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Abstract. Despite the rapid development in web services technologies,
there has been little study on the public web services from network anal-
ysis perspective. To address this, in this paper, we have performed a
topological study on various web service networks using real-world data
sets. We first propose a flexible framework by which we can study seman-
tic web services network “matchmaking” in a unified manner. Under the
matching framework, then, we have conducted extensive experiments to
study the characteristics of various web services networks. By and large,
publicly available web services networks exhibit the typical character-
istics of small world networks well and power law like distributions to
some extent.

1 Introduction

The recent realization—the core web services specifications of WSDL [7], SOAP [17],
and UDDI [8] are not sufficient to realize the goal of the Semantic Web—has de-
veloped a plethora of new means such as OWL [9], OWL–S [14], WSDL–S [16],
and WSML [5] to annotate rich semantics to web services (ontology) so that
truly automatic data exchange on the web is possible. Therefore, it is expected
that, in the near future, service vendors will publish their offerings as “semantic
web services” — semantically enriched web services.

However, in practice, there has been little study as to how useful current
public web services are. In particular, since web services that are specified in
WSDL and published in UDDI form a network, one can use network analysis
methods to study the characteristics of the web services network. In general, the
topological structure of a network affects the processes and behaviors occurring
in the network. For instance, the topology of a social acquaintance network
may affect the spread rate of gossip or disease. Similarly, the topology of the
Internet is known to be correlated with the robustness of communication therein.
Accordingly, understanding the structural properties of networks often help gain
better insights and develop better algorithms. Therefore, in this paper, we aim
at studying the web services network using network analysis techniques.
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The focus of our study is on the web services specified in WSDL since cur-
rently there are not enough “semantic web services” specified in OWL–S or
WSDL–S yet.Nevertheless, our matchmaking between web services is beyond
syntactic matchmaking. By incorporating flexible matchmaking framework, we
study the effect of semantic web services over real-world web services in WSDL.
Our contributions of this paper are as follows:

– We propose a flexible web services matchmaking framework that allows to
incorporate different “matching” in a unified manner. By using different
matching functions, the framework can cover from exact to approximate to
semantic matching.

– We propose three dimensions of granularity to form web services networks
from parameter to operation to web services. By looking into web services
network using different glasses, we can understand the characteristics of the
network better.

– We have conducted extensive experimentation under the proposed frame-
work, and applied network analysis techniques to study the distribution,
average distance, diameter, and clustering coefficient of the network.

1.1 Background

For the efficient exposition of the paper, in this section, we present a simplified
abstraction of web services specified in WSDL.

A web service in a WSDL file can be viewed as a collection of operations,
each of which in turn consists of input and output parameters. When an opera-
tion op has input parameters IN = {p1, ..., pn} and output parameters OUT =
{q1, ..., qm}, we denote the operation by op(IN ,OUT ). Furthermore, each pa-
rameter is a pair of (name, type). We denote the name and type of a parameter
p by p.name and p.type, respectively. The WSDL specification lists four types
of operations [7]: (1) one-way : the operation can receive a message but will not
return a response; (2) request-response: the operation can receive a request and
will return a response; (3) solicit-response: the operation can send a request and
will wait for a response; and (4) notification: the operation can send a message
but will not wait for a response. In order to decide if an operation op1 can invoke
an operation op2, one needs to check if the types of op1 and op2 are compatible
or not. Since this can be done trivially, from here forward, we assume that types
of operations are all compatible, and focus on other issues instead.

For instance, consider the following web service w:

<message name=’findRestaurant_Request’>

<part name=’zip’ type=’xs:integer’>

<part name=’foodPref’ type=’xs:string’>

</message>

<message name=’findRestaurant_Response’>

<part name=’name’ type=’xs:string’>

<part name=’phone’ type=’xs:integer’>

</message>



<portType name="allRestaurant">

<operation name="findRestaurant">

<input message="findRestaurant_Request"/>

<output message="findRestaurant_Response"/>

</operation>

</portType>

The web service, w, is a request-response type, and consists of a single opera-
tion, findRestaurant, that takes two input parameters, p1=(zip, integer) and
p2=(foodPref, string), and returns two output parameters, q1=(name, string)
and q2=(phone, integer). Therefore, a client program wishing to get the name
and phone number of a restaurant may invoke findRestaurant(16801,“Thai”)
to w.

1.2 Related Work

Many empirical networks are well modeled by complex networks including the
scale-free and small-world networks. The small-world networks are generated by
the classical Watts-Strogatz network model [23]. Albert, Barabasi and Jeong [1]
have proposed a set of different models for generating scale-free networks, based
on the growing process of the Internet and other empirical complex networks.
Denning [10] surveyed various network laws with a focus on the power law dis-
tribution and the scale-free networks. In this paper, we apply the developed
techniques to examine the semantic web services networks.

The problem of matching descriptions of two services is related with the
classical problem of the schema matching in Database. For instance, [20] presents
an array of latest techniques on the schema matching, and some of them could be
used in our study. Note that we do not propose a particular matchmaking method
in this paper. Instead, we advocate a flexible framework that can accommodate
a plethora of matchmaking schemes in a unified manner. Then, based on the
framework, we studied various topological properties of web services network.
Due to the availability, for instance, we happen to use Cosine and WordNet based
matching schemes. However, it is also possible to incorporate the aforementioned
matching approaches such as [24, 22] or schema matching techniques in [20] in
our framework.

Current web service matchmaking solutions are based on the keyword match-
ing supported by the category-browsing of UDDI. However, the keyword-based
matching ignores the real functions of web services. To address this limita-
tion, researchers have developed a set of methods which assess the similarity
of web services to achieve matchmaking. Wu [24] suggested a matchmaking pro-
cess based on a lightweight semantic comparison of signature specifications in
WSDL by means of several assessment methods. Wang and Stroulia [22] as-
sessed the similarity of the requirement description of the desired service with
the available services via the semantic information-retrieval (IR) method and
a structure-matching approach. Maedche and Staab [13] provide multiple-phase
cross-evaluation to assess the similarity between two different ontology. An excel-
lent survey of modern matchmaking algorithms and their applications to the web



service matching field is available in [24]. Finally, some of the recent ontology-
based service matchmaking works such as [2, 15, 3] are relevant to our research
too. We leave the extension of our framework to accommodate those recent de-
velopments as future work.

2 The Matchmaking Framework

In this Section, we formalize the notion of matchmaking on web services.

2.1 Flexible Matching

Network consists of nodes and edges. In our framework, different entities can
be used as nodes and edges in a unified manner. First, as nodes, we consider
three kinds – parameters, operations, and web services – from finer to coarser
granularity. Second, as edges, we use the notion of parameter matching and
operation invocation.

When the meanings of two parameters, p1 and p2, are interchangeable, in
general, two parameters are said to be matching each other. The simplest way
to check this is if two parameters have the same name and type: (p1.name =
p2.name) ∧ (p1.type = p2.type). Since web services are designed and created
in isolation, however, this naive matching is often too rigid and thus misses
cases like p1=(“password”, string) and p2=(“passwd”, string). On the other
hand, if web services are annotated with rich semantics (e.g., using RDF [4] or
WSDL-S [16]), then the so-called “semantic” matching can be easily reasoned
out. However, in practice, majority of public web services do not have annotated
semantics yet.

In order to cover all the spectrum of matching, therefore, we propose a generic
boolean function, match(p1, p2), that determines if two parameters p1 and p2

are matching or not. Formally,

Definition 1 (type-match) A boolean function, type-match(p1.type, p2.type),
returns True if: (1) p1.type = p2.type, or (2) p1.type is derived from p2.type in
a type hierarchy. 2

Definition 2 (name-match) A boolean function, name-match(p1.name, p2.name,
D, θ), returns True if the distance between p1.name and p2.name by a distance
metric D is below the given threshold θ: i.e., D(p1.name, p2.name) ≤ θ. 2

For instance, name-match(“password”, “passwd”, =, 1) represents the ex-
act matching, and would return False since “password” 6= “passwd”1. Sim-
ilarly, by using string matching functions such as Edit distance [25] or co-
sine metric, one can express the approximate name matching. For instance,
name-match(“password”, “passwd”, edit-distance, 3) would return True since
two names of parameters have the edit distance of 2 (< 3). In the experimenta-
tion, we use three metric functions: = (i.e., literal equality), cosine distance with
1 For the exact matching, the threshold value other than 1 is not useful.



TF/IDF weights [21], and WordNet [12] based semantic distance. However, note
that it is also possible to incorporate the aforementioned matching approaches
such as [22] and [24] in our framework, if the implementation is available. Based
on two boolean functions, now, we define a generic parameter match function as
follows:

Definition 3 (match) A boolean function, match(p1, p2, D, θ), returns True if:
(1) name-match(p1.name, p2.name, D, θ) = True, and (2) type-match(p1.type,
p2.type) = True. 2

Definition 4 (Parameter Matching) When a boolean function, match(p1,
p2, D, θ), returns True, it is said that a parameter p1 matches a parameter
p2 (i.e., p1 can be used in the place of p2), and written as “p1 ∼ p2”. 2

In order to invoke an operation op1 with input parameters IN={p1, ..., pn},
one may need to provide values for all required (i.e., mandatory) input param-
eters. When one can provide all required input parameters, op1 is said “fully
invocable”. When one can provide at least one required input parameter, op1

is said “partially invocable”, so partially invocable operations includes a set of
fully invocable operations. For instance, Google API has a search operation with
several input parameters, but only part of them are mandatory. Similarly, con-
sider a client program wishing to invoke an operation op1 first and then have
op1 invoke another operation op2 directly (i.e., a case of web services composi-
tion). In this case, if the output parameters of op1 can satisfy all required input
parameters of op2, then op1 “fully” invokes op2, and if there exists any output
parameter of op1 satisfying any input parameter of op2, then op1 “partially”
invokes op2. Formally,

Definition 5 (Operation Invocation) For two operations, op1(IN 1,OUT 1)
and op2(IN 2,OUT 2),

– op1 fully invokes op2, denoted by “op1 � op2”, if for every mandatory input
parameter p ∈ IN 2, there exists an output parameter q ∈ OUT 1 such that
q ∼ p.

– op1 partially invokes op2, denoted by “op1 99K op2”, if there exists a manda-
tory input parameter p ∈ IN 2 and an output parameter q ∈ OUT 1 such
that q ∼ p.

We denote each invocation by full- and partial-invocation, respectively. 2

2.2 Web Service Network Model

In this Section, using the notions of nodes and edges defined in Section 2.1, we
propose a flexible web service network model as follows.

Definition 6 (Web Service Network Model) A web service network is gen-
erated by a 4-tuple model M=(T , D, θ, I), where:



Fig. 1. Web service networks: (a) WSDLs, (b) Conceptual web service network, (c)
Web service networks from diverse models, (d) Parameter node network, Mp, (e) Fully
invocable operation node network, Mf

op, (f) Partially invocable operation node net-
work, Mp

op, and (g) Web service node network, Mws

– T is the type of node and can be either p for parameter, op for operation,
or ws for web service

– D (and θ resp.) is the distance metric to be used in parameter matching
(and its threshold resp.)

– I is the type of operation invocation and can be either FI for full invocation
or PI for partial invocation 2

Example 1. A model M1=(op, cosine, 0.75, FI) generates an operation node
network where parameter matching is done using cosine metric with a threshold
0.75. Furthermore, an edge from an operation op1 to op2 is added only when
op1 � op2. 2

Example 2. A model M2=(ws, word-net, 0.9, PI) generates a web service node
network where intra-parameter matching is done using WordNet based semantic
distance metric with a threshold 0.9. Furthermore, an edge from a web service
ws1 to ws2 is added if op1 99K op2 for op1 (∈ ws1) and op2 (∈ ws2) – that is,
partial invocation among operations. 2

Consider Figure 1 as an example. Here, a web service network is formed by a
set of web services, each of which consists of a set of operations. An operation is
invoked with a set of input parameters and produces a set of output parameters.



There are three kinds of nodes representing web services (e.g., ws1 and ws2),
operations (e.g., op11, op12 and op21) or parameters (e.g., p1, · · · , p7). Each web
service node containing a set of operation nodes is connected to parameter nodes
with “directed” edges. These edges show the flow of the parameters as inputs or
outputs of operations. An edge from a parameter node p to an operation node
op indicates that the parameter p is used as one of inputs of the operation op.
On the other hand, an edge from an operation node op to a parameter node
p indicates that the operation op produces the parameter p as an output. For
example, p1 is one of inputs of op11 in ws1. Similarly, p5 is not only an output
of op12 but also an input of op21 in ws2.

In order to study subtle difference among node types, one can project out
the aforementioned web service network into three kinds as follows:

– A parameter node network , i.e., Mp=(p, D, θ, I), consists of parameter
nodes and edges representing operations that has the source node as an
input parameter and the target node as an output parameter. For instance,
if op1(IN 1,OUT 1) exists, then we create edges from each parameter p of
IN 1 to every output parameter q of OUT 1. When approximate matching
or semantic matching is used for intra-parameter matching, each node in
Mp is in fact a set of similar nodes. That is, suppose there is an edge from
p1(password, string) to p3(firstName, string) in Mp. This indicates that one
can retrieve “firstName” information by providing “password” information.
Now, if an approximate matching method (e.g., edit distance) or semantic
matching method determines that a parameter p1(password, string) matches
a parameter p2(passwd, string), then p2.name is merged with p1.name to
form an edge: {password, passwd} → firstName. That is, the source node is
a set of two nodes.

– An operation node network , i.e., Mop=(op, D, θ, I), consists of nodes rep-
resenting operations and edges representing the invocation in-between. That
is, if an operation op1 can (either partially or fully based on I) invoke an
operation op2, there is an edge op1 → op2 in Mop.

– A web service node network , i.e., Mws=(ws, D, θ, I), consists of all web
service nodes and directed edges representing the existence of invocable op-
erations between web services.

The Figure 1(d) describes a parameter node network Mp based on Fig-
ure 1(b). For instance, p1 can be transformed to p2 by op11. For operation node
example, op21 can be invoked with two input parameters both of which are pro-
duced by op12 in Figure 1(c). Therefore, there exists an edge op12 → op21 in both
operation node networks (Figure 1(e) and Figure 1(f)). On the other hand, p3,
one of outputs of op11, is used as one of input of op12. However, op12 requires
another input parameter data p4 not produced by op11. In the partial invoca-
tion mode, therefore, an edge op11 → op12 is added. On the contrary, in the full
invocation mode, no edge is added. Note that in the example of Figure 1, we
get the same web service node network whether we use partial or full invocation
mode. However, in general, different networks will be formed depending on the
choice of invocation mode.
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Fig. 2. Overview of pre-processing.
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Fig. 3. Two compatible types with different structures.

3 Topological Landscape

3.1 Set-Up

The pre-processing for the experimentation consisted of five steps:

1. Data Gathering : A total of 2,100 real-world WSDL files were gathered from
two sources. First, 1,554 files were taken from Fan et al. [11] who downloaded
the files from public repositories such as XMethods.org or BindingPoint.com.
Second, out of top-1000 ranked WSDL files from Google for the query string
“wsdl filetype:wsdl”, 546 were downloaded using Google API (the rest
were un-downloadable).

2. WSDL Validation: According to WSDL standard, 740 invalid WSDL files
were removed, and 1,360 files are left out.

3. WSDL De-duplication: 376 duplicate WSDL files at operation level were
removed, yielding 984 valid WSDL files.

4. Type Flattening : In matching parameters, we use both name and type of pa-
rameters. However, since WSDL files are designed by different people in isola-
tion, using only atomic types of XML Schema can be too rigid. For instance,
consider two parameters: p1(address, addressType1) and p2(MyAddress,
addressType2) of Figure 3. Although names of two parameters are simi-
lar, their types are user-defined and different. However, two types are in
fact “compatible”. Therefore, if we flatten two types into p1.type={integer
zipcode, string street, string city, string state} and p2.type={string
street, string city, string state, integer zipcode}, then two parameters
can be matched. We call this process as type flattening2. After type flat-
tening, then each atomic type and name are compared using type hierarchy
of XML Schema and flexible matching scheme (e.g., exact or approximate),
respectively. The resulting statistics of type flattening is shown in Table 1.

2 Alternative to our type flattening is to use more expensive metric such as tree edit
distance. For its simplicity, we used type flattening in this paper.



Table 1. Type distribution.

Before Flattening After Flattening
Type

input(num) output(num) input(num) output(num)

anyType 6.79% (7) 9.03% (5) 0.2% (35) 0.2% (51)

simpleType 65.52% (6,751) 32.37% (1,792) 92.43% (19,809) 90.63% (22,946)
string 53.75% (5,538) 22.00% (1,218) 65.06% (13,943) 54.74% (13,859)
number 7.79% (803) 7.12% (394) 17.69% (3,791) 22.89% (5,796)

time 0.90% (93) 0.22% (12) 1.85% (396) 2.93%(743)
boolean 3.74% (385) 2.46%(136) 7.16% (1,535) 9.14% (2,314)

complexType 34.41% (3,545) 67.54% (3,739) 7.41% (1,588) 9.16% (2,320)

Total Number 10,303 5,536 21,432 25,317

5. Data Cleaning : The final step is cleaning data to improve the quality of
parameters. For instance, substantial number of output parameters (16%)
were named “return”, “result”, or “response” which is too ambiguous for
clients. However, often, their more precise underline meaning can be derived
from contexts. For instance, if the output parameter named “result” belongs
to the operation named “getAddress”, then the “result” is in fact “Address”.
In addition, often, naming follows apparent pattern such as getFooFromBar
or searchFooByBar. Therefore, to replace names of parameters or operations
by more meaningful ones, we removed spam tokens like “get” or “by” as much
as we could.

For flexible matching, we used: (1) Exact Matching ; (2) Cosine Distance. For
instance, when we compare two parameters p1(“BirthDay”, string) and p2(“B-
day”, string), names are segmented to a set of tokens with TF/IDF weights like
p1({Birth, Day}, string) and p2({B, Day}, string). Then, by converting both
sets into vectors of v and w, their distance is measured as cos(θ) = v·w

‖v‖·‖w‖ ;
(3) WordNet-based Distance. Since WordNet is a network of English words la-
beled with semantic classes (e.g., synonyms), it carries various semantic relations
among words. People have proposed various ways to measure the “semantic dis-
tance” of two words in WordNet [6]. We use the one by Lin [12] that scales the
information content of the least common subsumer by the sum of the information
content of two vocabularies. Both cosine and WordNet metrics used threshold to
determine the matchmaking (i.e., if the calculated distance is above threshold,
new edge is added into the network).

At the end, we have generated a total of 25 (= 5 network types × 5 distance
metrics) web services networks: (1) three kinds of networks – Mp, Mf

op, and
Mf

ws, and two of their counterparts of “partial invocation” – Mp
op and Mp

ws;
(2) five distance variations – Exact, Cosine (0.75), Cosine (0.95), WordNet(0.75),
and WordNet(0.95).



Table 2. Small world properties of giant components in public web services.

Matching Scheme Network Lactual Lrandom Cactual Crandom

Mp 4.31852 3.42441 0.2229 0.0021
Exact Mp

op 2.8590 1.9830 0.3056 0.0362

matching Mf
op 3.7605 2.5628 0.2147 0.0180

Mp
ws 2.2710 1.9222 0.4809 0.0874

Mf
ws 2.9659 2.4250 0.2610 0.0405

Mp 4.1760 3.4442 0.2324 0.0022
Cosine Mp

op 2.8651 1.9881 0.3125 0.0340

(0.95) Mf
op 3.7538 2.5787 0.2001 0.0173

Mp
ws 2.2847 1.9254 0.4925 0.0833

Mf
ws 3.0046 2.4803 0.2499 0.0359

Mp 4.1981 3.4730 0.2397 0.0020
Cosine Mp

op 2.8671 1.9925 0.3190 0.0326

(0.75) Mf
op 3.7392 2.5910 0.1990 0.0172

Mp
ws 2.2923 1.9307 0.4822 0.0801

Mf
ws 2.9990 2.4394 0.2392 0.0375

Mp 3.6088 3.3282 0.2612 0.0027
WordNet Mp

op 2.4234 1.9425 0.3251 0.0574

(0.95) Mf
op 3.4165 2.4440 0.1493 0.0190

Mp
ws 2.1222 1.8865 0.5290 0.1138

Mf
ws 2.6215 2.1839 0.2527 0.0510

Mp 3.2656 3.3665 0.3118 0.0030
WordNet Mp

op 2.0546 1.8743 0.4818 0.1256

(0.75) Mf
op 2.6506 1.9657 0.1842 0.0429

Mp
ws 1.8484 1.7790 0.6697 0.2214

Mf
ws 2.2226 1.9023 0.3487 0.0993

3.2 Small World

First, we examine if web services network exhibit small world properties. In
general, networks or graphs are called small world networks if they show the
properties of both random and regular networks.

Definition 7 (Random Network) G(N,p) is a random network of N nodes,
if each pair of nodes is connected with the probability p. As a result, edges are
randomly placed among a fixed set of nodes. 2

Definition 1 (Regular Network). Rg(N,k) is defined as the regular network
on N nodes, if node i is adjacent to nodes [(i + j) mod N ] and [(i− j) mod N ]
for 1 ≤ j ≤ k, where k is the number of valid edge of each node. If k = N − 1,
R(N,k) becomes the complete N -nodes graph, where every node is adjacent to all
the other N − 1 nodes. None

Random networks are characterized by their short average distances among
reachable nodes. On the other hand, in regular networks, each node has highly
clustered neighbor nodes, such that the connectivity between neighboring nodes



are very high. Consequently, small world networks show both (1) highly clustered
structure and (2) small shortest distance.

– L: The average shortest distance (i.e., number of hops) between reachable
pairs of vertices. L(p) is the L of Watts-Strogatz graph [23] with probability
p. Lrandom is identical to L(1).

– C: The average clustering coefficient. For a node i with vi neighboring nodes,

Ci =
2Ei

vi(vi − 1)
, where Ei is the number of edges between vi neighbors of

i. C is the average clustering coefficient Ci for a network. Again, C(p) is
defined as C of the Watts-Strogatz graph with the probability p. Crandom is
identical to C(1).

– IndexSN : The small world network index is defined as:

IndexSN =
|Cactual − Crandom|
|Lactual − Lrandom|

(1)

where Cactual and Lactual represent C and L of the measured network, re-
spectively, and both Crandom and Lrandom represent C and L of the random
graph with the same number of nodes and average number of edges per node
as the measured network.

If a network has the small world properties, then its L and C shows: C �
Crandom and L & Lrandom. Therefore, the more distinct the small world prop-
erties of a network are, the bigger IndexSN of the network becomes.

Table 2 shows the average shortest path, L and clustering coefficient, C for
giant components extracted from each of the 25 web service networks, compared
to random graphs with the same number of nodes and average number of edges
per node. Note that we treat all edges of each network as undirected and un-
weighted3. It is interesting that all web services networks are the small world
network by showing L & Lrandom and C � Crandom. This suggests that the real
web services have short-cuts that connect nodes of networks. Otherwise, nodes
of networks would be much farther apart than Lrandom.

There are distinct changes between different matching schemes in terms of
the small world properties. For example, in the parameter node network Mp,
L(=3.2656) of the WordNet(0.75) is much smaller than L(=4.318) of the ex-
act matching, while C(=0.3118) of the WordNet(0.75) is much bigger than
C(=0.222) of the exact matching. For better understanding, Figure 4 illustrates
the changes of IndexSN for different matching schemes. Recall that IndexSN

tends to increase as C increases or L decreases. In the Figure, we can see that
the usage of semantic matching scheme, WordNet(0.75) generates more distinct
small world properties than the exact and cosine distance matching schemes.
In the case of Mp with the WordNet(0.75) matching applied, IndexSN is ten

3 This crude approximation is often acceptable since our goal is to study the network
topology, not the flow of materials on edges (e.g., information, electricity). Similar
assumption was made by Watts and Strogatz in [23]. In Section 3.3, directed network
cases are analyzed further.



 0.1

 1

 10

WordNet 0.75WordNet 0.95Cosine 0.75Cosine 0.95Exact

In
de

x S
N

D: matching scheme

Mp
Mopp

Mopf

Mwsp

Mwsf

Fig. 4. IndexSN changes.

times bigger than that of the exact matching case. This result suggests that the
semantic matching scheme makes the network more dense with the increased
number of edges, so that L decreases while C increases. From the web service
composition perspective, this result suggests that semantic matching scheme can
facilitate more productive and effective service compositions than when only ex-
act syntactic matching is used.

3.3 Power Laws

A power law distribution often occurs in complex systems where a majority of
nodes have very few connections, while a few nodes have a high degrees. The
existence of power law distribution has been observed in many real and artificial
networks such as power grid, WWW, or collaboration network, and believed
to be one of signs of mature and robust networks [10, 19]. In this section, we
examine if semantic web services network follows power law distribution or not.

First, we examine how complex web services are in general. One way to mea-
sure the complexity of web services is to measure how many operations (param-
eters resp.) are involved in each web service (operation resp.) [11]. These results
are shown in Figure 5, fitted to a power-law function y = Cx−α (in log-log plot).
They show near4 power law distribution with the exponent of 1.49 and 1.27,
respectively. In Figure 5(a), 37% of the web services have just one operations
and 71% of the web services have less than 5 operations. On the other hand,
the largest web services have over 110 operations. Similarly, in Figure 5(b), 181
operations (among 5,180 operations) have less than two input/output parame-
ters. In addition, 194 operations have no input parameter and 255 operations
have no output parameter. However, the whole distribution also shows a power
law like property. After type flattening, around 65% of operations have less than

4 A recent study [18] reported that most of real-world power law distributions exhib-
ited an exponent of 2 ≤ α ≤ 3.
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Fig. 5. The complexity of web services and operations.
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6 parameters while the maximum number of the parameters in an operation is
360.

Second, we examine the popularity of parameter names – some parameter
names occur more often than others. X-axis is the frequency of parameter names
while Y-axis is the number of samples. That is, a coordinate (10, 100) indicates
that there are 100 number of parameter names that occur 10 times. Again, all
of them show near power law distributions. From these distributions, we can
observe a very small number of popular “hub” parameter names. For instance,
a parameter p1 (“name”, string) appears most frequently in our collection. In
addition, as the matching method gets more flexible (from left to right in Figure
6), more parameters get to match each other. Since the matched parameters are
considered as a single parameter, the number of distinct parameters gets smaller
but the frequency of parameter names gets bigger. For example, while p1 appears
490 times in Exact matching with 11,301 distinct parameter names, p1 appears
3,278 times in WordNet (0.75) matching with 7,042 distinct parameter names,
where similar parameters like p2(“name”, string) or p3(“identification”, string)



Exact Matching Cosine (0.75) WordNet (0.75)

Mp
 0.1

 1

 10

 100

 1000

 1  10  100  1000
 0.1

 1

 10

 100

 1000

 1  10  100  1000
 0.1

 1

 10

 100

 1000

 1  10  100  1000

(a) α=1.15 (b) α=1.19 (c) α=1.04

Mf
op

 0.1

 1

 10

 100

 1000

 1  10  100  1000
 0.1

 1

 10

 100

 1000

 1  10  100  1000
 0.1

 1

 10

 100

 1000

 1  10  100  1000

(d) α=1.18 (e) α=1.22 (f) α=0.64

Mf
ws

 0.1

 1

 10

 100

 1000

 1  10  100  1000
 0.1

 1

 10

 100

 1000

 1  10  100  1000
 0.1

 1

 10

 100

 1000

 1  10  100  1000

(g) α=1.25 (h) α=1.24 (i) α=0.68

Fig. 7. Out-degree distribution of three web service networks (rows) of three matching
schemes (columns). X-axis is out-degree, and Y-axis of the first, second, and third rows
is the number of parameter, operation, and web service nodes, respectively.

are considered to be a “match” and consolidated. Therefore, Figure 6(c) has the
the smallest α and the largest tail among three.

In Figure 7, next, we examine the out-degree distributions of three web service
networks of three matching schemes. Unlike previous figures, by and large, out-
degree distributions no longer follow power law distributions well (although we
still fit them with power law functions). Nevertheless, it is evident to see the
existence of hub parameters, operations, or web services with huge number of
out-degrees while majority has only a few. In the parameter node networks ofMp

(first row of Figure 7), due to flexible matching, the number of nodes decrease
from left to right: 11,301 for Exact matching, 10,568 for Cosine (0.75), and 7,042
for WordNet (0.75). However, even though Figure 7(c) has the smallest number
of nodes of 7,042, it has the largest number of edges and biggest out-degree.
For example, a parameter node including (“name”, string) has 317 out-degrees
(to 2.7% of nodes) in Exact matching, 306 out-degrees (to 2.9% of nodes) in



Consine (0.75), and 1,378 out-degrees (to 19.57% of nodes) in WordNet (0.75).
The distributions between Figure 7(a) and Figure 7(b) show little difference with
respect to the number of nodes.

Unlike parameter node networks of Mp, all operation node networks of Mf
op

(second row of Figure 7) have 5,180 fixed operation nodes, but, from left to right,
the total number of edges becomes bigger from 22,253 to 25,174 to 184,429. The
fact that approximate matching scheme such as Cosine or semantic matching
scheme such as WordNet have more out-degrees indicates that information can
flow more flexibly among web services operations through many edges. In the
last row of Figure 7, the web services node networks of Mf

ws also have a fixed
number of 984 nodes, and out-degree increases from left to right. While some
edges in operation node networks include intra-connections within the same web
service, the edges of Mf

ws are amount to pure inter-connection among different
web services. Consequently, more cooperation with different web services can be
expected as we have more flexible semantic matching. Since one can invoke more
number of operations, in general, it gets easier to combine and compose multiple
web services [19].

Finally, we also examined the difference between partial vs. full invocation in
invoking operations. Due to space constraint, we do not present the results. The
finding is consistent with previous cases in that partial invocation based network
gets more edges for its more flexible matching that full invocation based one.

4 Conclusion

In this paper, we have studied the topology of web services network using real-
world data sets. To find out topological properties of the networks, we performed
extensive experiments on various node networks under a flexible matchmaking
framework that covers exact, approximate, and semantic matching. According
to our experiments, we have learned that: (1) Public web service networks show
small world network property well and follow a power law like distribution pat-
tern to some degree. However they do not fully show the maturity seen in other
complex networks yet; and (2) Semantic matching among web services generates
networks with higher degrees than exact or approximate matching does. This
suggests that more flexible web services composition can be achieved with the
increased semantics in web services matchmaking.
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