, whereby a system is
taught by example how to assign a GO term to a
document.

Such a document classification system was built
and trained using a corpus of documents with cor-
rectly assigned GO terms. Once trained the sys-
tem was used to predict the GO terms that should
be assigned to previously unseen documents.

The Gold Standard data sets (see section 3)
were partitioned when using the ML approach to
generate a training data set and an evaluation data
set. The training data set contained 66% of the
documents in the gold standard and the remainder
formed the evaluation data set. The partition was
performed randomly whilst maintaining the same
distribution of GO terms in both sets.

Words and frequent phrases were used as the

6See http://lucene.apache.org.

features on which the classification was based.
The classification algorithm uses the per docu-
ment frequency of these features to learn the GO
term class or classes it should assign an abstract
to. Words were generated by simple tokenization.
Frequent phrases were generated by tokenizing the
abstracts, removing stopwords (a, the, and etc.),
stemming the remaining words and then identify-
ing frequently occurring sequences of tokens.

The first document classifier tested used a Naive
Bayes classification algorithm as implemented in
the DiscoveryNet workflow-based knowledge dis-
covery environment (Rowe et al., 2003). The
shortcoming of this implementation was that
it only assigned one GO term per document,
whereas in our Gold Standard data sets, one docu-
ment may be correctly assigned more than one GO
term. This obviously limited recall.

For this reason two further document classifica-
tion systems were tested. Firstly, the Rainbow text
classifier was used. 7 This provides an implemen-
tation of the Naive Bayes algorithm using words as
features. Secondly the document classifiers within
Oracle were used. Oracle Text provides document
classification methods based on an SVM or a de-
cision tree algorithm,8 both of which were tested.

GO includes nearly 20,000 terms and so any
data set used to train a classifier is unlikely to in-
clude documents assigned to every term. For this
reason it was decided to use an abridged version
of GO (Generic GO Slim) for which we could get
good coverage in a training data set.

5 Results and discussion

5.1 Termino Results
Table 1 summarises the performance of the lexical
lookup approach on the GO tagging task. The ta-
ble contains four sets of results: for each version of
the Gold Standard (SGD Abstracts, IC Abstracts),
performance figures are given against the full set
of GO terms and against GO Slim.9

The relatively low recall scores for the SGD ab-
stracts are as expected. This is a result partly of
the shortcomings of the SGD Gold Standard (see

7See http://www.cs.cmu.edu/∼mccallum/
bow/rainbow/.

8Seehttp://www.oracle.com/technology/
products/text/.

9The GO Slim numbers are obtained by mapping the GO
terms from the complete GO ontology onto their correspond-
ing terms in GO Slim, both in the Gold Standard and in the
results produced by lexical lookup, and comparing the ver-
sions of the Gold Standard and the results created in this way.



Gold Standard GO Version Recall Precision F-measure
SGD Abstract GO 15.1 5.3 7.8
SGD Abstracts GO Slim 51.0 29.9 37.7
IC Abstracts GO 71.9 90.5 80.2
IC Abstracts GO Slim 79.5 98.5 88.0

Table 1: GO tagging results for lexical lookup approach

SGD Abstracts IC Abstracts
GO Index 1 5 10 20 50 1 5 10 20 50
GO Slim – Recall 17.8 51.5 69.5 82.0 90.2 14.5 42.1 59.5 74.1 85.3
flat Precision 34.3 26.2 21.6 16.3 10.2 57.5 44.2 37.6 29.8 19.5

F 23.5 34.7 32.9 27.1 18.3 23.2 43.1 46.1 42.5 31.7
GO Slim – Recall 19.3 51.0 68.0 80.6 90.3 15.7 43.3 59.5 73.2 85.2
hierarchical Precision 31.7 24.8 20.7 15.9 10.0 53.5 43.0 37.0 29.5 19.2

F 24.0 33.4 31.7 26.5 18.1 24.3 43.1 45.5 42.1 31.4
GO – Recall 5.1 12.3 17.3 23.0 31.7 2.8 6.9 10.0 14.0 20.9
flat Precision 11.1 5.3 3.7 2.5 1.4 18.8 9.2 6.7 4.7 2.8

F 7.0 7.4 6.1 4.5 2.6 4.9 7.8 8.1 7.1 5.0
GO – Recall 3.7 9.2 12.9 17.6 25.7 1.7 3.7 5.5 8.4 13.3
hierarchical Precision 7.9 4.0 2.8 1.9 1.1 11.3 5.0 3.7 2.8 1.8

F 5.0 5.6 4.6 3.4 2.1 2.9 4.3 4.4 4.2 3.2

Table 2: GO tagging results using an IR approach

section 3), partly of a mismatch between nature
of task and an approach based on lexical lookup
of GO terms (for a GO term to be associated
with an abstract it does not necessarily have to
appear in the abstract or full paper), and partly
of drawbacks inherent to straightforward lexical
lookup (this method is not equipped to deal with
natural variations of terms, including, for exam-
ple, permutation and derivation, e.g., regulation
of translation vs. regulated translation, and trun-
cation, galactokinase activity vs. galactokinase).
The jump in recall scores for the SGD abstracts
between GO and GO Slim is explained by the fact
that it is easier to recognise a GO Slim term than
to recognise a GO term: the latter requires recog-
nition of the exact term, whereas the former re-
quires the (exact) recognition of just one of the
many terms from GO that are mapped onto the
particular GO Slim term.

To the extent that the precision figures com-
puted from the SGD abstracts can be interpreted,
we notice that they are lower than expected in
the present situation where terms generally do not
overlap with common English words. For various
reasons, the occurrence of a GO term in an ab-
stract does not mean that this GO term has been
assigned to the abstract in the SGD Gold Stan-
dard. For example, the term may be too general
to be informative, e.g., cell, or the recognised term
may be part of a larger term (that may or may not
have been recognised itself), e.g., mitochondrion

in mitochondrion distribution. For the SGD Gold
Standard, precision increases from GO to GO Slim
because some recognised terms that are incorrect
according to the Gold Standard based on GO will
be mapped onto terms that are correct according
to the Gold Standard based on GO Slim (while the
reverse does not happen). Hence, some false posi-
tives turn into true positives.

The recall and precision figures for the Gold
Standard based on the IC abstracts look rather bet-
ter than the SGD abstracts. However, these high
scores are mainly an artefact of the way the IC
Gold Standard was constructed (see section 3).
The differences between the numbers for GO and
GO Slim are similar to those observed for the IC
Gold Standard, but smaller in magnitude.

5.2 Information Retrieval Results

Table 2 gives the performance figures for the IR
approach described in section 4.2 on both the SGD
and IC gold standard test sets. Four versions of
GO documents, i.e., GO Slim, GO and their hi-
erarchical variants, were used and the table shows
the performance figures for the top 1, 5, 10, 20 and
50 GO documents are retrieved for each version.
From the table we can see that in general the IR
approach performs better on the IC test set than on
the SGD test set, due to the relative completeness
of the IC gold standard. However, the performance
increase is not as significant as with the other two
methods described in this paper. This may result



Gold Standard Classifier GO Version R P F Notes
SGD Abstracts Naive Bayes: words + phrases GO Slim 15.8 54.6 24.5 1
SGD Abstracts Naive Bayes: words GO Slim 17.8 61.7 27.6 1
SGD Abstracts Naive Bayes: phrases GO Slim 16.6 57.3 25.7 1
SGD Abstracts Oracle Text decision tree GO Slim 36.8 51.6 43.0 2
SGD Abstracts Oracle Text SVM GO Slim 17.5 53.4 26.4 2
SGD Abstracts Rainbow GO Slim 25.8 55.8 35.3 3
IC Abstracts Naive Bayes: words + phrases GO Slim 10.4 73.6 18.2 1
IC Abstracts Naive Bayes: words GO Slim 11.6 81.7 20.3 1
IC Abstracts Naive Bayes: phrases GO Slim 10.7 75.7 18.7 1
IC Abstracts Oracle Text decision tree GO Slim 76.5 83.0 79.6 2

Notes: 1. Classifier can only predict one GO term per abstract.
2. Classifier can predict more than one GO term per abstract.
3. Classification confidence parameter has been optimised.

Table 3: GO tagging results using a machine learning approach

from how IC gold standard is generated, which
favours the Termino approach. On the other hand,
returning 5 GO documents on the SGD test set and
returning 10 on the IC set produces relatively good
results. Returning too many documents negatively
affects precision more than it positively affects re-
call, yielding an overall decrease in F measure. Fi-
nally, we note that the hierarchical variants of GO
documents perform slightly worse than their “flat”
counterparts, this may be because general terms
introduced with the inclusion of the parent nodes
produce too much noise.

5.3 Machine Learning Results

The results for the machine learning approach are
shown in Table 3. Comparing the performance of
the different classification systems, it can be seen
that the DiscoveryNet Naive Bayes implementa-
tion performed poorly in terms of recall. This had
already been predicted due to the fact that the clas-
sifier can only assign one GO term per abstract
whereas the two gold standards have on average
2.1 and 6.6 terms per abstract respectively. For
both data sets the decision tree classification algo-
rithm in Oracle Text performed best.

Comparing the ML approach to the other meth-
ods, it can be seen that for the SGD gold standard
ML has lower recall but higher precision. The
lower recall is perhaps an indication that many of
the GO terms assigned to a paper in the SGD gold
standard are in fact directly mentioned in the text
and so can best be identified using a lookup ap-
proach. The higher precision is expected due to
the learn-by-example nature of ML; a GO term
will not be assigned to a paper, although it may
be directly mentioned in the text, if that GO term
does not appear in the data set used to train the

classifier.
Although the lexical lookup approach still out-

performs the ML approach when using the IC gold
standard, the ML approach does show, maybe sur-
prisingly, a significant improvement in recall. This
is probably an artefact of the classification algo-
rithm using individual words as the document fea-
tures: if a GO term is directly mentioned in the
document text (as is the case in the IC gold stan-
dard), the classifier can learn to strongly correlate
the word in the text and the GO term to which the
word refers.

6 Conclusions and Future Work

In this paper we have reported on the implementa-
tion and evaluation of three simple techniques for
assigning GO terms to biomedical abstracts: lexi-
cal lookup, IR-type text matching, and text classi-
fication based on Machine Learning. GO tagging
is an interesting task, both in terms of the text min-
ing challenges it provides, as well as the benefits
a working GO tagger can offer to biological scien-
tists and model organism database curators.

Creating a complete and valid Gold Standard
from existing resources such as SGD – an issue not
addressed by others working on the GO tagging
task to date – proved to be more difficult than ex-
pected. Despite our imperfect Gold Standards, the
results we present in this paper do provide some
useful insights into the respective strengths and
weaknesses of the techniques we used for GO tag-
ging. The lexical lookup approach is simple and
fast, but fails when it comes to recognising vari-
ants of terms. Casting GO tagging as an IR prob-
lem provides a novel perspective, but treating texts
as a bag of words may be too coarse: the discrimi-
natory effect of specific GO terms occurring in GO



documents is eclipsed by the occurrence of general
terms in these documents, either on their own or as
part of a larger GO term. For example terms such
as cell and protein occur far more frequently than
specific terms. Similarly, the existence of generic
terms in the text and the morphological variations
of other terms affects the performance of the ML
approaches. Currently, these have been applied
without the application of any feature selection or
evaluation methods.

Future work will unfold along various lines.
First, further effort must go into improving each of
the three simple approaches to GO tagging. A pos-
sible improvement to the lexical lookup method is
to extend the lookup dictionary with terms that are
tightly correlated with GO terms. This would be
a simple solution to the “term variant” problem.
The IR approach could benefit from restricting in-
dices to just noun phrases or (multi-word) terms.
Furthermore, the GO document representing a GO
term could be augmented with the PubMed ab-
stracts marked with that GO term in one or more
model organism databases. Similarly, the ML ap-
proaches could directly benefit from the appli-
cation of both statistical methods and/or the use
of domain-specific lexicons for selecting which
terms should be used in the feature lists used by
a classifier. We are also currently experimenting
with various hybrid approaches that can leverage
the benefits of each individual approach. The GO
terms (and additional biomedical terms such as
gene names and MeSH terms) extracted by Ter-
mino can be used as features to be fed into the
machine learning algorithms. It is expected that
using Termino to select and supply a set of feature
vectors will both speed up and enhance the classi-
fication procedure of the machine learning system.

Secondly, the development of a valid Gold Stan-
dard and the use of improved evaluation measures
are of critical importance. Our current evaluation
measure is based on exact match of GO terms.
However, exact match is not the most appropri-
ate criterion for a categorisation task where the la-
bels are drawn from a hierarchically organised set,
such as GO. Regarding the creation of a valid Gold
Standard, it appears that manual annotation or
manual editing of existing resources is inevitable.

Less than perfect text mining results do not nec-
essarily preclude useful and effective end-user ap-
plications. For example, to allow users to access
and navigate document collections annotated by

our GO tagger, we have built a graphical user in-
terface. This provides a tree representation of the
GO hierarchy to help the user to zoom in on GO
terms of interest. Clicking on a GO term in the
tree will display the abstracts that have been as-
signed that term and the GO terms occurring in
the text are highlighted. Such applications need to
be evaluated through end-user trials.
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