

Proceedings of the

1st International Workshop on
Semantic Matchmaking and Resource Retrieval

SMR 2006

September 11, 2006

Co-located with 32nd International Conference on Very Large Data Bases
(VLDB 2006)

The Convention and Exhibition Center (COEX)

Seoul, Korea

Edited by
Tommaso Di Noia, Eugenio Di Sciascio and Francesco M. Donini

Preface

Matchmaking is basically the process of discovering, based on a given request,
promising partners for some kind of purpose. It is a process common to several
scenarios in the Internet era, spanning from e-commerce to web-services, to grid
computing, to human resource management, to actual dating services, to Peer-
to-Peer computing. Both requests and partner descriptions are usually, but not
always, given some kind of structure. When such a structure refers to a shared
ontology, semantic-based matchmaking can be obtained. Obviously, main issues
emerge when the search is not limited to identity matches but, as in real life,
when the objective is finding partners suitable at least to some extent, or – when
a single partner cannot fulfill the request – find a pool of cooperating partners
able to accomplish it. As this process may lead to various possible matches, the
notion of ranking becomes central, to provide a list of potential partners ordered
according to some criteria.

Due to the diversity of frameworks of application, matchmaking has been
studied by several communities and it has been faced under various perspectives
and techniques, including text-based information retrieval, vague query answer-
ing, planning, constraint programming, fuzzy logic, frame logic, and description
logics reasoning. Also, different definitions and terminologies have been given
to common matchmaking issues. Recently, the Semantic Web initiative has pro-
vided a spin towards logic-based approaches, which are still well far from being
a ”panacea” or a real ”silver bullet”, as several problems remain unsolved, such
as the need for shared or at least integrated schemas, and the need for inferences
smarter than standard ones. We received a broad spectrum of submissions and
we are confident that the papers that were finally selected for publication and
presentation will contribute to a better understanding of Semantic Matchmak-
ing issues and possibilities. All papers were reviewed by at least three reviewers,
either members of the Program Committee or external experts in the field.

We are grateful to all authors for their submissions, the members of the
Program Committee and the external reviewers for their time and efforts. Fi-
nally, we would like to acknowledge that all the management of the workshop
was greatly simplified by using the EasyChair conference management system
(www.easychair.org) developed by Andrei Voronkov.

Tommaso Di Noia, Eugenio Di Sciascio and Francesco M. Donini
SMR 2006 PC chairs and organizers

Workshop Organization

Programme Chairs

Tommaso Di Noia — Politecnico di Bari, SisInf Lab - Italy
Eugenio Di Sciascio — Politecnico di Bari, SisInf Lab - Italy
Francesco M. Donini — Università della Tuscia, SisInf Lab - Italy

Programme Committee

Boualem Benatallah — The University of New South Wales - Australia
Fabio Casati — HP Labs - USA
Lalana Kagal — Massachusetts Institute of Technology - USA
Mick Kerrigan — DERI - Austria
Werner Kieling — Lehrstuhl fur Informatik II, Universitat Augsburg - Germany
Matthias Klusch — DFKI - Germany
Ruben Lara — Tecnologa, Informacin y Finanzas - Spain
Alain Leger — France Telecom - France
Massimo Mecella — University of Rome ”La Sapienza” - Italy
Massimo Paolucci — DoCoMo Laboratories - Germany
Yun Peng — University of Maryland, Baltimore County - USA
Euripides Petrakis — Technical University of Crete - Greece
Axel Polleres — Universidad Rey Juan Carlos - Spain
Marta Sabou — The Open University - UK
Ulrike Sattler — University of Manchester - UK
Pavel Shvaiko — University of Trento - Italy
Robert Stevens — University of Manchester - UK

External Reviewers

Khalid Belhajjame — University of Manchester - UK
Simona Colucci — Politecnico di Bari - Italy
Alfons Huhn — Lehrstuhl fur Informatik II, Universitat Augsburg - Germany
Uwe Keller — DERI - Austria
Massimiliano de Leoni — University of Rome ”La Sapienza” - Italy
Freddy Lecue — France Telecom - France
Azzurra Ragone — Politecnico di Bari - Italy
Ruggero Russo — University of Rome ”La Sapienza” - Italy
Eufemia Tinelli — Politecnico di Bari - Italy
Evgeny Zolin — University of Manchester - UK

Contents

Keynote Talk

Industry Adoption of Semantic Web.
Guo Tong Xie 1

Regular Papers

MOD - A Multi-Ontology Discovery System.

Le Duy Ngan, Tran Minh Hang and Angela Eck Soong Goh 3

On the Topological Landscape of Web Services Matchmaking.
Hyunyoung Kil, Seog-Chan Oh and Dongwon Lee 19

SPARQL-based OWL-S Service Matchmaking
Said Mirza Pahlevi, Akiyoshi Matono and Isao Koijima 35

A flexible model forWeb service discovery.
Rubén Lara, Miguel Ángel Corella and Pablo Castells 51

Recovery of Faulty Web Applications through Service Discovery.
M.G. Fugini, E. Mussi 67

A Non-Monotonic Approach to Semantic Matchmaking and Request Refinement in E-
Marketplaces.

Tommaso Di Noia, Eugenio Di Sciascio and Francesco M. Donini 81

Short Papers

Semantic Matchmaking using Ranked Instance Retrieval.

Matthias Beck and Burkhard Freitag 97

Semantic-based Taxonomic Categorization of Web Services.
Miguel Ángel Corella and Pablo Castells 105

Helping Architects In Retrieving Architecture Documents: A Semantic Based Approach.
Rambabu Duddukuri, Prabhakar T.V 113

Keynote Talk (Abstract)

Industry Adoption of Semantic Web

Guo Tong Xie

Semantic Integration Department
IBM China Research Lab

xieguot@cn.ibm.com

Data Semantics is becoming a more and more important topic for Information
Management. Generating semantic metadata and publishing to its existing and
potential consumers are viewed as a key step to information integration and
information delivery. Further, if the semantic metadata and the data it described
are made accessible and identifiable on the Web — that is the vision of Semantic
Web — the way people and program access data will be deeply changed.

This presentation will talk about the trend of industry adoption of semantic
web, and several usage scenarios of using semantic web technologies in meta-
data management, master data management and information integration areas.
Finally, some challenges of applying semantic web technologies to real industry
solutions will be discussed.

SMR 2006 1

1st International Workshop on Semantic Matchmaking and Resource Retrieval: Issues and Perspectives

MOD - A Multi-Ontology Discovery System

Le Duy Ngan, Tran Minh Hang, and Angela Eck Soong Goh

School of Computer Engineering, Nanyang Technological University (NTU), Singapore

{ledu0001, A0261836A, ASESGOH}@ntu.edu.sg

http://www.ntu.edu.sg

Abstract. The rapid development of semantic web services has led to a demand

for a semantic web service discovery mechanism. Though such discovery

systems have been developed, there is a lack of support for matching semantic

web services which use different ontologies. This paper introduces a general

framework for the discovery of web services that use both the same ontology as

well as different ontologies and describe experiments to test the algorithm.

Contributions include a discovery algorithm and a novel concept similarity

matching algorithm to eliminate mismatches and to increase the accuracy by

using syntactic, properties, domain, and neighborhood similarity matching. The

experimental results confirm the viability of the discovery system.

1 Introduction

Web services discovery is the most important task in the web services model.

Discovery is the process of finding web services which satisfy certain requirements.

Researchers have developed discovery systems [5-8,13,16-19] to match web service

requesters against web service providers. Current discovery systems are adequate

when the web service requester and provider use the same ontology. Unfortunately,

research has not focused much on the situation where a web service requester and

provider use different ontologies. Since the web service requesters and providers

operate independently, they usually define their own ontologies to describe their

services. In the real world, a web service provider can provide an exact service to the

requester even though both services use different ontologies. Therefore, a discovery

system that supports web services using different ontologies is extremely important.

Previous work on web services discovery includes LARKS (Language for

Advertisement and Request for Knowledge Sharing) [17-19], a project based on a

collaboration between Toshiba and Carnegie Mellon University [6,7], a Matchmaker

from TU-Berlin [5], and systems by Li and Horrocks [8], Paolucci [13] etc. These

web service discovery systems only support matching web services using the same

ontology. This assumption implies that if different ontologies are used, matching

cannot be carried out. As mentioned, this is a major limitation.

Cardoso and Sheth [3] have addressed this problem. However, their method of

matching web services based on concepts, syntax, and their properties is inadequate,

and has been improved upon by Oundhakar et al [12]. The discovery technique is

based on METEOR-S [9] which is a web service discovery infrastructure. This

infrastructure provides a facility to access registries that are based on business

domains and grouped into federations. The matching is divided into syntactic and

semantic matching. In semantic matching, Oundhakar’s algorithm has improved on

Cardoso’s work by considering the coverage and the context information of concepts,

thereby improving on the matches and eliminating false matches. However, the

system does not allow users to intervene during the matching process to restrict the

matching results. This will be a significant problem since the numbers of web services

from matching result is huge. Furthermore, the system does not consider the domain

of two ontologies, from which the two concepts belong. The domain of the two

ontologies is important in the matching process.

This paper introduces a general algorithm which supports matching web services

using not only the same ontology but also different ontologies. Computing semantic

similarity between concepts from different ontologies is the core component of the

algorithm. The component will be introduced with a novel algorithm to eliminate

mismatches and improve matching by using syntactic, properties, domain, and

neighborhood concept similarity matching. The system is named Multi-

Ontology Discovery (termed MOD) system. In the discussion to follow, we assume

that the building and maintaining of the ontologies are outside the scope of the paper.

Our work is based on OWL-S [4] which is a semantic web service description

language. OWL-S uses OWL [20] ontology to describe the service. A semantic web

service defined in OWL-S includes four basic classes, namely Service, ServiceProfile,

ServiceModel, and ServiceGrounding. For matching, only ServiceProfile is used

because it contains the description about the service to be discovered. The

ServiceProfile describes three basic types of information, namely, contact

information, functional description of the service, and additional properties. The

contact information contains a textual description providing a brief description of the

service. It describes what the service offers, or what service is requested. The

functional description of the service is the most important declaration used for

matching. It specifies the parameters of the inputs, outputs, preconditions, and effects

of the service. The Profile also declares operations of the web service.

The rest of the paper is organized as follows. Section 2 introduces the MOD

matching algorithm. Section 3 presents main components which are used in MOD.

Section 4 describes experiments and results, followed by the conclusions in section 5.

2 MOD Algorithm

The matching algorithm is divided into four stages namely input, output, operation

and user-defined matching. The four-stage set up is similar to TUB [5] but MOD

supports matching web services using different ontologies.

2.1 Definition of Semantic Similarity

In order to introduce concept similarity, we define similarity distances. The definition

is based on the experience in [12]. Assume that A, B, C, and D are concepts of an

ontology. Figure 1 describes the possible relationships between concepts. The

similarity distances between two concepts are defined as follows:

− Exact similarity (A, A): is the most accurate match. It happens when the two

descriptions are semantically equivalent. The similarity degree for this match

is given a value 1 and this is the highest similarity.

− Subsumes similarity (A, B): B is subsumed by A. As A is a direct superclass

of B, it is more general than B. This match is less accurate than exact match.

The similarity degree for this match is 0.75.

− General similarity (A, D): A is more general than D but A is not a direct

superclass of D. We assume that there are x levels (with x≥1) between A and

D, then the similarity degree for this match is 0.75 - 0.01*2
x-1

.

− Invert-Subsumes similarity (B, A): B is more specific than A and B is a

direct subclass of A. The similarity degree for this match is 0.3.

− Specific similarity (D, A): this is the inverse of the general match. A is more

general than D but A is not a direct super class of D. We assume that there

are x levels (with x≥1) between A and D, then the similarity degree for this

match is 0.3 – 0.05*x.

− Fail similarity (A, C): A and C are not related in the ontology. With

reference to figure 1, we also have Fail (B, C).

Figure 1. The relation of concepts

Similar to [12], we use levels of two concepts to compute general and specific

similarity. We reduce the similarity by 0.01 for parents, and 0.02 for grandparent, and

so on for super-concepts. With sub-concepts, we reduce by multiples of 0.05 for each

level. The maximum number of levels to be considered is 6.

2.2 MOD Matching Algorithm

The MOD algorithm divides the matching process into four-stage and each stage is

independent of the other and the final result is based on the sum of the individual

stages.

Figure 2. Matching algorithm

The matching algorithm is described in figure 2. reqService and advService denote the

requested and advertised service respectively. First, the two web services are checked

if they use the same ontologies. If they do, the four-stage matching algorithm [5] is

used. If they do not, the “compute semantic similarity” component computes the

concept similarity between concepts. If the semantic similarity is less then a threshold

which was defined by the user, then the matching fails. Otherwise, the four-stage

matching algorithm is used with input, output, or operation matching. The algorithm

is described in more detail in section 3. The four-stage algorithm first checks the user-

defined matching. If the matching fails, the result of matching two services also fails

and the matching process finishes. Otherwise, the matching process continues with

input, output, and operation matching. The final matching result will be composed of

the input, output, and operation matching.

2.2.2 Input Matching

In the input matching, we determine how inputs of the advertised services are

satisfied by the inputs of the requested services. The input matching operates as

follows: for each input of the advertised service, the algorithm tries to find an input of

the requested service that is the most similar (the highest degree match). If none of the

advertised input can match with the requested input, the input matching returns fail.

Thus, the matching of the two web services will fail. The input matching algorithm is

elaborated as follows:

inputMatch (inputAdv, inputReq){
if (inputAdv = empty_list){

 return 1; //exact match.
 }
 degreeInput = 0;
 numInput = 0; //number of input of advertised service
for all inputAdvElement in inputAdv do{
numInput = numInput +1;
degreeMax =0;
for all inputReqElement in inputReq do{
if(checkOntRelation(inputAdvElement,inputReqElement)){
degreeMatch =
computDegree(inputAdvElement,inputReqElement);

}
else {
degreeMatch =
computSimilarity(inputAdvElement,inputReqElement)

}
if (degreeMatch >degreeMax){
degreeMax= degreeMatch;

}
if degreeMax = 0 then return fail;
degreeInput = degreeInput + degreeMax;

}
 degreeInput = degreeInput/numInput;
 if degreeInput < threshold then return fail;
 else return degreeInput;
}

The number of input of advertised and requested service may be none or many. If the

advertised service does not contain any input, then the input matching returns an exact

match. inputAdvElement and inputReqElement denote elements of the input list of

advertised and requested service respectively. degreeMatch is the degree of the

matching between an input pair (an input of advertised service and an input of the

requested service). degreeMax is the maximum degree of an input of advertised

service with every input of the requested service. In other words, degreeMax is the

maximum of degreeMatch for every input of advertised service. degreeInput is the

final result of input matching. degreeInput will be compared against a threshold

whose value depends on the specific domain. If it is less than the threshold, then the

matching fails. Otherwise, the matching returns the degreeInput. checkOntRelation()

is the function that checks if the two concepts have a hierarchical relationship.

computDegree() is the function that computes the semantic degree of two concepts

when they are related hierarchically. computSimilarity() is the function that compute

the semantic similarity between two concepts from different ontologies. The

algorithms for the computSimilarity() functions will be introduced in section 3.

2.2.3 Output, Operation, User-defined, and Final Result Matching

Both output and operation processing are carried out in the same manner as input. But

in output matching, all output from the requested service will be matched with each

output in the advertised service. In operation matching, service category operation of

the requested and service category operation of the advertised service are matched.

The results of output matching and operation matching are the degree of output

matching and operation matching.

In user-defined matching, the users can declare some more constraints or rules to

restrict the matching and increase the accuracy of the results of matching. For

example, a requester wishing to buy a computer describes a web service with price as

input and configuration of the computer as output. They may also declare more

constraints relating to the computer manufacturer. These constraints or rules will be

matched against the advertisement. Users may decide not to define any constraints or

they may define many constraints. We assume that the result of a constraint matching

is either “match” or “not match”. In short, the result of user-defined matching is as

follows: Match if every constraint is satisfied; Fail if at least one constraint fails. Of

course, it is possible to define the distance of this matching but it is outside the scope

of work.

The final matching result will be composed of the input, output, and operation

matching.

321

321 *)(

www

userMatchatchoperationMwhoutputMatcwinputMatchw
S

++

∗+∗+∗
=

w1, w2, and w3 are defined by users. After matching with all advertisements from the

database, we will sort by the degree of similarity and return the matched list to the

requester.

3 Semantic Similarity between Concepts from Different

Ontologies

This section introduces the main component of MOD which was mentioned in section

2, namely, computing semantic similarity of two concepts from different ontologies.

Determining the semantic similarity of concepts from ontologies is necessary in

information retrieval and information integration fields related to ontologies. MOD

focuses on matching inputs, outputs, and operations because in the semantic web,

these parameters are in fact ontology concepts. The concept similarity algorithm

includes four main components: syntactic similarity, properties similarity, domain

similarity (or context similarity), and neighborhood similarity.

 ncps

ncps

wwww

neiSimwconSimwproSimwsynSimw
CS

+++

∗+∗+∗+∗

=

(1)

where ws, wp, wc and wn are weights defined by users depending on application. The

following sections provide details of the five main matching components.

3.1 Syntactic Similarity

Each concept in an ontology is labeled (concept name) and has a short text (concept

description) which describes it. The syntactic similarity computes the similarity

between the concept names and concept descriptions of the two concepts,

respectively. The concept names in OWL are defined as a word or a set of words.

There are some techniques to compute word similarity such as n-gram [2,15,21] and

token Matcher [14] but most of these only consider a word as a string of characters.

The semantic relationship of the words, which is very important in computing word

similarity, has been ignored. To overcome this drawback, WordNet [10] is used.

WordNet can only be used when the words which we would like to compute

similarity are stored in its database. The WordNet database only stores root and single

words. Therefore, before using WordNet, we must have a preprocessing process to

convert words to their roots. If both concept names contain only one word, we can use

directly WordNet to compute similarity words. In cases when there is more than one

word in the concept name, we will find the most similar terms between synonym sets.

WordNet is also used to compute similarity between two concept descriptions in the

same way as computing concept names similarity when the latter contains more than

one word. The syntactic similarity is a weighted average of concept names and

concept descriptions similarity.

3.2 Property Similarity

A concept may have one or more properties. Similar to concept, a property also has a

name and description. In addition, it contains range and cardinality. To compute the

property similarity, all this information of the two properties should be matched. The

method to compute property name and description similarity is syntactic similarity

which was introduced in section 3.1.

Range of a property is either a primitive data type or another concept. If both

ranges are primitive data types then the similarity between two ranges is as shown in

table 1. If one range property has a primitive type and the other has a concept, the

ranges are incompatible; therefore the range similarity is 0. If two range properties are

concepts, the matching is carried out recursively as with the computing of two

concepts.

Table 1. Similarity when range is primitive data type

Range of Property 1

 Integer Long Float Decimal String

Integer 1 0.9 0.8 0.7 0.3

Long 0.9 1 0.8 0.7 0.3

Float 0.8 0.8 1 0.7 0.3

Decimal 0.7 0.7 0.7 1 0.3

R
a

n
g

e o
f P

ro
p

erty
 2

 String 0.3 0.3 0.3 0.3 1

Cardinality of property permits the specification of the exact number of elements in a

relation. For OWL, the cardinality values are limited to 0 or 1. We simply define the

Cardinality similarity as follows: Cardinality similarity =1 if the cardinality of two

properties is equal; Cardinality similarity =0 if the cardinality of two properties are

different

The final property similarity is the combination of the three components:

syntactic, range, and cardinality similarity.

3.3 Domain Similarity

Domain which is also known as a context of the ontology is important to the

computation of concept similarity. For example, assume there is an Animal ontology

which has concept Fish. Another Food ontology also has concept Fish. We assume

that the properties of the two concepts Fish are the same. If we do not consider the

domain of the two ontologies, the concept similarity of two concepts from the two

ontologies will be 1. However, the Fish concept has different meaning in the two

ontologies: one refers to an animal; the other refers to food. Therefore, the similarity

distance of the Fish concept from the two ontologies should be low. In short, domain

must be considered in computing concept similarity.

To compute the domain similarity of the two concepts, we compute the similarity

of the two roots from the two ontologies since the root represents the domain of the

ontologies. The root is a special concept in an ontology, which does not have super

concepts. In the real world, most OWL ontologies have one root, but there are

ontologies with more then one root. In this situation, we must find the root which the

concept belong to. The paper only solves the simple and common situation when the

ontology has one root.

3.4 Neighborhood Similarity

Neighborhood similarity computes the two concepts with respect to their

neighborhood, namely, their super concepts and sub concepts. Figure 3 presents a

matching of two concepts Network Node and Network Element. Both concepts have

super concepts Equipment; their sub concepts are Computer, Switch Equipment, and

Computer, Central Hub, respectively.

The neighborhood similarity is computed using the following equation:

subSim*supSimmneighborSi =

where supSim and subSim are super concept similarity and sub concept similarity,

respectively.

Ontology 1 Ontology 2

Figure 3. Comparing two NetworkNode concepts

A concept may have one or several super concepts. The super concept similarity is

computed as follow:

n

)C ,CallSubSim(
)C ,supSim(C RP

RP =

where n is the number of pairs of matched super concepts. CP and CR are concepts

from the two ontologies used by provider and requester, respectively. allSupSim is

similarity of the matched super concepts. As shown in equation (2), the super

concepts are matched one to one such that the average super concept match is

maximized. This is done by using a recursive formula as follows:

allSupSim(CP, CR) = Max(allSupSim(CP -SupP, CR -SupR)) + conceptSimilarity(SupP, SupR)) (2)

A concept may have one or more sub concepts. subSim is computed in the same way

as supSim.

4 Experiment and Discussion

In this section, an experiment to determine concept similarity using two real world

ontologies is introduced. This is followed by a description of how two web services

which use the two ontologies are matched.

4.1 Experiments with Concept Similarity

For testing the concept similarity algorithm, we employ two ontologies from the real

world taken from I3CON [11], the Information Interpretation and Integration

Conference. Figure 4 shows two ontologies from two different OWL files:

networkA.owl and networkB.owl. These two ontologies describe the nodes and

connections in a local area network. networkA focuses more on the nodes themselves,

while networkB encompasses the connections. Concept pairs were selected for testing

arbitrarily but focused on pairs which have matching potential. The concept

similarities are computed using equation (1). In most cases, wi is set at 0.25. In some

special cases, wi

is set differently. Table 2 shows the results of testing twelve concept

pairs from the above two ontologies. The “expected results” column shows the

“Ground Truth” result which is defined manually by human intelligence to determine

closest fit. The “MOD Results” column shows the actual results which were obtained

by using the proposed algorithm.

Figure 4. Structures of networkA.owl and networkB.owl in Protégé [1]

The details of matching are shown in figure 5. Each column pair in the figure shows

the “expected” and MOD concept similarity. MOD results are computed based on the

four similarity components: syntactic, properties, neighborhood, and domain

similarity.

Table 2. Similarity between concepts

Case
Concepts from

NetworkA.owl

Concepts from

NetworkB.owl

Expected

Results

MOD

Results

1 NetworkNode NetworkNode 0.80 0.78

2 Equipment Equipment 0.75 0.65

3 PC Router 0.60 0.58

4 NodePair PairOfNode 0.57 0.63

5 Hub NetWorkNode 0.25 0.25

6 Computer Computer 0.80 0.82

7 CrossOverCable Cable 0.70 0.55

8 Router WAP 0.35 0.59

9 Server Router 0.45 0.67

10 CoaxCable Coax 0.72 0.7

11 CrossOverCable CrossOver 0.72 0.75

12 StraightThroughCable StraightThrough 0.72 0.78

Figure 5. Graph represents concept similarities from Network A and Network B ontology

The syntactic matching results show that cases 1, 2, and 6 are 1 since their concept

names are identical and the concept descriptions are nearly the same. The lowest

syntactic similarity is in case 5 which involves two concepts: Hub and NetWorkNode.

With the two concept names “Hub” and “NetWorkNode”, WordNet returns a

similarity is 0. But the similarity of the two concept descriptions is 0.2, so the

syntactic similarity is 0.1. When no property is defined in one of the two concepts,

their property similarity is 0. In this case, the algorithm will ignore the property

dimension. In other words, the wp in equation (1) is 0.

In most cases, the neighborhood similarity is high when their superclass and

subclass similarity are high. This similarity is low in case 7 since CrossOverCable

concept in ontology networkA matched Cable concept in ontology networkB.

However, in ontology NetworkA, the Cable concept is the superclass of

CrossOverCable concept. Therefore, the neighborhood similarity of the two concepts

is the similarity of the superclass pair (Cable, Equipment). The subclass similarity is

ignored because CrossOverCable does not have a subclass. The pair (Cable,

Equipment) has super/sub class relationship, but in neighborhood similarity matching,

the algorithm only considers the syntactic, property, and domain similarity. Therefore,

the neighborhood similarity between CrossOverCable and Cable is low. Domain

similarity is the similarity of two root concepts of the two ontologies. Therefore, the

domain similarities in the twelve cases are the same.

The similarity of two concepts is computed as the average of the four components:

syntactic, property, neighborhood, and domain similarity. Therefore, the value of each

component will affect the final result. The contribution of the four components is

equal in most cases. However, there are some cases where one component carries

more value than the other. The neighborhood similarity for the pair (CrossOverCable,

Cable) is low and has ‘negative’ effect on the final result because the matching

algorithm does not recognize that they have a superclass/subclass relationship. It is

therefore up to the user to select a suitable weight wi to place on each of the

components.

4.2 Matching Web Services

We assume that there are two companies: Cisco is a network company which sells

network components. BCS is a network company which buys network components.

Cisco and BCS develop web services to sell and buy network components,

respectively. The inputs of the web services are price; the outputs of the web services

are network components. To develop web services, companies must develop price, e-

business, and equipment ontologies. We assume that the price and e-business

ontology are popular, so the two companies use the same price and e-business

ontology. But the equipment ontology is not available. So, they develop different

ontologies for the equipment as shown in figure 4. The web services of the two

companies are shown in figure 6. In this experiment, we assume that the threshold of

concept similarity is very small, so all the concept similarities are larger then the

threshold.

Inputs Operations Outputs

BCS web service

Cisco web service

Figure 6. Web service requester and advertisement

Inputs of the web services are concepts from price ontology which is described in

figure 7; We introduce concepts <3000, <2000, and <1000 that refer to prices that are

less than 3000 units, 2000 units, and 1000 units, respectively.

Figure 7. Ontology for price domain

Operations of web services are concepts from eBusiness ontology which is described

in figure 8. The eBusiness provides Sell and Buy services. The Buy concept provides

BuyComputer, BuyEquipment, and BuySoftware. BuyEquiment provides BuyHub,

BuyRounter and BuySwitch.

Figure 8. Ontology in eBusiness domain

With descriptions of the two web services and above ontologies, matching results are

as follows:

− Input matching: This case is invert-subsumes since the input of the BSC

service is a superclass of the input of Cisco service. Based on the definition in

section 2, the input matching value is 0.3.

− Operation matching: This case is subsumes since the operation of the BSC

service is the sub concept of the input of Cisco service. The operation

matching value is 0.75.

− Output matching: In this case, the two web services use two concepts from

different ontologies. Based on the results stated on section 4.1, the matching of

two concepts Hub and NetworkNode is 0.25.

− User-defined: The user can define more rules or constraints to restrict the

results. In this example, for simplicity, we assume that the user-defined

matching is satisfied.

Based on the MOD algorithm, the similarity of the two web services is computed as

follows:

43.0
3

25.075.03.0

3

*)(
=

++
=

++
=

chUserDefMatOperMatchOutpMatchinpMatch
S

The matching result of the two web services indicates that this is “subsume

matching”, that is, provider Cisco can satisfy the requester BCS but Cisco service is

more general than BCS service.

5 Conclusions and Future Work

This paper has introduced an algorithm termed MOD which supports matching of

web services using different ontologies. The algorithm is divided into four stages,

namely, input, output, operation, and user-defined matching. The computing concept

similarity which plays a key role in MOD has four main components, namely,

syntactic, properties, domain, and neighborhood similarity. The experimental results

confirm the viability of the discovery system. In the experiment, we used OWL-S

ontologies to test the algorithm, but the MOD algorithm is general; therefore it can be

used for web services using different semantic web service description languages such

as DAML-S, and RDFS. However, the similarities defined in section 2 should not be

the crisp sets; it should be defined as fuzzy sets. The domain similarity only considers

the simple case when the ontology has one root. In the real word, the ontology may

have more then one root. These problems will be considered in the future.

References

[1] Protégé - A tool for OWL editor.http://protege.stanford.edu/overview/

[2] Angell, R.; Freund, G., Automatic spelling correction using a trigram similarity measure,

Information Processing and Management, (1983) 19, 4, 255,

[3] Cardoso, J.; Sheth, A., Semantic e-Workflow Composition, Journal of Intelligent Information

Systems, (2003) 21, 3, 191 0925-9902, Kluwer Academic Publishers.

[4] DAML, Services Home Page, OWL-S markup of services.www.daml.org/services/owl-s/

[5] Jaeger, M. C.; Tang, S.; Liebetruth, C., The TUB OWL-S Matcher.Available at: http://ivs.tu-

berlin.de/Projekte/owlsmatcher/index.html.

[6] Kawamura, T.; Blasio, J. D.; Hasegawa, T., et al., (2003), Preliminary Report of Public

Experiment of Semantic Service Matchmaker with UDDI Business Register, 1st International

Conference on Service Oriented Computing (ICSOC 2003), Trento, Italy, 208,

[7] Kawamura, T.; Blasio, J. D.; Hasegawa, T., et al., (2004), Public Deployment of Semantic

Service Matchmaker with UDDI Business Registry, 3rd International Semantic Web

Conference (ISWC 2004), LNCS 3298, 752,

[8] Li, L.; Horrocks, I., (2003), A software framework for matchmaking based on semantic web

technology, 12th International World Wide Web Conference, Budapest, Hungary, ACM Press,

331, 1-58113-680-3,

[9] LSDIS, METEOR-S: Semantic Web Services and

Processes.http://lsdis.cs.uga.edu/projects/meteor-s/

[10] Miller, G., WordNet: An Electronic Lexical Database, The MIT Press: (May 15, 1998).

[11] NIST, I3CON Information Interpretation and Integration

Conference.http://www.isd.mel.nist.gov/PerMIS_2004/index.htm

[12] Oundhankar, S.; K. Verma; Sivashanugam, K., et al., Discovery of web serivces in a Muti-

Ontologies and Federated Registry Environment, International Journal of Web Services

Research, (2005) 1, 3,

[13] Paolucci, M.; Kawamura, T.; Payne, T. R., et al., (2002), Semantic Matching of Web services

Capabilities, 1st International Semantic Web Conference (ISWC 2002), Sardinia, Italy, 333,

[14] Porter, M. F., An algorithm for Suffix Stripping, In Morgan Kaufmann Multimedia Information

And Systems Series, Morgan Kaufmann Publishers: (1997); pp 313

[15] Salton, G., Automatic Text Processing: The Transformation, Analysis and Retrieval of

Information by Computer, Addison-Wesley Ed. Massachusetts: (1988).

[16] Srinivasan, N.; Paolucci, M.; Sycara, K., (2004), Adding OWL-S to UDDI, implementation and

throughput, First International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC 2004), San Diego, California, USA,

[17] Sycara, K.; J. Lu, M. K.; Widoff, S., Dynamic service matchmaking among agents in open

information environments, ACM SIGMOD Record (Special Issue on Semantic Interoperability

in Global Information Systems),, (1999) 28, No.1, 47,

[18] Sycara, K.; J. Lu, M. K.; Widoff, S., (March, 1999), Matchmaking among heterogeneous agents

on the internet, AAAI Spring Symposium on Intelligent Agents in Cyberspace,

[19] Sycara, K.; Widoff, S.; M. Klusch, J. L., (2002), LARKS: Dynamic Matchmaking Among

Heterogeneous Software Agents in Cyberspace, Autonomous Agents and Multi- Agent Systems,

Vol.5, 173,

[20] W3C, Organization, OWL - Web Ontology Language Overview.http://www.w3.org/TR/owl-

features/

[21] Zamora, E.; Pollock, J.; al, e., The Use of Trigram Analysis for Spelling Error Detection,

Information Processing and Management, (1981) 6, 17, 305,

On the Topological Landscape of Web Services
Matchmaking

Hyunyoung Kil, Seog-Chan Oh, and Dongwon Lee?

The Pennsylvania State University
University Park, PA, USA

{hkil,seogchan,dongwon}@psu.edu

Abstract. Despite the rapid development in web services technologies,
there has been little study on the public web services from network anal-
ysis perspective. To address this, in this paper, we have performed a
topological study on various web service networks using real-world data
sets. We first propose a flexible framework by which we can study seman-
tic web services network “matchmaking” in a unified manner. Under the
matching framework, then, we have conducted extensive experiments to
study the characteristics of various web services networks. By and large,
publicly available web services networks exhibit the typical character-
istics of small world networks well and power law like distributions to
some extent.

1 Introduction

The recent realization—the core web services specifications of WSDL [7], SOAP [17],
and UDDI [8] are not sufficient to realize the goal of the Semantic Web—has de-
veloped a plethora of new means such as OWL [9], OWL–S [14], WSDL–S [16],
and WSML [5] to annotate rich semantics to web services (ontology) so that
truly automatic data exchange on the web is possible. Therefore, it is expected
that, in the near future, service vendors will publish their offerings as “semantic
web services” — semantically enriched web services.

However, in practice, there has been little study as to how useful current
public web services are. In particular, since web services that are specified in
WSDL and published in UDDI form a network, one can use network analysis
methods to study the characteristics of the web services network. In general, the
topological structure of a network affects the processes and behaviors occurring
in the network. For instance, the topology of a social acquaintance network
may affect the spread rate of gossip or disease. Similarly, the topology of the
Internet is known to be correlated with the robustness of communication therein.
Accordingly, understanding the structural properties of networks often help gain
better insights and develop better algorithms. Therefore, in this paper, we aim
at studying the web services network using network analysis techniques.
? The author is partially supported by Microsoft Scientific Data Intensive Computing

(SciData) Award, 2005.

The focus of our study is on the web services specified in WSDL since cur-
rently there are not enough “semantic web services” specified in OWL–S or
WSDL–S yet.Nevertheless, our matchmaking between web services is beyond
syntactic matchmaking. By incorporating flexible matchmaking framework, we
study the effect of semantic web services over real-world web services in WSDL.
Our contributions of this paper are as follows:

– We propose a flexible web services matchmaking framework that allows to
incorporate different “matching” in a unified manner. By using different
matching functions, the framework can cover from exact to approximate to
semantic matching.

– We propose three dimensions of granularity to form web services networks
from parameter to operation to web services. By looking into web services
network using different glasses, we can understand the characteristics of the
network better.

– We have conducted extensive experimentation under the proposed frame-
work, and applied network analysis techniques to study the distribution,
average distance, diameter, and clustering coefficient of the network.

1.1 Background

For the efficient exposition of the paper, in this section, we present a simplified
abstraction of web services specified in WSDL.

A web service in a WSDL file can be viewed as a collection of operations,
each of which in turn consists of input and output parameters. When an opera-
tion op has input parameters IN = {p1, ..., pn} and output parameters OUT =
{q1, ..., qm}, we denote the operation by op(IN ,OUT). Furthermore, each pa-
rameter is a pair of (name, type). We denote the name and type of a parameter
p by p.name and p.type, respectively. The WSDL specification lists four types
of operations [7]: (1) one-way : the operation can receive a message but will not
return a response; (2) request-response: the operation can receive a request and
will return a response; (3) solicit-response: the operation can send a request and
will wait for a response; and (4) notification: the operation can send a message
but will not wait for a response. In order to decide if an operation op1 can invoke
an operation op2, one needs to check if the types of op1 and op2 are compatible
or not. Since this can be done trivially, from here forward, we assume that types
of operations are all compatible, and focus on other issues instead.

For instance, consider the following web service w:

<message name=’findRestaurant_Request’>

<part name=’zip’ type=’xs:integer’>

<part name=’foodPref’ type=’xs:string’>

</message>

<message name=’findRestaurant_Response’>

<part name=’name’ type=’xs:string’>

<part name=’phone’ type=’xs:integer’>

</message>

<portType name="allRestaurant">

<operation name="findRestaurant">

<input message="findRestaurant_Request"/>

<output message="findRestaurant_Response"/>

</operation>

</portType>

The web service, w, is a request-response type, and consists of a single opera-
tion, findRestaurant, that takes two input parameters, p1=(zip, integer) and
p2=(foodPref, string), and returns two output parameters, q1=(name, string)
and q2=(phone, integer). Therefore, a client program wishing to get the name
and phone number of a restaurant may invoke findRestaurant(16801,“Thai”)
to w.

1.2 Related Work

Many empirical networks are well modeled by complex networks including the
scale-free and small-world networks. The small-world networks are generated by
the classical Watts-Strogatz network model [23]. Albert, Barabasi and Jeong [1]
have proposed a set of different models for generating scale-free networks, based
on the growing process of the Internet and other empirical complex networks.
Denning [10] surveyed various network laws with a focus on the power law dis-
tribution and the scale-free networks. In this paper, we apply the developed
techniques to examine the semantic web services networks.

The problem of matching descriptions of two services is related with the
classical problem of the schema matching in Database. For instance, [20] presents
an array of latest techniques on the schema matching, and some of them could be
used in our study. Note that we do not propose a particular matchmaking method
in this paper. Instead, we advocate a flexible framework that can accommodate
a plethora of matchmaking schemes in a unified manner. Then, based on the
framework, we studied various topological properties of web services network.
Due to the availability, for instance, we happen to use Cosine and WordNet based
matching schemes. However, it is also possible to incorporate the aforementioned
matching approaches such as [24, 22] or schema matching techniques in [20] in
our framework.

Current web service matchmaking solutions are based on the keyword match-
ing supported by the category-browsing of UDDI. However, the keyword-based
matching ignores the real functions of web services. To address this limita-
tion, researchers have developed a set of methods which assess the similarity
of web services to achieve matchmaking. Wu [24] suggested a matchmaking pro-
cess based on a lightweight semantic comparison of signature specifications in
WSDL by means of several assessment methods. Wang and Stroulia [22] as-
sessed the similarity of the requirement description of the desired service with
the available services via the semantic information-retrieval (IR) method and
a structure-matching approach. Maedche and Staab [13] provide multiple-phase
cross-evaluation to assess the similarity between two different ontology. An excel-
lent survey of modern matchmaking algorithms and their applications to the web

service matching field is available in [24]. Finally, some of the recent ontology-
based service matchmaking works such as [2, 15, 3] are relevant to our research
too. We leave the extension of our framework to accommodate those recent de-
velopments as future work.

2 The Matchmaking Framework

In this Section, we formalize the notion of matchmaking on web services.

2.1 Flexible Matching

Network consists of nodes and edges. In our framework, different entities can
be used as nodes and edges in a unified manner. First, as nodes, we consider
three kinds – parameters, operations, and web services – from finer to coarser
granularity. Second, as edges, we use the notion of parameter matching and
operation invocation.

When the meanings of two parameters, p1 and p2, are interchangeable, in
general, two parameters are said to be matching each other. The simplest way
to check this is if two parameters have the same name and type: (p1.name =
p2.name) ∧ (p1.type = p2.type). Since web services are designed and created
in isolation, however, this naive matching is often too rigid and thus misses
cases like p1=(“password”, string) and p2=(“passwd”, string). On the other
hand, if web services are annotated with rich semantics (e.g., using RDF [4] or
WSDL-S [16]), then the so-called “semantic” matching can be easily reasoned
out. However, in practice, majority of public web services do not have annotated
semantics yet.

In order to cover all the spectrum of matching, therefore, we propose a generic
boolean function, match(p1, p2), that determines if two parameters p1 and p2

are matching or not. Formally,

Definition 1 (type-match) A boolean function, type-match(p1.type, p2.type),
returns True if: (1) p1.type = p2.type, or (2) p1.type is derived from p2.type in
a type hierarchy. 2

Definition 2 (name-match) A boolean function, name-match(p1.name, p2.name,
D, θ), returns True if the distance between p1.name and p2.name by a distance
metric D is below the given threshold θ: i.e., D(p1.name, p2.name) ≤ θ. 2

For instance, name-match(“password”, “passwd”, =, 1) represents the ex-
act matching, and would return False since “password” 6= “passwd”1. Sim-
ilarly, by using string matching functions such as Edit distance [25] or co-
sine metric, one can express the approximate name matching. For instance,
name-match(“password”, “passwd”, edit-distance, 3) would return True since
two names of parameters have the edit distance of 2 (< 3). In the experimenta-
tion, we use three metric functions: = (i.e., literal equality), cosine distance with
1 For the exact matching, the threshold value other than 1 is not useful.

TF/IDF weights [21], and WordNet [12] based semantic distance. However, note
that it is also possible to incorporate the aforementioned matching approaches
such as [22] and [24] in our framework, if the implementation is available. Based
on two boolean functions, now, we define a generic parameter match function as
follows:

Definition 3 (match) A boolean function, match(p1, p2, D, θ), returns True if:
(1) name-match(p1.name, p2.name, D, θ) = True, and (2) type-match(p1.type,
p2.type) = True. 2

Definition 4 (Parameter Matching) When a boolean function, match(p1,
p2, D, θ), returns True, it is said that a parameter p1 matches a parameter
p2 (i.e., p1 can be used in the place of p2), and written as “p1 ∼ p2”. 2

In order to invoke an operation op1 with input parameters IN={p1, ..., pn},
one may need to provide values for all required (i.e., mandatory) input param-
eters. When one can provide all required input parameters, op1 is said “fully
invocable”. When one can provide at least one required input parameter, op1

is said “partially invocable”, so partially invocable operations includes a set of
fully invocable operations. For instance, Google API has a search operation with
several input parameters, but only part of them are mandatory. Similarly, con-
sider a client program wishing to invoke an operation op1 first and then have
op1 invoke another operation op2 directly (i.e., a case of web services composi-
tion). In this case, if the output parameters of op1 can satisfy all required input
parameters of op2, then op1 “fully” invokes op2, and if there exists any output
parameter of op1 satisfying any input parameter of op2, then op1 “partially”
invokes op2. Formally,

Definition 5 (Operation Invocation) For two operations, op1(IN 1,OUT 1)
and op2(IN 2,OUT 2),

– op1 fully invokes op2, denoted by “op1 � op2”, if for every mandatory input
parameter p ∈ IN 2, there exists an output parameter q ∈ OUT 1 such that
q ∼ p.

– op1 partially invokes op2, denoted by “op1 99K op2”, if there exists a manda-
tory input parameter p ∈ IN 2 and an output parameter q ∈ OUT 1 such
that q ∼ p.

We denote each invocation by full- and partial-invocation, respectively. 2

2.2 Web Service Network Model

In this Section, using the notions of nodes and edges defined in Section 2.1, we
propose a flexible web service network model as follows.

Definition 6 (Web Service Network Model) A web service network is gen-
erated by a 4-tuple model M=(T , D, θ, I), where:

Fig. 1. Web service networks: (a) WSDLs, (b) Conceptual web service network, (c)
Web service networks from diverse models, (d) Parameter node network, Mp, (e) Fully
invocable operation node network, Mf

op, (f) Partially invocable operation node net-
work, Mp

op, and (g) Web service node network, Mws

– T is the type of node and can be either p for parameter, op for operation,
or ws for web service

– D (and θ resp.) is the distance metric to be used in parameter matching
(and its threshold resp.)

– I is the type of operation invocation and can be either FI for full invocation
or PI for partial invocation 2

Example 1. A model M1=(op, cosine, 0.75, FI) generates an operation node
network where parameter matching is done using cosine metric with a threshold
0.75. Furthermore, an edge from an operation op1 to op2 is added only when
op1 � op2. 2

Example 2. A model M2=(ws, word-net, 0.9, PI) generates a web service node
network where intra-parameter matching is done using WordNet based semantic
distance metric with a threshold 0.9. Furthermore, an edge from a web service
ws1 to ws2 is added if op1 99K op2 for op1 (∈ ws1) and op2 (∈ ws2) – that is,
partial invocation among operations. 2

Consider Figure 1 as an example. Here, a web service network is formed by a
set of web services, each of which consists of a set of operations. An operation is
invoked with a set of input parameters and produces a set of output parameters.

There are three kinds of nodes representing web services (e.g., ws1 and ws2),
operations (e.g., op11, op12 and op21) or parameters (e.g., p1, · · · , p7). Each web
service node containing a set of operation nodes is connected to parameter nodes
with “directed” edges. These edges show the flow of the parameters as inputs or
outputs of operations. An edge from a parameter node p to an operation node
op indicates that the parameter p is used as one of inputs of the operation op.
On the other hand, an edge from an operation node op to a parameter node
p indicates that the operation op produces the parameter p as an output. For
example, p1 is one of inputs of op11 in ws1. Similarly, p5 is not only an output
of op12 but also an input of op21 in ws2.

In order to study subtle difference among node types, one can project out
the aforementioned web service network into three kinds as follows:

– A parameter node network , i.e., Mp=(p, D, θ, I), consists of parameter
nodes and edges representing operations that has the source node as an
input parameter and the target node as an output parameter. For instance,
if op1(IN 1,OUT 1) exists, then we create edges from each parameter p of
IN 1 to every output parameter q of OUT 1. When approximate matching
or semantic matching is used for intra-parameter matching, each node in
Mp is in fact a set of similar nodes. That is, suppose there is an edge from
p1(password, string) to p3(firstName, string) in Mp. This indicates that one
can retrieve “firstName” information by providing “password” information.
Now, if an approximate matching method (e.g., edit distance) or semantic
matching method determines that a parameter p1(password, string) matches
a parameter p2(passwd, string), then p2.name is merged with p1.name to
form an edge: {password, passwd} → firstName. That is, the source node is
a set of two nodes.

– An operation node network , i.e., Mop=(op, D, θ, I), consists of nodes rep-
resenting operations and edges representing the invocation in-between. That
is, if an operation op1 can (either partially or fully based on I) invoke an
operation op2, there is an edge op1 → op2 in Mop.

– A web service node network , i.e., Mws=(ws, D, θ, I), consists of all web
service nodes and directed edges representing the existence of invocable op-
erations between web services.

The Figure 1(d) describes a parameter node network Mp based on Fig-
ure 1(b). For instance, p1 can be transformed to p2 by op11. For operation node
example, op21 can be invoked with two input parameters both of which are pro-
duced by op12 in Figure 1(c). Therefore, there exists an edge op12 → op21 in both
operation node networks (Figure 1(e) and Figure 1(f)). On the other hand, p3,
one of outputs of op11, is used as one of input of op12. However, op12 requires
another input parameter data p4 not produced by op11. In the partial invoca-
tion mode, therefore, an edge op11 → op12 is added. On the contrary, in the full
invocation mode, no edge is added. Note that in the example of Figure 1, we
get the same web service node network whether we use partial or full invocation
mode. However, in general, different networks will be formed depending on the
choice of invocation mode.

WSDLs

2,100 WSDLs 1,360 WSDLsWSDL
Validation

Data Cleaning WSDLs

984

WSDLs

WSDLs

WSDLs

De−duplication
WSDL

Type Flattening

Raw WSDLs

984 984

Fig. 2. Overview of pre-processing.

string street string city

string state integer zipcode

integer zipcode localAddress address

string street string city string state

addressType2addressType1

moreAddress address

Fig. 3. Two compatible types with different structures.

3 Topological Landscape

3.1 Set-Up

The pre-processing for the experimentation consisted of five steps:

1. Data Gathering : A total of 2,100 real-world WSDL files were gathered from
two sources. First, 1,554 files were taken from Fan et al. [11] who downloaded
the files from public repositories such as XMethods.org or BindingPoint.com.
Second, out of top-1000 ranked WSDL files from Google for the query string
“wsdl filetype:wsdl”, 546 were downloaded using Google API (the rest
were un-downloadable).

2. WSDL Validation: According to WSDL standard, 740 invalid WSDL files
were removed, and 1,360 files are left out.

3. WSDL De-duplication: 376 duplicate WSDL files at operation level were
removed, yielding 984 valid WSDL files.

4. Type Flattening : In matching parameters, we use both name and type of pa-
rameters. However, since WSDL files are designed by different people in isola-
tion, using only atomic types of XML Schema can be too rigid. For instance,
consider two parameters: p1(address, addressType1) and p2(MyAddress,
addressType2) of Figure 3. Although names of two parameters are simi-
lar, their types are user-defined and different. However, two types are in
fact “compatible”. Therefore, if we flatten two types into p1.type={integer
zipcode, string street, string city, string state} and p2.type={string
street, string city, string state, integer zipcode}, then two parameters
can be matched. We call this process as type flattening2. After type flat-
tening, then each atomic type and name are compared using type hierarchy
of XML Schema and flexible matching scheme (e.g., exact or approximate),
respectively. The resulting statistics of type flattening is shown in Table 1.

2 Alternative to our type flattening is to use more expensive metric such as tree edit
distance. For its simplicity, we used type flattening in this paper.

Table 1. Type distribution.

Before Flattening After Flattening
Type

input(num) output(num) input(num) output(num)

anyType 6.79% (7) 9.03% (5) 0.2% (35) 0.2% (51)

simpleType 65.52% (6,751) 32.37% (1,792) 92.43% (19,809) 90.63% (22,946)
string 53.75% (5,538) 22.00% (1,218) 65.06% (13,943) 54.74% (13,859)
number 7.79% (803) 7.12% (394) 17.69% (3,791) 22.89% (5,796)

time 0.90% (93) 0.22% (12) 1.85% (396) 2.93%(743)
boolean 3.74% (385) 2.46%(136) 7.16% (1,535) 9.14% (2,314)

complexType 34.41% (3,545) 67.54% (3,739) 7.41% (1,588) 9.16% (2,320)

Total Number 10,303 5,536 21,432 25,317

5. Data Cleaning : The final step is cleaning data to improve the quality of
parameters. For instance, substantial number of output parameters (16%)
were named “return”, “result”, or “response” which is too ambiguous for
clients. However, often, their more precise underline meaning can be derived
from contexts. For instance, if the output parameter named “result” belongs
to the operation named “getAddress”, then the “result” is in fact “Address”.
In addition, often, naming follows apparent pattern such as getFooFromBar
or searchFooByBar. Therefore, to replace names of parameters or operations
by more meaningful ones, we removed spam tokens like “get” or “by” as much
as we could.

For flexible matching, we used: (1) Exact Matching ; (2) Cosine Distance. For
instance, when we compare two parameters p1(“BirthDay”, string) and p2(“B-
day”, string), names are segmented to a set of tokens with TF/IDF weights like
p1({Birth, Day}, string) and p2({B, Day}, string). Then, by converting both
sets into vectors of v and w, their distance is measured as cos(θ) = v·w

‖v‖·‖w‖ ;
(3) WordNet-based Distance. Since WordNet is a network of English words la-
beled with semantic classes (e.g., synonyms), it carries various semantic relations
among words. People have proposed various ways to measure the “semantic dis-
tance” of two words in WordNet [6]. We use the one by Lin [12] that scales the
information content of the least common subsumer by the sum of the information
content of two vocabularies. Both cosine and WordNet metrics used threshold to
determine the matchmaking (i.e., if the calculated distance is above threshold,
new edge is added into the network).

At the end, we have generated a total of 25 (= 5 network types × 5 distance
metrics) web services networks: (1) three kinds of networks – Mp, Mf

op, and
Mf

ws, and two of their counterparts of “partial invocation” – Mp
op and Mp

ws;
(2) five distance variations – Exact, Cosine (0.75), Cosine (0.95), WordNet(0.75),
and WordNet(0.95).

Table 2. Small world properties of giant components in public web services.

Matching Scheme Network Lactual Lrandom Cactual Crandom

Mp 4.31852 3.42441 0.2229 0.0021
Exact Mp

op 2.8590 1.9830 0.3056 0.0362

matching Mf
op 3.7605 2.5628 0.2147 0.0180

Mp
ws 2.2710 1.9222 0.4809 0.0874

Mf
ws 2.9659 2.4250 0.2610 0.0405

Mp 4.1760 3.4442 0.2324 0.0022
Cosine Mp

op 2.8651 1.9881 0.3125 0.0340

(0.95) Mf
op 3.7538 2.5787 0.2001 0.0173

Mp
ws 2.2847 1.9254 0.4925 0.0833

Mf
ws 3.0046 2.4803 0.2499 0.0359

Mp 4.1981 3.4730 0.2397 0.0020
Cosine Mp

op 2.8671 1.9925 0.3190 0.0326

(0.75) Mf
op 3.7392 2.5910 0.1990 0.0172

Mp
ws 2.2923 1.9307 0.4822 0.0801

Mf
ws 2.9990 2.4394 0.2392 0.0375

Mp 3.6088 3.3282 0.2612 0.0027
WordNet Mp

op 2.4234 1.9425 0.3251 0.0574

(0.95) Mf
op 3.4165 2.4440 0.1493 0.0190

Mp
ws 2.1222 1.8865 0.5290 0.1138

Mf
ws 2.6215 2.1839 0.2527 0.0510

Mp 3.2656 3.3665 0.3118 0.0030
WordNet Mp

op 2.0546 1.8743 0.4818 0.1256

(0.75) Mf
op 2.6506 1.9657 0.1842 0.0429

Mp
ws 1.8484 1.7790 0.6697 0.2214

Mf
ws 2.2226 1.9023 0.3487 0.0993

3.2 Small World

First, we examine if web services network exhibit small world properties. In
general, networks or graphs are called small world networks if they show the
properties of both random and regular networks.

Definition 7 (Random Network) G(N,p) is a random network of N nodes,
if each pair of nodes is connected with the probability p. As a result, edges are
randomly placed among a fixed set of nodes. 2

Definition 1 (Regular Network). Rg(N,k) is defined as the regular network
on N nodes, if node i is adjacent to nodes [(i + j) mod N] and [(i− j) mod N]
for 1 ≤ j ≤ k, where k is the number of valid edge of each node. If k = N − 1,
R(N,k) becomes the complete N -nodes graph, where every node is adjacent to all
the other N − 1 nodes. None

Random networks are characterized by their short average distances among
reachable nodes. On the other hand, in regular networks, each node has highly
clustered neighbor nodes, such that the connectivity between neighboring nodes

are very high. Consequently, small world networks show both (1) highly clustered
structure and (2) small shortest distance.

– L: The average shortest distance (i.e., number of hops) between reachable
pairs of vertices. L(p) is the L of Watts-Strogatz graph [23] with probability
p. Lrandom is identical to L(1).

– C: The average clustering coefficient. For a node i with vi neighboring nodes,

Ci =
2Ei

vi(vi − 1)
, where Ei is the number of edges between vi neighbors of

i. C is the average clustering coefficient Ci for a network. Again, C(p) is
defined as C of the Watts-Strogatz graph with the probability p. Crandom is
identical to C(1).

– IndexSN : The small world network index is defined as:

IndexSN =
|Cactual − Crandom|
|Lactual − Lrandom|

(1)

where Cactual and Lactual represent C and L of the measured network, re-
spectively, and both Crandom and Lrandom represent C and L of the random
graph with the same number of nodes and average number of edges per node
as the measured network.

If a network has the small world properties, then its L and C shows: C �
Crandom and L & Lrandom. Therefore, the more distinct the small world prop-
erties of a network are, the bigger IndexSN of the network becomes.

Table 2 shows the average shortest path, L and clustering coefficient, C for
giant components extracted from each of the 25 web service networks, compared
to random graphs with the same number of nodes and average number of edges
per node. Note that we treat all edges of each network as undirected and un-
weighted3. It is interesting that all web services networks are the small world
network by showing L & Lrandom and C � Crandom. This suggests that the real
web services have short-cuts that connect nodes of networks. Otherwise, nodes
of networks would be much farther apart than Lrandom.

There are distinct changes between different matching schemes in terms of
the small world properties. For example, in the parameter node network Mp,
L(=3.2656) of the WordNet(0.75) is much smaller than L(=4.318) of the ex-
act matching, while C(=0.3118) of the WordNet(0.75) is much bigger than
C(=0.222) of the exact matching. For better understanding, Figure 4 illustrates
the changes of IndexSN for different matching schemes. Recall that IndexSN

tends to increase as C increases or L decreases. In the Figure, we can see that
the usage of semantic matching scheme, WordNet(0.75) generates more distinct
small world properties than the exact and cosine distance matching schemes.
In the case of Mp with the WordNet(0.75) matching applied, IndexSN is ten

3 This crude approximation is often acceptable since our goal is to study the network
topology, not the flow of materials on edges (e.g., information, electricity). Similar
assumption was made by Watts and Strogatz in [23]. In Section 3.3, directed network
cases are analyzed further.

 0.1

 1

 10

WordNet 0.75WordNet 0.95Cosine 0.75Cosine 0.95Exact

In
de

x S
N

D: matching scheme

Mp
Mopp

Mopf

Mwsp

Mwsf

Fig. 4. IndexSN changes.

times bigger than that of the exact matching case. This result suggests that the
semantic matching scheme makes the network more dense with the increased
number of edges, so that L decreases while C increases. From the web service
composition perspective, this result suggests that semantic matching scheme can
facilitate more productive and effective service compositions than when only ex-
act syntactic matching is used.

3.3 Power Laws

A power law distribution often occurs in complex systems where a majority of
nodes have very few connections, while a few nodes have a high degrees. The
existence of power law distribution has been observed in many real and artificial
networks such as power grid, WWW, or collaboration network, and believed
to be one of signs of mature and robust networks [10, 19]. In this section, we
examine if semantic web services network follows power law distribution or not.

First, we examine how complex web services are in general. One way to mea-
sure the complexity of web services is to measure how many operations (param-
eters resp.) are involved in each web service (operation resp.) [11]. These results
are shown in Figure 5, fitted to a power-law function y = Cx−α (in log-log plot).
They show near4 power law distribution with the exponent of 1.49 and 1.27,
respectively. In Figure 5(a), 37% of the web services have just one operations
and 71% of the web services have less than 5 operations. On the other hand,
the largest web services have over 110 operations. Similarly, in Figure 5(b), 181
operations (among 5,180 operations) have less than two input/output parame-
ters. In addition, 194 operations have no input parameter and 255 operations
have no output parameter. However, the whole distribution also shows a power
law like property. After type flattening, around 65% of operations have less than

4 A recent study [18] reported that most of real-world power law distributions exhib-
ited an exponent of 2 ≤ α ≤ 3.

 1

 10

 100

 1000

 1 10 100

th
e

of

 W
eb

-s
er

vi
ce

s

the # of Operations per Web-service

 1

 10

 100

 1000

 1 10 100

th
e

of

 O
pe

ra
tio

ns

the # of Parameters per Operation

(a) # of operations per web service (b) # of parameters per operation
(α = 1.49) (α = 1.27)

Fig. 5. The complexity of web services and operations.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000
 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000
 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

(a) Exact Matching (b) Cosine (0.75) (c) WordNet (0.75)
α=1.63 α=1.58 α=1.06

Fig. 6. The popularity of parameter names. X-axis is the frequency of parameter names
while Y-axis is the number of samples.

6 parameters while the maximum number of the parameters in an operation is
360.

Second, we examine the popularity of parameter names – some parameter
names occur more often than others. X-axis is the frequency of parameter names
while Y-axis is the number of samples. That is, a coordinate (10, 100) indicates
that there are 100 number of parameter names that occur 10 times. Again, all
of them show near power law distributions. From these distributions, we can
observe a very small number of popular “hub” parameter names. For instance,
a parameter p1 (“name”, string) appears most frequently in our collection. In
addition, as the matching method gets more flexible (from left to right in Figure
6), more parameters get to match each other. Since the matched parameters are
considered as a single parameter, the number of distinct parameters gets smaller
but the frequency of parameter names gets bigger. For example, while p1 appears
490 times in Exact matching with 11,301 distinct parameter names, p1 appears
3,278 times in WordNet (0.75) matching with 7,042 distinct parameter names,
where similar parameters like p2(“name”, string) or p3(“identification”, string)

Exact Matching Cosine (0.75) WordNet (0.75)

Mp
 0.1

 1

 10

 100

 1000

 1 10 100 1000
 0.1

 1

 10

 100

 1000

 1 10 100 1000
 0.1

 1

 10

 100

 1000

 1 10 100 1000

(a) α=1.15 (b) α=1.19 (c) α=1.04

Mf
op

 0.1

 1

 10

 100

 1000

 1 10 100 1000
 0.1

 1

 10

 100

 1000

 1 10 100 1000
 0.1

 1

 10

 100

 1000

 1 10 100 1000

(d) α=1.18 (e) α=1.22 (f) α=0.64

Mf
ws

 0.1

 1

 10

 100

 1000

 1 10 100 1000
 0.1

 1

 10

 100

 1000

 1 10 100 1000
 0.1

 1

 10

 100

 1000

 1 10 100 1000

(g) α=1.25 (h) α=1.24 (i) α=0.68

Fig. 7. Out-degree distribution of three web service networks (rows) of three matching
schemes (columns). X-axis is out-degree, and Y-axis of the first, second, and third rows
is the number of parameter, operation, and web service nodes, respectively.

are considered to be a “match” and consolidated. Therefore, Figure 6(c) has the
the smallest α and the largest tail among three.

In Figure 7, next, we examine the out-degree distributions of three web service
networks of three matching schemes. Unlike previous figures, by and large, out-
degree distributions no longer follow power law distributions well (although we
still fit them with power law functions). Nevertheless, it is evident to see the
existence of hub parameters, operations, or web services with huge number of
out-degrees while majority has only a few. In the parameter node networks ofMp

(first row of Figure 7), due to flexible matching, the number of nodes decrease
from left to right: 11,301 for Exact matching, 10,568 for Cosine (0.75), and 7,042
for WordNet (0.75). However, even though Figure 7(c) has the smallest number
of nodes of 7,042, it has the largest number of edges and biggest out-degree.
For example, a parameter node including (“name”, string) has 317 out-degrees
(to 2.7% of nodes) in Exact matching, 306 out-degrees (to 2.9% of nodes) in

Consine (0.75), and 1,378 out-degrees (to 19.57% of nodes) in WordNet (0.75).
The distributions between Figure 7(a) and Figure 7(b) show little difference with
respect to the number of nodes.

Unlike parameter node networks of Mp, all operation node networks of Mf
op

(second row of Figure 7) have 5,180 fixed operation nodes, but, from left to right,
the total number of edges becomes bigger from 22,253 to 25,174 to 184,429. The
fact that approximate matching scheme such as Cosine or semantic matching
scheme such as WordNet have more out-degrees indicates that information can
flow more flexibly among web services operations through many edges. In the
last row of Figure 7, the web services node networks of Mf

ws also have a fixed
number of 984 nodes, and out-degree increases from left to right. While some
edges in operation node networks include intra-connections within the same web
service, the edges of Mf

ws are amount to pure inter-connection among different
web services. Consequently, more cooperation with different web services can be
expected as we have more flexible semantic matching. Since one can invoke more
number of operations, in general, it gets easier to combine and compose multiple
web services [19].

Finally, we also examined the difference between partial vs. full invocation in
invoking operations. Due to space constraint, we do not present the results. The
finding is consistent with previous cases in that partial invocation based network
gets more edges for its more flexible matching that full invocation based one.

4 Conclusion

In this paper, we have studied the topology of web services network using real-
world data sets. To find out topological properties of the networks, we performed
extensive experiments on various node networks under a flexible matchmaking
framework that covers exact, approximate, and semantic matching. According
to our experiments, we have learned that: (1) Public web service networks show
small world network property well and follow a power law like distribution pat-
tern to some degree. However they do not fully show the maturity seen in other
complex networks yet; and (2) Semantic matching among web services generates
networks with higher degrees than exact or approximate matching does. This
suggests that more flexible web services composition can be achieved with the
increased semantics in web services matchmaking.

References

[1] R. Albert and A.-L. Barabasi. “Topology of Evolving Networks: Local Events and
University”. Phys. Rev. Lett., 85:5234–5237, 2000.

[2] V. De Antonellis, M. Melchiori, L. De Santis, M. Mecella, E. Mussi, B. Pernici,
and P. Plebani. “A Layered Architecture for Flexible Web Service Invocation”.
Software: Practice and Experience, 36(2):191–223, 2005.

[3] D. Bianchini, V. De Antonellis, B. Pernici, and P. Plebani. “Ontology-based
Methodology for E-service Discovery”. Information Systems, 31(4):361–380, 2006.

[4] D. Brickley and R. V. Guha (Eds). “Resource Description Framework
(RDF) Schema Specification 1.0”. W3C Recommendation, Mar. 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

[5] J. Bruijn (Ed.). “The Web Service Modeling Language WSML”, 2005.
http://www.wsmo.org/wsml/wsml-syntax.

[6] A. Budanitsky and G. Hirst. “Evaluating WordNet-based Measures of Semantic
Distance”. Computational Linguistics, 32(1):13–47, 2006.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. “Web Ser-
vices Description Language (WSDL) 1.1”. W3C Recommendation, 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[8] L. Clement et al. (Ed.). “UDDI Version 3.0.2”, 2004. http://uddi.org/pubs/uddi-
v3.0.2-20041019.htm.

[9] M. Dean and G. Schreiber (Ed.). “OWL Web Ontology Language Reference”,
2004. http://www.w3.org/TR/owl-ref/.

[10] P. J. Denning. “Network Laws”. Comm. ACM, 47(11):15–20, 2004.
[11] J. Fan and S. Kambhampati. “A Snapshot of Public Web Services”. SIGMOD

Record, 34(1):24–32, 2005.
[12] C. Fellbaum (Eds). “WordNet: An Electronic Lexical Database”. The MIT Press,

1998.
[13] A. Maedche and S. Staab. “Measuring Similarity between Ontologies”. In Euro-

pean Conf. on Knowledge Acquisition and Management (EKAW), Siguenza, Spain,
2002.

[14] D. Martin (Ed.). “OWL-S 1.1 Release”, 2005. http://www.daml.org/services/owl-
s/1.1/.

[15] B. Medjahed and A. Bouguettaya. “A Multilevel Composability Model for Seman-
tic Web Services”. IEEE Trans. on Knowledge and Data Engineering (TKDE),
17(7):954–968, 2005.

[16] J. Miller et al. “WSDL-S: Adding Semantics to WSDL - White Paper”, 2004.
http://lsdis.cs.uga.edu/library/download/wsdl-s.pdf.

[17] N. Mitra (Ed.). “SOAP Version 1.2 Part 0: Primer”. W3C Recommendation,
2003. http://www.w3.org/TR/2003/REC-soap12-part0-20030624/.

[18] M. E. J. Newman. “Power laws, Pareto distributions and Zipf’s law”. Contem-
porary Physics, 46:323–351, 2005.

[19] S.-C. Oh, D. Lee, and S. Kumara. “A Comparative Illustration of AI Planning-
based Web Services Composition”. ACM SIGecom Exchanges, 5(5):1–10, Dec.
2005.

[20] E. Rahm and P. Bernstein. “A Survey of Approaches to Automatic Schema
Matching”. VLDB J., 10(4):334–350, 2001.

[21] G. Salton and M.J. McGill. “Introduction to Modern Information Retrieval”.
McGraw–Hill, 1983.

[22] Y. Wang and E. Stroulia. “Semantic Structure Matching for Assessing Web Ser-
vice Similarity”. In Int’l Conf. on Service Oriented Computing, Trento, Italy,
2003.

[23] D. J. Watts and S. H. Strogatz. “Collective Dynamics of ‘Small-World’ Networks”.
Nature, 393(4):440–442, 1998.

[24] J. Wu and Z. Wu. “Similarity-based Web Service Matchmaking”. In IEEE Int’l
Conf. on Service Computing (SCC), Orlando, FL, USA, 2005.

[25] K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems”. SIAM J. Comput., 18(6):1245–1262, Dec.
1989.

� � � � � � � � � 	
 � � � � � �
 � � � �
 � � � � � � � � � � �

� � � � � � � � � � ! " # $ � % & ' � () * ! � � � +) ,) % � , � - * �) .) / � 0 �
1 2 3 4 5 6 2 7 8 6 9 3 4 3 : 3 ; 5 < = > ? 2 6 @ ; > 8 6 > : 9 3 A 4 2 7 B @ 4 ; 6 @ ; 2 6 > C ; @ D 6 5 7 5 E F G = 8 B C H

I A 4 > C ; @ D 6 5 7 5 E F J ; 9 ; 2 A @ D K ; 6 3 ; A L C 9 : M : N 2 L 8 N 2 A 2 M 4 O P Q R S Q T S L U 2 V 2 6

W X Y Z [\] Z ^ C D ; 4 6 @ A ; 2 9 4 6 E 2 ? 2 4 7 2 N 4 7 4 3 F 5 < _ ; N 9 ; A ? 4 @ ; 9 D 2 9 ` 2 > ; 3 D ; 2 @ R
@ : A 2 3 ; 2 6 > ; a @ 4 ; 6 3 > 4 9 @ 5 ? ; A F 2 6 > 9 ; 7 ; @ 3 4 5 6 5 < 3 2 A E ; 3 9 ; A ? 4 @ ; 9 2 6 4 ` V 5 A R
3 2 6 3 4 9 9 : ; b c _ d R B 4 9 2 7 2 6 E : 2 E ; 3 D 2 3 9 ; ` 2 6 3 4 @ 2 7 7 F > ; 9 @ A 4 N ; 9 _ ; N 9 ; A R
? 4 @ ; 9 3 5 < 2 @ 4 7 4 3 2 3 ; 2 : 3 5 ` 2 3 ; > 9 ; A ? 4 @ ; > 4 9 @ 5 ? ; A F 2 6 > 9 ; 7 ; @ 3 4 5 6 b C D 4 9 V 2 R
V ; A V A 5 V 5 9 ; 9 2 6 c _ d R B 9 ; A ? 4 @ ; ` 2 3 @ D ` 2 M 4 6 E ` ; @ D 2 6 4 9 ` 3 D 2 3 : 3 4 7 4 e ; 9
3 D ; ; ` ; A E 4 6 E 9 3 2 6 > 2 A > B f = J g d b 8 6 3 D 4 9 ` ; @ D 2 6 4 9 ` L 2 9 ; A ? 4 @ ; A ; h : ; 9 3 5 A
h : ; A 4 ; 9 9 ; A ? 4 @ ; A ; V 5 9 4 3 5 A 4 ; 9 ? 4 2 2 ` 2 3 @ D ` 2 M ; A N F : 9 4 6 E 3 D ; B f = J g d
h : ; A F 7 2 6 E : 2 E ; b C D ; ` 2 3 @ D ` 2 M ; A V ; A < 5 A ` 9 9 ; A ? 4 @ ; ` 2 3 @ D 4 6 E 2 6 > 5 A R
> ; A 4 6 E i 4 3 D 3 D ; D ; 7 V 5 < 2 B f = J g d h : ; A F ; 6 E 4 6 ; b j 9 4 6 E B f = J g d 2 9
3 D ; h : ; A F 7 2 6 E : 2 E ; 5 k ; A 9 9 ; ? ; A 2 7 2 > ? 2 6 3 2 E ; 9 3 D 2 3 2 A ; 6 5 3 V A 5 ? 4 > ; > N F
; l 4 9 3 4 6 E ` 2 3 @ D ` 2 M 4 6 E 9 F 9 3 ; ` 9 L 2 7 7 5 i 4 6 E @ 5 ` V 7 ; l 9 ; A ? 4 @ ; ` 2 3 @ D 4 6 E 2 6 >
A ; > : @ 4 6 E 3 D ; > 4 a @ : 7 3 F 5 < h : ; A F < 5 A ` : 7 2 3 4 5 6 b 8 6 2 > > 4 3 4 5 6 L 4 3 ` 2 M ; 9 3 D ;
2 A @ D 4 3 ; @ 3 : A ; 5 < 3 D ; ` 2 3 @ D ` 2 M 4 6 E 9 F 9 3 ; ` 7 5 5 9 ; 7 F R @ 5 : V 7 ; > 2 6 > 3 D 2 3 5 < 3 D ;
` 2 3 @ D ` 2 M ; A 7 4 E D 3 i ; 4 E D 3 b

m n o p q r s t u p v r o
w , #) x + ! # y � � 0 � � (z) � " *) x * # 0 � , + � { | # } * # � $ � { # * � * +) # , � } " # � ~ +) 0 � + � { � � * {) $ �
� (� , � * # " # { + �) ,) x + ! # * # � $ � { # * � & ~ +) 0 � + � { � � * {) $ # � (� * � , � ~ +) 0 � + # � y �) { # * *
x) � ") { � + � , z � | # } * # � $ � { # + ! � + y �) $ � � # * � y � � + � { ~ " � � { " � * *) x * # � $ � { # { � y � } � " � + � # *
� ! � " # � � ! # � � , z +) { " � # , + � * y # { � � { {) , * + � � � , + * � �) � � * {) $ # � � * # � $ � { # % � *) x + � � � #
� z # , + , # # � * � {) 0 y ~ + # � � � , + # � y � # + � } " # � # * { � � y + �) ,) x + ! # * # � $ � { # � , � � 0 # � , *
} (� ! � { ! +) � { { # * * � + � w | � � � � � � % | � � w � � � � , � | � � � � � � � � � � # # � � 0 y " # *) x
" � , z ~ � z # * � , � 0) � # " * + ! � + * # 0 � , + � { � " " (� # * { � � } # | # } * # � $ � { # * �

- , + ! � * y � y # � % � # x) { ~ *) , ~ * � , z w | � � � x) � � # * { � � } � , z | # } * # � $ � { # * } # { � ~ * #
� # � �) y + � 0 � + { ! � , z 0 # + !) � ~ * # � } (0 � , (* # � $ � { # 0 � + { ! 0 � ' # � * + ! � + � * } � * # �
) , + ! # w | � � � * # � $ � { # � # * { � � y + �) , � w | � � � � # * { � � } # * + ! # | # } * # � $ � { # * � , + # � 0 *
) x + ! # { � y � } � " � + � # *) � # � # � } � * # �) , + ! # | # } w , +) ") z (� � , z ~ � z # � w | � � � � � �

- , � + (y � { � " * { # , � � �) % � * # � $ � { # y �) $ � � # � � # * { � � } # * � � $ # � + � * # � * # � $ � { # * ~ * � , z
� , w | � � � {) 0 y " � � , +) , +) ") z (� , � * ~ } 0 � + * + ! # � � $ # � + � * # 0 # , + * +) � | # } * # � $ � { #
� # y) * � +) � (� & * # � $ � { # � # � ~ # * + # � � ~ # � � # * + ! # � # y) * � +) � (} ({ � # � + � , z � * # � $ � { # � # � ~ # * +
~ * � , z + ! #) , +) ") z (� � ! # � # y) * � +) � (0 � + { ! # * � # z � * + # � # � � � $ # � + � * # 0 # , + * +) + ! #
� # � ~ # * + } (y # � x) � 0 � , z � , x # � # , { # *) , + ! # {) , { # y + ! � # � � � { ! (� , �) � � # � * + ! # � # * ~ " + *
} � * # �) , + ! # � # z � # #) x 0 � + { ! } # + � # # , + ! # � # � ~ # * + � , � � � $ # � + � * # 0 # , + * � � � , { #
� ~ # � � # * � � # x) � 0 ~ " � + # � ~ * � , z � ,) , +) ") z (� � + ! # � + ! � , � ! � z ! � " # $ # " � ~ # � (" � , z ~ � z # %
� ~ # � � # * � � # � ~ � + # � � � { ~ " + +) {) 0 y) * # � , � + ! # � # y) * � +) � (~ * ~ � " " () , " (* ~ y y) � + *
* � 0 y " # � ~ # � � # * � � ~ � + ! # � 0) � # % + ! # * (* + # 0 , # # � * +) � 0 y " # 0 # , + � y �) y � � # + � � (� ~ # � (
, z � , # } # { � ~ * # # � { ! * (* + # 0 ~ * # * � � � � # � # , + 0 � + { ! � , z 0 # + !) � �

� ! # � # { # , + " (� y y �) $ # � * + � , � � � � | � � � # *) ~ � { # � � � 0 # �) � ' � | � � � � � � � � # � , # *
{) , $ # , + �) , * � # " � + # � +) 0 � , � z � , z | # } * # � $ � { # * % � ! � { ! � 0 y �) $ # * * # $ # � � " � * y # { + *
) x + ! # * # * # � $ � { # * +) 0 � ' # + ! # 0 0) � # � � # � ~ � + # x) � z � � � � y y " � { � + �) , * � - + � # � , # * �
� � � � � � � 	
 � � + ! � + � # * { � � } # * + ! # � # " � + �) , * ! � y } # + � # # , � * # � $ � { # � , � � � # *) ~ � { # � - ,
+ ! � * # , $ � �) , 0 # , + % � # *) ~ � { # * � � # � � * {) $ # � # � } (� � # , + � x (� , z + ! # | # } * # � $ � { # * + ! � +
� , + # � � { + � � + ! + ! # 0 � � # *) ~ � { # � � * {) $ # � (� , + ! # z � � � � * { ~ � � # , + " (} � * # �) , + # � +
0 � + { ! � , z � � � � � # � + 0 � + { ! � , z � } � * # � � # *) ~ � { # � � * {) $ # � (% !) � # $ # � % � * ,) + � x # � * � } " #
*) " ~ + �) , x) � z � � � * ! � $ � , z � " � � z # , ~ 0 } # �) x � # *) ~ � { # * � � + ! � � � # � # , + { � y � } � " � + � # *
� � * + � � } ~ + # � � { �) * * � � � # � # , +) � z � , � � � + �) , * �

� ! � * y � y # � y �) y) * # * � , # � w | � � � * # � $ � { # 0 � + { ! 0 � ' � , z 0 # { ! � , � * 0 } � * # �
) , + ! # � & � � � ~ # � (" � , z ~ � z # � � � + ! � + � * � } " # +) * ~ y y) � + * # 0 � , + � { � # *) ~ � { #
0 � + { ! � , z � � + ! � , � z � � � � | # # , $ � * �) , * # � $ � { # � # y) * � +) � � # * � � + ! � � & � � � ~ # � (
y �) { # * * � , z { � y � } � " � + (� � , � � 0 � + { ! 0 � ' # � + ! � + * # � $ # * � # � ~ # * + # � � ~ # � � # * � & * # � $ � { #
y �) $ � � # � ~ * # * + ! # w | � � �) , +) ") z (+) � # * { � � } # � * # � $ � { # % } ~ + � * # � $ � { # � # � ~ # * + # �
x) � 0 ~ " � + # * � � ~ # � (~ * � , z � & � � * # , + +) � 0 � + { ! 0 � ' # � �

w , � # { # � $ � , z � � # � ~ # * + # � � ~ # � (% + ! # 0 � + { ! 0 � ' # � x) � � � � � * � + +) � � # y) * � +) � (
� , � � # { # � $ # * � ~ # � (� # * ~ " + * � � ! # 0 � + { ! 0 � ' # � , # # � * +)) � � # � � # * ~ " + * } # { � ~ * # # � + ! # �
+ ! # (� � # � , ! # � # , + " (~ ,) � � # � # �) � + ! # (� � #) � � # � # � � , � � � (+ ! � + � * ,) + } � * # �) ,
{ " � * * * ~ } * ~ 0 y + �) , � # " � + �) , * ! � y * � �) + ! � * # , � % + ! # 0 � + { ! 0 � ' # � � # � � � + # * + ! # � # �
� ~ # * + # � � ~ # � (} # x) � # * # , � � , z � + +) � � # y) * � +) � (*) + ! � + � ~ # � (� # * ~ " + * � � " " {) , + � � ,
� " " � , x) � 0 � + �) , , # { # * * � � (x) � � # * ~ " +) � � # � � , z � � ! � * y � y # � y �) y) * # * + �) 0 # { ! � �
, � * 0 * � � 	 �
 �
 � �
 � � � � � � , �
 � � 	 � � �
 � �
 � � � + ! � + # , � } " # + ! # 0 � + { ! 0 � ' # � +)) � � # �
� ~ # � (� # * ~ " + * } � * # �) , { " � * * * ~ } * ~ 0 y + �) , � # " � + �) , * ! � y * � � ! # 0 � + { ! 0 � ' # � � " *)
� " ") � * � � # � ~ # * + # � +) * # + � ,) � � # � � , z y � # x # � # , { # } � * # �) , * # � $ � { # { ! � � � { + # � � * + � { * �

� * � , z � & � � +) x) � 0 ~ " � + # � * # � $ � { # � # � ~ # * + y �) $ � � # * + ! # x) " ") � � , z � � $ � , �
+ � z # * �

� � � � � � � � � � �
 � � �
 � � � � � � � � � � � �
 � � � � � � �
 � � � � � � � � � � , { # � & � � � * � * + � , �
� � � � � ~ # � (" � , z ~ � z # % + ! # � # y) * � +) � (�) # * ,) + , # # � +) � � # , + � x (� ! # + ! # � �
� ~ # � ({) 0 # * x �) 0 � 0 � + { ! 0 � ' # � � � ~ � + ! # � 0) � # % + ! # � # y) * � +) � ({ � , ~ * # # � � * + �
� , z � & � � � ~ # � (# , z � , # * � � �

� ! � � � � � � � � � 	 � � � � "
 � � � � � � � 	
 � � & 0 � + { ! 0 � ' # � { � , # � * � " (* � � + { ! x �) 0) , # � # y) * �
� +) � (+) � ,) + ! # �) � * # , � � * � 0 ~ " + � , #) ~ * � ~ # � (+) 0 ~ " + � y " # � # y) * � +) � � # * �

� ! � � � � � � � � � � � " � � � � " # �
 � � ! # 0 � + { ! 0 � ' # � 0 ~ * +) , " (y # � x) � 0 " � z ! + � # � z ! +
+ � * ' * * ~ { ! � * � ~ # � (� # � � � + � , z � , � � # * ~ " +) � � # � � , z % � ! � " # + ! # ! # � $ (� # � z ! +
+ � * ') x * # � $ � { # 0 � + { ! � , z � * y �) $ � � # � } (� $ * + � , � � � � $ � & � � � ~ # � (# , z � , #
� , � � # y) * � +) � (* (* + # 0 �

� % � � � � � & � �
 ' � � � � " � � � � � � � & � # � ~ # * + # � { � , ~ * # + ! # � � { ! � & � � {) , * + � ~ { + *
� # � z � %) y + �) , � " % � " + # � � , z % � , � ~ , �) , � � ~ � � , z * # � $ � { # � # � ~ # * + * � � ~ � + ! # � 0) � # %
� & � � � , ! # � # , + " (* ~ y y) � + * *) 0 # *) � + *) x z � � � � # *) ~ � { # 0 � + { ! � , z �

� & } � " � + (+) ~ * # * + � , � � � � � () � * ! � 	 �
 �
 � � 	 � � � � � + , ! - �
 � " � � . � � , � �
 � �
� � � � � � � � / � � , {) 0 0 ~ , � { � + �) , * } # + � # # , � � # � ~ # * + # � � , � + ! # 0 � + { ! 0 � ' # � � , �
} # + � # # , + ! # 0 � + { ! 0 � ' # � � , � + ! # � # y) * � +) � (�

0 C D ; B f = J g d h : ; A F ; 6 E 4 6 ; @ 5 : 7 > N ; 2 3 3 2 @ D ; > 3 5 3 D ; ` 2 3 @ D ` 2 M ; A 5 A 2 9 3 2 6 > R 2 7 5 6 ;
` 5 > : 7 ; b 1 5 i ; ? ; A L i ; 2 > 5 V 3 ; > 3 D 4 9 2 V V A 5 2 @ D N ; @ 2 : 9 ; i ; ; 6 ? 4 9 4 5 6 2 < : 3 : A ; 4 6 i D 4 @ D
` 2 6 F J 2 3 A ; V 5 9 4 3 5 A 4 ; 9 2 A ; 7 5 @ 2 3 ; > N ; D 4 6 > 2 B f = J g d h : ; A F ; 6 E 4 6 ; b

� ! # � # * +) x + ! # y � y # � � *) � z � , � � # � � * x) " ") � * � � # { + �) , � } � � # � (� # * { � � } # * + ! #
* # 0 � , + � { 0 � � ' ~ y x) � | # } * # � $ � { # * % w | � � � % � , � + ! # � & � � � ~ # � (" � , z ~ � z # �
� # { + �) , � � # $ � # � * � # " � + # � �) � ' � � # { + �) , � � # * { � � } # * + ! # y �) y) * # � 0 � + { ! 0 � ' � , z
0 # { ! � , � * 0 � � # { + �) , � � # * { � � } # * * # 0 � , + � { � # *) ~ � { # 0 � + { ! � , z � , + ! # � � � � � � ! # � , � "
* # { + �) , � � * { ~ * * # * � � $ � , { # � ~ * #) x � & � � x) � * # � $ � { # � , � � # *) ~ � { # 0 � + { ! � , z %
� , �) ~ + " � , # * x ~ + ~ � # � { + � $ � + � # * �

� � � u � � q r t o s

� � 	
 � � �
w | � � � � � � � * � ,) , +) ") z () x * # � $ � { # {) , { # y + * x) � � # * { � � } � , z + ! # y �) y # � + � # * � , �
{ � y � } � " � + � # *) x � # } * # � $ � { # * � , � 0 � { ! � , # � , + # � y � # + � } " # x) � 0 � - + {) , * � * + *) x + ! � # #
0 � � , y � � + * � { " � * * # * � + ! # � � � � � � � � � � � � � � % � � � � � � � � � � � � % � , � � � � � � � � � � � � � � � � �
� ! # � � � � � � � � � � � � � � � * ~ * # � x) � � � $ # � + � * � , z � , � � � * {) $ # � � , z * # � $ � { # * � - + � , �
{ " ~ � # * + ! � # # } � * � { + (y # *) x � , x) � 0 � + �) , � � ! � +) � z � , � � � + �) , y �) $ � � # * + ! # * # � �
$ � { # � # � z � % {) , + � { + � , x) � 0 � + �) , � % � ! � + x ~ , { + �) , + ! # * # � $ � { # {) 0 y ~ + # * � # � z � % � , y ~ + *
� , �) ~ + y ~ + * � � , � � ! � + { ! � � � { + # � � * + � { * + ! # * # � $ � { # ! � * � # � z � % * # � $ � { # { � + # z) � (� �
� ! # � � � � � � � � � � � � z � $ # * � � # + � � " # � � # * { � � y + �) ,) x � * # � $ � { # ! *) y # � � + �) , � , � + ! #
� � � � � � � � � � � � � � � * y # { � � # * + ! # � # + � � " *) x !) � +) � { { # * * + ! # * # � $ � { # �

& { " � * * � � � � � � � * � 0 y " (} � , � * + ! # + ! � # # y � � + * +) z # + ! # � � , +) � ~ , � + $ � � + ! � # #
) } / # { + y �) y # � + � # * � " � � � � � # � � +) + ! # � � � � � � � � � � � � � � � % � � � � � � $ � � $ % � +) + ! #
� � � � � � � � � � � � � � , � � � " " � � # � � +) + ! # � � � � � � � � � � � � � � � � �

� � , { # � � � � � � � � � � � � � � � * ~ * # � x) � * # � $ � { # � � * {) $ # � (% + ! � * y � y # � 0 � � , " (� # � " *
� � + ! + ! # { " � * *) � { " � * * # * + ! � + # � + # , � + ! # � � � � � � � � � � � � � � �

� � � � & ' () �) * + , - � . / 0 * . 0 +
� & � � {) , * � * + *) x � � ~ # � (" � , z ~ � z # � � � % � 0 # � , *) x {) , $ # (� , z � � ~ # � (+) �
� ~ # � (y �) { # * *) � � � / � % � , � + ! # 1 � � x) � 0 � + � , � ! � { ! � ~ # � (� # * ~ " + * � � " " } # � # + ~ � , # �
� . � � � ! # * y # { � � { � + �) , � * { ~ � � # , + " (~ , � # � � � * { ~ * * �) , � * � | � 2 |) � ' � , z � � � x + } ~ +
+ ! # � $ � � " � } � " � + () x * # $ # � � " � & � � � ~ # � (# , z � , # * � � 0 # � , * + ! � + + ! # * y # { � � { � + �) ,
� * z # + + � , z * + � } " # x) � + ! # y � � { + � { � " ~ * # �

� ! # � & � � � ~ # � (" � , z ~ � z # � * } � * # �) , 0 � + { ! � , z z � � y ! y � + + # � , * � � ! #
* � 0 y " # * + y � + + # � , � * + ! # �
 �� � � � " � � �
 � {) , * � * + � , z) x * ~ } / # { + % y � # � � { � + # % � , �) } / # { + �
& , () � � " ") x * ~ } / # { + % y � # � � { � + # % � , �) } / # { + $ � " ~ # * 0 � (} # � # y " � { # � } (� $ � � � � } " #
y � # � � # � � � + ! # � + ! # � $ 3 4) � $ 5 4 � 2) 0 } � , � , z + � � y " # z � $ # * � 6 " � � � �
 " � � � " � � �
 � %
� ! # � # � , # � � { + 0 � + { ! +) � z � � y ! � * , # # � # � +) x ~ " � " " � y � + + # � , �

� ! # � ~ # � (} # ") � � , � * � * # � $ � { # � }) ~ , � +) $ � � � � } " # 3 7 � + ! � + ! � * � � � � � � � � � � � � � � �
� }) ~ , � +) 3 8 � � !) * # + (y # * � { " � * * # *) x � + * + �) " � 9 : ; � < � " � # $ � " ~ # * � }) ~ , � +) 3 = > �� , � 3 = > ? � � � # 9 < � " � # @ � , � 9 < � " � # A % � # * y # { + � $ # " (�
� B C D < E � � 9 F : # # " 9 G G H H H I � ; J � I � � G � � � � � � � � G � H � K � G @ I @ G � � � � � � � I � H � L M
� B C D < E " � 9 F : # # " 9 G G H H H I � ; J � I � � G � � � � � � � � G � H � K � G @ I @ G � � � � � � � I � H � L M
� B C D < E � � � 9 F : # # " 9 G G H H H I H N I � � G @ O O O G P A G A A K � � � K � % � # ; Q K � � L M
R S � C F : # # " 9 G G H H H I � H � K � � # � � � � � � I � � J G � � � ; J � � I � H � L M

� C � C � � 3 7 � � C B C 3 7 � � 9 " � � � � � # � 3 8 I
3 8 " � 9 : ; � < � " � # 3 = > � I 3 = > � � � � 9 # % " � 9 < � " � # @ I
3 8 " � 9 : ; � < � " � # 3 = > ? I 3 = > ? � � � 9 # % " � 9 < � " � # A I
� ! # � B C D < E ' # (�) � � � * *) { � � + # * � y � # � � " � } # " � � + ! � � � - � , � R S � C ' # (�) � �
� # � , # * + ! # } � * # � � � - +) � # *) " $ # � # " � + � $ # � � - * � � ! # � C � C � � { " � ~ * # � , � # , + � � # *
+ ! # $ � � � � } " # * +) � y y # � � � , + ! # � ~ # � (� # * ~ " + * � , � + ! # � � C B C { " � ~ * # {) , + � � , * �
z � � y ! y � + + # � , �

� & � � y �) $ � � # *) + ! # � z � � y ! y � + + # � , * x) � {) 0 y " # � 0 � + { ! � , z * ~ { ! � * � � �
� � � � " � �
 " � � � " � � �
 � x) � 0 � + { ! � , z * # 0 � � * + � ~ { + ~ � # � � � � z � � y ! * % " � � �
 � " � � ' � �
 " � �
� " � � �
 � x) � {) 0 } � , � , z z � � y ! y � + + # � , * *) + ! � +) , #) x * # $ # � � " � " + # � , � + � $ # z � � y !
y � + + # � , * 0 � (0 � + { ! % � , � � " � � �
 � � � � � " � � � �
 " � � � � ! # � # y � + + # � , * � � # 0 � + { ! # �
� z � � , * + , � 0 # � z � � y ! * � - + � " *) y �) $ � � # * $ � " ~ # {) , * + � � � , + * � ! � { ! � # * + � � { + � � �
+ # � 0 * � , � *) " ~ + �) , � � & � � � , { " ~ � # * � , ~ 0 } # �) x * (, + � � * !) � + { ~ + * + ! � + * � 0 y " � x (
+ ! # � � � + � , z) x y � + + # � , * � �) � # � � 0 y " # % + � � y " # y � + + # � , * * ! � � � , z + ! # * � 0 # * ~ } / # { +
� , � y � # � � { � + # { � , } # � � � + + # , ~ * � , z + ! # $ % 4 ,) + � + �) , � # � z � % + � � y " # * � � + ! y � # � � �
{ � + # " � 9 : ; � < � " � # � , + ! # � ~ # � (� }) $ # { � , } # � � � + + # , � * 3 8 " � 9 : ; � < � " � # 3 = > � �3 = > ? I � � , � � � � 9 # % " � { � , } # � # y " � { # � � � + ! ' # (�) � � $ � 4 �

� � � 	 � p � s
 r q �

� � 	
 � � � � + � . / � � � . � � � . � � / 0
w $ # � + ! # " � * + x # � (# � � * % � # * # � � { ! # � * ! � $ # y �) y) * # � * # $ # � � " * # 0 � , + � { 0 � + { ! � , z
0 # + !) � * � � � � � � * + ! # � � * + 0 # + !) � + ! � + y �) $ � � # * � , � " z) � � + ! 0 x) � 0 � + { ! � , z * # � $ � { #
� � $ # � + � * # 0 # , + * � , � � # � ~ # * + * } � * # �) , * # � $ � { # � , y ~ + * � , �) ~ + y ~ + * � & , � � $ # � + � * # �
0 # , + 0 � + { ! # * � � # � ~ # * + � ! # , " � �
 � � 	 � � � � 	 � � 	 � � � � # 0 � + { ! # � } (� � $ # � + � * # 0 # , +
) ~ + y ~ + * % � , � " � � " � ' �
 � � � � � � � � � � � 	 � � � � # 0 � + { ! # � } (� # � ~ # * + � , y ~ + * � � ! � * { ! � � �
� { + # � � * + � { z ~ � � � , + # # * + ! � + + ! # 0 � + { ! # � * # � $ � { # y �) $ � � # * � " ") ~ + y ~ + * � # � ~ # * + # �
} (+ ! # � # � ~ # * + # � % � , � + ! � + + ! # � # � ~ # * + # � y �) $ � � # * � " " � , y ~ + � # � ~ � � # � x) � {) � � # { +
) y # � � + �) , +) + ! # 0 � + { ! # � * # � $ � { # �

�) � # * y # { � � { � " " (% � , � � $ # � + � * # 0 # , +) ~ + y ~ +) ~ + & # � � { + " (0 � + { ! # * � � # � ~ # * +
) ~ + y ~ +) ~ + � � ! # , � + � * � � # , + � { � " � � + !) ~ + �) � � ! # ,) ~ + � � * � , � 0 0 # � � � + # * ~ } �
{ " � * *) x) ~ + & � - x) ~ + & * ~ } * ~ 0 # *) ~ + � + ! # , + ! � * � * {) , * � � # � # � � " ~ z � � , 0 � + { ! �
{) , $ # � * # " (% � x) ~ + � * ~ } * ~ 0 # *) ~ + & % + ! # , + ! � * � * {) , * � � # � # � � � ~ } * ~ 0 # 0 � + { ! � - x
,) * ~ } * ~ 0 y + �) , � # " � + �) , * ! � y � y y # � � * } # + � # # ,) ~ + & � , �) ~ + � % + ! # , + ! � * � * {) , �
* � � # � # � � � � � " 0 � + { ! � � � + { ! � , z) x � , y ~ + * � , $) " $ # * � * � 0 � " � � {) 0 y ~ + � + �) , 0 # + !) �
} ~ + � # $ # � * # * + ! #) � � # �) x � # � ~ # * + � , � � � $ # � + � * # 0 # , + �

� ! # x) " ") � � , z 0 � + { ! � , z 0 # + !) � * � � # } � * # �) , � � � � � � � � � � � � * � , # � * � 0 � " � � � + (
0 # + � � { * � , + # � * # { + �) , +) � # + # { + � ! # , � , � � $ # � + � * # 0 # , + * � + � * � # *) , " (*) 0 # x # � + ~ � # *
) x � � # � ~ # * + % � ! # � # � * � � � � x ~ � + ! # � # � � 0 � , # * � # " � + �) , * ! � y * � 0) , z { " � * * # * � , � + ! # � �
y �) y # � + ({ " � * * # * � � � � � � , � � � � � � � � * (, + � { + � { * � 0 � " � � � + (� , � � � � � � � � * * # � $ � { # { � + �
z) � (0 � + { ! � , z � , � ~ * # � � � # � , # � 0 � + { ! � , z +) * # 0 � , + � { 0 � + { ! � , z � � � � � y �) y) * # *
� � � + ! # � � � � # � # , + 0 � + { ! � , z � y y �) � { ! � - + {) 0 y ~ + # * + ! # } # * + {) 0 } � , � + �) , *) x | # }
* # � $ � { # * +) y �) $ � � # + ! # 0) * + * � + � * x � { +) � (� # � ~ # * +) ~ + y ~ + * � ! � " # � # � ~ � � � , z + ! # " # � * +
y) * * � } " # � , y ~ + * + ! � + � � # ,) + y �) $ � � # � � , + ! # � # � ~ # * + �

& " " 0 � + { ! 0 � ' � , z * (* + # 0 * % !) � # $ # � % ~ * #) , +) ") z () � � # * { � � y + �) , ") z � { � , * # � �
$ � { # � # � ~ # * + * � , * + # � �) x � ! � z ! � " # $ # " � ~ # � (" � , z ~ � z # * ~ { ! � * � & � � � � ~ � + ! # � �
0) � # % } # { � ~ * # + ! # * (* + # 0 * ! � $ # � � � # � # , + 0 � + { ! � , z 0 # + !) � * % + ! # (~ * # y �) y � � # + � � (
0 � + { ! � , z # , z � , # * �

� � � (+ � � * , � + � � � � � � + , - � / � + � , � �

� ! # z � � � 0 � � � " # � � � # % � ") } ~ * �)) " ' � + � � � � � � / � � � % y �) $ � � # * � * # � $ � { # % { � " " # �
+ ! # - , � # � � # � $ � { # � � � % + ! � + x � { � " � + � + # * z � � � � # *) ~ � { # 0) , � +) � � , z � , � � � * {) $ # � (�
� ! � * * # � $ � { # {) " " # { + * � � + � x �) 0 $ � � �) ~ * *) ~ � { # * � , � y ~ } " � * ! # * + ! # 0 � * 1 � �
�) { ~ 0 # , + * � � ! � * * # � $ � { # y �) $ � � # * * + � ~ { + ~ � # � � 1 � � � � � + � } ~ + � � + !) ~ + * # 0 � , + � {
{) , * + � � � , + * � � � � � � � � . � � * � x � � 0 # �) � ' +) * ~ y y) � + � ~ +) 0 � + � { * # � $ � { # � � * {) $ # � (
� , � 0) , � +) � � , z � , + ! # z � � � � - + � # * { � � } # * + ! # 0 # + � � � + �) x | � � � # *) ~ � { # * ~ * � , z
w | � � �) , +) ") z (� , � y �) $ � � # * � , # � { � # , + 0 # { ! � , � * 0 +) � z z � # z � + # � , � 0 � � , + � � ,
+ ! #) , +) ") z (� , * + � , { # * � � � � � � % !) � # $ # � % � * � ' � , �) x � , � , � # � * # � $ � { # � � + ! # �
+ ! � , � 0 � + { ! 0 � ' � , z * (* + # 0 � w ~ � 0 � + { ! 0 � ' � , z * (* + # 0 { � , �) � ' � � + ! � � � � �
+) y �) $ � � # * # 0 � , + � { � # *) ~ � { # � � * {) $ # � (� , � * # " # { + �) , � , + ! # z � � � �

2 " � * * � � � � / � � * � 0 � + { ! 0 � ' � , z x � � 0 # �) � ' +) � # *) ~ � { # 0 � , � z # 0 # , + � , � � * �
+ � � } ~ + # � # , $ � �) , 0 # , + � � + ! � # { # , + � � " � � # �) � , # � * ! � y) x � # *) ~ � { # * � - , + ! � * x � � 0 # �
�) � ' % � * # � $ � { # � � $ # � + � * # 0 # , + � , � � # � ~ # * + � � # x) � 0 ~ " � + # � ~ * � , z � * # 0 � � * + � ~ { + ~ � # �
� � + � 0) � # " { � " " # � { " � * * � � # � � � $ # � + � * # 0 # , + * � { " � * * � � � � ! � { ! {) , * � * + *) x � + + � � } ~ + # �
$ � " ~ # y � � � * � & 0 � + { ! 0 � ' # � 0 � + { ! # * + ! # � � $ # � + � * # 0 # , + � , � + ! # � # � ~ # * + } � * # �
) , {) , * + � � � , + * * y # { � � # � } (� + + � � } ~ + # * � , + ! # { " � * * � � * � � ! � * x � � 0 # �) � ' % !) � # $ # � %
) , " (� " ") � * � 6 � � " � �
 " � � " � � � % + ! � + � * % 0 � + { ! � , z � * � , z " # � # � ~ # * + � � + ! � * � , z " #
� # *) ~ � { # � � � � � # � + # , � * + ! # �) � ' *) + ! � + � * � , z " # � # � ~ # * + { � , } # 0 � + { ! # � � � + !
0 ~ " + � y " # � + (y # *) x � � # *) ~ � { # * � � " � � � " � � � � �

� # � " � , # � � � � � * � z � � � 0 � + { ! 0 � ' � , z * (* + # 0 + ! � + � # � , + # � y � # + * 0 � + { ! � , z � * �
{) , * + � � � , + y �) } " # 0 � , � # � y ") � + * {) , * + � � � , + � *) " $ � , z + # { ! ,) ") z � # * +) � 0 y " # 0 # , +
0 � + { ! � , z) y # � � + �) , * � - + y �) $ � � # * + �) , # � 0 � + { ! � , z 0 # + !) � * � ! � { ! � � # ,) + * ~ y �
y) � + # � } ({ " � * * � � � � � � � " � � � � , � � � � �
 	 � 	 � � " � � � � � ! # x) � 0 # � 0 � + { ! # * } # + � # # ,
� � # � ~ # * + � , � � � # *) ~ � { # * # + � � + ! y � � + � { ~ " � � � z z � # z � + # � y �) y # � + � # * � ! # � # � * + ! #
" � + + # � 0 � + { ! # * } # + � # # , 0 ~ " + � y " # � # � ~ # * + * � , � � � # *) ~ � { # �

w , +) ") z (� } � * # � � � + { ! 0 � ' # � � w � � � � � � � � * � ,) , +) ") z (� } � * # � � # *) ~ � { # * # �
" # { +) � x) � *) " $ � , z � # *) ~ � { # 0 � + { ! � , z � , + ! # z � � � � � # *) ~ � { # * � , � � # � ~ # * + * � � #
� # * { � � } # � } (� � � � # � # , + �) , +) ") z � # * � , � + ! # (� � # 0 � + { ! # � ~ * � , z 0 � + { ! � , z � ~ " # * �
� ! # 0 � + { ! 0 � ' # � { � , } # # � * � " (# � + # , � # � } (� � � � , z $) { � } ~ " � � � # * � , � � , x # � # , { #
� ~ " # * +) � , { " ~ � # , # � {) , { # y + * � }) ~ + � # *) ~ � { # * � � � ' # { " � * * � � � % w � � * ~ y y) � + *
} � " � + # � � " 0 � + { ! � , � z � , z 0 � + { ! �

2 " � * * � � � , � � # � " � , # % !) � # $ # � % � � # } � * # �) , + # � + 0 � + { ! � , z � � + ! # � + ! � , * # 0 � , �
+ � { 0 � + { ! � , z � � ~ � + ! # � 0) � # % + ! # (�) ,) + ~ * #) , +) ") z (x) � * # � $ � { # � � $ # � + � * # 0 # , +
� , � � # � ~ # * + � w , + ! #) + ! # � ! � , � % w � � * ~ y y) � + * * # 0 � , + � { 0 � + { ! � , z x) � � # *) ~ � { #
� � * {) $ # � (� - + % !) � # $ # � % ~ * # * y �) y � � # + � � () , +) ") z (+) � # * { � � } # � # *) ~ � { # * � � � 0 � " � �
+) + ! # w | � � � 0 � + { ! 0 � ' # � * % � � # *) ~ � { # � # � ~ # * + � * x) � 0 ~ " � + # � ~ * � , z) , +) ") z (� , �
� * y # { � � " 0 � + { ! � , z # , z � , # � * , # # � # � +) y �) { # * * + ! # � # � ~ # * + �

Query
Rewriting

SPARQL
Interface

SPARQL
Query
Engine

OWL-S/RDF
Data

Repository

Client
Interface

Matchmaker RDF Repository System

query rewritten
query

SPARQL query

query

Service
Requester

Service
Provider
Service
Provider
Service
Provider

unordered
results +

Information
for result
ordering

Result
Orderingordered

results
ordered
results

register
Query

Rewriting

SPARQL
Interface

SPARQL
Query
Engine

OWL-S/RDF
Data

Repository

Client
Interface

Matchmaker RDF Repository System

query rewritten
query

SPARQL query

query

Service
Requester

Service
Provider
Service
Provider
Service
Provider

Service
Provider
Service
Provider
Service
Provider

unordered
results +

Information
for result
ordering

Result
Orderingordered

results
ordered
results

register

� � � ^ � ^ B F 9 3 ; ` 2 A @ D 4 3 ; @ 3 : A ;

� � � � � � 	
 � � � � s
 	
 � � � q � v u � � � p u � � � � v o �

� � z � � y � # * # , + * + ! # } � * � { � � { ! � + # { + ~ � #) x + ! # y �) y) * # � 0 � + { ! 0 � ' � , z * (* + # 0 � &
� # � ~ # * + # � * # , � * � � & � � � ~ # � (� * � * # � $ � { # � # � ~ # * + +) � 0 � + { ! 0 � ' # � + ! �) ~ z !
� { " � # , + � , + # � x � { # � � ! # 0 � + { ! 0 � ' # � � # � � � + # * + ! # � ~ # � (� , � * # , � * + ! # � # � � � + + # ,
� ~ # � (+) � � # y) * � +) � (* (* + # 0 � � ! # � ~ # � (� * � # � � � + + # , * ~ { ! + ! � + 0 � + { ! � , z � # �
* ~ " + * � # + ~ � , # � } (+ ! # � # y) * � +) � (� � " " {) , + � � , + ! # � , x) � 0 � + �) , , # { # * * � � (x) � � # * ~ " +
) � � # � � , z � � � + { ! � , z � # * ~ " + * � � #) � � # � # � } � * # �) , + ! # � # z � # #) x 0 � + { ! } # + � # # ,
+ ! # � ~ # � (� , � � + * � # * ~ " + � , z * # � $ � { # * � , � + ! #) � � # � # � � # * ~ " + * � � # � # + ~ � , # � +) + ! #
� # � ~ # * + # � �

& � & � � � ~ # � (+ � # � + * � , � � � z � � y ! y ~ � # " (� * � � + � % � � # � � + �) # * ,) + � , + # � �
y � # + � � � * { ! # 0 � � , x) � 0 � + �) ,) � # , + � � " 0 # , + * � � ! # � ~ # � (% !) � # $ # � % { � , } # � * * ~ # �
+) � , � , x # � � # � z � � y ! % + ! ~ * � " ") � � , z � ~ # � () $ # � + ! # # , + � � " 0 # , + * � - , + ! � * y � y # � % � #
� * * ~ 0 # + ! � + � , � � � � + �) , +) * +) � � , z w | � � � * # � $ � { # � , * + � , { # * � � + ! + ! # � � * { ! # 0 � %
� , � � � � # y) * � +) � (y �) $ � � # * � , � , x # � � # � z � � y !) x + ! # � , * + � , { # * � � ! # x) � 0 # � � *
{ � " " # � 	 � � � - �

 � � �
 " � � � � � � � � � � % � ! # � # � * + ! # " � + + # � � * { � " " # � � � - �

 � � �
 " � �
� = � � � � � � ? � = � � � � � � * � � ~ # � (! * � # x � ~ " + z � � y ! % � , � � � � � � � � * � { { # * * # � + ! �) ~ z !
+ ! # � & � � , � 0 # � z � � y ! 0 # { ! � , � * 0 �

� ! # � # * +) x + ! � * y � y # � � � " " � y y " (+ ! # x) " ") � � , z � # � , � + �) , * � & z � � y ! y � + + # � ,
� , + ! # � # � , � + �) , * � * 0 � + { ! # � � z � � , * + = � � � � � � �) � * � 0 y " � { � + (% � & � � y � # � �
' # (�) � � * � , � " � } # " * � � # � " � � (*) 0 � + + # � x �) 0 � � ~ # � (� , � z � � y ! y � + + # � , � , �
* (, + � � * !) � + { ~ + * � � # � " � � (* ~ * # � �
� + � / � � � / 	 � � (y # � 0 � + { ! � , z � ~ # � (z � � y ! y � + + # � , � + (y # � 0 � + { ! � , z y � + + # � , � � � �
� 3 8 � 3 � � � � � � � � � 3 � � � ! 3 � � � � " # � ! � � � 3 � � � " # ! $ � � � � % � � � " � " �
 " � �
� " � � �
 � � � " � � " � � � � � & ' " � 	 � � � - �
 � � � � " � � � � � � � �
 � � �
 � � � � � � ' " � 	 � � � � � � � � � -
 � �� � � � � ' � � " � � � � # � (� � � (#) � � � � " � � � � � � � + � � z # + y �) y # � + (� y � # � � { � + # " � � # � (� � � (#
� � � " � � � � � � � + � � z # + y �) y # � + ($ � " ~ # � + y $ � { " � * * # * *)
� + � / � � � / � � � # " � + � $ # { " � * * # * � - � � " � � # � � � � 	 � � " � � � � � � 	 � �
 � � " � � � � " � � � 	 6 �
� � " � � � � + � � � � 	 � � � � # ,)
- _ D ; 6 2 A ; 9 5 : A @ ; 4 9 > ; . 6 ; > 2 9 2 6 4 6 9 3 2 6 @ ; < A 5 ` @ 7 2 9 9 / 4 6 0 1 2 3 4 5 L 4 3 4 9 4 6 < ; A A ; > 2 9

4 6 9 3 2 6 @ ; 9 < A 5 ` / 6 9 9 : N @ 7 2 9 9 ; 9 4 6 7 1 2 3 4 5 b8 1 ; 6 @ ; < 5 A 3 D L i ; i 4 7 7 : 9 ; 9 : ; < 2 6 > = > ? @ @ 2 6 > ; A B ; < A 9 : 2 6 > ; A < C D = ? 9 < 4 6 3 ; A @ D 2 6 E ; 2 N 7 F b

� + � / � � � / � � � � ' � � � � � � � � " � � � � � � � " � � �
 � � � � � � � � " � � � 7 � � � " � � � � 6 � " * ~ } �
{ " � * * � , * + � , { # � - � "
 � � � �
 � � �
 � � � �- 7 � " � � � � � � �) � � � � � � � " � � (' " � 	 � � � - � + � -7 , � � � � (� � � (� � � + � � � � � "
 � 6 � 	 � � � � � � � � (� � � (� � � � - � � , "
 � -
 � � " � 	 6 � � " � �
� - + � � ' � � " � � � � , # � (� � � (# (
 � � � � � � � ' � � �)
� + � / � � � / � � � � ' � � � � � � � � " � � � � � � � " � � �
 � � � � � � � � " � � � 7 � � � " � � � � 6 � " * ~ y # � �
{ " � * * � , * + � , { # � - � "
 � � � �
 � � �
 � � � �- 7 � � � � � � � � " � � � � � " � � ' " � 	 � � � - � + � - 7 ,� � � � (� � � (� � � "
 � -
 � � "
 � � " � � ' � � � " � � � - + � � ' � � " � � � � , # � (� � � (# (
 � � � � � � � ' � � �)
� � � � � � � " � � (� � � + �
 � �
 � , � - � � �
 � � " � � ' � � � " � � � � � � " � 	 � �
 � � " � � � - " � � ' � � " � �
+ � & � � 	 � � � � � � � � � ' � � " � � � � � � �- ,)
� + � / � � � / � � � � ' � � � � � � � � " � � � � � � � " � � �
 � � � � (
 � � �
 � � � � - � � � � " � � � 7 � � � " � �
� � 6 � � , � , { " ~ * � $ # y �) y # � + (+ � � � �
 � � � � � � � � � � , �- 7 � � " � 	 6 � � " � � �
 � 	 � �
 � � " � �
� � � � " � � � � - � "
 � � � �
 � � �
 � � � " � � � � " � + � & " � � � , & ' " � 	 � �) � � � �
 � � � � � � � � " � � � �
6 � � ,) , � � , { " ~ * � $ # y �) y # � + ()

Service-1 (s1)
hasInput: Two-doors, Solara
hasOutput: Price
serviceProduct: New-vehicle

Service-2 (s2)
hasInput: Car, Toyota
hasOutput: Price
serviceProduct: Used-vehicle,
New-vehicle

Service3 (s3)
hasInput: Sedan, Toyota, Year
hasOutput: Price
serviceProduct: Used-vehicle

Thing

UNSPSC

Sales-
activities

Used-
vehicle

New-
vehicle

Automobile

Car Truck

Sportcar Familycar

Sedan Minivan

Car-Model

Toyota Nissan

Solara Camry Sentra Quest

Hatchback Two-doors

RAV4

Asia
Maker

Europe
Maker

Honda

(s2, s3, q1)

(s1)

(s3)

(s2)

(s1)

(q1)

Service-1 (s1)
hasInput: Two-doors, Solara
hasOutput: Price
serviceProduct: New-vehicle

Service-2 (s2)
hasInput: Car, Toyota
hasOutput: Price
serviceProduct: Used-vehicle,
New-vehicle

Service3 (s3)
hasInput: Sedan, Toyota, Year
hasOutput: Price
serviceProduct: Used-vehicle

Thing

UNSPSC

Sales-
activities

Used-
vehicle

New-
vehicle

Automobile

Car Truck

Sportcar Familycar

Sedan Minivan

Car-Model

Toyota Nissan

Solara Camry Sentra Quest

Hatchback Two-doors

RAV4

Asia
Maker

Europe
Maker

Honda

Service-1 (s1)
hasInput: Two-doors, Solara
hasOutput: Price
serviceProduct: New-vehicle

Service-2 (s2)
hasInput: Car, Toyota
hasOutput: Price
serviceProduct: Used-vehicle,
New-vehicle

Service3 (s3)
hasInput: Sedan, Toyota, Year
hasOutput: Price
serviceProduct: Used-vehicle

Thing

UNSPSC

Sales-
activities

Used-
vehicle

New-
vehicle

Automobile

Car Truck

Sportcar Familycar

Sedan Minivan

Car-Model

Toyota Nissan

Solara Camry Sentra Quest

Hatchback Two-doors

RAV4

Asia
Maker

Europe
Maker

Honda

(s2, s3, q1)

(s1)

(s3)

(s2)

(s1)

(q1)

� � � ^ � ^ = < A 2 E ` ; 6 3 5 < 5 6 3 5 7 5 E 4 ; 9 2 6 > 9 ; A ? 4 @ ; 4 6 9 3 2 6 @ ; 9

� � . � � 	 + 	 � � z � � y � # * # , + * � x � � z 0 # , +) x *) 0 # �) 0 � � , � * y # { � � {) , +) ") z � # * � , �
* # � $ � { # � , * + � , { # * � � ! # � z ~ � # � " *) y � # * # , + * y �) y # � + � # * � , � + ! # � � $ � " ~ # + (y # *) x
+ ! # � , * + � , { # * � �) � # � � 0 y " # % $: ; � < � " � #
 � H � K � � � � � � � � � ; � ; 4) x 7 � � # ,) + # * + ! � +
7 � ! � * � y �) y # � + (: ; � < � " � # � � + ! + �) $ � " ~ # * � !) * # + (y # * � � # � H � K � � � � � � , �
� � � ; � ; % � # * y # { + � $ # " (�
� �
 � C � C � � 3 7 � � C B C 3 7 " � � � � � # � 3 8 I
3 8 : ; � < � " � # 3 = > � � 3 = > ? I 3 = > � ; D ; J � � % � ; � I 3 = > ? ; � � % � # ; I

 ~ # � (� � � }) $ # {) , + � � , * + (y # � 0 � + { ! � , z y � + + # � , � 3 8 : ; � < � " � # 3 = > � � 3 = > ? I
3 = > � ; D ; J � � % � ; � I 3 = > ? ; � � % � # ; I $ � 7 � � * � * ~ } { " � * * � , * + � , { #) x : ; � < � " � #
} # { � ~ * # � + 0 � + { ! # * + ! # � ~ # � (� � � , { # � + ! � * + �) : ; � < � " � # $ � " ~ # * % + ! # : ; � < � " � #

� * � , � , { " ~ * � $ # y �) y # � + (� � � 0 � " � � " (% 7 * � * � * ~ } { " � * * � , * + � , { #) x : ; � < � " � # } # { � ~ * #
� + 0 � + { ! # * + ! # � ~ # � (� - + * : ; � < � " � # y �) y # � + (% !) � # $ # � % � * � ,) , � � , { " ~ * � $ #) , #
} # { � ~ * # + ! # y �) y # � + (! � * + ! � # # $ � " ~ # *) x � ! � { !) , # + (y # � * � � ; � � �) � # $ # � % 7 ? � *
� * ~ y # � { " � * * � , * + � , { #) x : ; � < � " � # } # { � ~ * # � + �) # * ,) + 0 � + { ! � � � , � � + * : ; � < � " � #
$ � " ~ # + (y # * � � # � ; � � , � � � % � # ; % � ! � { ! � � # x �) 0 + ! # � # " � + � $ # { " � * * # *) x D ; J � � % � ; �
� , � � � % � # ; % � # * y # { + � $ # " (� � ! # : ; � < � " � # y �) y # � + (� * � , � , { " ~ * � $ #) , # �

� �) * + , - (+ � , � � / 0

� y) , � # { # � $ � , z � ~ # � (� # * ~ " + * x �) 0 � � # y) * � +) � (% + ! # 0 � + { ! 0 � ' # �) � � # � * + ! # 0
} � * # �) , � � � � � �
 � � � - � " � � � } # + � # # , {) , { # y + * � , { " ~ � # � � , + ! # � ~ # � (� , � � ,
0 � + { ! # � * # � $ � { # * � � ! � * y � y # � ~ * # * + ! # � # z � # #) x 0 � + { ! � # � , # � � , � � � � � * # # � # { �
+ �) , � � � � � � ! # � # * ~ " + * % !) � # $ # � % �) ,) + {) , + � � , + ! # � � + �) � � , x) � 0 � + �) , , # { # * * � � (
x) � + ! #) � � # � � , z + � * ' � �) � # � � 0 y " # % � y y " (� , z � � +) � �
 " � � �) x) , +) ") z � # * * !) � ,
� , � � z � � � # + ~ � , * 7 � � , � 7 * % } ~ + + ! # � # * ~ " + * " � { ' + ! # x) " ") � � , z � , x) � 0 � + �) , �

� � 	 � �
 � � " � � � � � � " � � � � � - �
 � � �
 � � : ; � < � " � # � � � " # � $ # * 7 ? � * � , ~ , 0 � + { ! # �
* # � $ � { # } # { � ~ * # 7 ? � * � * ~ y # � { " � * * � , * + � , { #) x : ; � < � " � # � � � { ') x + ! � * � � + �
� � " " y � # $ # , + � y y " � { � + �) ,) x + ! # � ~ } * ~ 0 # 0 � + { ! { � " { ~ " � + �) , �

� � � � � � � " � � � 	 6 � � " � � ' � 	 � �
 � � " � � � � - �
 � " � � � � � �) � # � � 0 y " # % � H � K � � � � � � � ! � { !
� * + ! # : ; � < � " � # $ � " ~ # + (y #) x 7 � � � * ,) + � , � 0 0 # � � � + # * ~ } { " � * *) x D ; J � � % � ; � %
~ , " � ' # � � � ; � � � ! � { ! � * + ! # : ; � < � " � # $ � " ~ # + (y #) x 7 * � � � � { ') x + ! � * � , x) � 0 � �
+ �) , � � " " y � # $ # , + � y y " � { � + �) ,) x � � � { + � , � " ~ z � � , 0 � + { ! { � " { ~ " � + �) , * �

� (
 � � �
 � � � � � � 	 � � ' � � � � � � � - �
 � " � � � � � �) � # � � 0 y " # % : ; � < � " � #) x 7 � � * � , � , �
{ " ~ * � $ # y �) y # � + (% � ! # � # � * + ! � +) x 7 * � * � ,) , � � , { " ~ * � $ #) , # � � � { ') x + ! � * � , �
x) � 0 � + �) , � � " " y � # $ # , + � y y " � { � + �) ,) x + ! # � � � " 0 � + { ! { � " { ~ " � + �) , �
� ! � * y � y # � # � � 0 � , # * + ! # x) " ") � � , z � # � ~ # * + # � � ~ # � (� �

� C � C � � 3 7
� � C B C � # : � � � � I 3 7 " � � � � � # � 3 8 I
3 8 � � 3 � � � � � � � � � � � 3 � � � � � � I 3 � � � � � � ; # � � � I � � � 3 � � � � � � ; # � � � I
� � �3 8 � � 3 � � � � � � � � � � � 3 � � � � � � I 3 � � � � � � ; # � � � I � � � 3 � � � � � � ; # � � � I

� ! # � ~ # � ({) , + � � , * � * # +) x + (y # � 0 � + { ! � , z y � + + # � , * � , �) + ! # � z � � y ! y � + + # � , *
� � # : � � � � � � � # : � � � � { � , } #) y + �) , � " % � " + # � , � + � $ # % � , � �) � $ � " ~ # {) , * + � � � , + z � � y !
y � + + # � , * � � � �

� ! # � ~ # � (� # � � � + � , z y �) { # � ~ � # � , $) " $ # * � # � � � + � , z # � { ! + (y # � 0 � + { ! � , z y � + + # � ,
* ~ { ! + ! � + y � + + # � , *) " ~ + �) , * � � " " {) , + � � , * ~ y # � { " � * * � , � * ~ } { " � * * � , * + � , { # *) x + ! #
+ � � z # + y �) y # � + (% { " � * * * ~ } * ~ 0 y + �) , � , x) � 0 � + �) , % � , � + � � z # + y �) y # � + (� , { " ~ * � $ # �
, # * * � , x) � 0 � + �) , � �) � # x) � 0 � " " (% z � $ # , + ! # x) " ") � � , z � ~ # � (% � ! # � # � 	 = 	
 %
� C � C � � 3 7
� � C B C � # : � � � � I 3 7 " � � � � � # � 3 8 I
3 8 � � 3 � � � � � � � � � � � 3 � � � � � � I 3 � � � � � � ; # � � � I � � � 3 � � � � � � ; # � � � I

� � � � � � � � � � 	
 � � �
 � � � � 4 � � � 0 4 � � 0 � � � � 0 4 � � � � � 0 � � � 0 � � � � 0 � � � � � 7 � 0 4 � � 0 � � � 7 � 0 4 � � � � 7 � 0 � � � 0 � � � 7 � 0 � � � � �
� � � � � � � �
 � � � ! " � # � � 	 � �
 	 $ � "
O � % / � � 0 � 	 � 0 4 � � 0 " & ' � � � � (� 0 4 � � 0)* / � � 0 + , - . ' / . % � 0 � � � 0 � 	 / � � 0 , � � �0 � % / � � � � � 	 � 0 4 � � � � " & ' � � � � (� 0 4 � � � �)* / � � � � + , - . ' / . % � 0 � � � � � � 	 / � � � � ,
Q � � 1 ! � 2 � 3 # � %
T � $ � 4 � 4 3 2 � � 0 " 4 3 2 � � 0 3 � � 4 � � � 0 "
5 � & ' � � � � (� � 4 � � � 0 * � 0 4 � � 0 6 � � 4 � � � 0 * � 0 � � � 0 + � � �S � $ � 4 � 4 3 2 � � � � " 4 3 2 � � � � 3 � � 4 � � � � � "
7 � & ' � � � � (� � 4 � � � � � * � 0 4 � � � � 6 � � 4 � � � � � * � 0 � � � � � +
� P � / ! � ' / . 1 � % $ � 4 � � 4 3 2 � " � 4 3 2 � 3 � � � 4 � � b
� � � & ' � � � � (� � � 4 � �)* � � 4 � � � 0 8 8 � � � 8 8 � � � 4 � �)* � � 4 � � � � � H ,
� � � / ! � ' / . 1 � % 7 � 0 � � � 0 � 	 / � � 0 b 3 8 d C 9 J G 7 � 0 � � � 0 * � � 4 � � � 0 H ,� O � / ! � ' / . 1 � % / � � 0 � 	 7 � 0 4 � � 0 b 3 8 d C 9 J G 7 � 0 4 � � 0 * � � 4 � � � 0 H ,� 0 � � � �� Q � / ! � ' / . 1 � % 7 � 0 � � � � � � 	 / � � � � b 3 8 d C 9 J G 7 � 0 � � � � � * � � 4 � � � � � H ,� T � / ! � ' / . 1 � % / � � � � � 	 7 � 0 4 � � � � b 3 8 d C 9 J G 7 � 0 4 � � � � * � � 4 � � � � � H ,� 5 � ,

� � � ^ : ^ g : ; A F A ; i A 4 3 4 6 E V A 5 @ ; > : A ;

� ! # � ~ # � (� * � # � � � + + # , � * * !) � , � , � � z � �
� ! # ~ y y # � y � � + � " � , # * � ; � � � * 0 � + { ! # � � z � � , * + + ! # � # x � ~ " + � �
 " � � � ! � " # + ! #

") � # � y � � + � " � , # * � ; � � � � * 0 � + { ! # � � z � � , * + 	 �
 " � � � � � , # * � � , � �) x + ! # ~ y �
y # � y � � + # � + � � { + + ! # � # " � + � $ # { " � * * # *) x + y $ { " � * * # * # � � � < � � � < # � � � } (~ * � , z + ! #
� � � � 9 � � $ � � ; � � = � y �) y # � + (� � } } � # $ � � + # � � *
 � � � > � " ~ # {) , * + � � � , + * � D < � � C B � � � #
~ * # � +) � # � ~ { # + ! # � # * ~ " + * � � # } # { � ~ * # � { " � * * � * � * ~ } { " � * * � , � * ~ y # � { " � * *) x � + * # " x �
� ! # ") � # � y � � + { � , } # x ~ � + ! # � � � $ � � # � � , +) + ! � # # * ~ } y � � + * �
� � � ! # � � * + y � � + � " � , # * � ; . � 0 � + { ! # * � , * + � , { # * � , � ! � { ! + � � z # + y �) y # � + ($ � " ~ #

+ (y # * � � # � � # " � + � $ # � { " � * * # * 0 � + { ! # � } (+ ! # ~ y y # � y � � + � 3 � � � � �? � * }) ~ , � +)
� + � � z # + y �) y # � + ($ � " ~ # � , � 3 � @ � A � �? � * }) ~ , � +) � , 	 � � � - �

 � � � � " � � � � � # � % �
{ " � * * � # � , # � � , 	 �
 " � � �) x + ! # $ � " ~ # � � 	 B 	 & � � � ! � * y � � + {) � � # * y) , � * +)
+ ! # + (y # � 0 � + { ! � , z y � + + # � , * � , + ! #) � � z � , � " � ~ # � (�

� � � ! # * # {) , � y � � + � " � , # * � / � , � � � � � # + � � # $ # * y �) y # � + (� , { " ~ * � $ # , # * * � , x) � 0 � �
+ �) , � � ! #) y + �) , � " z � � y ! y � + + # � , $ # � � � # * + ! # # � � * + # , { #) x) + ! # � � � $ � " ~ # *) x
+ (y # *) + ! # � + ! � , � # " � + � $ # { " � * * # * � � ! � * � * �) , # } (� # � , � , z � , # � $ � � � � } " #
3 8 � � � � x) � + ! # $ � " ~ # � , � # � { " ~ � � , z � # " � + � $ # { " � * * # * � ~ � � , z + (y # 0 � + { ! � , z x) �
+ ! # $ � " ~ # � - , x) � 0 � + �) , � }) ~ + � � y �) y # � + (� , { " ~ * � $ # , # * * { � , # � * � " (} #) } + � � , # �
x �) 0 + ! # y � + + # � , *) " ~ + �) , } (# � � 0 � , � , z + ! # } � , � � , z $ � " ~ #) x 3 8 � @ � A � � - x + ! � *
� * }) ~ , � +) *) 0 # $ � " ~ # % + ! # , � � � * � ,) , � � , { " ~ * � $ # y �) y # � + (�) + ! # � � � * # � + � *
� , � , { " ~ * � $ #) , # � * # # � � � 0 y " # � } # ") � � �

C 3 5 A 9 4 ` V 7 4 @ 4 3 F L 3 D ; V 2 3 D 7 ; 6 E 3 D < A 5 ` % � # � � 	 � �
 	 � , 3 5 3 F V ; R ` 2 3 @ D 4 6 E V 2 3 3 ; A 6 9 4 9
9 ; 3 D ; A ; 2 3 e ; A 5 L N : 3 3 D ; V 2 3 D @ 5 : 7 > N ; 9 ; 3 2 3 2 6 F 2 A N 4 3 A 2 A F 7 ; 6 E 3 D b

� � � ! # + ! � � � y � � + � " � , # * � � ; � � � � # + � � # $ # * � 0 0 # � � � + # * ~ } { " � * * � , � * ~ y # � { " � * *
� , x) � 0 � + �) , � � ! � * y � � + ~ * # * + ! # � � � � 9 � � $ � � ; � � = � y �) y # � + ({) 0 } � , # � � � + !
� ,) y + �) , � " z � � y ! y � + + # � , +) } � , � + ! # � 0 0 # � � � + # * ~ } { " � * * � , � * ~ y # � { " � * *) x
+ y $ { " � * * # � �? +) $ � � � � } " # 3 = 7 � � � �? � , � 3 = 7 � � � �? % � # * y # { + � $ # " (� � 	 B 	 & � � �
� # + 7 � � , � 7 � } # � * # +) x * # � $ � { # * {) , + � � , # � � , + ! # *) " ~ + �) , * +) � � # � ~ # * + # �

� ~ # � (� , � + ! # {) � � # * y) , � � , z � # � � � + + # , � ~ # � (% � # * y # { + � $ # " (� � ! # , % 7 � � 7 � � , �
7 � � 7 � � 7 � � � % � ! # � # 7 � � � � * � * # +) x * ~ y # � { " � * * � , * + � , { # *) x + ! # + � � z # + y �) y # � �
+ � # * � � ! # y �)) x � * + ! � + + ! # ") � # � y � � +) x + ! # � # � � � + + # , � ~ # � (�) # * ,) + � � � � , (
� # * + � � { + �) , * +) + ! # * # � $ � { # * }) ~ , � +) $ � � � � } " # 3 7 % # � { # y + + ! � + + ! # + (y #) x � � $ � " ~ #
� � ! � { ! � * }) ~ , � +) 3 � � � � �? � � 	 � � } # # � �? �) � � + * * ~ } { " � * * �) � � * ~ y # � { " � * *) x # � �? �
� ! # x) � 0 # � � # * + � � { + �) , � * � � # , + � { � " +) + ! � + � , + ! #) � � z � , � " � ~ # � (� ! � " # + ! # " � + + # �

 � � " & � � + ! # � ~ # � (+) � , { " ~ � # * ~ y # � { " � * * � , * + � , { # * �) + # + ! � + + ! #) y + �) , � " z � � y !
y � + + # � , * � , + ! # ") � # � y � � + �) ,) + z � $ # � , (0 � + { ! � , z � # * + � � { + �) , * � ! � " # � # : � � � �
� * 0 � + { ! # � � z � � , * + + ! # � # x � ~ " + z � � y ! � * � , + ! #) � � z � , � " � ~ # � (�

� � . � � 	 + � � � * !) � , � }) $ # � * � # � � � + + # , � * x) " ") � � , � + ! # } � , � � , z *) " ~ + �) , * � � #
* !) � , � , � � } " # � �
� C � C � � � � � # � � � # 3 7 3 8 � @ � A � 3 7 � � � 3 7 � � ? 3 7 � � � 3 7 � � ? 3 = 7 � � � 3 = 7 � � ?
3 = 7 � � � 3 = 7 � � ?
� � C B C 3 7 " � � � � � # � 3 8 I

� D ; J � � % � ; � � � 3 7 � � � I D < � � C B
 3 7 � � � �� D ; J � � % � ; � � $
 � < = � � 3 7 � � � � � D ; J � � % � ; � $

� � � % � # ; � � 3 7 � � ? I D < � � C B
 3 7 � � ? �� � � % � # ; � $
 � < = � � 3 7 � � ? � � � � % � # ; $

� B S � � � � � ; " : �
3 8 : ; � < � " � # 3 � � � � I 3 � � � � ; 3 � @ � A � I

D < � � C B
 3 � @ � A � � 3 7 � � � � 3 � @ � A � � 3 7 � � � � I
3 8 : ; � < � " � # 3 � � � ? I � � � ? ; 3 � @ � A ? I

D < � � C B
 3 � @ � A ? � 3 7 � � ? � 3 � @ � A ? � 3 7 � � ? � I
= � � < = � S � � 3 8 : ; � < � " � # 3 8 � � � � I 3 8 � � � � ; 3 8 � @ � A � I

D < � � C B
 3 8 � @ � A � �� 3 � @ � A � � � 3 8 � @ � A � �� 3 � @ � A ? � $
= � � < = � S � � 3 = 7 � � � � � D ; J � � % � ; � I D < � � C B
 3 = 7 � � � � 3 � @ � A � � $
= � � < = � S � � D ; J � � % � ; � � � 3 = 7 � � � I D < � � C B
 3 = 7 � � � � 3 � @ � A � � $
= � � < = � S � � 3 = 7 � � ? � � � � % � # ; I D < � � C B
 3 = 7 � � ? � 3 � @ � A ? � $
= � � < = � S � � � � % � # ; � � 3 = 7 � � ? I D < � � C B
 3 = 7 � � ? � 3 � @ � A ? � $

$

� \ X � � � ^ � 4 6 > 4 6 E 9 5 7 : 3 4 5 6 9
 � � � � 4 � 0 � 0 4 0 � 0 4 - � 0 � 0 � 0 � - 7 � 0 4 0 7 � 0 4 - 7 � 0 � 0 7 � 0 � -� 0 � � 0 C i 5 R > 5 5 A 9 B 5 7 2 A 2 B 5 7 2 A 2

� - � � - K 2 A C 5 F 5 3 2 K 2 A
� 8 � � 8 � ; 2 A B ; > 2 6 C 5 F 5 3 2 B ; > 2 6

� ! # � # � � # + ! � # # } � , � � , z *) " ~ + �) , * � � % � ? % � , � � * � ! � { ! } � , � $ � " ~ # * � , � , * + � , { # *
7 � % 7 ? % � , � 7 * % � # * y # { + � $ # " (% +) *) 0 # $ � � � � } " # * � � �) 0 } � % + ! # : ; � < � " � #) x 7 � � * � ,
� , { " ~ * � $ # y �) y # � + (} # { � ~ * # 3 8 � @ � A � � * ~ , }) ~ , � � 3 7 � � � } � , � � , z $ � " ~ # � , � � { � + # * + ! � +
+ ! # � � * + : ; � < � " � # $ � " ~ # + (y #) x 7 � � � � # � % � H � K � � � � � � � * � * ~ } { " � * *) x D ; J � � % � ; �
� ! � " # 3 7 � � ? � , � 3 = 7 � � ? $ � " ~ # * � , � � { � + # + ! � + + ! # * # {) , � $ � " ~ # + (y #) x 7 � � � � # � %
� � � ; � ; � � * � , � 0 0 # � � � + # * ~ } { " � * *) x � � % � # ; � � � 0 � " � � " (% x �) 0 } ? % + ! # : ; � < � " � #
) x 7 ? � * � , � , { " ~ * � $ # y �) y # � + (% � , � + ! # � � * + : ; � < � " � # $ � " ~ # + (y # � � � # � % � ; � � � *
� , � 0 0 # � � � + # * ~ y # � { " � * *) x D ; J � � % � ; � � ! � " # + ! # * # {) , � $ � " ~ # + (y # � * # � ~ � " +)
� � % � # ; � � ! # " � * + *) " ~ + �) , } * � , � � { � + # * + ! � + + ! # : ; � < � " � #) x 7 * � * � ,) , � � , { " ~ * � $ #
y �) y # � + (} # { � ~ * # 3 8 � @ � A � � * }) ~ , � +) *) 0 # $ � " ~ # � � � # � % � � ; � � � � ! # � � * + : ; � < � " � #
$ � " ~ # + (y #) x 7 * � * � , � 0 0 # � � � + # * ~ } { " � * *) x D ; J � � % � ; � � ! � " # + ! # * # {) , � $ � " ~ #
+ (y # � * # � ~ � " +) � � % � # ; �

- + � * � 0 y) � + � , + +) ,) + # + ! � + * ~ } { " � * * � , � * ~ y # � { " � * * $ � � � � } " # * � � #) , " (}) ~ , �
+) { " � * * # * + ! � + � � # $ � { + ~ � " " (~ * # � 4 � , * # � $ � { # � , * + � , { # * � �) � # � � 0 y " # % 3 7 � � ? � *
~ , }) ~ , � } # { � ~ * # ,) : ; � < � " � # $ � " ~ # + (y # *) x 0 � + { ! # � * # � $ � { # * � � # * ~ y # � { " � * * # *
) x � � % � # ; � � ! � * � � " " z � # � + " (� # � ~ { # + ! # * � � #) x � # + ~ � , � # * ~ " + * �

� � � � + , � � � +
 , � + , � / 0
� # , # � � " " (% � � # � ~ # * + # � � ~ # � ({) , * � * + *) x) , # � �
 ' � � � - 	 � � � � � � � " � � � � � � � } � * # �) ,
* # � $ � { # � , y ~ + * � , �) ~ + y ~ + * � � , �) y + �) , � " " () , #) � 0) � # � �
 ' � � � � � "
 " � � �
 � � � � � �
� " � � � � � � � } � * # �) , * # � $ � { # { ! � � � { + # � � � � + �) , � { {) � � � , z +) *) 0 # �) 0 � � , � * y # { � � {
) , +) ") z � # * � � � ! # , # � + * # { + �) , * � # * { � � } # + ! # * {) � � , z 0 # { ! � , � * 0 * ~ * # � � , 0 � + { ! � , z �

� + , � � � + � * / � � � / � � � , � / 0 � � $ # , � # � ~ # * + # � � ~ # � (� {) , + � � , � , z � * # � $ � { # x ~ , { �
+ �) , + (y # � 0 � + { ! � , z y � + + # � ,
� 3 8 : ; � < � " � # 3 = > � < � � � < 3 = > � � � 3 = > � ; # = > � I � � � 3 = > � � ; # = > � � I
3 8 : ; � = � # " � # 3 8 � � � < � � � < 3 8 � � � � � � 3 8 � � � ; # 8 � � � I � � � 3 8 � � � � � ; # 8 � � � � � I $
� , � } � , � � , z *) " ~ + �) , � x �) 0 0 � + { ! � , z � # * ~ " + *) x � ! * � # � � � + + # , � ~ # � (� � ! # � # z � # #
) x 0 � + { ! } # + � # # , � � , � � � � + ! � # * y # { + +) + � � z # + y �) y # � + (: ; � < � " � # � * z � $ # , } (
� � � � �

� � � � � < � � � � 	
 � # = > � < � � # � � � � � � � � 	
 � # = > � � < � � # � � � � � �
� 	
 � # = > � < � � # � � � * + ! # � # z � # #) x 0 � + { ! } # + � # # , { " � * * # = > � � , � + ! # {) � � # * y) , � �

� , z { " � * * # � � ! � { ! � * }) ~ , � +) * ~ } { " � * * � * ~ y # � { " � * * $ � � � � } " # * � , � � � ! # � # z � # #) x
0 � + { ! {) ~ " � } # � � � { + % " ~ z � � , %) � � ~ } * ~ 0 # % � ! # � # � � � { + � " ~ z � � , � � ~ } * ~ 0 # �
� ! # * {) � � , z x) � 0 ~ " � � , � � { � + # * + ! � + + ! # " � � z # � � � � � � < � � + ! # 0) � # * � 0 � " � � � , y ~ + *) x
+ ! # 0 � + { ! # � * # � $ � { # � � ! � { ! � * }) ~ , � +) $ � � � � } " # 3 7 � , � � +) � , y ~ + * * y # { � � # � � , � �

� � z � � * !) � * {) 0 y ~ + � + �) ,) x � 	
 � ! � { ! � * * � 0 � " � � +) � � � � % } ~ + � � + !) ~ + + ! #
� � � " 0 � + { ! � � � * {) , * � � # � # � +) } # � � � � " 0 � + { ! � ! # , + ! # : ; � < � " � # �) x � * # � $ � { #
}) ~ , � +) $ � � � � } " # 3 7 � , � � � * � ,) , � � , { " ~ * � $ # y �) y # � + (� � ! � * � # * ~ " + * x �) 0 + ! # x � { +
 C D 4 9 4 9 5 6 ; A ; 2 9 5 6 i ; : 9 ; 3 D ; � � A ? ; � b = 6 5 3 D ; A A ; 2 9 5 6 4 9 3 5 5 N 3 2 4 6 3 D ; : 6 4 6 < ; A A ; > @ 7 2 9 9

2 6 > 4 ` ` ; > 4 2 3 ; 9 : N @ 7 2 9 9 4 6 < 5 A ` 2 3 4 5 6 5 < 3 2 A E ; 3 V A 5 V ; A 3 F ? 2 7 : ; 9 L i D 4 @ D 4 9 4 ` V 5 9 9 4 N 7 ;
3 5 > 5 i D ; 6 ` 2 3 @ D 4 6 E 3 D ; V 2 3 3 ; A 6 2 E 2 4 6 9 3 D � A ? ; � b

+ ! � + + ! # � # � ~ # * + # � � * ,) + � } " # +) y �) $ � � # + ! # }) ~ , � * # � $ � { # � , � � " " + ! # � , y ~ +
� # � ~ � � # � x) � {) � � # { +) y # � � + �) , �

� ! # � # z � # #) x 0 � + { ! x) � � � � + ! � # * y # { + +) + � � z # + y �) y # � + (: ; � = � # " � # � * z � $ # ,
} (� � � � � - + ~ * # * � � � � x ~ , { + �) , * !) � , � , � � z � � � � � � # � # , + x �) 0 � 	
 % � � � � ~ * # *
* ~ } { " � * * � # " � + �) , * ! � y * +) � # + # � 0 � , # � � � { + � , � " ~ z � � , 0 � + { ! # * �

� � � � � � < � � � � � � � � # 8 � � � < � � # � � � � � � � � � � � � # 8 � � � � � < � � # � � � � � � �

� � � (� � � � � � 1 +� � � � � 	 � � 1 � �
 2 � � �
 3 �

� � � � � � � � � � � 3
 � � 2 # � � � � 3 	 	 / � � � 1

� �
 2 � � �
 3 �

� � � � � 	 2 # � � � � 3 	 	 / � � � 1

� �
 2 � � ! � 2 � � �
�
 � � � � � 	 � � �
 2 � � � 2 � 	 2 � �

� � � ^ � ^ � � � @ 2 7 @ : 7 2 3 4 5 6

� � � � (� 2
 � � � 2
 1 +� � � 2
 � 	 � 2
 1 � �
 2 � � �
 3 �

� � � 2
 � � � � � � � 3
 � � 2 � � � 3 	 	 / � � 2
 1

� �
 2 � � �
 3 �

� � � 2
 � 	 2 � � � 3 	 	 / � � 2
 1

� �
 2 � � ! � 2 � � �
�
 � � � � � 	 � � �
 2 � � � 2 � 	 2 � �

� � � ^ � ^ � � � � @ 2 7 @ : 7 2 3 4 5 6

� � , � " " (% * ~ 0 0 � , z ~ y + ! # � # z � # #) x 0 � + { !) x � , y ~ + * � , �) ~ + y ~ + * � , � ,) � 0 � " �
� � � , z + ! # $ � " ~ # } # + � # # , / � , � � z � $ # * + ! # � # z � # #) x 0 � + { ! � � + ! � # * y # { + +) + ! #
* # � $ � { # x ~ , { + �) , � � � � � � �

� � � � < � � � & � � � � � � � � � < � � � & � � � � � � � � � < � �
� � � � � # � � & � � � & � � � � � �

) + # + ! � + � ! # , � � � � � < � � x � � " * % � � � � < � � � " *) x � � " * �

� � . � � 	 + � � # + � � � { + � � % " ~ z � � , � � % � , � � ~ } * ~ 0 # � � � � ! # � # � � � + + # , � ~ # � (
) x � ? } # ") � ! � * + ! � # # } � , � � , z *) " ~ + �) , * � � % � ? % � , � � * + ! � + } � , � 7 � % 7 ? % � , � 7 * %
� # * y # { + � $ # " (� � � + { ! 0 � ' # � � * * � z , * � � � � ? < � � � � � � � � ? < � ? � � , � � � � � ? < � * � � � � � " �

� ?
 � C � C � � 3 7 � � C B C 3 7 " � � � � � # � 3 8 �3 8 : ; � < � " � # 3 = > � � = > ? � 3 = > � ; D ; J � � % � ; � I = > ? ; � � % � # ; �3 8 : ; � = � # " � # 3 8 � � I 3 8 � � ; � � � � � I

� � � � � ? < � � � � � 	
 � � � 0 � " ({ � � % � �) � �)) � * � � � 	
 � �) () + � % �) " � � � � � � %
� � � � � ? < � ? � � � 	
 � � � 0 � " ({ � � % 2 � � � � � 	
 � �) () + � % �) () + � � � � %
� � � � � � ? < � � � � � � � � � � ? < � ? � � � � � � � � � { # % � � { # � � � %
� � � � ? < � � � � / � . � % � , � � � � � ? < � ? � � / � � �

� + , � � � + � . , . � + , � � � � � � � � , � / 0 � # � $ � { # { ! � � � { + # � � * + � { * � # * { � � } # + ! # { � + # �
z) � � # * % { " � * * � � { � + �) , * % � , �) + ! # � x # � + ~ � # *) � , # � } (� * # � $ � { # � & �) 0 � � , � * y # { � � {
) , +) ") z (0 � (} # ~ * # � +) � # * { � � } # + ! # * # { ! � � � { + # � � * + � { * � �) � # � � 0 y " # % + ! # w | �

) , +) ") z � # *) x 	 & - 2 � � � � � � , � � 	 � � 2 � � � � { � , } # ~ * # � +) � # * { � � } # * # � $ � { # { " � * �
* � � { � + �) , � , � y �) � ~ { + * % � # * y # { + � $ # " (� - , 0 � , ({ � * # * % � + � * � # * � � � } " # +) " # + � * # � $ � { #
� # � ~ # * + # � * y # { � x (� * # � $ � { # �) � � # � � , z y � # x # � # , { # } � * # �) , �) 0 � � , � * y # { � � {) , +) ") z (
0 � + { ! � , z � �) � # � � 0 y " # % � ~ � � , z + ! # { � � * # " " � , z * # � $ � { # � � * {) $ # � (% � � # � ~ # * + # � 0 � (
z � $ # � ! � z ! # �) � � # � � , z y � # x # � # , { # +) * # � $ � { # * + ! � + * # " ") , " (, # � { � � *) � + ! � + * # " "
) , " (�) () + � { � � * � - , � z � � � # , $ � �) , 0 # , + % � � # � ~ # * + # � 0 � (z � $ # � ! � z ! # �) � � # � � , z
y � # x # � # , { # +) z � � � � # *) ~ � { # * + ! � + � � # 0 � , � z # �) , " (} (� * y # { � � {) � z � , � � � + �) , �

� � $ # , � # � ~ # * + # � � ~ # � (� {) , + � � , � , z � * # � $ � { # { ! � � � { + # � � * + � { + (y # � 0 � + { ! � , z
y � + + # � , % � ! # � # + � � z # + y �) y # � + (� � * y # { � � # * * # � $ � { # { ! � � � { + # � � * + � { * %
� 3 8 � � 3 � � � � � � � � � 3 � � � I 3 � � � � ; # 7 � I � � � 3 � � � ; # 7 I $
� , � } � , � � , z *) " ~ + �) , � x �) 0 0 � + { ! � , z � # * ~ " + *) x � ! * � # � � � + + # , � ~ # � (� � ! # � # z � # #
) x 0 � + { ! } # + � # # , � � , � � � � + ! � # * y # { + +) � � � * z � $ # , } (� � � � �

� � � � � < � � �
���
��

� � � � � � � � � � � � � � � � 	 � � � 	 � � � � � � �
 � � � �
 �� � � � � � � * z � $ # , � ! � z ! # � y � # x # � # , { #
� � � � � � � � � � � � � � 	 � � � 	 � � � � � � �
 � � � �
 �� � � � �) + ! # � � � * #

� � �
� ! # $ � " ~ #) x + ! # � � $ � � # , � + ! � + * ~ 0 * ~ y + ! # � # z � # #) x 0 � + { !) x + ! # * # � $ � { #

{ ! � � � { + # � � * + � { � * ,) � 0 � " � � # � } # + � # # , / � , � � } (� � $ � � � , z � + � � + ! � � � # � � & � � � � �
� * ~ * # � x) � � # z � # #) x 0 � + { ! { � " { ~ " � + �) , } # { � ~ * # * # � $ � { # { ! � � � { + # � � * + � { * � � # � ' � , �
) x � # � ~ # * + # �) ~ + y ~ + � � (� # x � ~ " + % � � * z � $ # , � ! � z ! # �) � � # � � , z y � # x # � # , { # � x + ! #
� � �) x + ! # }) ~ , � * # � $ � { # � � * � , � , { " ~ * � $ # y �) y # � + (� � �) * y # { � x (� ! � z ! # �) � � # � � , z
y � # x # � # , { # +) + ! # ,) , � � , { " ~ * � $ # y �) y # � + (% � �� = B � C B R �
 �� �� � � * ~ * # � � �

� � , � " " (% + ! # +) + � " � # z � # #) x 0 � + { ! } # + � # # , � � , � � � � + ! � # * y # { + +) * # � $ � { #
{ ! � � � { + # � � * + � { * * y # { � � # � } (+ � � z # + y �) y # � + � # * � � % � � � % � � � * z � $ # , } (� � � � � � ! #
� � $ � *) � � �
 ,) � 0 � " � � # * + ! # 0 � + { ! � # z � # # } # + � # # , / � , � � �

� � � � < � � � �
�
� � � � � � � � < � �
� �
 � � �

� � . � � 	 + � � ! # � # � � � + + # , � ~ # � () x � * } # ") � ! � * + �) } � , � � , z *) " ~ + �) , * � � � , �
� ? + ! � + } � , � 7 � � , � 7 ? % � # * y # { + � $ # " (� � ! # 0 � + { ! 0 � ' # � z � $ # * � ! � z ! # �) � � # � � , z
y � # x # � # , { # +) � � } # { � ~ * # 7 � * # " " *) , " (, # � $ # ! � { " # * � � � # � % + ! # � � � � � � � � � � � � � #
y �) y # � + () x 7 � � * � , { " ~ * � $ # � � ~ + + � , z = B � C B R �
 � � � � � � � � � � � � � � # � � , + ! # � ~ # � (
� � " " � # $ # � * # + ! #) � � # � � , z y � # x # � # , { # �

� *
 � C � C � � 3 7 � � C B C 3 7 " � � � � � # � 3 8 �3 8 : ; � < � " � # 3 = > � � = > ? � 3 = > � ; D ; J � � % � ; � I = > ? ; � � % � # ; �3 8 : ; � = � # " � # 3 8 � � I 3 8 � � ; � � � � � I
3 8 � � � � � � � � � � � � � # 3 � I 3 � ; � � H K � � : � � � � I
� / � � � � � � (4 � + @ 2 6 N ; : 9 ; > 3 5 ; l V 7 4 @ 4 3 7 F 9 V ; @ 4 < F 3 D ; 5 A > ; A 4 6 E V A ; < ; A ; 6 @ ; b� B 4 6 @ ; 3 D 4 9 @ 5 6 9 3 A : @ 3 4 9 5 6 7 F : 9 ; > < 5 A 3 D ; V : A V 5 9 ; 9 5 < A ; 9 : 7 3 5 A > ; A 4 6 E L 3 D ; ` 2 3 @ D ` 2 M ; A

A ; ` 5 ? ; 9 4 3 N ; < 5 A ; 9 ; 6 > 4 6 E 3 D ; A ; i A 4 3 3 ; 6 h : ; A F 3 5 2 A ; V 5 9 4 3 5 A F 9 F 9 3 ; ` b

 � + , . 	 	 � � � , � / 0 . / � � + , � � � +
 , � + , � / 0 � � $ # , � # � ~ # * + # � � ~ # � (� � � + ! + � � z # +
y �) y # � + � # * � � % � � � % � * y # { � x (� , z * # � $ � { # { ! � � � { + # � � * + � { * � , � � * # +) x } � , � � , z *) " ~ �
+ �) , * � 7 x �) 0 0 � + { ! � , z � # * ~ " + *) x � ! * � # � � � + + # , � ~ # � (� �) � # � { ! } � , � � , z *) " ~ + �) ,
� � � 7 % + ! # 0 � + { ! 0 � ' # � { � " { ~ " � + # * + ! #) $ # � � " " � # z � # #) x 0 � + { ! } # + � # # , � � , �
� % � � � < � � � / 	 � � � < � � 	 � � ~ * � , z � � � � * !) � , } # ") � � , �) � � # � * + ! # *) " ~ + �) , * � ,
� # * { # , � � , z) � � # �) x + ! # � � � # z � # # *) x 0 � + { ! �

� � � < � � � � � � � � � < � � � � � � � � � � � � � < � � < � ! # � # / 	 � 	 � � � �

� � * � � # � z ! + + ! � + * y # { � � # * + ! # y) � + �) ,) x � � � � < � � � , � � � � � < � � + ! � + � , { " ~ � # * � ,
+ ! # +) + � " * {) � � , z � � (� y y �) y � � � + # " (* # + + � , z + ! # � # � z ! + $ � " ~ # % + ! #) � � # � � , z * { ! # 0 #
,) +) , " ({ � , 0 # # + � ~ * # � * y # { � � {) � � # � � , z � # � ~ � � # 0 # , + % } ~ + � " *) { � , } # ~ * # � x) �
) + ! # �) � � # � � , z y ~ � y) * # * � �) � # � � 0 y " # % } (* # + + � , z � � / + ! #) � � # � � , z * { ! # 0 # { � ,
} # ~ * # � +)) � � # � z # , # � � " � & � � � ~ # � (� # * ~ " + * � - + � * � 0 y) � + � , + +) ,) + # + ! � +
� � � < � � x � � " * � ! # , � � � � < � � x � � " * �

� � � � � o p v u � � � r t q u � � � p u � v o � v o p � � � q v s

& * � # * { � � } # � # � � " � # � % � # *) ~ � { # * � , + ! # � � � � � � # � { { # * * # � $ � � | # } * # � $ � { # * � , �
� # *) ~ � { # � � * {) $ # � (� * �) , # } (� � # , + � x (� , z | # } * # � $ � { # * + ! � + y �) $ � � # � { { # * * +)
+ ! # � # *) ~ � { # * � - , + ! � * * # , * # % � x + ! # | # } * # � $ � { # * � � # � # * { � � } # � ~ * � , z + ! # w | � � �
" � , z ~ � z # % * ~ { ! � * y �) y) * # � � , � � . � %) ~ � * { ! # 0 # { � , } # � y y " � # � x) � } � * � { � # *) ~ � { #
0 � + { ! � , z � , + ! # � � � � % � � # � % } � " � + # � � " 0 � + { ! �

- , � � � � + �) , % ~ * #) x � & � � � * + ! # � # � ~ # * + " � , z ~ � z # # , � } " # * {) , z � ~) ~ *
� , � z � , z 0 � + { ! # * % � ! � { ! � � # � 0 y) � + � , + � ~ � � , z z � � � � # *) ~ � { # � � * {) $ # � (� � ! # * #
0 � + { ! # * � � # 0 � � # y) * * � } " # } # { � ~ * # � & � � � " ") � * * # $ # � � " z � � y ! y � + + # � , * +)
} # ~ * # � � , � � ~ # � (� , � � " ") � * + ! # 0 +) � # x # � +) + ! # * � 0 # {) 0 0) , $ � � � � } " # * �
� ! # x) " ") � � , z # � � 0 y " # x �) 0 � � � � � # 0) , * + � � + # * � z � , z 0 � + { ! ~ * � , z � & � � �
� ! # y ~ � y) * # � * +) 0 � + { ! � /) } � � # *) ~ � { # � # � ~ # * + � � � + ! + �) + (y # *) x � # *) ~ � { # * �
�) � ' * + � + �) , * � , � *) x + � � � # y � { ' � z # " � { # , * # * � & /) } + ! � + ~ * # * + ! # y � { ' � z # * , # # � *
+) � " ") { � + # }) + ! � 0 � { ! � , # � , � � " � { # , * # } # x) � # � + { � , � ~ , � � � { # , * � , z + # � 0 * 0 � (
, + � � " + ! � + *) 0 # " � { # , * # * � � # $ � " � �) , " () , *) 0 # 0 � { ! � , # * % � ! � " #) + ! # � * 0 � (}
$ � " � � � , { # � + � � , * ~ } , # + * � & * * ~ 0 � , z + ! # + �) � # *) ~ � { # * � � # � # * { � � } # � } (� � � # � # , +
� � � z � � y ! * � , � + ! # �) � ' * + � + �) , � � � z � � y ! � * + ! # � # x � ~ " + z � � y ! % + ! # x) " ") � � , z
� ~ # � (y # � x) � 0 * � z � , z 0 � + { ! � z � � , * + + ! # + �) � # *) ~ � { # * �) + # + ! � + + ! # + �) z � � y !
y � + + # � , * � # x # � +) + ! # * � 0 # $ � � � � } " # 3 � � � � A 7 7 �
� C � C � � 3
 � # � = > A 3 � = # A > 7 A
� � C B C 3
 � # � = > A : ; � S � � : � # � � # � � � 3 � � # � I 3 � � # � ; � � � # � � J I

3
 � # � = > A : ; � � � J � � % 3
 A
 I D < � � C B
 3
 A
 � � / / / � I
3
 � # � = > A : ; � S � � � � � � 3 � � � � A 7 7 I D < � � C B
 3 � � � � A 7 7 � $ � � � I � I � " 4 � I
� B S � � � ; � � ; � � � � � � � � �

3 � = # A > 7 A : ; � � ; � � � � � � # 3 � � � � A 7 7 I
3 � = # A > 7 A : ; � S " " � � � ; # � � � 3 � � � I D < � � C B
 3 � � � � $ � � J ; " " 4 � I

$

- + � * � 0 y) � + � , + +) ,) + # + ! � + } � " � + # � � " % {) , z � ~) ~ * % � , � z � , z 0 � + { ! # * ~ * � , z
) ~ � 0 � + { ! 0 � ' � , z * { ! # 0 # � � # �) , # } � * # �) , + ! # w | � � � * # � $ � { # � # * { � � y + �) , + ! � +
� " ") � * * # 0 � , + � { 0 � + { ! � , z � � ! � * � * � � � # � # , + x �) 0 + ! # {) , $ # , + �) , � " z � � � � # *) ~ � { #
� � * {) $ # � (* (* + # 0 * � � / % � � % � % � � � + ! � + ~ * # + # � + 0 � + { ! � , z +) y # � x) � 0 + ! # 0 � + { ! � , z
+ � * ' * �

� � v � u t � � v r o � o s � t p t q �
 r q �

� ! #) y + �) , � " z � � y ! y � + + # � , � *) , #) x + ! # � , + # � # * + � , z x # � + ~ � # * y �) $ � � # � } (+ ! #
� & � � � ~ # � (" � , z ~ � z # � - + � # � , # * � � � � + �) , � " z � � y ! y � + + # � , * + ! � + �) ,) + { � ~ * #
*) " ~ + �) , * +) } # � # / # { + # � � x + ! # *) " ~ + �) , * { � , ,) + } # 0 � + { ! # � % } ~ + �) } � , � + ! #
*) " ~ + �) , * � ! # , + ! # ({ � , } # 0 � + { ! # � � � ! � * x # � + ~ � # � * ,) + * ~ y y) � + # � } (# � � * + � , z
0 � + { ! 0 � ' # � * (* + # 0 * % } ~ + { � , } # ~ * # � } (� * # � $ � { # � # � ~ # * + # � x) � {) 0 y " # � � , �
y ~ + �) ~ + y ~ + � , � * # � $ � { # { ! � � � { + # � � * + � { * 0 � + { ! � , z � �) � # � � 0 y " # % � + { � , 0 � + { ! �
* # � $ � { # + ! � + y �) $ � � # * � � � � + �) , � ") ~ + y ~ + *) � { ! � � � { + # � � * + � { * +) + ! # � # � ~ � � # �) , # * �

� ! #) + ! # � � , + # � # * + � , z x # � + ~ � # y �) $ � � # � } (+ ! # � & � � � ~ # � (" � , z ~ � z # � * � + *
$ � " ~ # {) , * + � � � , + * � - + � # * + � � { + * *) " ~ + �) , * } (� 0 y) * � , z {) , * + � � � , + *) , $ � " ~ # * + ! � +
{ � , } # }) ~ , � +) $ � � � � } " # * � � ! � * x # � + ~ � # � * ~ * # x ~ " % x) � # � � 0 y " # % +) � " + # � * # � $ � { # *
} � * # �) , + ! # � � � � � � � � ; J � � , � # � Q # � � � � � � " # � � �) x + ! # � � � � � � � � � � � � � � ~ * � , z
� # z ~ " � � # � y � # * * �) , * � � ! # " � , z ~ � z # � " *) � " ") � * � y y " � { � + �) , � * y # { � � { {) , * + � � � , + *) ,
$ � " ~ # * � , � *) " ~ + �) , �

� ! #) + ! # � x # � + ~ � # % � " + # � , � + � $ # z � � y ! y � + + # � , * % { � , } # ~ * # x ~ " � ! # , 0 � + { ! � , z
* # $ # � � " z � � y ! y � + + # � , * � & y � + + # � , { � , } # , # * + # � � , � ~ * # � +) z # + ! # � � � + !) + ! # �
z � � y ! y � + + # � , * * ~ { ! � *) y + �) , � ") , # * � - , + ! � * y � y # � % � # �) ,) + � " ") � + ! # * # y � + �
+ # � , * +) } # ~ * # � � � + ! + (y # � 0 � + { ! � , z y � + + # � , * � # � z � % +) {) , , # { + + �) + (y # � 0 � + { ! � , z
y � + + # � , * � � & � # � ~ # * + # � * !) ~ " � } # � } " # +) * # , � 0 ~ " + � y " # � ~ # � � # * � , �) } + � � , + ! #
* � 0 # � # * ~ " + * �

� ! # � }) $ # z � � y ! y � + + # � , * � , � $ � " ~ # {) , * + � � � , + * �) ,) + � � # { + * # � $ � { #) � � # � � , z �
w y + �) , � " z � � y ! y � + + # � , * 0 � ({) , + � � , + (y # � 0 � + { ! � , z y � + + # � , * } ~ + � ,) � � # � � , z
y � # x # � # , { # { � , ,) + } # � * * � z , # � +) + ! # y � + + # � , * � �

| # ! � $ # � 0 y " # 0 # , + # � + ! # 0 � + { ! 0 � ' # � ~ * � , z � � $ � � , � ~ * # � # , � � & � �
� ~ # � (y � � * # � � � � � x) � � ~ # � (� # � � � + � , z � , � � # * ~ " +) � � # � � , z � � ! # 0 � + { ! 0 � ' # � � " *)
� , {) � y) � � + # * � # , � � & � � � ~ # � (� , � � , x # � # , { # # , z � , # * *) + ! � + � + { � , y �) { # * *
� � � � � + � * +) � # � � , � � " # * (* + # 0) � � , � � # y) * � +) � (+ ! � + �) # * ,) + ! � $ # � & � �
� ~ # � (� , � � , x # � # , { # # , z � , # * �

| # � � # { ~ � � # , + " (# � y � , � � , z �) � ' � , { # � + � � , � � � # { + �) , * � � ! # � � * + � * � , � � , z
� � (* +) * ~ y y) � + + ! # ~ * #) x � " + # � , � + � $ # z � � y ! y � + + # � , * x) � + (y # � 0 � + { ! � , z y � + + # � , * �
�) # , � } " # + ! � * % � # 0 ~ * + # � + # , � + ! # � ~ # � (� # � � � + � , z � , � * {) � � , z 0 # { ! � , � * 0 * � � ! #
* # {) , � � * � , � � , z � � (* +) * ~ y y) � + + ! # * # + 0 � + { ! x) � z � � � � # *) ~ � { # � � * {) $ # � (� � � , { #
� & � � �) # * ,) + { ~ � � # , + " (y �) $ � � # � z z � # z � + # x ~ , { + �) , * % + ! # 0 � + { ! 0 � ' # � � * ,) +
� } " # +) ~ * # � � & � � � ~ # � (# , z � , # +) y # � x) � 0 + ! # * # + 0 � + { ! � & 0 � + { ! 0 � ' # �
{ � , % !) � # $ # � % � # � " � � # � * # + 0 � + { ! } (y �) { # * * � , z � ~ # � (� # * ~ " + * x �) 0 � � # y) * � +) � (�
� C D ; 9 ; V 2 3 3 ; A 6 9 2 A ; 4 E 6 5 A ; > N F 3 D ; h : ; A F A ; i A 4 3 4 6 E ` 5 > : 7 ; b

� � � � q � o u � �
� b D 3 3 V � � � i i i b > 2 ` 7 b 5 A E � 9 ; A ? 4 @ ; 9 � 5 i 7 R 9 � � b � � b
� b D 3 3 V � � � i i i bi 9 ` 5 b 5 A E � � P P 0 � > � � ? P b � � � P P 0 P O P T � b
O b D 3 3 V � � � i i i bi O b 5 A E � B : N ` 4 9 9 4 5 6 � _ B 2 d R B � b
0 b D 3 3 V � � � i i i bi O b 5 A E � C J � 5 i 7 R < ; 2 3 : A ; 9 � b
Q b D 3 3 V � � � i i i b 5 2 9 4 9 R 5 V ; 6 b 5 A E � @ 5 ` ` 4 3 3 ; ; 9 � i 9 A < b
T b D 3 3 V � � � i i i b E 7 5 N : 9 b 5 A E � 3 5 5 7 M 4 3 � > 5 @ 9 � 0 b P � 4 6 < 5 � 4 6 > ; l � b
5 b D 3 3 V � � � i i i bi O b 5 A E � C J � A > < R 9 V 2 A h 7 R h : ; A F � b
S b D 3 3 V � � � ; 9 i b i O b 5 A E � 3 5 V 4 @ � B V 2 A h 7 8 ` V 7 ; ` ; 6 3 2 3 4 5 6 9 b
7 b D 3 3 V � � � i i i bi O b 5 A E � C J � � P P T � K J R A > < R 9 V 2 A h 7 R � � d A ; 9 R � P P T P 0 P T � b

� P b D 3 3 V � � � i i i bi O b 5 A E � C J � � P P T � K J R A > < R 9 V 2 A h 7 R V A 5 3 5 @ 5 7 R � P P T P 0 P T � b
� � b f 2 5 7 : @ @ 4 L � b L ; 3 2 7 b � B ; ` 2 6 3 4 @ ` 2 3 @ D 4 6 E 5 < i ; N 9 ; A ? 4 @ ; 9 @ 2 V 2 N 4 7 4 3 4 ; 9 b 8 6 � f A 5 @ b 5 <

3 D ; 3 4 A 9 3 8 6 3 ; A 6 2 3 4 5 6 2 7 B ; ` 2 6 3 4 @ _ ; N K 5 6 < ; A ; 6 @ ; 5 6 C D ; B ; ` 2 6 3 4 @ _ ; N b G � P P � H
O O O � O 0 5

� � b d 4 L d b L 1 5 A A 5 @ M 9 L 8 b � = 9 5 < 3 i 2 A ; < A 2 ` ; i 5 A M < 5 A ` 2 3 @ D ` 2 M 4 6 E N 2 9 ; > 5 6 9 ; ` 2 6 3 4 @ i ; N
3 ; @ D 6 5 7 5 E F b 8 6 � f A 5 @ b 5 < 3 D ; � � 3 D 4 6 3 ; A 6 2 3 4 5 6 2 7 @ 5 6 < ; A ; 6 @ ; 5 6 _ 5 A 7 > _ 4 > ; _ ; N b
G � P P O H O O � � O O 7

� O b � : 2 6 E L d b L ; 3 2 7 b � 9 l V 7 5 A 4 6 E 9 ; ` 2 6 3 4 @ 3 ; @ D 6 5 7 5 E 4 ; 9 4 6 9 ; A ? 4 @ ; ` 2 3 @ D ` 2 M 4 6 E b 8 6 �
f A 5 @ b 5 < 3 D ; C D 4 A > 8 9 9 9 9 : A 5 V ; 2 6 K 5 6 < ; A ; 6 @ ; 5 6 _ ; N B ; A ? 4 @ ; 9 b G � P P Q H � � T � � O 0

� 0 b K 2 A > 5 9 5 L U b L B D ; 3 D L = b � B ; ` 2 6 3 4 @ ; R i 5 A M � 5 i @ 5 ` V 5 9 4 3 4 5 6 b U 5 : A 6 2 7 5 < 8 6 3 ; 7 7 4 E ; 6 3
8 6 < 5 A ` 2 3 4 5 6 B F 9 3 ; ` � � G � P P O H � 7 � � � � Q

� Q b � 7 : 9 @ D L � b L ; 3 2 7 b � c i 7 9 R ` l � 1 F N A 4 > 9 ; ` 2 6 3 4 @ i ; N 9 ; A ? 4 @ ; A ; 3 A 4 ; ? 2 7 b 8 6 � f A 5 @ b 5 <
8 6 3 ; A 6 2 3 4 5 6 2 7 = = = 8 3 2 7 7 B F ` V 5 9 4 : ` 5 6 = E ; 6 3 9 2 6 > 3 D ; B ; ` 2 6 3 4 @ _ ; N b G � P P Q H

� T b U 2 ; E ; A L � b K b L ; 3 2 7 b � J 2 6 M ; > ` 2 3 @ D 4 6 E < 5 A 9 ; A ? 4 @ ; > ; 9 @ A 4 V 3 4 5 6 9 : 9 4 6 E 5 i 7 R 9 b 8 6 �
� 5 ` ` : 6 4 M 2 3 4 5 6 4 6 ? ; A 3 ; 4 7 3 ; 6 B F 9 3 ; ` ; 6 G � 4 � B � P P Q H b G � P P Q H 7 � � � P �

� 5 b � ; 6 2 3 2 7 7 2 D L � b L ; 3 2 7 b � B ; ` 2 6 3 4 @ A ; 2 9 5 6 4 6 E < 5 A i ; N 9 ; A ? 4 @ ; 9 > 4 9 @ 5 ? ; A F b 8 6 �
_ _ _ � P P O _ 5 A M 9 D 5 V 5 6 9 R B ; A ? 4 @ ; 9 2 6 > 3 D ; B ; ` 2 6 3 4 @ _ ; N b G � P P O H

� S b D 3 3 V � � � i i i b E 7 5 N : 9 b 5 A E � 3 5 5 7 M 4 3 � b
� 7 b B 2 4 > L � b f b L � 5 � 4 ` 2 L 8 b � C 5 i 2 A > 9 = : 3 5 ` 2 3 4 @ B ; A ? 4 @ ; 2 4 9 @ 5 ? ; A F 2 6 > � 5 6 4 3 5 A 4 6 E

4 6 _ B R J ; 9 5 : A @ ; 3 A 2 ` ; i 5 A M b 8 6 � f A 5 @ b 5 < 3 D ; 3 4 A 9 3 8 6 3 ; A 6 2 3 4 5 6 2 7 K 5 6 < ; A ; 6 @ ; 5 6
B ; ` 2 6 3 4 @ 9 L � 6 5 i 7 ; > E ; 2 6 > I A 4 > b G � P P Q H 7 O � � 7 O S

� P b J 2 ` 2 6 L J b L d 4 ? 6 F L � b L B 5 7 5 ` 5 6 L � b � � 2 3 @ D ` 2 M 4 6 E � 2 4 9 3 A 4 N : 3 ; > A ; 9 5 : A @ ; ` 2 6 2 E ; R
` ; 6 3 < 5 A D 4 E D 3 D A 5 : E D V : 3 @ 5 ` V : 3 4 6 E b 8 6 � f A 5 @ b 5 < 3 D ; B ; ? ; 6 3 D 8 9 9 9 8 6 3 ; A 6 2 3 4 5 6 2 7
B F ` V 5 9 4 : ` 5 6 1 4 E D f ; A < 5 A ` 2 6 @ ; 2 4 9 3 A 4 N : 3 ; > K 5 ` V : 3 4 6 E b G � 7 7 S H � 0 P � � 0 T

� � b J 2 ` 2 6 L J b L d 4 ? 6 F L � b L B 5 7 5 ` 5 6 L � b � f 5 7 4 @ F 2 A 4 ? ; 6 1 ; 3 ; A 5 E ; 6 ; 5 : 9 J ; 9 5 : A @ ; K 5 R
= 7 7 5 @ 2 3 4 5 6 i 4 3 D I 2 6 E ` 2 3 @ D 4 6 E b 8 6 � f A 5 @ b 5 < 3 D ; � � 3 D 8 9 9 9 8 6 3 6 7 B F ` V b 5 6 1 4 E D
f ; A < 5 A ` 2 6 @ ; 2 4 9 3 A 4 N : 3 ; > K 5 ` V : 3 4 6 E G 1 f 2 K R � � H b G � P P O H S P � S 7

� � b d 4 : L K b L 3 5 9 3 ; A L 8 b � = K 5 6 9 3 A 2 4 6 3 d 2 6 E : 2 E ; = V V A 5 2 @ D 3 5 � 2 3 @ D ` 2 M 4 6 E b 8 6 � f A 5 @ b
5 < 3 D ; � 0 3 D 8 6 3 ; A 6 2 3 4 5 6 2 7 _ 5 A M 9 D 5 V 5 6 J ; 9 ; 2 A @ D 8 9 9 : ; 9 5 6 2 2 3 2 9 6 E 4 6 ; ; A 4 6 E � _ ; N
B ; A ? 4 @ ; 9 < 5 A 9 R K 5 ` ` ; A @ ; 2 6 > 9 R I 5 ? ; A 6 ` ; 6 3 = V V 7 4 @ 2 3 4 5 6 9 G J 8 2 9 6 P 0 H b G � P P 0 H 5 � � 0

� O b C 2 6 E ` : 6 2 A : 6 M 4 3 L 1 b L ; 3 2 7 b � c 6 3 5 7 5 E F R N 2 9 ; > J ; 9 5 : A @ ; � 2 3 @ D 4 6 E 4 6 3 D ; I A 4 > 	 C D ;
I A 4 > ` ; ; 3 9 3 D ; B ; ` 2 6 3 4 @ _ ; N b 8 6 � f A 5 @ b 5 < B ; ` f I P O b � 5 7 : ` ; � S 5 P b G � P P O H 5 P T � 5 � �

� 0 b D 3 3 V � � � i i i b6 2 4 @ 9 b @ 5 ` � b
� Q b D 3 3 V � � � i i i b: 6 9 V 9 @ b 5 A E � b
� T b D 3 3 V � � � � ; 6 2 b 9 5 : A @ ; < 5 A E ; b6 ; 3 � b

A flexible model for Web service discovery

Rubén Lara1, Miguel Ángel Corella2 and Pablo Castells2

1 Tecnologı́a, Información y Finanzas, Madrid, Spain
rlara@afi.es

2 Universidad Autónoma de Madrid, Spain.
{miguel.corella,pablo.castells}@uam.es

Abstract. The advent of the SOA paradigm is expected to cause an increase in
the number of available Web services. In this setting, advanced facilities for the
discovery of Web services that provide a given functionality are required so that
this increase does not create a bottleneck for the exploitation of services in an
SOA. In this paper, we present a model for the discovery of Web services which
relies on alternative views of Web service functional capabilities, allowing for
different trade-offs between the accuracy of discovery results and the efficiency
of the discovery process. Up to three filtering steps, with increasing complexity,
can be successively applied in order to refine discovery results. Furthermore, the
use of taxonomies of functional categories, close to the intuition of average users,
is introduced by our model with a two-fold purpose: a) supporting the user in the
description of goals and Web services, and b) allowing for a coarse-grained but
highly efficient discovery. Due to its flexibility, the model proposed is expected
to cover a wide range of use cases.

1 Introduction

Service-Oriented Architectures (SOAs) are receiving increasing attention, as they
promise an important gain in flexibility and scalability of IT systems and a reduction of
the integration burden. However, the adoption of the SOA paradigm is not only expected
to bring benefits but also to pose new research challenges. One of these challenges is
the automatic location of Web services that can fulfill a given functional goal, and it
constitutes the focus of this paper.

We concentrate on the exploitation of the formal description of Web service func-
tional capabilities and of customer goals and, building on previous works ([13, 14, 16,
17]), we propose a Web service discovery model with some features that we believe can
make it usable in a wide variety of scenarios, namely: a) it allows for different trade-offs
between accuracy of results and response times, based on the application of different
filters, b) it supports users in the description of their goals and Web services, c) it can
provide meaningful results in short times if only the simplest filter is applied, and d)
it can yield results of considerable accuracy if all available filters are successively ap-
plied. Additionally, a prototype of a registry and a discovery component implementing
the model designed has been built as a proof-of-concept of our approach. This proto-
type is presented in the paper as well as some preliminary performance evaluation and
complexity results based on the logical languages and reasoning tasks employed.

The paper is structured as follows: Section 2 introduces alternative views of Web
service capabilities used in our model. The publication of Web services by providers and
the description of goals by customers are presented in Sections 3 and 4, respectively.
In Section 5, the application of registry-side filters for locating Web services that can
resolve the goal at hand is described, and customer-side filters are presented in Section
6. Relevant related work is discussed in Section 7. Finally, our conclusions and future
work are summarized in Section 8.

2 Web Service Capabilities

Web services are computational entities accessible using particular standards and pro-
tocols, and usable to request the provision of some services, being a service understood
as a provision of value in some domain [13, 22]. For example, an airline can publish
a Web service for the booking of its flights; this Web service can be used to request
different particular bookings, each booking being a service.

The provision of a service results on the provision of some information to the
customer (service outputs) e.g. the provision of weather information and/or on some
changes in the real world (service effects) e.g. the actual booking of a seat on a flight;
the functional value of the Web service is given by the outputs and effects associated to
the services that can be requested through it. We call this functional value the functional
capability of the Web service [23].

In our model, a provider can describe the functional capability of its Web service
in different ways, namely: a) only syntactically using WSDL [5], b) assigning the Web
service to one or more categories, and/or c) semantically, with different level of detail
(only inputs, only results, or also the relation between both). The publisher will be free
to choose among these types of description and to combine them.

For describing Web services, regardless of the type of description used, we use the
WSMO framework [23] and the WSML [9] family of languages. However, our model
could work with other frameworks. In this section, we present the alternative descrip-
tions allowed in our model and how they are incorporated into the WSMO framework.
We do not explain how WSDL Web services are described; for details on how WSDL
is used to syntactically describe the function a Web service offers we refer to [5].

2.1 Semantic description with input-results relation

The service provided by a Web service and, thus, the results (outputs and effects) of
the Web service execution depend on the information given by the customer to the Web
service as input values, and on the state of the world that holds when a request is issued
to the Web service. The booking provided by the airline Web service mentioned above
will depend e.g. on the flight data given to the Web service and on seat availability,
which is part of the state of the world. If we abstract from the possibly complex inter-
action required by Web services for providing their functionality, a Web service can be
seen as a function that maps input values and the state of the world to some outputs and
effects.

The first kind of description we will consider is a formal description of valid input
values for the Web service and of possible results depending on the particular input
values provided by the customer. We drop the dependency of Web service results on the
current state of the world from the description, as the discovery process will have partial
visibility of the current state of the world and, thus, a distributed, recursive evaluation
of capability descriptions would be required if such dependency has to be considered
by the discovery process, which can considerably degrade efficiency [16].

Figure 1 shows the description of a flight booking Web service. Required input
values are encoded by a WSMO precondition: information of the flight to be booked
(variable ?flight), which must be between European cities and operated by airline air,
and a MasterCard credit card (variable ?cc), are required. The WSML language used
for describing preconditions is WSML-Flight [9], as it will be explained in Section 6.

The conditions results of the Web service fulfill, dependent on the particular input
values provided by the customer, are encoded by input-dependent postconditions, iden-
tified by the value of the postconditionType non-functional property. In the example,
every result (variable ?result) of the Web service will be a booking of a flight ?flight,
paid with credit card ?cc. Variables ?flight and ?cc are declared in the capability as
shared between the precondition and the postcondition and, therefore, the formalization
of Web service results is dependent on the values given to these variables i.e. on the
input values given by the customer, as we will see in Section 6.

The modelling style is the same one used in [16], and the description of input-
dependent results is regarded as a not yet named Description Logics (DL) [20] concept
definition that formalizes the conditions all results of the Web service fulfill, depen-
dent on the input values given by the customer. The expressivity is restricted to the
SHOIQ(D) DL [20], which is the description logic underlying WSML-DL with the
addition of nominals, as shared variables in such concept definitions will be replaced
by instances during discovery (see Section 6), and very close to the DL underlying
OWL (SHOIN (D)) [2]. In the following, we will denote WSML-DL plus nominals
by WSML-DL+.

Notice that all results of the Web service, both outputs and effects, are encoded in
the postcondition of the Web service capability. Outputs and effects are distinguished
ontologically, as e.g. the Booking concept is a subconcept of Effect in the domain
ontologies used, and there is a concept InfoProvision for identifying the provision of
information i.e. outputs. Ontologies are not shown due to space constraints.

2.2 Formal description without inputs-results relation

The second type of description we will consider is the formal description of valid input
values and of possible results of the Web service, but without their relation. Remarkably,
this is close to the kind of descriptions used by pure DL-based approaches to Web
service discovery such as [4, 17, 21].

The description of valid input values is the same one introduced above, encoded in
the precondition of the Web service of Figure 1, while the possible results of the Web
service, independently of the particular input values given, are encoded by the input-
independent postcondition of Figure 1, identified by the value of the postconditionType

non-functional property. Notice that there is no shared variable between the precondi-
tion and the input independent postcondition.

The description of the input-independent postcondition, in WSML-DL+, is regarded
as a not yet named DL concept definition that formalizes the conditions results of
the Web service fulfill, independently of input values. The input-dependent and input-
independent formalizations of results are related in the way described in [16].

2.3 Categorization

Web services can be assigned to functional categories i.e. to categories that capture a
given functional value. For example, a Web service for booking flights can be assigned
to a transport means booking category, and this category reflects to some extent the
functionality of the Web service. The last type of description we will consider is the
assignment of the Web service to (one or more) functional categories.

In Figure 1, the category the Web service is assigned to is TransportMeansBook-
ing@http://www.tifbrewery.com/seta/Taxonomy1 i.e. a transport means booking cate-
gory defined at taxonomy http://www.tifbrewery.com/seta/Taxonomy1, and the assign-
ment is encoded by the category non-functional property of the capability.

Taxonomies of functional categories are intuitive for average users if properly de-
fined i.e. with an appropriate number of categories, properly arranged, with a clear
meaning and a clear textual explanation, etc. Furthermore, we associate a formal mean-
ing to categories in taxonomies; when a taxonomy of categories is defined, we associate
to each category a formal and general description of the results expected from Web ser-
vices assigned to that category, independently of possible input values. For example,
the following WSML description is associated to a transport means booking category:

?result memberOf Booking[ofitem hasValue ?item] and ?item memberOf TransportMeans.

The description above formalizes general results, and particular Web services as-
signed to this category can more precisely formalize the results they offer e.g. booking
of flights, possibly including how these results depend on input values. The language
used for describing these general results is also WSML-DL+, and descriptions like the
one above are regarded as a not yet named DL concept definition formalizing the con-
ditions general results of Web services in a category fulfill.

3 Web Service Publication

Service providers can make their services accessible via Web service interfaces. In or-
der to make a Web service usable by other parties, a provider will publish the Web
service description at some network location reachable by target users. It is a common
practice to publish syntactic WSDL descriptions of Web services at UDDI [3] reposi-
tories, which act as a common entry point for the location of Web services and provide
keyword-based search facilities as well as search based on categories in taxonomies
such as UNSPC. However, the publication of WSDL descriptions at UDDI repositories
has two major limitations: a) the assignment of Web services to categories is com-
pletely manual, and b) the use of syntactic descriptions does not allow for advanced
search based on formal semantics [24].

webService ”http://www.tifbrewery.com/seta/FlightBooking”
...
capability FlightBookingCapability

nonFunctionalProperties
afi#category hasValue ”TransportMeansBooking@http://www.tifbrewery.com/seta/Taxonomy1”

endNonFunctionalProperties

sharedVariables {?flight, ?cc}

precondition
definedBy

?flight memberOf Flight[cityOrigin hasValue ?co, cityDestination hasValue ?cd,
operatedBy hasValue air] and ?co memberOf City[inContinent hasValue europe] and
?cd memberOf City[inContinent hasValue europe] and ?cc memberOf MasterCard.

postcondition
nonFunctionalProperties

afi#postconditionType hasValue ”inputDependentPostcondition”
afi#intention hasValue ”all”

endNonFunctionalProperties
definedBy

?result memberOf Booking[ofItem hasValue ?flight, withPaymentMethod hasValue ?cc].

postcondition
nonFunctionalProperties

afi#postconditionType hasValue ”inputIndependentPostcondition”
afi#intention hasValue ”all”

endNonFunctionalProperties
definedBy

?result memberOf Booking[ofitem hasValue ?item, withPaymentMethod hasValue ?pm] and
?item memberOf Flight[cityOrigin hasValue ?co, cityDestination hasValue ?cd,
operatedBy hasValue air] and ?co memberOf City[inContinent hasValue europe] and ?cd
memberOf City[inContinent hasValue europe] and ?pm memberOf MasterCard.

Fig. 1. Example Web service

In this setting, we have implemented a registry (Figure 2) using a UDDI repository
(jUDDI1) and a DL reasoner (RacerPro [1]), enabling the retrieval of Web services
based on the semantic description of the results they offer and supporting the publisher
in describing Web services. A taxonomy manager, with a Web service interface, allows
for the management of category taxonomies, and a publication manager is in charge
of the publication of Web services at the registry, making use of jUDDI, RacerPro,
and a categorizer. Both are introduced in this section. The query manager allows for
the location of Web services in the registry (see Section 5). We note that the UDDI
API implemented by jUDDI can also be directly used for the syntactic search of Web
services.

The registry is based on [24], but we allow for arbitrary combinations of concepts
in domain ontologies to describe the results of Web services, and we incorporate the
usage of taxonomies of categories.

3.1 Classification in categories

When a Web service is published at the registry, it is first assigned to one or more
functional categories as it will be explained below. However, before any Web service

1 http://www.juddi.org/

UDDI

Repository

(jUDDI)

Persistence

(RDBMS)

DL

Reasoner

(RacerPro)

Taxonomy

manager

Publication

manager

Query

manager

Publication WSs Discovery WSs

U
D

D
I A

P
I

Taxonomy management WSs

Categorizer

LP reasoner

(Flora-2)

Flora-2

Knowledge

Base

DL

Reasoner

(RacerPro) Discovery

coordinator

Discovery API

Goal

definition

assistant

Goal definition API

Registry

Discovery component

Fig. 2. Registry and discovery component architecture

can be assigned to a category, such category must be included in the registry. This is
done through the taxonomy manager, which allows for the definition of taxonomies
of categories and publishes them at the UDDI repository used by our registry. The
definition of categories includes the formal description of the general results offered by
Web services in that category (see Section 2.3).

Categorization of WSDL Web services. If the publisher only has available a WSDL
description of the Web service, he can only manually browse category taxonomies
known by the taxonomy manager and assign his Web service to (one or more) cate-
gories, as done in current UDDI repositories. If no category is selected and no further
information is given by the publisher, we will have no semantic description of the Web
service and it will be only published at jUDDI and searchable through the UDDI API.

If the Web service is assigned to one or more categories, the formal description of
the general results expected from Web services in these categories will be retrieved and
shown to the publisher so that it serves as a starting point for formally describing his
Web service. The publisher can refine this description and possibly add the formal de-
scription of input values and the relation between Web service results and these values.
For example, if the category chosen is TransportMeansBooking, the formal description
retrieved will be the one given in Section 2.3, which the publisher can refine to describe
e.g. that the Web service only offers the booking of flights, as done in the input indepen-
dent description of results of Figure 1. In the simplest case, the customer will not refine
the results of the categories used, and the formalized results of the Web service will be
the intersection of the results of these categories. A WSMO description is generated to
include the formal details available for publication.

Categorization of semantic Web services. If the publisher has already available not
only a WSDL description but also a semantic description (of results and optionally of
input values) of his Web service, our classification framework can assist him in the

assignment of the Web service to categories. The publication manager uses the catego-
rizer in Figure 2 to heuristically, and based on the semantic description of inputs and
results, propose the categories from existing taxonomies that best fit the Web service.
This is done by measuring the similarity between the semantic description of the Web
service inputs and results, and the inputs and results of Web services published at the
registry and already assigned to a given category (see [6, 7] for details). In our current
implementation, only the type descriptions (i.e. named classes from domain ontologies
involved in inputs and results descriptions) are used.

After this heuristic classification, the publisher is given an ordered list of the cate-
gories his Web service would most likely belong to, thereby assisting him in its catego-
rization. Still, the publisher will make the final choice of categories.

We have measured classification times using a repository of 164 classified semantic
Web services2. This repository has been automatically translated from OWL-S (its cur-
rent format) to WSMO. Since the classification heuristic needs a repository of classified
Web services (the training set) in order to provide meaningful results, it is not possible
to use randomly generated services for testing due to the cost of manually classifying
them. Therefore, our tests are limited to a set of 164 Web services, obtaining a response
time of around 650 milliseconds for classifying a new Web service when 156 of them
(the training set) are already classified3.

Consistency checking. Once the publisher has assigned his Web service to categories
and sent its final WSMO description to the publication manager, the description of the
input-independent results of the Web service and the description of the results associ-
ated to the selected categories are checked for consistency [20] so that the Web service
is not assigned to categories whose general results are not consistent with the results the
Web service declares. For example, we will check that the input-independent postcondi-
tion of the Web service in Figure 1 is consistent with the formalization of results of the
transport means booking category in Section 2.3. If only a WSDL description was ini-
tially given, this check will only be necessary if the publisher refines the formalization
of results associated to the selected categories.

Both descriptions, in WSML-DL+, are checked for consistency using RacerPro.
However, RacerPro only offers sound and complete reasoning for SHIQ(D) and,
therefore, nominals [20] are translated into pair-wise disjoint concepts before they are
sent to the reasoner. Some incorrect inferences can be drawn from the resulting trans-
lation [11], but in most cases the subsumption and satisfiability relations computed will
be correct. Recently, a sound and complete reasoning procedure for SHOIQ(D) has
been implemented in the Pellet4 reasoner; testing the use of Pellet instead of RacerPro
will be part of our future work.

We have generated random variations of an initial set of Web services in order to
measure the time required for consistency checking. This task is time consuming, as
checking concept satisfiability is NExpTime-complete for the SHOIQ(D) DL [19].
In our tests, we have measured times of around 20 seconds for checking satisfiability

2 From http://www.few.vu.nl/˜andreas/projects/annotator/owl-ds.html
3 For all tests in the paper, an Intel Pentium 4 2.8 GHz, 1GB RAM computer has been used.
4 http://www.mindswap.org/2003/pellet/

of concepts referring to an ontology of around 800 concepts. However, these times are
acceptable as publication is not time-critical5.

3.2 Results-based classification

After checking consistency of category results and Web service results, the publication
manager will store a business service [3] at jUDDI, which will have a unique key keyW
assigned automatically by the repository. This business service includes: a) the complete
WSMO description of the Web service, b) the functional categories the Web service has
been assigned to, and c) the WSDL description of the Web service, if available, so that
the Web service can be searched syntactically through the UDDI API.

Afterwards, the Web service will be classified in a subsumption hierarchy attend-
ing to the formal, input-independent description of its results. For this purpose, a
SHOIQ(D) concept is defined, being the name of the concept the unique key KeyW
given by the UDDI repository, and the definition of the concept the one given by the
input-independent postcondition of the Web service. For example, the following con-
cept is defined for the Web service from Figure 1:

?result memberOf Key equivalent ?result memberOf Booking[ofitem hasValue ?item,
withPaymentMethod hasValue ?pm] and ?item memberOf Flight[cityOrigin hasValue ?co,
cityDestination hasValue ?cd, operatedBy hasValue air] and ?co memberOf City[inContinent hasValue
europe] and ?cd memberOf City[inContinent hasValue europe] and ?pm memberOf MasterCard.

This concept is sent to the T-Box [20] of the DL reasoner (after translating nomi-
nals), and the T-Box is classified i.e. the subsumption relation between concepts in the
T-Box is computed. In this way, published Web services will be arranged in a subsump-
tion hierarchy in terms of the results they can provide, which we will be able to query
efficiently. As checking subsumption can be reduced to the reasoning task of checking
satisfiability, T-Box classification is also NExpTime-complete. We have measured times
of around 160 seconds for classifying the T-Box when 2000 Web services are already
published, and using an ontology of around 800 concepts [16]. However, classification
is done off-line and, therefore, it is not a time-critical task as long as publication times
are kept within certain limits.

Summarizing, when a Web service is published it will be assigned to categories,
stored at the jUDDI repository, and classified at the T-Box of the DL reasoner according
to the formalization of the results it can provide. Remarkably, the publisher is assisted
in assigning Web services to categories and in formalizing their results based on the
formal meaning associated to categories in taxonomies. In addition, Web services de-
scribed with different level of detail can be published, including purely syntactic WSDL
descriptions. However, the kind of semantic description given at publication time will
condition how Web services can be later evaluated by the discovery process.

4 Customer Goals

Customers will be interested in using Web services because of the functional value they
offer i.e. because of the outputs and effects they can provide. Therefore, customer goals

5 We note, however, that beyond a certain number of Web services published, the times required
for consistency checking can start to be too high and indeed problematic

have to describe the functional value expected from Web services. In this section, we
discuss how goals are described in our model.

4.1 Description of goals

The functional value expected by a customer can be described: a) by giving functional
categories in available taxonomies, or b) by formalizing the results (outputs and effects)
expected. In the first case, the customer can browse category taxonomies and select the
categories sought Web services must belong to. The use of categories for locating Web
services is intuitive for the end-user, as he does not have to deal with formal descrip-
tions, and, as we will see in the next section, response times are low.

However, the results obtained using categories for discovery are coarse-grained. For
this reason, we also try to make the use of formal descriptions easier for customers so
that they can specify their expected results in more detail if required. In particular, we
use the formal descriptions associated to categories as follows: a customer can browse
category taxonomies and select categories he is interested in; when these categories are
selected, we retrieve the formal description of results defined for these categories so
that they can be refined by the customer for accurately describing his goal. In this way,
we provide the user with basic support for formalizing the results he requires.

Figure 3 shows a goal description, where a category is encoded as a non-functional
property of the goal, and the results expected (the booking of a flight myFlight, paid
with credit card myCC) are encoded in the postcondition. The language used for for-
malizing expected results is WSML-DL+.

The customer must also associate a universal or existential intention to the formal-
ization of expected results (encoded as a non-functional property intention), meaning
that he wants to obtain all or only some of the results from the set formalized. This
intention will influence what Web services are considered a match, as explained in [13].

We have implemented a discovery tool that supports the user in describing goals by
exploiting taxonomies of categories. In particular, it enables browsing taxonomies and
retrieving the formal descriptions associated to categories so that they can be used as
a starting point for formalizing expected results. The tool uses the discovery compo-
nent of Figure 2, which is installed at the customer side. In particular, it uses its goal
definition assistant, which communicates with the taxonomy manager in the registry to
retrieve information about taxonomies of categories.

Level of accuracy. Once either a functional category or a formalization of expected
results is given (including its intention), the second ingredient in the description of a
goal is the level of accuracy expected from discovery results. In particular, the customer
can choose to apply different filters to obtain Web services that can potentially fulfill
his goal. We split these filters into registry-side filters, which do not take inputs into
account, and customer-side filters, which are applied over the Web services obtained
from the registry after applying registry-side filters and which focus on availability of
input values and on how these values condition Web service results. Only customer-
side filters consider input values because, as we will explain below, potential input
information is kept locally by the customer.

The customer can choose to apply one of these two registry-side filters: 1) category-
based, or 2) results-based. Two customer-side filters can be successively applied: a)
input-availability, and b) input-results relation. Registry-side and customer-side filters
will be presented in Sections 5 and 6, respectively. For formal details on the results-
based, input-availability and input-results relation filters, we refer the reader to [16].

4.2 Input information

If customer-side filters are applied, we evaluate whether the customer has appropriate
input values for relevant Web services, and possibly whether these input values would
lead to the results required, is evaluated. In this setting, we assume a knowledge base
KB exists, containing: a) the information the customer knows and he is willing to
disclose for achieving his goal, and b) the domain ontologies O providing the domain
vocabulary.

KB will be kept local, as it might be big in volume and it might include customer’s
sensitive information e.g. credit card details, which should not be disclosed to the reg-
istry or to any third-party at discovery time [16]. In our current prototype, KB is im-
plemented as a Flora-26 knowledge base which will be queried as described in Section
6, and which is defined once and used for resolving all goals issued by the customer.
The information in the Flora-2 knowledge base will also be stored in the DL reasoner
of the discovery component (see Figure 2).

Regarding the expressivity allowed for describing information in KB, ontologies in
O must be described using WSML-Core [9] and, thus, restricted in expressivity to De-
scription Logic Programs (DLP) [10]. Furthermore, the information the customer knows
must be described as instances of concepts in O and, thus, as instances of WSML-Core
concepts. In this way, we can consistently refer to instances of the same domain ontolo-
gies from WSML-Flight and WSML-DL+ descriptions (see [9, 16] for details), and use
the same domain model and customer knowledge in Flora-2 and RacerPro. Remark-
ably, and according to [26], most ontologies in popular ontology libraries fall in the
DLP fragment of first-order logic.

In a nutshell, goals are defined by either categories in category taxonomies or a
WSML-DL+ formalization of expected results, plus the filters that must be applied
for finding relevant Web services (encoded by the filter non-functional property of the
goal). Additionally, if customer-side filters are selected, a knowledge base KB con-
taining the information on the customer side that can be used as input values to relevant
Web services must be in place.

5 Registry-side Filters

The discovery component depicted in Figure 2 is installed at the customer side, and the
customer communicates with it to resolve his goal. In particular, the customer submits
his goal to the discovery coordinator of Figure 2, which first sends it to the registry
query manager using the Web service interface exposed for this purpose. The query

6 http://flora.sourceforge.net

goal ”http :// www.tifbrewery.com/seta/FlightBookingGoal”
...
capability FlightBookingGoalCapability

nonFunctionalProperties
afi#category hasValue ”TransportMeansBooking@http://www.tifbrewery.com/seta/Taxonomy1”
afi#filter hasValue {”ResultsBased”, ”InputAvailability”}

endNonFunctionalProperties

postcondition
nonFunctionalProperties

afi#intention hasValue ”some”
endNonFunctionalProperties
definedBy

?result memberOf Booking[ofitem hasValue myFlight, withPaymentMethod hasValue myCC].

Fig. 3. Example Goal

manager will apply the registry-side filter selected and return relevant results to the
discovery coordinator, as it will be explained in the following.

5.1 Category-based filter

If the category-based filter is selected, the query manager extracts the categories spec-
ified by the category non-functional property, which are the categories sought Web
services must belong to (interpreted as a logical and).

As Web services in the registry are already categorized, the query manager will sim-
ply invoke the UDDI find service operation [3] specifying the categories given by the
goal, and the keys of Web services assigned to these categories will be retrieved. After-
wards, the query manager will query the UDDI repository through the get serviceDetail
operation, specifying the keys of relevant Web services, in order to retrieve their com-
plete descriptions. The complete descriptions of the obtained Web services, categorized
as required by the goal, are returned to the discovery coordinator.

The operations above perform simple lookups in the relational database used for
persistency of the UDDI repository and, thus, response times are low. According to our
tests, response times are below 300 milliseconds for 2000 Web services categorized at
the registry and remain almost constant. While results will be provided in short times,
and based on the use of categories intuitive for end-users, they will be coarse-grained, as
the granularity of results will be limited by the granularity of categories in taxonomies.

5.2 Results-based filter

If the results-based filter is applied instead, the query manager will query the DL rea-
soner T-Box for concepts: a) equivalent to, b) more general than, c) more specific than,
and d) with a non-empty intersection with the description of the set of results expected
by the customer, given by the postcondition in the goal description after replacing nom-
inals i.e. concepts describing sets of offered results related in some way to the results
expected are retrieved. In practice, as RacerPro does not allow for querying for all con-
cepts intersecting a given concept, we query for Web services not intersecting the set of
results expected. Intersecting concepts will be obtained by taking all available concepts

representing Web service results but those not intersecting the goal and those having a
subsumption (equivalent, more general, or more specific) relation with the goal. Once
these concepts are retrieved, we will use the matching notions in [13] to determine
which of them are a perfect, possible perfect, partial, or possible partial match for the
goal, taking into account intentions.

Fig. 4. Times for the application of the results-based filter

The keys of matching Web services are obtained from the name of the concepts re-
trieved, and jUDDI is queried for the complete description of Web services with these
keys. The query manager returns to the discovery coordinator four lists with complete
Web service descriptions, one per type of match. In Figure 4, the time required for re-
trieving Web services from the registry applying the results-based filter is shown as a
function of the number of Web services published with an input-independent descrip-
tion of their results. A remark is in place: querying RacerPro for equivalent, more gen-
eral or more specific concepts yields response times below 20 milliseconds for 2000
Web services published (see [16]), while querying for non-intersecting concepts (in or-
der to afterwards obtain intersecting concepts) is the most time-consuming operation
and increases with the number of available Web services.

6 Customer-side Filters

The application of a registry-side filter results in a number of relevant Web services
being returned to the discovery coordinator. If the results-based filter is applied, four
lists of Web services are returned, corresponding to the degrees of match identified
in [13]. If the category-based filter is applied, a single list is returned, being all Web
services considered perfect matches. If no customer-side filter is chosen, the discovery
coordinator directly provides these Web services to the customer. Otherwise, customer-
side filters are applied as explained below.

6.1 Input availability filter

Besides checking whether a Web service is relevant for solving a customer’s goal, either
in terms of the categories it belongs to or in terms of the results it can provide, the
customer might want to know whether the input values required by the Web service

can be provided i.e. whether the customer has appropriate information available to be
submitted to the Web service as input values.

For this purpose we will use the preconditions of Web services returned after the
application of a registry-side filter as queries to the knowledge base KB formed by the
customer knowledge and the domain knowledge i.e. we query for valid input values
for the Web service. For example, the precondition in Figure 1 will be used as a query
for values for variables ?flight and ?cc. Preconditions are expressed in WSML-Flight
and, thus, they have Logic Programming (LP) semantics [18]. As discussed in [16], LP
semantics are appropriate in this setting as we want to determine whether valid input
values can be provided to the Web service from knowledge base KB (close world) i.e.
whether there is, at the customer side, information to be provided as input values to
the Web service. Furthermore, for obtaining valid input values we are only interested in
efficient query answering, not in general entailment.

The knowledge base KB, implemented as a Flora-2 knowledge base, is initialized
before any goal is issued to the discovery component. Therefore, it is already compiled
and loaded when a goal has to be resolved, which makes querying for valid input values
using the description given by Web service preconditions efficient (less than 50 mil-
liseconds for a knowledge base with more than 14000 randomly generated facts). In
fact, query answering for WSML-Flight (Datalog with stratified negation and inequal-
ity) can be done in polynomial time [8].

Input availability is a boolean filter i.e. the input information requirements of a Web
service are either fulfilled or not. However, as we allow providers to publish Web ser-
vices with different level of detail in their description, there might be Web services
retrieved from the registry that do not describe the input values they require. There-
fore, the discovery coordinator will return to the customer: 1) Web services that passed
the input availability filter, and 2) those to which the filter could not be applied. Web
services will be grouped into these categories, and their complete descriptions will be
returned to the customer along with their degree of match given by the application of
registry-side filters.

For Web services that pass the input availability filter, we obtain what valid in-
put values were found. In particular, the queries described by Web service precon-
ditions yield a set of assignments of instances in KB to input variables. In par-
ticular, if the set of input variables is I = {i1, . . . , in}, different sets of assign-
ments of instances to variables can be obtained, being each such set denoted by
I[j]. If we consider the Web service in Figure 1, we could assign e.g. some in-
stances myFlight and myCC to variables ?flight and ?cc (assignment set I[1] =
{flight/myF light, cc/myCC}), or some instances myFlight and myCC2 (assign-
ment set I[2] = {flight/myF light, cc/myCC2}), where myFlight is a flight be-
tween European cities operated by airline air, and both myCC and myCC2 are Mas-
terCard credit cards. These instances, and the complete knowledge base KB, are avail-
able both to the DL and the LP reasoners.

As a WSML reasoner is not completely available yet, we use directly Flora-2. For
this purpose, we need to translate WSML-Flight descriptions to Flora-2 syntax. This
is currently done manually before publishing Web services, and preconditions are en-
coded using Flora-2 syntax besides WSML syntax in Web service descriptions [16].

The same applies to the use of RacerPro: we currently translate WSML-DL+ descrip-
tions to RacerPro syntax and incorporate descriptions in both syntaxes into goal and
Web services.

6.2 Input-results relation filter

As discussed in Section 2, there is a relation between Web service results and the input
values provided by the customer. If the input-results relation filter is selected, we will
not only check whether the customer has available appropriate input values for relevant
Web services retrieved from the registry, but also the relation between these input values
and Web service results.

Given the assignment sets obtained from applying the input-availability filter, we
can replace shared variables in the input-dependent postcondition (which are part of the
set of input variables) by input values, yielding a WSML-DL+ concept definition. No-
tice that, as these values are instances of WSML-Core ontologies, we can consistently
use them in WSML-DL+ descriptions. Each assignment set, corresponding to the usage
of the Web service with different input values, is considered. The concept defining the
results offered by a Web service for available input values is defined by the union of
the results for each such set of input values. If we continue with the example above,
the assignment sets I[1] and I[2] yield a concept WS (where WS is the Web service
identifier) as follows:

?result memberOf WS equivalent ?result memberOf Booking[ofItem hasValue myFlight,
withPaymentMethod hasValue myCC] or ?result memberOf Booking[ofItem hasValue myFlight,
withPaymentMethod hasValue myCC2].

This concept will be published at the T-Box of the DL reasoner used by the dis-
covery component (Figure 2) after replacing nominals. The discovery coordinator will
then query for concepts: a) equivalent to, b) more general than, c) more specific than,
and d) intersecting with the description of the set of results expected by the goal (with
nominals replaced). The corresponding intentions will be applied as described in [13],
yielding the list of Web services that are a perfect, possible perfect, partial, or possible
partial match for the goal for the input values available. In a nutshell, we obtain Web
services that offer, for the input values available, the results expected by the customer,
considering how these results depend on the input values provided i.e. we evaluate the
relation between input values and Web service results.

This filter can only be applied if the goal formalizes the set of results expected,
as this formalization must be used in the queries to the DL reasoner for relevant Web
services. Furthermore, as Web services might not describe input-dependent postcondi-
tions, the discovery coordinator returns to the customer: 1) Web services that passed the
input-results relation filter, 2) those that passed the input availability filter but to which
the input-results relation filter could not be applied, and 3) those to which none of the
filters could be applied. Web services will be grouped into these categories, and their
complete descriptions are returned to the customer along with their degree of match.

Besides querying the Flora-2 knowledge base for valid input values, the DL con-
cepts obtained from replacing parameters with these values have to be published and
the DL reasoner has to be queried for concepts having certain relation with the results
required by the goal. This querying is time-consuming, as new concepts are published

during discovery and, thus, the T-Box of the DL Reasoner cannot be fully classified
before-hand. While we expect most Web services to be discarded by previous filters
so that not many Web services have to be evaluated in this way, the times required are
still high e.g. around 60 seconds for 500 Web services evaluated. Therefore, this filter
should only be applied if a detailed evaluation of Web services is needed.

7 Related Work

Most (semantic) web service discovery proposals are based on the semantic matching
of Web services and goals based on DL reasoning e.g. [4, 17, 24], focusing on a single
logical filter and not considering neither the relation between input values and Web
service results, nor alternative filters.

Works such as [14] and [12] take into account how the results of using a Web service
depend on the input values provided to it. The former makes use of Transaction Logic
and Logic Programming, which presents some problems with the treatment of unspec-
ified information in goals and Web service capability descriptions. The latter, based on
DL, expects customers to specify what kind of relation they expect between results and
inputs, which we believe is a less usable approach than that taken by our model. None
of them explicitly considers the combined application of other filters.

The only approaches we are aware of that apply different types of filters are LARKS
[25] (for the matching of agents) and OWLS-MX [15] (for the matching of OWL-S
Web services). While they are close in spirit to our model, allowing for the application
of different types of filters, they differ in the following major respects: a) logical filters
are restricted to first-order semantics, b) whether the customer can actually provide
appropriate input values is not evaluated, c) the relation between available input values
and Web service results is not described and exploited, d) all matching is done at the
registry side, and e) customers are not supported in describing goals and Web services.

It must be noted that the type of filters considered by OWLS-MX could be incor-
porated to our model as registry-side filters. We are currently adding to our prototype a
filter that matches textual descriptions of goals and Web services, but only based on the
simple keyword matching provided by jUDDI; nevertheless, extending it in the direc-
tion of more complex syntactic similarity measures is a feasible task.

8 Conclusions and Future Work

We have presented a model and a prototype that accommodates different levels of ac-
curacy in the description of Web services and goals, and offers discovery results with
different trade-offs between accuracy and efficiency, so that it is usable in different ap-
plication scenarios. We also incorporate the use of taxonomies of categories in order
to provide basic assistance to the user in the semantic description of Web services and
goals, and in order to obtain coarse-grained discovery results in short times. Future
work will concentrate on optimizing the discovery prototype, on the refinement of the
heuristic classification of Web services in taxonomies, on the proposal of new filters
and the integration of existing ones such as those used by OWLS-MX, and on studying
possible extensions of the expressivity allowed for domain ontologies.

References

1. RacerPro user’s guide. version 1.9. Technical report, RACER Systems GmbH & Co. KG,
December 2005.

2. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL Web Ontology Language Reference. Technical report,
W3C Recommendation, Feb 2004.

3. T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, Maryann Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. UDDI Version 3.0, 2002.

4. B. Benatallah, M. Hacid, A. Leger, C. Rey, and F. Toumani. On automating web services
discovery. VLDB, 14:84–96, 2005.

5. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001.

6. M. A. Corella and P. Castells. A heuristic approach to semantic web services classification.
In KES-2006, 2006.

7. M. A. Corella and P. Castells. Semi-automatic semantic-based web service classification. In
semantics4ws’06 workshop at BPM 2006, 2006.

8. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of
Logic Programming. ACM Computing Surveys (CSUR), 33(3):347–425, 2001.

9. de Bruijn, J. (ed.). The Web Service Modeling Language WSML. WSML d16.1v0.21, 2005.
10. B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining

logic programs with description logic. In WWW’03, 2003.
11. I. Horrocks and U. Sattler. Optimised Reasoning for SHIQ. In ECAI 2002, pages 277–281,

July 2002.
12. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding semantic

matching of stateless services. In AAAI-06, 2006.
13. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic location of services. In

ESWC 2005, Heraklion, Greece, May 2005.
14. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A Logical

Framework for Web Service Discovery. In SWSs Worshop at ISWC 2004, 2004.
15. M. Klusch, B. Fries, and K. Sycara. Automated semantic web service discovery with OWLS-

MX. In AAMAS 2006, 2006.
16. R. Lara. Two-phased web service discovery. In AI-driven Service Oriented Computing

workshop at AAAI 2006, July 2006.
17. L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web

Technology. In WWW’03, Budapest, Hungary, May 2003.
18. J. W. Lloyd. Foundations of Logic Programming (2nd edition). Springer-Verlag, 1987.
19. C. Lutz. An improved nexptime-hardness result for description logic alc extended with

inverse roles, nominals and countins. Technical report, Technical University Dresden, 2004.
20. D. Nardi, F. Baader, D. Calvanese, D. L. McGuinness, and P. F. Patel-Schneider, editors. The

Description Logic Handbook. Cambridge, January 2003.
21. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service

Capabilities. In ISWC 2002, pages 333–347. Springer Verlag, 2002.
22. C. Preist. A Conceptual Architecture for Semantic Web Services. In ISWC 2004, 2004.
23. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, D. Fensel,

and C. Bussler. Web Service Modeling Ontology. Applied Ontology Journal, 1(1), 2005.
24. N. Srinivasan, M. Paolucci, and K. Sycara. Adding OWL-S to UDDI, implementation and

throughput. In SWSWPC Workshop at ICWS 2004, 2004.
25. K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking Among Het-

erogeneous Software Agents in Cyberspace. AAMAS 2002, 2002.
26. Raphael Volz. Web Ontology Reasoning with Logic Databases. PhD thesis, AIFB, 2004.

Recovery of Faulty Web Applications through
Service Discovery

M.G. Fugini, E. Mussi

Politecnico di Milano
Dipartimento di Elettronica ed Informazione

Via Ponzio 34/5 - I-20133 Milano
fugini,mussi@elet.polimi.it

Abstract. Failures during Web service execution may depend on a wide
variety of causes. In this paper we illustrate how, upon faults of a Web
application, the faults can be handled by discovering substitute Web
services and re-orchestrating the application. Self-healing capabilities are
added to Web service environments. Possible recovery actions at the Web
service and Web application levels are illustrated and discussed with
respect to a running example involving coordinated Web services.

1 Introduction

Even if various efforts have been recently done in Service Oriented Computing,
the adoption of Web services still remains limited. Especially under the open
world assumption, the Service Oriented Architecture, on which Service Com-
puting relies, presents some limitations. In fact, if we consider public available
Web service registries, as UDDI, it is easy to find Web services no longer available
or Web services having a description which does not correspond to the currently
provided Web service, due to new versions or modifications of functionality of
the Web services.

As discussed in this paper, even in a more controlled closed world assump-
tion, there are many possible causes of failure. As closed world, we consider the
adaptive Web service environment studied in the MAIS (Mobile Adaptive In-
formation Systems) project [13]. In such an environment, adaptivity is provided
at both the front-end and the back-end of Web applications. These are dynam-
ically created composing Web services and are able to satisfy both functional
and non-functional user requirements. This approach results in a context-aware
Web service discovery and selection, which can be performed at runtime, during
Web application execution. Under this approach, the management of failures
poses new research problems related to the identification of causes, of possibly
overlapping failure, and to their automatic correction.

The WS-Diamond (Web service DIAgnosability, MONitoring, and Diagnosis)
project is aimed at developing methodologies for the creation of self-healing
Web Services, able to detect anomalous situations, which may manifest as the
inability to provide a service or to fulfill Quality of Service (QoS) requirements,

and to recover from these situations, e.g., by rearranging or reconfiguring the
network of services. WS-Diamond will also provide methodologies for the design
of services, supporting service design and service execution mechanisms that
guarantee diagnosability and reparability of run-time failures (e.g., thanks to the
availability of set of observables, of exception handlers, or of sets of redundancies
in the services or alternatives in the execution strategies).

The goal of this paper is to present an architecture for self-healing Web
services and applications, which contains modules for the detection, diagnosis,
and repair of faults. Our goal is to show how faults in Web application can be
repaired using repair actions that include switching to a substitute service, by
searching it in UDDI registries, based on similarity criteria. In particular, we
focus on healing mechanisms based both on service selection and substitution
and on addition of new services in composed processes to support self-healing
functionalities.

Section 2 introduces self-healing, diagnosis, and quality of service issues in
Web services and describes some approaches proposed in the literature. Section 3
presents our architectural scenario of a self-healing Web service environment, and
an example. Section 4 introduces an architecture supporting the detection and
recovery of possible faults. Section 5 discusses reactive and proactive healing
techniques, based on service execution analysis.

2 Related Work

Recently, self-healing systems have attracted vast attention by the research com-
munity [11]. Examples of self-healing architectures are provided in [16]. The work
in [16] presents a system architecture to monitor, interpret and analyze system
events in order to implement self-healing and self-adaptive systems. The archi-
tecture presented in [15] is focused on service level agreement management in
a Service Oriented Architecture. The goal is to re-optimize the provisioning in-
frastructure as a consequence of QoS violations. The work in [9] presents the
requirements of a Web Service Management (WSM) framework which also in-
cludes the typical functionalities addressed in self-healing systems, analyzing and
comparing multiple alternative architectures for the implementation of WSM
systems i.e., centralized, federated and peer-to-peer. They propose Web service
substitution and complex service re-compositions as repair actions.

In [2, 3, 17], authors propose a model based approach to implement diagno-
sis functionalities in Web services self-healing environments. The works in [2, 3]
model a composite service as a Petri Net and classify Web service invocations.
The goal is to correlate input and output parameters and to determine if an
activity carries out a computation that may fail and produce erroneous outputs.
A service invocation forwards an input parameter, if an output parameter co-
incides with the value of an input. If the output parameter is created during
the service invocation this is classified as a source. Finally, when an output pa-
rameter is computed during the service invocation from one or more inputs the
service invocation is an elaboration. A service invocation can introduce errors

in parameters it computes (elaborations) or it produces (sources), while for for-
warded parameters it possibly propagates errors generated by other invocations.
Authors propose a centralized diagnoser which identifies faults from “alarms”
identified by comparing the value of state variables at checkpoints introduced
by the composite Web service designer.

A different approach is used in [10], where authors describe an extended Petri
net model for specifying exceptional behavior in workflow systems. The core of
this approach are the recovery policies, a combination of generic constructs and
primitive operations that can be defined for both single tasks and sets of tasks
(i.e., recovery regions). At design time, process designers model exceptions using
the generic constructs, while at runtime the workflow system uses the primitive
operations to handle the occurred exceptions.

With respect to the cited works, our approach uses dynamic Web service
discovery and selection as one of the main repair strategy. Given a faulty ap-
plication, we are able to substitute one or more component Web services with
compatible ones. The selection of compatible services is performed using seman-
tic criteria based on service descriptors stored in an enhances UDDI registry.
Moreover the selection involves both functional and non functional similarity
evaluations.

3 Adaptive Web Service

WS-Diamond aims at realizing a set of tools that can be plugged into exist-
ing Web service environments and provide self-healing features during the Web
service life cycle.
With respect to the traditional SOA, the adopted system also supports Web
service adaptation (as studied in MAIS [12]). In particular, we suppose hat a
set of actors collaborates according to a shared choreography, which defines
how and when the actors are involved during this collaboration. Operationally,
each actor declares its ability to perform one or more activities included in the
choreography specification, offering one or more Web services. According to this
scenario, in this work we consider a Web application as a collaboration. Thus, a
Web application is a distributed application and the choreography is responsible
for describing the collaboration between all the involved Web services.

The reference architectural aspects are illustrated in the following with re-
spect to the dimension of cooperation among distributed nodes. Figure 1 shows a
global self-healing system in which WS-Diamond-enabled nodes can cooperate
with non WS-Diamond-enabled nodes. In addition, each WS-Diamond-enabled
node may provide only a subset of the modules developed in the project. The
main modules of a complete WS-Diamond-enabled node are: i) a management
interface for Web services; ii) a process orchestration engine for enacting com-
posed services; iii) a repair action selector; iv) a diagnosis infrastructure; v) a
fault detection infrastructure.

In the paper, we illustrate how the different modules cooperate inside a
node. Cooperation and negotiation of available substitute services occur via a
contract-based approach.

Fig. 1. Reference architecture

3.1 WS-Diamond Nodes

We assume that, within a WS-Diamond node, not all the diagnosys and repair
features are available, but rather that each node is equipped with the fault and
self-healing modules necessary to cooperate. The cooperation of the modules
inside a node and within the execution environment main components views the
diagnoser as the module to be notified of fault events through messages or events
generated by the hardware/software infrastructure (including the self-healing
system itself). By accessing messages, state logs and a fault database (all fault
events are stored in a fault database), the diagnoser identifies which occurred
fault needs to be recovered. The repair action selector performs a choice among
a set of possible repair actions associated to each type of fault, as indicated
in a repair rules registry. The selection triggers a repair action request to a
repair module associated to the required action. A possible list of repair modules

contains: a substitution module (to replace services during the orchestration
of a composed service), a wrapper generator (to change parameters to solve
incompatibility during invocation), a quality module (to perform data quality
checks and improvements), and a reallocation module (to reallocate the resources
exploited by the services).

Our cooperating environment might be technologically heterogeneous. In
fact, an actor involved in the cooperation can rely either on a classical node
or on a WS-Diamond node. About the former, Web services run over typical ap-
plication servers providing a traditional Web service container. About the latter,
we suppose to use a special application server, called MAIS-P [13], specifically
designed to support adaptive Web services.

In the MAIS-P architecture, Web services run on the assumption that some-
thing might go wrong at invocation and execution time and, for this reason, a
QoS driven approach is introduced to solve this possible critical situations. The
service provider and a service requestor, in fact, agree on the quality that the
Web service must guarantee during its execution. The requestor may specify
quality requirements at Web service invocation time or these requirements may
be implicitly specified in the user profile [5]. If a host realizes that the QoS of
a Web service is decreasing to an unacceptable level, then two strategies can be
adopted: channel/partner switching, to provide the Web service on a channel
or through a partner with better QoS characteristics, or Web service substitu-
tion, selecting an alternative Web service for the user. Alternative Web services
are searched by accessing an extended UDDI registry capable of assessing the
similarity among Web services with respect to the provided functionality and
the behavioral equivalence [4]. Similarity computation, supported by a Web ser-
vice ontology, is based on a semantic-based analysis of the involved Web service.
Since substituted and substituting Web services might have different signatures,
an automatic wrapper generator can reconciliate differences in the provided in-
terfaces, possibly with human intervention [8].

A sample application scenario may consist in four Web services: BookShop
WS, Publisher WS, Warehouse WS and Shipping WS, supporting a book e-commerce
process. In this scenario, a customer asks for a book invoking the BookShop WS,
and submitting the book title. Each customer has a profile (custInf) which is
used during Web service contracting and provisioning. The customer’s profile col-
lects various information about the customer, such as age, education, profession,
interests, and book preferences, maximum budget. Such profile information is
available to the BookShop WS using WS-enabled nodes to collect the customer’s
profile and to send it to the server [5]. We assume that the Web services in the
application are internally orchestrated, while externally they are only coordinated
through the choreography.

The goal of the set of interacting services is to send the right book to the
right customer according to his preferences. In fact, a number of faults may
occur during the execution of the process causing possible needs of substituting
services and discovering new ones. For example, the wrong book is delivered [3],
or a book is indefinitely reserved for a user who will not buy it, an order is

indefinitely delayed, or one or more of the involved services indefinitely runs
waiting for a reply from possibly faulty services.

4 Self-healing platform

On one hand, we aim at realizing a platform to support a self-healing Web service
execution where faulty services can be substituted by discovering compatible
services. This means that Web services should be able to detect possible failures
caused by the Web services layer and, consequently, to enact a recovery action
transparently to the user standpoint. On the other hand, since during a Web
application execution a Web service may invoke external (non self-healing) Web
services, our upgraded MAIS-P platform should be able to detect failures even at
application level, i.e., caused by the external Web service. In this case, according
to the loosely-coupled philosophy underlying the Service Oriented Computing,
we are not interested on fixing the failed Web service, but we try to react to
such a failures possibly substituting the failed one.

Figure 2 shows the modules, embedded in the WS-Diamond nodes, that
support our goals. The Diagnoser identifies fault events or receives fault event
notifications. The identification task operates on the information coming from
the infrastructure & middleware layer, to detect internal node failures, and on
the exchanged messages, to detect failures on partner’s nodes.
Our architecture provides four modules to handle recovery actions:

– reallocation module: it optimizes resource reallocation requests on the un-
derlying hardware and software infrastructure; resource reallocation policies
are proposed in [1];

– substitution module: this module, available in the MAIS-P platform, allows
the selection of substitute services according to the characteristics of the
service request context, such as services which are functionally similar [13];

– wrapper generator module: this module, available both in MAIS and VISPO
platforms [13, 8], allows the completion of missing parameters during service
invocation, or to convert parameters in different formats;

– quality module: the PoliQual system [6] provides functionalities to insert
data blocks before Web service invocation or upon receipt of a message,
to assess data quality on-line and to perform reactive and proactive repair
actions.

We assume that faults have to be recovered one at a time, and that the Recovery
action selector module, by accessing the Fault registry, invokes the corresponding
fault repair action.

4.1 Fault Registry

A basic set of known service faults is classified and stored in a Fault Registry at
three system levels, for which, examples are provided in Table 1:

Fig. 2. Self-healing platform architecture

– the Infrastructure & Middleware level faults (not reported in the table) are
due to failures in the underlying hardware, network, and system software
infrastructure;

– the Web service level faults are due to failures in service invocation and
service orchestration; these are captured by the WS-Diamond modules;

– the Web application level faults are malfunctions in the execution of Web
applications due to data mismatches or coordination (choreography) failures.
Also these faults are captured by the WS-Diamond modules.

Repair actions are designed according to the fault level and originate different
recovery strategies according to the system components affected by the fault. For
example, at the Web application level, the main goal is to provide: (i) services
which respect the user requirements in terms of functionalities and QoS, (ii)
business continuity, and (iii) fault masking. At the Web service level, the goal is
to manage the service choreography correctly and to guarantee service continuity
and QoS requirements, by substituting corrupted services with compatible ones
available in the network.

4.2 Web service level faults

Faults at the Web service level are about the execution of a (set of) Web ser-
vice(s). In particular, Web service execution faults raise either during service
invocation or during execution of a simple Web service, while Web Service co-
ordination faults result from composed Web services.

Level Fault type Examples
Web-application Internal data faults Data quality faults (value mismatch,

e.g., inaccurate data in input param-
eter; missing data: null values).

Application coordination faults Application Failure due to reply
timeout, resources not available at
right time (Phase fault).

Actor faults Customer is not connected when
a synchronous communication is
needed.

QoS violation faults QoS value beyond threshold.
Web service Web service execution faults Missing parts in input message,

wrong order of operation invocations
(internal to a service).

Web service coordination faults Component service unavailable, pro-
cess failure (time out).

Table 1. Fault Types

A service execution fault is raised during invocation if a service is not re-
sponding, or due to a wrong authorization of the end user, or to a parameter
missing in the input SOAP message. A mismatch in the structure of messages to
invoke a service may be due, for instance, to an update in the published service
interfaces, which are not yet considered inside the invoking applications.
In our adaptive framework, a Web service execution fault may also occur when,
upon substitution of a faulty Web service with a functionally equivalent one, no
substitute is available. In that case, a discovery of a compatible service is needed
in order to possibly substitute the faulty service. Discovery is performed using
additional data about services, which are registered as elements of one or more
compatibility classes [8], where each class identifies the required functionalities
for the execution of a process activity. The rationale is that a provider associates
a compatibility class with the service he is registering, if he thinks the service is
able to satisfy the activity requirements. These requirements are stated when the
class is firstly created and have to be satisfied by all class members. During the
registration, compliance of the registered service to its compatibility classes is
also evaluated and mapping information for semi-automatically building wrap-
pers to adapt services to the process is generated.

A service coordination fault is typically due to a violation of the order of
invocation of service operations or messages (e.g., a book payment is received
before the corresponding book reservation). Coordination faults may occur when
some of the Web services in a composed service are unavailable, or when a mes-
sage is received that does not match the choreography protocol. Again, a phase
of service discovery based on compatibility classes for substitution is needed.

4.3 Application level faults

Application level faults are related to the execution of a Web application. The
mechanism used to detect a faulty service invocation is the timeout. If the result

of an operation is not received by the due time, the application argues that some
of the invoked services are not working properly.

Examples of application faults in the bookshop example are: unavailable
goods, wrong book identification data, or session faults.

Fault at this level belong to the following categories: 1) Application Coordi-
nation faults; 2) Actor faults; 3) QoS violation faults; 4) Internal Data faults.
Examples of Application Coordination faults in the bookshop example are:

– A session fault: e.g., loss of an HTTP session.
– A phase time fault: e.g., the book has been paid for and hence the Payment

phase of the application has completed, but the confirmation of payment is
received after an internal time out.

– A resource booking fault: e.g., not the whole resource pool necessary to
complete the service has been reserved, for example the shipping system has
not been reserved in advance.

– Inter-process faults: e.g., service data regarding the customer address or
customer credit card have not been received in the correct sequence or at
the right time.

An example of Actor fault is an authorization fault, e.g., the customer has en-
tered a wrong password three times. QoS violation faults are related to local
and global constraints specified by the user or by the application designer. For
example, the user can require that the delivery time of the ordered book is lower
than a given threshold (e.g., five days) or that the total price of the ordered
book is lower than a given amount (e.g. 20$). Another category of QoS faults
is bound to the process design, that is, to the way the application workflow has
been developed. For example, an Unavailable goods fault, or a Payment failure
fault should be treated by exception handlers specifically included in the process
workflow by the designer. If some handlers have not been designed, the applica-
tion could experience a deadlock or a total crash. Being the system self-healing,
we expect the fault log to gather information useful to subsequently design the
necessary handler.
Internal Data faults include data quality faults related to data manipulated
during the execution of a service. Examples are the wrong title of an ordered
book, or mismatched customer data. These faults may be regarded as QoS faults,
but, since they specifically regard data internal to a service, they are evidenced
as possibly bounded to specific filters and options to be treated apart by specific
recovery actions.

5 Self-Healing Web services

The architecture shown in Figure 2, currently under development, connects the
schema of the fault types with the schema of the recovery actions. Namely, the
fault registry will be accessed by the diagnosys module in order to blame the
faulty Web service. Once that the fault type has been identified, the Recovery
Action Selector accesses the recovery actions table (see Table 2) to select the

proper repair action that has to be undertaken. This selection is performed at
runtime, taking into account context information (e.g., the network status or
the workflow execution status). Hence, the same fault type can be handled by
different recevery action modules, according to the particular context in which
the fault has occurred.

Recovery action
type

Actions Fault type Type

Service-oriented recov-
ery action

Retry Infrastructural, WS execu-
tion

Reactive

Substitute WS execution, WS coordina-
tion

Reactive

Completion of missing mes-
sage parts

WS execution Reactive

Reallocate QoS Reactive/proactive

Change process structure All Proactive

Process-oriented methods Application level Proactive
Data quality recovery
actions

Insert data quality block Internal data Reactive

Process-oriented methods Application level Proactive

Table 2. Recovery actions

This Section presents the set of recovery actions that can be employed to
recover from failures. In particular, we focus on the management of Web ap-
plication and Web service level faults. With respect to the way in which these
actions are performed, two types of recovery actions are identified: reactive re-
covery actions and proactive recovery actions.

Reactive recovery actions are performed along with the execution of Web ser-
vices and try/allow the recovery of running services. Proactive recovery actions
are mostly based on data mining techniques and can mainly be executed in an
off-line mode; proactive recovery actions are complex and require the support of
an environment able to execute services, to detect runtime faults, and to perform
recovery actions with no damage to the running instances of the monitored Web
services. A long term approach to self-healing is adopted, where recovery actions
have the goal of improving Web services and Web applications in order to avoid
future failures. These actions can be oriented to provide a one-shot improvement
action or to modify the service provisioning process for a permanent data and
process improvement.

Recovery actions can be also classified in service-oriented recovery actions
and data quality recovery actions. While the former deals with invocation, or-
chestration and choreography aspects of Web services, the latter pertains mainly
to the management of data quality faults. For each fault type, several candidate
recovery actions may be proposed, depending on the fault type and whether a
reactive or proactive approach is taken, as synthesized in Table 2.

In the bookshop example, assume the invocation of the sendBook operation
on the Publisher WS fails. The Diagnoser detects that the Publisher WS is ex-
periencing a quality degradation that slows down its execution so that it cannot
be used by other Web services anylonger. Consequently, the Diagnoser stores the
detected fault in the fault log and invokes the Recovery Action Selector module.
This module repairs the fault using the Substitution module to search for a com-
patible Web service to substitute the Publisher WS. The workflow execution is
then restarted by invoking the sendBook operation on the substitute Web ser-
vice. If the interface of the substitute service is different from the interface of the
original service, the invocation is mediated by the Wrapper generator module.

Meanwhile, since the Diagnoser has detected that the quality of service degra-
dation was due to a server crash at the publisher site, the WS-Diamond architec-
ture proactively activates also the Reallocation module. Based on the analysis
of the fault logs, the Reallocation module reallocates all the Web services that
were running on the crashed server.

5.1 Service-oriented recovery actions

The techniques employed to realize this kind of recovery strictly depend on the
model used to describe Web services. Some models describe how Web services
act internally (i.e., orchestration), while other models only describe how differ-
ent Web services collaborate (i.e., choreography). While both choreography and
orchestration are exploited to detect faults, reactive recovery actions only rely
on the orchestration model of the service. With our architecture, if a Web service
has an internal behavior specified using a WS-BPEL process that composes other
services, we are able to perform recovery actions over the Web service controlling
the execution of its internal process. Under our approach, the recovery actions
that can be applied over a WS-BPEL process in a MAIS-enabled node are the
following: i) retry the invocation of a failed Web service, ii) substitute a failed
Web service, iii) reallocate a failed Web service, and iv) change the structure of
the process.

Retry Web services invocation
This recovery action is applied when faults point out a temporary unavailability
of one or more services that compose the internal process of the analyzed Web
service. In this case, the solution is to suspend the execution of the process and
retry the invocation of the unavailable services until they return available. This
solution is quite simple and does not require any sophisticated methodologies to
manage the service invocation.

Substitute Web services
A more complicated situation is the case where one or more services are consid-
ered as definitely unavailable and, in order to complete the process execution, it
is necessary to substitute each failed service.

It is possible to overcome this problem using the MAIS-P architecture that
supports Web service compatibility evaluation and Web service substitution.

The compatibility evaluation between two Web services is performed comparing
their functional interfaces (i.e., WSDL documents) and their provided QoS. If
two services are defined as compatible, MAIS-P is able to automatically create a
service wrapper, starting from their WSDL descriptions. Once that the wrapper
is created, service substitution can be easily performed. The process structure is
not modified, and the WS-BPEL orchestration engine continues the execution
of the process without considering the service substitution. The management of
the substitution is left to the MAIS-P architecture which exploits the wrapper to
translate the parameters sent by the orchestrator into the parameters accepted
by the substitute service and vice-versa.

Completion of missing parameters
Service invocation may fail when some of the input message parts are missing.
Possible recovery actions may be based on knowledge of the role of parameters.
In [8], we propose a technique to dynamically evaluate message composition of
invoked Web service operations and look for missing information when parame-
ters are necessary for message execution, while optional parts are ignored. The
technique is based on an adaptive service invocation infrastructure.

Reallocate Web services
This type of recovery action is very useful for the particular subset of QoS vio-
lation faults that derives from a lack of hardware or software resources on the
service provider side. In this situation, reallocating and executing the service on
different machines or application servers can solve the problem. Reallocation is
possible only if Web services are provided with an ad-hoc management interface
and the recovery manager has free access to all the resources (e.g., the recovery
manager can determine the load balancing or the application priority in the op-
erating system).
Reallocation may be performed as reactive actions, when QoS violations are
detected, but also as proactive actions, when optimization of service execution
plans is performed using predictive techniques on future states of the execution
environment.

Change the process structure
When service substitution or service reallocation are not enough for resuming a
failed process, another recovery action that can be applied consists in modifying
the structure of the process itself. According to [7], data mining techniques can be
exploited in order to proactively identify possible anomalous situations during
process execution. Workflow systems, in fact, produce a large quantity of log
information which states how the old processes have been executed and how the
current process is going on. In this case, the process designer, possibly supported
by a tool, can manually fix or modify the process in order to delete erroneous
activities. Once that the process is modified, it can be resumed or re-executed
and previously described recovery actions can be employed.

5.2 Data quality recovery actions

Run time recovery actions in data quality require the identification of the causes
of data errors and their permanent elimination through an observation of the
whole process where data are involved. As an example, we refer to the Informa-
tion Product Map (IP-MAP) methodology [14] which graphically describes the
process by which the information product is manufactured. Error detection and
the correction can be performed using different methods:

– Data cleaning by manual identification: comparison between value stored in
the database and value in the real world;

– Data bashing (or Multiple sources identification): comparison of the values
stored in different databases;

– Cleaning using Data edits: automatic procedures that verify that data rep-
resentation satisfies specific requirements.

6 Concluding Remarks

We have presented our approach for fault management of Web applications based
on self-healing systems. A reference architecture for faults treatment and a clas-
sification of faults have been given, together with a set of strategies for recovery.
Fault occurring during Web service and Web application execution have been
studied and discussed within a proposed architecture where faults detection and
interpretation for repair requiring search of substitutive services have been pre-
sented. Mutual dependencies among faults originated at these different system
abstraction levels are a relevant issue to be further investigated in our research.
Moreover, the distribution vs. central coordination of fault events detection and
repair action execution are an important aspect to be studied for the proposed
architecture.

Future work will focus on careful design of repair strategies, and on the eval-
uation of the proposed approach in the Project testbed environment.

Acknowledgments
Part of this work has been supported by EU Commission within the FET-STREP
Project WS-Diamond.

References

1. D. Ardagna, M. Trubian, and L. Zhang. SLA Based Profit Optimization in Multi-
tier Systems. In NCA 2005 Proc., 2005.

2. L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan, and D. T.
Dupré. Advanced Fault Analysis in Web Service Composition. In International
WWW Conference, poster session, pages 1090–1091, 2005.

3. L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan, and D. T.
Dupré. Enhancing Web Services with Diagnostic Capabilities. In ECOWS05 Proc.,
2005.

4. D. Bianchini, V. De Antonellis, B. Pernici, and P. Plebani. Ontology-based method-
ology for e-service discovery. Accepted for publication on Journal of Information
Systems, Special Issue on Semantic Web and Web Services, 2004.

5. C. Cappiello, M. Comuzzi, E. Mussi, and B. Pernici. Context Management for
Adaptive Information Systems. In International Workshop on Context for Web
Services (CWS-05). Elsevier, 2005.

6. C. Cappiello, C. Francalanci, and B. Pernici. A self-monitoring system to satisfy
data quality requirements. In Proc. ODBase05, 2005.

7. M. Castellanos, F. Casati, M.-C. Shan, and U. Dayal. iBOM: A Platform for
Intelligent Business Operation Management. In Proc. of the 21st International
Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, 2005.

8. V. De Antonellis, M. Melchiori, L. D. Santis, M. Mecella, E. Mussi, B. Pernici, and
P. Plebani. A Layered Architecture for Flexible Web Service Invocation. Software:
Practice and Experience, 36(2):191–223, February 2006.

9. E. Esfandiari and V. Tosic. Towards a Web Service Composition Management
Framework. In In ICWS05 Proc., 2005.

10. R. Hamadi and B. Benatallah. Recovery Nets: Towards Self-Adaptive Workflow
Systems. In WISE, pages 439–453, 2004.

11. P. Koopman. Elements of the Self-Healing System Problem Space. In ICSE
WADS03 Proc., 2003.

12. MAIS Web Site. http://www.mais.project.it.
13. B. Pernici, editor. Mobile Information Systems. Infrastructure and Design for

Adaptivity and Flexibility. Springer, April 2006.
14. G. Shankaranarayan, R. Y. Wang, and M. Ziad. Modeling the Manufacture of

an Information Product with IP-MAP. In Proceedings of the 6th International
Conference on Information Quality, 2000.

15. G. Wang, C. Wang, A. Chen, H. Wang, C. Fung, S. Uczekaj, Y. L. Chen,
W. Guthemiller, and J. Lee. Service Level Management using QoS Monitoring,
Diagnostic, and Adaptation for Networked Enterprise Systems. In EDOC 2005
Proc., pages 239–248, 2005.

16. D. S. Wile and A. Egyed. An Externalized Infrastructure for Self-Healing Systems.
In Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04),
2004.

17. Y. Yan, M. Cordier, Y. Pencolé, and A. Grastien. Monitoring Web Service Net-
works in a Model-based Approach. In ECOWS05 Proc., 2005.

A Non-Monotonic Approach to Semantic
Matchmaking and Request Refinement in

E-Marketplaces

Tommaso Di Noia1, Eugenio Di Sciascio1, Francesco M. Donini2

1 Politecnico di Bari, Via Re David, 200, I-70125, Bari, Italy
{t.dinoia,disciascio}@poliba.it

2 Università della Tuscia, via San Carlo, 32, I-01100, Viterbo, Italy
donini@unitus.it

Abstract. We present and motivate a formal approach and algorithms
for semantic matchmaking in an e-commerce framework. The proposed
solution exploits nonmonotonic inferences to compute semantic-based
ranking of offers and provides explanation services in the query-retrieval-
refinement loop.

1 Introduction

Matchmaking is basically the process of computing an ordered list of appealing
resources with respect to a given request. Semantic matchmaking can be hence
described as the process of computing an ordered list of appealing resource taking
into account also the semantics of resources annotation and request definition,
given with reference to an ontology.

Studies on matchmaking go a long way back3. Recently, semantic matchmak-
ing has been investigated, in particular in the framework of Description Logics
(DLs) reasoning. Usually, proposed approaches have been aimed –although with
notable exceptions, see e.g., [1, 8, 13, 6]– to the exploitation of standard rea-
soning services (i.e., subsumption and satisfiability)for classification of matches
into coarse categories, without providing a way to semantically rank obtained
matches, neither within the same match class nor regardless of the class [9, 11,
17, 16, 18, 14, 4, 3]. Yet ranking should be a core process in matchmaking, and a
classification into satisfiable/unsatisfiable might be unfair when unsatisfiability
is due, for example, to a neglectable detail that would nevertheless prevent the
evaluation of that match.

In this paper we show how to exploit non-monotonic inferences (namely,
abduction and contraction) in a semantic-matchmaking process for ranking the
available supplies descriptions. Basically, if a demand is incompatible with the
supplies advertised, it can be amended (via contraction) in order to become
compatible with them –and the more the amendments needed, the less is the
3 For a detailed report on general matchmaking issues and systems we refer the inter-

ested reader to [8].

degree of match. If a demand is compatible with a supply, but does not subsume
it, then it is possible to ”hypothesize” (via abduction) some extra features in
the supply so that it gets subsumed by the demand –and the more we have to
hypothesize, the less is the degree of match. This process results not only in a list
of offers that match the user’s request, semantically ordered w.r.t. the degree of
their match, but also in the amendments of the request and the offer that serve
as an explanation why such a degree of match was assigned, which could be later
on used to refine/revise the demand.

The remaining of this paper is structured as follows: in the next section, with
the aid of simple propositional logic, we illustrate and motivate the rationale of
our approach; we move on to more expressive DLs in Section 3 and present our
theoretical approach together with algorithms for semantic matchmaking and
query refinement in DLs. Last section draws the conclusions.

2 Logic-based Matchmaking Principles

Matchmaking is a widely used term in a variety of frameworks, comprising several
–quite different– approaches. We first provide a generic and sound definition of
matchmaking.

Definition 1 (Matchmaking). Matchmaking is an information retrieval task
whereby queries (a.k.a. demands) and resources (a.k.a. supplies) are expressed
using semi-structured text in the form of advertisements, and task results are
ordered (ranked) lists of those resources best fulfilling the query.

This simple definition implies that –differently from classical unstructured-
text information retrieval approaches– some structure in the advertisements is
expected in a matchmaking system, and matchmaking does not consider a fixed
database-oriented structure. Furthermore, usually database systems provide an-
swers to queries that do not include a relevance ranking, which should be instead
considered in a matchmaking process.

Definition 2 (Semantic Matchmaking). Semantic matchmaking is a match-
making task whereby queries and resources advertisements are expressed with ref-
erence to a shared specification of a conceptualisation for the knowledge domain
at hand, i.e., an ontology.

From now on, we concentrate on matchmaking in marketplaces, adopting
specific terminology, to ease presentation of the approach. Nevertheless our ap-
proach applies to generic matchmaking of semantically annotated resources.

2.1 Foundation of Logical Matchmaking

Our research is inspired by the application of Description Logics to E-Commerce.
However, we believe that foundations of a logical approach to matchmaking are
more evident in a simple propositional setting first, then we will move on to DLs.

As usual, an interpretation assigns values true, false to elements of a proposi-
tional ontology T , and truth values are assigned to formulae according to usual
truth tables for ∧,∨,¬,⇒,⇔. A set of formulae is consistent if there is at least
one interpretation assigning true to all formulae.

Satisfiability and classification w.r.t. an ontology T can be formally explained
in terms of interpretations for a logical theory. In fact if we reduce an ontology
to its logical axioms, then we can formalize both classification and satisfiability
in terms of logical interpretations of a theory T .

Fig. 1. Satisfiability and Classification

A request R (conversely a resource O) is satisfiable w.r.t. T if there is at least
one interpretation in all the interpretations for T which is also a interpretation
for R (conversely for O) – see Figure 1(a-b). For what concerns classification,
given R and O both satisfiable w.r.t. T , we say that O is classified by R if all the
interpretations for O are also interpretations for R see Figure 1(c).

Formally, let M be the interpretations for T and MR the interpretations in
M that satisfy the request R (respectively MO for the resource O). We have R
(conversely O) is satisfiable if MR 6≡ ∅ and R classifies O if MO ⊆MR.

Given R and O both satisfiable w.r.t. an ontology, logic based approaches to
matchmaking proposed in the literature [16, 14, 8] use classification and satisfia-
bility to grade match results in five categories:

1. Exact. Figure 2(a). MR = MO – All the interpretations for R are also in-
terpretations for O – in formulae T |= R ⇔ O.

2. Full - Subsumption. Figure 2(b). MO ⊆MR – All the interpretations for
O are also interpretations for R – in formulae T |= O ⇒ R.

3. Plug-In. Figure 2(c). MR ⊆ MO – All the interpretations for R are also
interpretations for O – in formulae T |= R ⇒ O.

4. Potential - Intersection. Figure 2(d). MR ∩MO 6= ∅ – Some interpreta-
tions for R are also interpretations for O – In formulae T 6|= ¬(R ∧ O).

Fig. 2. Match Types

5. Partial - Disjoint. Figure 2(e). MR ∩MO = ∅ – No interpretations for R
are also interpretations for O – In formulae T |= ¬(R ∧ O).

In a marketplace framework, the aim of a matchmaking process is to satisfy
a user request as far as possible, so the best match type is obviously the first
one, i.e., Exact, because both R and O express the same preferences and then,
since all the resource characteristics requested in R are semantically implied by
O and vice versa, the user finds exactly what she is looking for. In a Full match
all the interpretations for O are surely also interpretations for R and then O
completely satisfies R, this means that all the all the resource characteristics
requested in R are semantically implied by O but not, in general, vice versa.
Then, in a Full match, O may expose some unrequested characteristics. Plug-
In match expresses the situation when O is more generic than R and then it is
possible that the latter can be satisfied by the former. Some characteristics in R
are not specified, implicitly or explicitly, in O which is more generic than R. With
Potential match we can only say that a similarity degree exists between O and
R and then O might potentially satisfy R, as an Open World Assumption implies
that what is not specified has not to be interpreted as a constraint of absence.
Finally Partial match states that there is no common interpretation between R
and O. We prefer to name this match type Partial instead of Disjoint [14] or
Nonmatch [12] because, as in the example below, this situation should not be
inevitably considered an unrecoverable match.

The following example shows, in a propositional logic setting, the rationale of
such categorization. Suppose to have the following set T of propositional axioms
modeling an automotive domain:

T =

ReflexSilver⇔ Silver ∧ Metallic
PassengerAirbag⇒ Airbag
EcoDiesel⇒ Diesel
Gasoline⇔ ¬Diesel
SatelliteAlarm⇒ AlarmSystem

Now imagine to have a request R and five offers Opar, Opot, Ofull, Oplug, Oex

as in the following:

R = Sedan ∧ PassengerAirbag ∧ EcoDiesel ∧ ReflexSilver ∧ AlarmSystem
Opar = Sedan ∧ Gasoline ∧ AlarmSystem ∧ PassengerAirbag ∧ ReflexSilver
Opot = Sedan ∧ Airbag ∧ Silver ∧ SatelliteAlarm ∧ EcoDiesel
Ofull = Sedan∧PassengerAirbag∧EcoDiesel∧ReflexSilver∧SatelliteAlarm
Oplug = Sedan ∧ PassengerAirbag ∧ Diesel ∧ ReflexSilver ∧ AlarmSystem
Oex = Sedan∧PassengerAirbag∧EcoDiesel∧Metallic∧Silver∧AlarmSystem
In Table 1the interpretations are shown of T satisfying R, Opar, Opot, Ofull, Oplug

and Oex.

Sedan PassengerAirbag EcoDiesel ReflexSilver Gasoline Airbag Silver Metallic Diesel AlarmSystem SatelliteAlarm

MR
T T T T F T T T T T T
T T T T F T T T T T F

MOpar
T T F T T T T T F T T
T T F T T T T T F T F

Partial Match: M∩MOpar
= ∅

MOpot
T T T T F T T T T T T
T T T F F T T F T T T
T F T T F T T T T T T
T F T F F T T F T T T

Potential Match: MR ∩MOpot
6= ∅

MOfull
T T T T F T T T T T T

Full Match: MOfull
⊆ MR

MOplug
T T T T F T T T T T T
T T T T F T T T T T F
T T F T F T T T T T T
T T F T F T T T T T F

Plug-In Match: MR ⊆ MOplug

MOex
T T T T F T T T T T T
T T T T F T T T T T F

Exact Match: MR = MOex

Table 1. Matches

Actually, it is questionable whether a Plug-In match type should be consid-
ered better than Potential one in a marketplace scenario. We note that some
researchers also consider Plug-In match more favorable than full match (e.g.,
see [14, 16]), motivating this choice with the idea that if MR ⊆ MO one may
expect that the advertiser offering resource O will probably have also more spe-
cific resources; in an e-commerce setting if the advertiser offers a sedan car it will

also probably offer specific types of sedans. Nevertheless we argue that this idea
prevents a fully automated matchmaking, which is possible when MO ⊆ MR,
and furthermore it favors underspecified resource description, i.e., an advertise-
ment offering a sedan will always Plug-In match any request for a specific sedan,
but will leave on the requester the burden to determine the right one – if any
is actually available – for his/her needs. Even though Exact match is surely the
best match, Full match might be considered –not always anyway– equivalent
from the requester point of view, because it states that at least all the features
specified in R are also expressed in O.

Usually, logic-based approaches only allow, as illustrated above, a catego-
rization within match types. But while exact and full matches can be rare (and
basically equivalent), a user may get several potential and partial matches. Then
a useful logic-based matchmaker should provide a –logic– ordering of available
resources vs. the request, but what we get using classification and satisfiability
is a boolean answer. Also partial matches, as pointed out in [8], might be just
”near miss”, e.g., maybe just one requirement is in conflict, but a pure satisfia-
bility check returns a hopeless false result, while it could be interesting to order
”not so bad” offers according to their similarity to the request.

One may be tempted to revert to classical and well-assessed information
retrieval (IR) algorithms to get a rank for approximate matches (e.g., so-called
hybrid approaches [13]), but regardless of well-known limits of unstructured text
retrieval, there is something IR algorithms cannot do, while a logic approach can:
provide explanations for matches result and suggest revision of requests.

2.2 Penalty Functions

Matches classification based on implication and satisfiability is still a coarse one,
relying directly on known logical relations between formulae. In fact, the result
of matchmaking should be a rank of resources/supplies/counteroffers, according
to some criteria – possibly explicit – so that a user trusting the system would
know whom to contact first, and in case of failure, whom next, and so on. Such
a ranking process should satisfy some criteria that a Knowledge Representation
approach suggests. We formulate ranking requirements by referring to properties
of penalty functions p(O, R, T), O,R being two formulae and T an ontology.

p : 〈O, R, T 〉 → <

We use penalty functions to rank O for a given R w.r.t. a ontology T . Intuitively,
for two given O1, O2 in the marketplace, if p(O1,R, T) < p(O2, R, T) then the
issuer of demand R should rank O1 better than O2 when deciding whom to
contact first. Clearly, a 0-penalty should be ranked best, and counteroffers with
the same penalties should be ranked breaking ties.

The first property we recall is Non-symmetric evaluation of proposals.

Definition 3. A penalty function p(·, ·, ·) is non-symmetric if there exists for-
mulae R, O and an ontology T such that p(O, R, T) 6= p(R,O, T).

This property is evident when all constraints of R are fulfilled by O but not
vice versa. Hence, O should be among the top-ranked counteroffers in the list of
potential partners of R, while R should not necessarily appear at the top in the
list of potential partners of O.

Secondly, if logic is used to give some meaning to descriptions of supplies and
demands, then proposals with the same meaning should be equally penalized,
independently of their syntactic descriptions.

Definition 4. A penalty function p(·, ·, ·) is syntax independent if for every
triple of formulae O1, O2,R, and ontology T , when T |= O1 ⇔ O2 then p(O1, R, T) =
p(O2, R, T), and the same holds also for the second argument , i.e., p(R, O1, T) =
p(R, O2, T)

Clearly, when the logic admits a normal form of expressions — as CNF or
DNF for propositional logic, or the normal form of concepts for some DLs —
using such a normal form in the computation of p(·, ·, ·) ensures by itself syntax
independence.

We now consider the relation between penalties and implication. We sepa-
rately consider penalty functions for ranking potential matches — p⇒(·, ·, ·) —
from those for ranking partial (conflicting) matches — p∅(·, ·, ·).

Definition 5. A penalty function for potential matches is monotonic over im-
plication whenever for every issued demand R, for every pair of counteroffers O1

and O2, and ontology T , if O1 and O2 are both potential matches for R w.r.t. T ,
and T |= (O1 ⇒ O2), then p⇒(O1,R, T) ≤ p⇒(O2, R, T)

Intuitively, the above definition could be read of as: if T |= (O1 ⇒ O2) then O1 is
more specific than O2 and should be penalized (and then ranked) either the same,
or better than O2. A ranking of potential matches is monotonic over implication
if the more specific, the better. In other words, O1 exposes more characteristics
than O2 that can satisfy the ones requested by R. A dual property could be stated
for the second argument: if T |= (R1 ⇒ R2) then a counteroffer O is less likely
to fulfill all characteristics required by R1 than R2. However, since our scenario
is: “given an issuer of a demand R looking for a match in the marketplace, rank
all possible supplies O1, O2, . . . , from the best one to the worst”, we do not deal
here with this duality between first and second argument of p⇒(·, ·, ·).

When turning to partial matches, in which some properties are already in
conflict between supply and demand, the picture reverses. Now, adding another
characteristic to an unsatisfactory proposal may only worsen this ranking (when
another characteristic is violated) or keep it the same (when the new character-
istic is not in conflict).

Definition 6. A penalty function for partial matches is antimonotonic over im-
plication whenever for every issued demand R, for every pair of supplies O1 and
O2, and ontology T , if O1 and O2 are both partial matches for R w.r.t. T , and
T |= (O1 ⇒ O2), then p∅(O1, R, T) ≥ p∅(O2, R, T)

If T |= (O1 ⇒ O2) then O1 should be penalized (and then ranked) either the
same, or worse than O2. In fact, if O1 and O2 are both partial matches for R
and O1 is more specific than O2, then there are more characteristic in O1 that
can conflict with the ones in R than in O2. In other words, A ranking of partial
matches is antimonotonic over implication if the more specific, the worse. The
same property should hold also for the second argument, since conjunction is
commutative.

2.3 From Partial to (quasi-)Exact Match

We illustrate the rationale of our approach by computing what is needed in order
to ”climb the classification list” and reach a Full or an Exact match.

In particular, if we get a Partial match we could revise R relaxing some
restrictions, in order to reach a Potential match. Once we get a Potential match
we can hypothesize what is not specified in O in order to reach a Full match and
subsequently we can suggest to the user what is not specified in the relaxed R
but is in O. The ideal sequence should be then:

Partial → Potential → Full (→ Exact)

With reference to our previous example we show how this process can be per-
formed in a propositional framework. Let us define the following R and O we
will use in the rest of the Section:

R = Sedan ∧ PassengerAirbag ∧ EcoDiesel ∧ ReflexSilver
O = Sedan ∧ Gasoline ∧ AlarmSystem ∧ Silver

It is easy to understand that due to the axiom Gasoline ⇔ ¬Diesel in T ,
MR ∩MO = ∅ and then a Partial match occurs.

In this example we can easily identify the source of inconsistency and notice
it is due to the EcoDiesel specification in R and the Gasoline one in O. So if
the requester relaxes R giving up EcoDiesel specification — we call this sub-
formula G for Give Up — then we have a new contracted request. We call this
new request K for Keep.

K = Sedan ∧ PassengerAirbag ∧ ReflexSilver

The contracted part of R i.e., K is now a Potential match with respect to O
Ṫhat is MK ∩MO 6= ∅.

Now to reach a Full match we should reduce MO. This is possible hy-
pothesizing some unspecified characteristic H (for Hypothesis) in O such that
MO∧H ⊆MR. If we hypothesize H = Metallic ∧ PassengerAirbag the previ-
ous set relation holds. Then, having

O ∧ H = Sedan ∧ Gasoline ∧ AlarmSystem ∧ Silver ∧ Metallic ∧ PassengerAirbag

a Full match occurs i.e., MO∧H ⊆MK.
The previous example shows that some revision and hypotheses are needed in
order to perform an extended matchmaking process and move through match
classes.

Partial → Potential. Contract R to K giving up elements G conflicting with
O –Extend MR to MK.
Clearly, this is a non-monotonic task, particularly it can be reduced to con-
traction in a belief revision framework[10]. If the match type we obtain is
a Partial one, with respect to an ontology T , the following relation holds:
T |= ¬(R ∧ O). Now consider T ′ as an ontology equivalent to T and such
that T ′ = T ∪ {ρ ⇔ R, ω ⇔ O}, with ρ and ω being two new propositional
symbols. The previous relation can be rewritten as T ′ |= ¬(ρ ∧ ω). In order
to reach a Potential match you can give up some information in the axiom
involving R and consider the contracted ontology T ′c = T ∪ {ρ ⇔ K, ω ⇔ O}
such that T ′c 6|= ¬(ρ ∧ ω).

Potential → Full. Hypothesize missing characteristics H in O in order to com-
pletely satisfy K–Reduce MO.
Also this process can be modeled as a non-monotonic task. In particular,
moving from a Potential match to a Full match, we exploit abductive rea-
soning. In fact, we are not able to explain (satisfy in all the models) K given
the manifestation O w.r.t. the ontology T , and we look for a set of possible
hypotheses H such that (1)T ∪H∪{O} 6|= false and (2)T ∪H∪{O} |= K, where
the set of all possible hypotheses is, due to (1), a subset of the propositional
alphabet used to model T , R and O.

While performing contraction and abduction, minimality criteria have to be
taken into account. If we are a demander:

– we wish to keep as much as possible of the original request. Trivially, if we
contract all the request, we surely obtain a Potential match with the supply,
but it should be obvious that this is not a good solution from the demander
point of view.

– we wish to hypothesize as less as possible features in the supply in order to
be satisfied. We could hypothesize all the characteristics we requested in the
supply, and reach a Full match. Again this is a trivial solution.

Based on the previous observation, if we have more than one supply during the
contraction phase the demander should be willing to choose the one with the
minimum number of features to be contracted. During the abduction process the
demander will prefer supplies with less requested features to be hypothesized in
O.

Observe that we are not asking the requester to actually go through the
whole process; the process outlined so far simply explains the rationale for com-
puting penalty functions in terms of what is conflicting and what is missing when
matching R and O Ẏet our approach has a twofold advantage: the requester can

use provided information to actually revise her request but the information we
extract is also all what is needed to compute a penalty function to be used by a
broker in a e-marketplace.

Once we know what has to be contracted and hypothesized it is possible to
compute a match degree based on K and H, that is what is needed in order to
reach a Full match. In case of multiple resources, we can use this match degree
as a score to rank such resources with respect to R. Such a penalty function
should be in the form:

ρ : 〈R,O,K, H, T 〉 → <
ρ combines all the causes for lack of a Full match. Notice that ρ needs also T ;
in fact in T the semantics of K, H, R and O are modeled, which should be taken
into account when evaluating how to weigh them with respect to O and R.

Before making the final step beyond, moving from a Full to an Exact match,
some considerations are needed.

In an Open World semantics, what is not specified in a formula has not to
be interpreted as a constraint of absence. It is a ”don’t care” specifications. In
a resource retrieval scenario – as a marketplace is – this can be due to basically
two reasons:

– the user really does not care about the unspecified information.
– the user does not own that knowledge. She is not aware that it is possible

to specify some other characteristics in the request, or she simply did not
consider further possible specifications. She is not necessarily an expert of
the marketplace knowledge domain.

In the second case a further refinement makes sense. A way to do this is to
present to the user all the knowledge modeled in T and ask her to refine the
query, adding characteristics found in T . This approach has at least two main
drawbacks:

1. The user must be bored browsing all T in order to find something interesting
to be added to the request.

2. She can choose something in T which is not in any offer in the marketplace.
Then after the query refinement she would not see any change in the list
ranked using ρ(R, O,K, H, T).

To avoid the above drawbacks, we might suggest to the requester only those
characteristics able to change the ranked list of offers within the marketplace.
Then (in an ideal marketplace where the only offer is O) we could suggest to
the user to refine the contracted request adding B′ = AlarmSystem ∧ Gasoline,
where B′ (for Bonus) represents what is specified in O but is not in K. But notice
that in B′ we have Gasoline, that is the source of inconsistency of the original
request R with the original O. Then it would be very strange if the user refined
her request by adding something which is in conflict with her initial preferences.
The user is likely to refine adding at most B = AlarmSystem.

Full → quasi-Exact. Suggest to the requester what should be added to K look-
ing at non requested features B (for bonus) in O –Reduce MK.

In order to propose only appealing features to the user, first of all it is nec-
essary to remove from O the causes for inconsistency with K. This is clearly
the contraction problem seen in action to move from Partial to Potential
match with K and O flipped over. This time we want to contract O w.r.t. K.
Once we have deleted the inconsistencies from O reducing it to KO, we need
to make some hypotheses on how the user could refine the query so that the
(contracted) request completely overlap the contracted supply KO. Again
an abduction problem has to be solved in order cope with this problem. We
have to hypothesize B such that T |= (K ∧ B ⇒ KO).

2.4 Penalty Functions and Non-Monotonic Tasks for Resources
Ranking

In this section we will discuss relations between penalty functions introduced
in Section 2.2 and the process of moving through match classes outlined in the
previous Section.

A possible p∅(·, ·, ·), can measure how difficult it is to move from Partial to
Potential match, or in other words how big is G with respect to the original R.
Looking at the contraction process highlighted in case of Partial match, it is
easy to show that it is a non-symmetric process. If we contract R w.r.t. O, we
obtain a new request K which is, generally, different from the contracted version
of O w.r.t. R. Then property 3 is satisfied. Surely, a contraction reasoning task
is syntax independent and then also property 4 is satisfied. For what concerns
property 6, intuitively, if we add a new feature to R (or equivalently O) and it is
not in conflict with O (or R), the information to give up G remain the same; if
the new feature we add to R (O) is in conflict with O (R), then we have to give
up this new feature and increase G.

For p⇒(·, ·, ·), we might define a function computing how far is a Potential
match from a Full match, i.e., a function measuring H. The abduction process
to move from Potential to Full match is both non-symmetric w.r.t. R and O and
syntax independent, so properties 5 and 6 are satisfied. The last property to be
satisfied is the monotonicity of p⇒(·, ·, ·). Again, in terms of abductive reasoning,
adding to R (respectively O) a feature which is not implied by O (respectively
R), H increases. If we add a feature which is implied by O (respectively by R), the
hypotheses to be formulated are exactly the same and also H remains unchanged.

Based on the above consideration we can redefine ρ, computing an overall
match degree of R w.r.t. O, as a function of p∅(·, ·, ·) and p⇒(·, ·, ·).

ρ(R, O,K, H, T) = ρ(p∅(O,R, T), p⇒(O, R, T))

Actually, if R and O are a Potential match, only p⇒(O,R, T) contributes to the
match degree computation. In this case ρ(p∅(O, R, T), p⇒(O, R, T)) = p⇒(O, R, T).
We remark that modeling the matchmaking process as a sequence of non-monotonic
reasoning tasks, and computing the match degree based on them, we are also
able to provide explanations for the match degree. That is, when the system

presents a ranked list of possible supplies to the requester, it is also able to jus-
tify the results – and then increase the trust level of the user in the system –
but also guide the user in the refinement process.

3 DL Inference Services for Matchmaking

Although useful to model simplified examples, propositional logic is obviously
limited for what concerns expressiveness. In the following we will refer to De-
scription Logics (DL) whose formal semantics is the basis of the Ontology Web
Language OWL-DL [15], and model a DL-based framework to cope with the
issues introduced here. Please refer to [2] for a comprehensive survey on DLs.

DL-based systems usually provide at least two basic reasoning services:

1. Concept Satisfiability : T |= R 6v ⊥ –Given a TBox T and a concept R, does
there exist at least one model of T assigning a non-empty extension to R?

2. Subsumption: T |= R v O –Given a TBox T and two concepts R and O, is R
more general than O in any model of T ?

Matchmaking services outlined in the previous section call for other, non-
monotonic inference services, we briefly recall hereafter.

Let us consider concepts O and R and an ontology T . If a partial match
occurs, i.e., they are not compatible with each other w.r.t. T , one may want to
retract specifications in R, G (for Give up), to obtain a concept K (for Keep)
such that K uO is satisfiable in T . In [5] the Concept Contraction problem was
defined as follows:

Definition 7. Let L be a DL, O, R, be two concepts in L and T be a set of
axioms in L, where both O and R are satisfiable in T . A Concept Contraction
Problem (CCP), identified by 〈L,O, R, T 〉, is finding a pair of concepts 〈G,K〉 ∈
L × L such that T |= R ≡ G u K, and K u O is satisfiable in T . Then K is a
contraction of R according to O and T .

If nothing can be kept in R during the contraction process, we get the worst
solution — from a matchmaking point of view — 〈G,K〉 = 〈R,>〉, that is give
up everything of R. If RuO is satisfiable in T , that is a potential match occurs,
nothing has to be given up and the solution is〈>, R〉, that is, give up nothing.
Hence, a Concept Contraction problem amounts to an extension of a satisfiable
one. Since usually one wants to give up as few things as possible, some minimality
criteria in the contraction must be defined [10]. In most cases a pure logic-based
approach could be not sufficient to decide between which beliefs to give up
and which to keep. There is the need to model and define some extra-logical
information, which have to be taken into account. For instance, one could be
interested in contracting only some specification in her request, while others
have to be considered strict [6].

If the offered resource O and the request R are in a potential match, it is
necessary to assess what should be hypothesized H in O in order to completely
satisfy R and then move to a full match. In [7] the Concept Abduction problem
was defined as follows:

Definition 8. Let L be a DL, O, R, be two concepts in L, and T be a set of
axioms in L, where both O and R are satisfiable in T . A Concept Abduction
Problem (CAP), identified by 〈L, R, O, T 〉, is finding a concept H ∈ L such that
T |= OuH v R, and moreover OuH is satisfiable in T . We call H a hypothesis
about O according to R and T .

Obviously the definition refers to satisfiable O and R, since R unsatisfiable implies
that the CAP has no solution at all, while O unsatisfiable leads to counterin-
tuitive results (¬R would be a solution in that case). If O v R then we have
H = > as a solution to the related CAP. Hence, Concept Abduction amounts to
extending subsumption. On the other hand, if O ≡ > then H v R.

Concept Abduction and Concept Contraction can be used for respectively
subsumption and satisfiability explanation. For Concept Contraction , having
two concepts whose conjunction is unsatisfiable, in the solution 〈G, K〉 to the
CCP 〈L, R, O, T 〉, G represents ”why” R u O are not compatible. For Concept
Abduction , having R and O such that O 6v R, the solution H to the CAP
〈L, R, O, T 〉 represents ”why” the subsumption relation does not hold. H can be
interpreted as what is specified in R and not in O.

4 Making the Match

With respect to the match classification presented in Section 2 we show how it
is possible to exploit both montonic and non-monotonic inference services for
DLs in order to identify match classes, move from a Partial match to a Full (or
Exact) match, and use the obtained information to provide a semantic-based
score measuring similarity w.r.t. the request.

Using Subsumption and Concept Satisfiability we can rewrite match classes
in terms of DLs. Given an ontology T and a demand and a supply, expressed as
DL complex concepts R and O, both satisfiable w.r.t. T , we have:

Exact : T |= R ≡ O

Full : T |= O v R

Plug-In : T |= R v O

Potential : T 6|= R u O v ⊥
Partial : T |= R u O v ⊥

Both Concept Abduction and Concept Contraction can be used to suggest guide-
lines on what, given O, has to be revised and/or hypothesized to obtain a Full
match with R.

4.1 Explanation for Ranking

Partial→Potential If R u O ≡ ⊥ – Partial match – then solving the related
Concept Contraction Problem we have R ≡ GRuKR such that KRuO 6≡ ⊥ w.r.t.

T . That is, we contract R to KR such that there is a Potential match between
the contracted request and O.
Potential→Full Once we are in a Potential match, we can formulate hypotheses
on what should be hypothesized in O in order to completely satisfy the contracted
R. If we solve the related Concept Abduction Problem, we can compute an
hypothesis H such that OuH v KR and reach a Full match with the contracted
request.
The above concepts can be formalized in the following simple algorithm:

Algorithm retrieve(R,O, T)
input O, R ≡ K u G concepts satisfiable w.r.t. T
output 〈G,H〉, i.e., the part in R that should be retracted
and the part in O that should be hypothesized to have a
full match between O and K (the contracted R)
begin algorithm
1: if T |= R u O v ⊥ then
2: 〈G, K〉 = contract(O,R, T);
3: HK = abduce(O, K, T);
4: return 〈G, H〉;
5: else
6: H = abduce(O, R, T);
7: return 〈>, H〉;
end algorithm

Notice that H = abduce(O,R, T) [rows 3,6] determines a concept H such that
O u H v R, 〈G, K〉 = contract(O, R, T) [row 2] determines two concepts G and
K such that R ≡ G u K and T |= K u O 6v ⊥ following minimality criteria as
suggested in [7, 5]. Also notice that, given a CAP or a CCP, usually there is
not only one single solution. But in order to provide a match explanation, in
rows 2,3 and 6 only one solution has to be returned. In this case context-aware
information may be used as criteria for solution selection.

4.2 Query Refinement

Full→quasi-Exact During this step, in order to overcome the suggestion of
”fake bonuses”, we have to identify which part of O generated the inconsistency
with R before contracting. We can solve a Concept Contraction Problem between
O and R contracting O. That is we have O ≡ GO u KO such that KO u R 6v ⊥
w.r.t. T . In [7], among others, the conjunction minimal solution to a CAP is
proposed for DLs admitting a normal form with conjunctions of concepts. A
solution belonging to such solution is in the form B = uj=1..kCj , where Cj

are DL concepts and is irreducible, i.e., B is such that for each h ∈ 1, ..., k,
uj=1..h−1,h+1..kCj is not a solution for the CAP.

In the following, the algorithm computeBonus(O,R, T) is presented, able to
compute what should be hypothesized in the requester preferences in order to
get a better match result, and –if possible– an Exact match (see 2). It takes as
input an offer O, a request R and the ontology T they refer to.

Algorithm computeBonus(O, R, T)
input O and R DL concepts both satisfiable w.r.t. T
reference ontology
output Birr a set of DL concepts representing bonuses
begin algorithm
1: B = ∅;
2: Birr = ∅;
3: 〈GR, KR〉 = contract(O, R, T);
4: 〈GO, KO〉 = contract(R, O, T);
5: B = abduce(KR, KO, T);
6: for each Cj ∈ B
7: Birr = Birr ∪ {Cj};
8: return Birr;
end algorithm

The problem of fake bonuses is taken into account in rows 3-5 of computeBonus.
In row 3, a Concept Contraction Problem is solved, contracting R in KR and
identifying in GR the source of inconsistency with O. In row 4 the same is
performed for O identifying in KO the part of the offer which is compatible
with R and in GO the incompatible one and then likely to contain the fake
bonuses. In row 5 we compute B, solution of Concept Abduction Problem such
that KRuB v KO. Notice that adding Bto KR we are neither in a Plug-In match
nor in an Exact one with respect to the contracted request KR. In fact, we would
have a Plug-In match if KRuB v O rather than KO and we could have an Exact
match adding also fake bonuses which are isolated now in GO.

5 Conclusion

In this paper we have motivated the need for nonmonotonic inference services,
particularly abduction and contraction in a belief revision framework, for logic-
based matchmaking and query refinement in e-commerce scenarios. We have also
outlined some guidelines on how to exploit these services for matches explanation
and ranking.

Acknowledgments

We wish to acknowledge partial support of Apulia Strategic Project DIPIS (Dis-
tributed Production as Innovative System). We also thank the anonymous re-
viewers for their valuable suggestions.

References

1. S. Agarwal and S. Lamparter. smart - a semantic matchmaking portal for electronic
markets. In Proceedings of the 7th International IEEE Conference on E-Commerce
Technology 2005, 2005.

2. F. Baader, D. Calvanese, D. Mc Guinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook. Cambridge University Press, 2002.

3. B. Benatallah, M-S. Hacid, C. Rey, and F. Toumani. Request Rewriting-Based
Web Service Discovery. In International Semantic Web Conference, volume 2870
of Lecture Notes in Computer Science, pages 242–257. Springer, 2003.

4. B. Benatallah, M-S. Hacid, C. Rey, and F. Toumani. Semantic Reasoning for Web
Services Discovery. In Proc. of Workshop on E-Services and the Semantic Web at
WWW 2003, May 2003.

5. S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Concept
Abduction and Contraction in Description Logics. In Proceedings of the 16th Inter-
national Workshop on Description Logics (DL’03), volume 81 of CEUR Workshop
Proceedings, September 2003.

6. S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Concept
Abduction and Contraction for Semantic-based Discovery of Matches and Negotia-
tion Spaces in an E-Marketplace. Electronic Commerce Research and Applications,
4(4):345–361, 2005.

7. T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Abductive matchmak-
ing using description logics. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI 2003), pages 337–342, Acapulco, Mes-
sico, August 9–15 2003. Morgan Kaufmann, Los Altos.

8. T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. A system for principled
Matchmaking in an electronic marketplace. International Journal of Electronic
Commerce, 8(4):9–37, 2004.

9. E. Di Sciascio, F.M. Donini, M. Mongiello, and G. Piscitelli. A Knowledge-Based
System for Person-to-Person E-Commerce. In Proceedings of the KI-2001 Work-
shop on Applications of Description Logics (ADL-2001), volume 44 of CEUR Work-
shop Proceedings, 2001.

10. P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.
Bradford Books, MIT Press, Cambridge, MA, 1988.

11. J. Gonzales-Castillo, D. Trastour, and C. Bartolini. Description Logics for Match-
making of Services. In Proceedings of the KI-2001 Workshop on Applications of
Description Logics (ADL-2001), volume 44. CEUR Workshop Proceedings, 2001.

12. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic location of
services. In Proceedings of the Second European Semantic Web Conf. ESWC ’05,
2005.

13. M. Klusch, B. Fries, M. Khalid, and Katia Sycara. Owls-mx: Hybrid owl-s service
matchmaking. In Proceedings of 1st Intl. AAAI Fall Symposium on Agents and the
Semantic Web, 2005.

14. L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic
Web Technology. In Proc. International World Wide Web Conference (WWW
’03), pages 331–339, Budapest, Hungary, May 20–24 2003. ACM, New York.

15. OWL. Web Ontology Language. www.w3.org/TR/owl-features/, 2004.
16. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic Matching of

Web Services Capabilities. In The Semantic Web - ISWC 2002, number 2342 in
Lecture Notes in Computer Science, pages 333–347. Springer-Verlag, 2002.

17. K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking
Among Heterogeneus Software Agents in Cyberspace. Autonomous agents and
multi-agent systems, 5:173–203, 2002.

18. D. Trastour, C. Bartolini, and C. Priest. Semantic Web Support for the Business-
to-Business E-Commerce Lifecycle. In Proc. International World Wide Web Con-
ference (WWW) ’02, pages 89–98. ACM, 2002.

Semantic Matchmaking using Ranked Instance

Retrieval

Matthias Beck and Burkhard Freitag

Universität Passau, Fakultät für Mathematik und Informatik,
{Matthias.Beck, Burkhard.Freitag}@uni-passau.de

Abstract. Finding matching answers to a given request is hard, in par-
ticular if the objective is to �nd the most suitable partner. This especially
holds in the context of the Semantic Web and its underlying speci�ca-
tion language, i. e., description logics (DL)1. We present a clean, formal
approach allowing users to devise preferences for queries on description
logics knowledge bases. Thereby it is possible to use established DL-
reasoners, particularly those tailored at instance retrieval like KAON2.
Furthermore, our approach allows the formulation of soft constraints
which is considered an important feature of semantic matchmaking.

1 Introduction

It is no news that matchmaking plays a crucial role in many areas of information
systems. In the context of the Semantic Web, for example, matchmaking plays a
central role in the discovery of appropriate semantic web services (cf. [1]) where
appropriate means best complying with the user's request. So it is natural to
provide the user with means to express his or her criteria for determining quality.

The contribution of this paper is a uniform method for the annotation of de-
scription logics instance retrieval queries with user preferences thereby allowing
soft constraints resp. mere sorting. Since only the query is annotated and the
knowledge base remains unchanged, it is possible to use standard reasoners like
KAON2 [2], RACER [3] or, more generally, all reasoners supporting the so called
DIG-Interface [4].

2 Motivating Example

Let us have a look at an example. Assume, you want to buy the latest "Harry
Potter" DVD. You would probably look only for those web services that allow
to order DVDs. Assume further that there is a registry which stores the service
pro�les of the particular web services in an appropriate formalism like OWL-S [5],
which allows for more sophisticated semantic service descriptions as compared
to standard formalisms like UDDI (cf. [6]). This easy query can be formulated as

1 Other speci�cation languages like the object-oriented Flora-2 are possible for the
Semantic Web. Nonetheless, OWL is the current recommendation of the W3C.

2

Q1 := OffersDVD . Retrieving results for Q1 might be a quite tiresome experience
since you would probably get tons of hits.

Of course you would provide more search criteria to narrow the search. For
instance, if the DVD is meant to be a present and you are a little late, you would
prefer shipping within 24 hours. But in any case shipping time should not exceed
three days. This yields a new query

Q2 := OffersDVD u (24HoursShipping t 3DaysShipping).

That produces the correct result set2, but without specifying user preferences,
you get an unordered result that does not �t your needs. So the next step is to
annotate the query with (numerical) user preferences. This results in the query

Q3 := OffersDVD1 u (24HoursShipping2 t 3DaysShipping1).

The intuitive meaning is the following: in the result set individuals (e. g., web
services) that provide 24 hours shipping3 will get a higher rank than those of-
fering three days shipping only. Note that membership in the result set is not
a�ected by specifying preferences.

3 Preference Annotations

3.1 Ranking Tree

Due to the structure of queries and hence preferences a single numerical value is
not su�cient to express rankings. The main reason is the existence of disjunctive
knowledge in description logics. Consider the query Q4 := A1 t (B1 t C2)0.
Intuitively, since BtC has a preference of 0, this expression should not contribute
to the top level rank. On the other hand, if we get an equal top level rank for
two individuals, an evaluation of B1 t C2 can be used to re�ne the ranking.

De�nition 1 (Ranking Tree)

1. For r ∈ [0; 1] (r) is a ranking tree.

2. Let r ∈ [0; 1] and t1, . . . , tn ranking trees with n ≥ 1, then (r, t1, . . . , tn) is a

ranking tree.

t1 := (1, (1), (1
3 , (1), (0))) is a sample ranking tree for query Q4 (cf. section 3.2).

Based on this de�nition we construct an ordering on ranking trees.

De�nition 2 (Ordering E on ranking trees)
Let a = (ra, a1, . . . , an) and b = (rb, b1, . . . , bn) with n ∈ N0 and ra, rb ∈ R, ai, bi

ranking trees with i ≤ n. Then we de�ne the relation < by a < b :⇔ ra < rb.

Now we de�ne that a E b holds if and only if
2 The t-Operator is equivalent to a logical "or" while u corresponds to a logical "and".
3 In a more realsitic scenario you would possibly replace 24HoursShipping2 by

(∃shipsWithin. ≤24)
2 in query Q3. The same holds for 3DaysShipping . For the sake

of brevity we stick to the shorter form.

3

rKB (Cr1
1 � . . . � Crn

n , o) = (d, rKB (C1, o), . . . , rKB (Cn, o))

with d =

(
0, if ri = 0, for i ∈ {1, . . . , n}
Pn

i=1 ciriPn
i=1 ri

, else

and ci =

�
1, if KB |= Ci(o)
0, else

, � ∈ {t,u}

r¬KB (Cr1
1 � . . . � Crn

n , o) = (d¬, r¬KB (C1, o), . . . , r
¬
KB (Cn, o))

with d¬ =

(
0, if ri = 0, for i ∈ {1, . . . , n}
Pn

i=1 c¬i riPn
i=1 ri

, else

and c¬i =

�
1, if KB |= ¬Ci(o)
0, else

, � ∈ {t,u}

rKB (¬C, o) = r¬KB (C, o)

r¬KB (¬C, o) = rKB (C, o)

rKB (XR.C, o) = −1,X ∈ {∃,∀,≤ n,≥ n}, n ∈ N
r¬KB (XR.C, o) = −1,X ∈ {∃,∀,≤ n,≥ n}, n ∈ N

rKB (A, o) =

�
(1), if KB |= A(o)
(0), else

r¬KB (A, o) =

�
(1), if KB |= ¬A(o)
(0), else

KB : knowledge base; C, C1 . . . , Cn: arbitrary concept expressions
A: atomic concept; R: role symbol; o: individual

Fig. 1. Ranking mapping

1. a < b or

2. ra = rb and ∃i : ai < bi and ∀1 ≤ j ≤ n : bj 6< aj or

3. ra = rb ∧ ∀1 ≤ i ≤ n : ai E bi

Giving this de�nition a closer look, we can see that a E b if the top-level rank
of a is smaller. If the top-level ranks are equal, there are two possibilities: one
child top-level rank is smaller (and other child ranks are not greater) or all
child trees are smaller w. r. t. E. For example, if we have a second ranking tree
t2 := (1, (1), (0, (0), (0))), then t2 E t1 holds. Note that E is a partial order
relation on the set of ranking trees (having the same structure).

3.2 Ranking Mapping

Given an annotated query and an individual, we must evaluate the rank (ranking
tree) of that individual with respect to the query. This is done by the mapping
shown in �gure 1. Note that the result of the ranking mapping is a ranking
tree. It is only meaningful to compare (E) ranking trees if they were assembled
using the same query. We do not further elaborate on the de�nition since it is

4

rather technical. For background information on description logics we refer to
[7]. Nonetheless we present some remarks on the mapping.

Central part of the de�nition is the mapping for (n-ary) conjunctions and
disjunctions. The de�nition of the ranking function is the same for both. The
ranking tree is created by computing a top-level rank d and afterwards computing
ranking trees for the operands. The top-level rank is the weighted average4 of
the preferences. Negation is treated by "saving" it inside the r¬KB -function. The
negation is then re-applied while computing the c¬i -parameter. This scheme is
passed on to the operands.

Preferences inside role expressions are cut o� by setting the rank of the ex-
pression to -1. This is justi�ed as follows: consider the query ∃hasBeach(Rocky1t
Sandy2). We must build a ranking for locations that have beaches by evaluation
of certain characteristics of these beaches, in this case Rocky and Sandy . If more
than one beach is associated to a single location, there are several possible se-
mantics. A possibility is trying to maximize the ranking. In this example that
would mean trying to �nd an associated beach that is rocky and sandy. It is also
possible to evaluate the average ranking over all associated beaches. There are
other reasonable semantics, too.

We are currently examining preferences inside role expressions and plan for
an annotation method allowing the user to specify the particular aggregation
function to be used. For the time being, preferences inside role expressions are
not considered to avoid ambiguity. The structure of the resulting ranking tree
very much resembles the query structure. The ranking tree is more compact
because negation nodes are left out and nodes resulting from role expressions
are cut o�.

Recall query Q4 := A1t(B1tC2)0 and ranking tree t1 := (1, (1), (1
3 , (1), (0)))

from section 3.1. If there is an individual o that is an instance of A and B but
not C, then t1 is the ranking tree for o w. r. t. Q4.

3.3 Soft Constraints and Sorting

De�nitions of the ranking tree and the ordering E allow for formulation of soft
constraints using our formalism. So another way of re�ning query Q1 from section
2 is to specify some soft constraints that you prefer being satis�ed without
enforcing them. For example you could prefer paying by credit card. Specifying
this is now easy using preferences: Q5 := OffersDVD1 u (CreditCardPayment1 t
>0). Here > denotes the top concept, i. e., every individual is an instance of >.
The result set consists of all individuals being instances of OffersDVD but those
also providing credit card payment get a higher rank. Since we allow for n-ary
operators, it is also possible to combine soft constraints: Q6 := OffersDVD1 u

4 Aside from the weighted average, the rank could be computed by an arbitrary func-
tion.

5

<owl:Class rdf:about="http://www.im.uni-passau.de/pref#Query">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="http://www.im.uni-passau.de/matchmaking#UPS">

<pref:Pref>1</pref:Pref>

</owl:Class>

<owl:Class rdf:about="http://www.im.uni-passau.de/matchmaking#FedEx">

<pref:Pref>2</pref:Pref>

</owl:Class>

</owl:unionOf>

</owl:Class>

Fig. 2. Preference annotated query in OWL (UPS1 t FedEx2)

(CreditCardPayment1 tDeliveryAsGift2 t >0). Moreover nesting is possible5:

Q7 := OffersDVD1 u (CreditCardPayment2 t (FedEx 1 tUPS 2)1 t >0)

It is worth noting here that it is possible to rank uncertain (disjunctive) knowl-
edge. If the knowledge base entails the fact that an individual o is an instance
of FedEx t UPS , this knowledge is ranked using preference 1 in Q7. Since de-
scription logics allow for disjunctive knowledge, this is possible even without
explicitly knowing whether o is an instance of FedEx or UPS . On the other
hand, if we knew that o is also an instance of UPS for example, this knowledge
would increase the rank on a lower ranking level. In addition to soft constraints
it is even possible to formulate mere sorting conditions:

Q8 := OffersDVD1 t (CCardPaym2 u 24HoursDelivery1 u FedEx 3 u ⊥0)

Since no individual is an instance of ⊥, the second part of the formula is not sat-
is�able. So all results to query Q8 must be instances of OffersDVD and therefore
OffersDVD cannot a�ect the ranking. Hence, the second part is alone respon-
sible for the ranking. This is due to the fact that an individual i can never be
instance of CCardPaym u 24HoursDelivery u FedEx u ⊥. However, i can be an
instance of CCardPaym, 24HoursDelivery or FedEx . This information is used to
build the ranking.

4 Prototype

Our ranking algorithm is composed of three parts that essentially represent three
consecutive phases. In phase one the preference annotated query given in OWL
is (pre)processed, preferences are extracted and removed from the query. For an
example query see �g. 2. Results to the unannotated query are retrieved via the
reasoner in phase two. At the moment we build upon the KAON2 reasoner [2][8]

5 Note that FedEx (the same holds for UPS) is short for offersShippingByFedEx or
∃offersShippingBy .FedEx in Query Q7.

6

since it is tailored to instance retrieval. We plan to support other reasoners like
RACER [3] and other DIG [4] compatible reasoners in the future.

Phase three performs the actual ranking. This is done by computing the
ranking tree for each result retrieved in phase two. The results of several test runs
are encouraging. We are using an indexed cache to speed up the computation. In
our test runs we observed that the time for computation of the ranked result set
trank depends linearly on the time for un-ranked retrieval tret , i. e., trank ≈ n·tret .
The factor n is determined by the complexity of the query.

5 Discussion and Summary

Many approaches to ranking and preferences have been proposed. Castillo et al.
[9] studied matchmaking of services by means of description logics. They allow
for neither ranking nor user preferences. A di�erent approach is due to Colucci et
al. [10]. They allow for both negotiable and strict requirements in a description
and introduce two novel description logics inference services, concept abduction
and concept contraction, to deal with them.

Kieÿling et al. [11] developed PreferenceSQL, a powerful SQL extension. The
objective is similar to our approach. While PreferenceSQL is aimed at relational
data, our target are description logics knowledge bases. So in PreferenceSQL
preferences are set on the attribute level while we set preferences on class mem-
bership. Another di�erence is that we can handle disjunctive knowledge which
is common in description logics but not in databases. Besides, we allow for pref-
erences on arbitrary constraints while this is only allowed for soft constraints in
PreferenceSQL.

Brewka [12] describes a rank based description language with qualitative
preferences. He follows a slightly di�erent approach: central component is the
ranking of di�erent models of the knowledge base, not a ranking of consequences
with respect to a query as in our approach. To accomplish that, he deeply in-
tegrates preferences into the logical language. Consequently, standard reasoners
cannot be used. Another di�erence lies in the fact that his approach admittedly
does not work well with numerical (quantitative) preferences.

A Google-like approach to knowledge ranking is presented by Ding et al. in
[13]. They do not allow for user-de�ned preferences.

A recent paper [14] on the combination of ontologies and preferences is due
to Lukasiewicz et al. Their notion of preference di�ers from ours. Particularly,
they allow for qualitative preferences only.

As a natural limitation of our approach, annotations of user preferences must
follow the query (term) structure. We argue that this is not a serious restriction
since query and preference structure often match. Otherwise it is possible to
specify a sorting (cf. section 3.3).

We have introduced an approach to semantic matchmaking by ranked in-
stance retrieval in knowledge bases represented in description logics. Ranking
is solely based on the query which is annotated with preferences. One of the

7

advantages of our ranking approach lies in the fact that each user gets ex-
actly the ranking he or she speci�ed. Therefore, ranking is personalized and
self-explanatory.

A prototype implementation has been presented that shows promising behav-
ior. Of course several optimizations of our algorithm are possible and already
on the way. For example, in certain cases a complete computation of the rank-
ing tree is not necessary since the ranking can be evaluated directly for some
concepts without looking at subconcepts. Also a more intensive use of index
structures will be investigated.

6 Acknowledgement

We wish to thank the anonymous reviewers for valuable comments.

References

1. Burstein, M.H., Bussler, C., Zaremba, M., Finin, T.W., Huhns, M.N., Paolucci,
M., Sheth, A.P., Williams, S.K.: A Semantic Web Services Architecture. IEEE
Internet Computing 9(5) (2005) 72�81

2. Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB),
Universität Karlsruhe (TH): KAON2 - Homepage. http://kaon2.semanticweb.org
(2006) last visited May 2006.

3. Haarslev, V., Möller, R.: Description of the RACER System and its Applications.
In: Proceedings International Workshop on Description Logics (DL-2001), Stan-
ford, USA, 1.-3. August. (2001) 131�141

4. Bechhofer, S., Möller, R., Crowther, P.: The DIG Description Logic Interface. In:
Description Logics. (2003)

5. Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S.,
Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services. Website (2004)

6. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Importing the Semantic
Web in UDDI. In: CAiSE '02/ WES '02: Revised Papers from the International
Workshop on Web Services, E-Business, and the Semantic Web, London, UK,
Springer-Verlag (2002) 225�236

7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications,
Cambridge University Press (2003)

8. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-Description Logic to Disjunc-
tive Datalog Programs. In: KR. (2004) 152�162

9. González-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Matchmak-
ing of Services. In Görz, G., Haarslev, V., Lutz, C., Möller, R., eds.: Proceedings
of the KI-2001 Workshop on Applications of Description Logics. (2001)

10. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Concept
abduction and contraction for semantic-based discovery of matches and negotiation
spaces in an e-marketplace. Electronic Commerce Research and Applications 4(4)
(2005) 345�361

11. Kieÿling, W., Köstler, G.: Preference SQL - Design, Implementation, Experiences.
In: VLDB. (2002) 990�1001

8

12. Brewka, G.: A Rank Based Description Language for Qualitative Preferences. In
de Mántaras, R.L., Saitta, L., eds.: ECAI, IOS Press (2004) 303�307

13. Ding, L., Pan, R., Finin, T.W., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking
Knowledge on the Semantic Web. In: International Semantic Web Conference.
(2005) 156�170

14. Lukasiewicz, T., Schellhase, J.: Variable-Strength Conditional Preferences for
Matchmaking in Description Logics. In: KR. (2006) 164�174

Semantic-based Taxonomic Categorization of Web
Services

Miguel Ángel Corella and Pablo Castells

Universidad Autónoma de Madrid, Escuela Politécnica Superior
Campus de Cantoblanco, 28049 Madrid, Spain

{miguel.corella, pablo.castells}@uam.es

Abstract. With the envisioned proliferation of Web services available on the
WWW and private repositories, new and better support techniques are needed
for service discovery and organization to stay manageable. Service classifica-
tion under hierarchic taxonomies is commonly a key feature for properly orga-
nizing service repositories in a rational way, as well as a good foundation for
sophisticated retrieval techniques. In this paper, a heuristic approach for the
semi-automatic classification of (semantic) Web services is proposed, based on
matching new unclassified services to previously classified ones in a given cor-
pus. This hypothesis is validated by an experimental test and the comparison
with results achieved by other approaches.

1 Introduction

A major envisioned area where the emerging ontology-based technologies [3] are
expected to bring key benefits is that of using semantic-based descriptions to endow
Web services with a qualitatively higher potential for automation [19]. The basis of
this trend is to add semantic information beyond current WSDL-based [6] descrip-
tions, as a means to enable the manipulation of services by software programs easing
the automation of such tasks as service selection, invocation, composition, and dis-
covery [11]. Further service management tasks, besides the latter, can also take ad-
vantage of the additional semantics to provide with new automation facilities. In this
paper we address the categorization (i.e. specification of their domain or business
focus) of Web services in a repository with respect to a predefined taxonomy.

Nowadays, the most widely accepted and used protocol for publishing and search-
ing Web services is UDDI [15]. This protocol enables the creation of service reposi-
tories, in which services are organized based on standard or proprietary taxonomies
(e.g. UNSPSC – United Nations Standard Products and Service Codes, NAICS –
North American Industry Classification System, etc.). Each service is classed under
one (or more) categories, in order to ease different repository tasks performed by
service publishers and consumers, as well as repository administrators.

Since the categorization of services and maintenance of repositories has to be done
manually by human entities, the classification task becomes considerably difficult,
heavy and error-prone in practice, due to several issues (e.g. huge size of taxonomies in

real-world applications, multiple people involved in maintaining or sharing services in a
common repository, several distributed repositories being shared, etc.).

According to this, it is our goal to provide automatic mechanisms to assist service
publishers in the categorization task, in order to reduce the effort required, and pro-
mote globally consistent classification decisions, even when several users are in-
volved. To do so, we propose a heuristic-based classification system that computes a
ranked list of candidate classes from a given taxonomy, in which a new service better
fits, by comparing the new service with the services that are already classified and
published in a given repository. Besides this classification aid, the categorization
information thus obtained can be used for the enhancement of further tasks, such as
the ones related to semi-automatic service annotation and discovery [12].

The paper is organized as follows: Section 2 introduces some related work already
presented in the domain of Web service classification. The definition of the problem
of Web service classification in a formal way, and the motivation of why service
semantics are needed in order to successfully solve it are given in Section 3. Our
classification heuristic is presented in Section 4. Finally, Section 5 provides conclu-
sions and outlines future work directions.

2 Related work

The problem of the automatic categorization of Web services has been addressed in
prior work from two main approaches, that we may class as heuristic (e.g. [16]) and
non-heuristic (e.g. [5] and [10]). In the proposal presented in [10] the authors offer
two different strategies, the first one consisting of using the information contained in
WSDL-based descriptions to select a category in which the service fits best. The
second one aims at dynamically creating the classification taxonomy by using WSDL
descriptions as input. Their procedure consists of the following steps: a) extraction of
meaningful words from service descriptions, using Natural Language Processing
techniques, b) construction of term vectors with those words, and c) application of
different classification techniques for vector categorization, namely machine learning
in their first strategy, and clustering techniques in the second. So, service classifica-
tion problem is solved by a text classification problem approach.

The approach to classification in [5] proposes similar steps as the ones described in
[10]. The main difference is the usage of Support Vector Machines as term vector
classification mechanism. Again, service classification is reduced to a text classifica-
tion problem. In addition, this proposal provides service publishers with extra infor-
mation after the classification. More precisely, a concept lattice, extracted using For-
mal Concept Analysis over the term vectors, is presented to the publishers. This lat-
tice allows developers to know how the words used in service descriptions (the ones
extracted during classificaiton) contribute to the selection of a specific category. With
this information, service developers could, for example, modify some description
words which may cause ambiguity in the classification process.

The authors of [16] propose a framework for the automation of the semantic anno-
tation of services. Using domain ontologies (i.e. the ones used for the annotation) as
service categories, service classification is used to select the most suitable ontology in

the taxonomy of domain ontologies. To do so, an algorithm to match Web service
data types (in XML Schema) and concepts is defined, based on schema matching.

Another research area related to the work presented here is that of service match-
making (see e.g. [13] and [17]). It is related to Web service classification in that our
approach computes similarity degrees between services in order to assign them to a
common category, and service matchmaking aims to find services that match a con-
crete capability description. The main difference between both research areas is that
while service classification admits some degree of fuzziness in service matching, i.e.
continuous similarity measures, service matchmaking typically does not; using dis-
crete matching levels (e.g. “no match”, “complete match”, “partial match”, etc.).

3 Semantics for service classification

As mentioned earlier, service classification is a common necessity to make service
administration and retrieval manageable for human users. Moreover, it can serve as a
complementary aid for automatic service discovery and selection techniques. Never-
theless, there are usability problems involved in service categorization which cause
difficulties for this categorization in real-world environments. Such problems include:
• Classification taxonomies can be extremely large, comprising thousands of catego-

ries (e.g. UNSPSC ~ 20,000 classes, NAICS ~ 2,300 classes).
• The number of services in a repository can grow quite large, making it impossible

for administrators to validate the information published along with a service.
• The placement of a service under a proper category requires a considerable amount

of knowledge of the complete taxonomy in order to make appropriate decisions.
The work presented here aims at alleviating the administrator’s work, and reducing
the categorization effort for service providers. Our proposal approaches the classifica-
tion problem as follows. Given a set of services already classified under a given tax-
onomy, and a new service description to be published, the unclassified service is
compared with the classified ones, whereby a measure of the likelihood that the ser-
vice should be assigned a certain category is computed.

WSDL descriptions provided by current technologies are not suitable for this pur-
pose, as they only focus on the syntactic view of the services, which is not sufficient
to support valid service classification criteria in practice. As stated in the specification
of WSDL standard, descriptions in this language provide details about the operations a
service supports, and the input / output information involved in their invocation. The
fact is that, although this information enables comparisons between services, a much
accurate matching is possible if semantic information is added to the descriptions.
Consider this example: take two Web services, the first one defining currency conver-
sion capabilities, and the second one, a service to compute distances between cities. The
currency converter service could have one operation, involving:
• An input message with two currency codes, of type string.
• An output message with one part containing the conversion rate (a double).
On the other hand, the distance calculator would have also one operation, having:
• An input message with one part containing two city names of string type.
• An output message with one part containing the distance between them (a double).

From a conceptual point of view, these services should yield a low similarity measure
value when compared. However, since their interfaces are syntactically equivalent
(same number of operations and messages, same data types), comparing their WSDL
descriptions would produce a very high result value. So, extra information beyond
mere syntactic WSDL definitions is needed. There are at least two possibilities:
• Using identifiers of the different WSDL elements. The hypothesis here is that the

names given to operations, parameters, messages, etc., are often meaningful,
which, from our point of view, is too idealistic and often fails.

• Using semantic Web service descriptions. In the proposed example, it is clear that
the relevant information about service parameters is their semantic meaning (e.g.
currency codes, city names, etc.). WSDL descriptions do not foresee this kind of
semantics, but ontology-based service descriptions do. Thus, supporting discrimina-
tion between syntactically equivalent parameters having different semantics.

The need for service semantics is thus clear. The syntactic information in WSDL-based
descriptions is not sufficient, and would often lead to inconsistent similarity values, and
therefore, to service misclassification. Semantic Web service descriptions can solve this
problem by providing means to describe service inputs and outputs from a conceptual
point of view. The approach here presented is compatible with every semantic descrip-
tion languages such as WSMO [18], OWL-S [14], WSDL-S [1] or SWSO [2].

4 Heuristic classification

The heuristic is divided into three granularity levels, corresponding to the comparison
between different service elements involved in the categorization procedure.

Service category level. Since services have to be assigned a category as a result of
the classification procedure, this level is needed in order to find evidence that a
service should belong to a specific category (used to sort the ranked category list).

The proposed measure works as follows. Let S be the set of Web services in a re-
pository, and let C be the classification taxonomy. If we allow a service to be classi-
fied under several categories of the taxonomy, we may define the classification by C
as a mapping τ : S → 2C. Given a new service s to be added to S, we want to find the
categories in C that best suit s. Given c∈C, let P(s:c) be the probability that c is an
appropriate classification for s, estimated here by comparison of s with the services
classified under c. If we take P(s:c) ~ 0 if {x∈S | c∈τ(x)} = Ø, we can write:

() ()()()P : P : τ
∈

∧ ∨ ∈∼
x

s c s c c x
S

By rewriting the right hand-side using the inclusion-exclusion principle applied to
probability [20], it can be seen that:

() () ()() ()()1P : 1 P P : |τ τ+

⊂ ∈

− ∈ ⋅ ∈∑ ∏∼ A

A x A

s c c x s c c x
S

provided that s:c ∧ c∈τ(x) are pairwise independent for all x∈S. Since c∈τ(x) is true
iff x∈{x∈S | c∈τ(x)}, and assuming a crisp service classification (i.e. c∈τ(x) is either
true or false, as opposed to fuzzy classification where P(c∈τ(x)) ∈ [0,1]), we have:

() () ()()
()1

1P : 1 P : |
τ

τ
−

+

∈⊂

− ∈∑ ∏∼ A

x AA c

s c s c c x

Now we shall estimate P(s:c | c∈τ(x)) by a measure of similarity sim (s, x), that is:
() () ()

()1

1P : 1 sim ,
τ −

+

∈⊂

−∑ ∏∼ A

x AA c

s c s x

whereby the appropriateness of a category for a service is computed in terms of the
similarity between the service and the services classified under that category.

Fig 1. Graph (displayed from two angles) showing the behavior of the measure with respect to
sim(s,x) and sim(s,y) (i.e. similarity between a service s and a category c having two services).

Note that P(s:c) ∈ [0,1], provided that sim (s, x) ∈ [0,1], and increases monotoni-
cally with respect to sim (s, x). Figure 1 shows how P(s:c) behaves with respect to the
sim (s, x) value.

Service description level. The comparison between services is based on the
assumption that services of the same category deal with similar semantic concepts.
Therefore, operation structures (i.e. conceptual roles and grouping of the service
parameters) are relevant for service-level comparisons. In fact, the similarity between
services is measured in terms of the similarity between operation sets, as follows:

 () () ()' 'sim , ' sim , sim ,op op op opop op I I O O= ⋅ ()
()()

()

()

min , '

1

sim top , '
sim , '

max , '

P P

i i
i

P P
P P

P P
==
∑

()
()()

()

()

min , '

1

sim top , '
sim , '

max , '

OP OP

i i
i

OP OP
s s

OP OP
==
∑

where OP and OP’ are the operation sets of services s and s’; Iop, Iop’, Oop, Oop’, are
the sets of inputs and outputs of two operations op and op’; and P and P’ are the set
of parameters used as inputs/outputs in the services.

Note that the service comparison defined here returns values in the range [0,1],
provided that the similarity between ontology concepts is also within that range. Fig-
ure 2 shows how the sim(s, x) behaves with respect to sim(Iop, Iop’) and sim(Oop, Oop’).

Fig. 2. Service to service similarity measure graph (displayed from two angles) showing the
behavior of the similarity measure with respect to sim(Iop,Iop’) and sim(Oop,Oop’) (i.e. similarity
between two services each one with only one operation).

Service parameter level. This last level aims to provide with a similarity value
between annotated service parameters, this is, the ontology concepts used to annotate
them, i.e. a measure enabling the comparison of domain ontology concepts. A lot of
previous work has been developed in this area (e.g. [4], [8], [9]). Nevertheless, a new
measure has been developed fitting our specific objectives.

This new measure works as follows. Let T denote the set of all concepts in the do-
main ontology. The similarity between two concepts is measured in terms of their
distance in the ontology class hierarchy. Given two concepts t,t’∈T, let t0 be the lower
common ancestor to t and t’ in T, and let d = dist(t,t0) + 1, d’ = dist(t’,t0) + 1 be the
number of levels (plus 1) between t, t’ and t0 in the concept hierarchy. We define the
similarity between t and t’ as:

() () ()
()

()
' max , ' 11sim , ' 1 1

h ' min , ' h
d d d d

t t
d d d d

α⎛ ⎞ ⎛ ⎞− −
= − ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠T T

where:
• h(T) is the total height of the concept hierarchy, which is introduced to measure the

distance between concepts as a proportion of the total depth of the ontology.

• The term
'
'

d d
d d

−
+

 increases (that is, the similarity decreases) with the difference in

the depth level between t and t’.
• α∈[0,1] (in our test α has been empirically tuned to 0.8) is a parameter that en-

sures a minimum non-zero similarity value in a way that similarity ranges in some
interval [min,1] above 0, relaxing the influence of this level in the whole heuristic.

• The factor
()

()
max , ' 1

1
h

d d −
−

T
 reinforces the decrease of the similarity when one

concept is super concept of the other (i.e. one of the concepts is the first common
parent), to achieve a monotonic decrease of the similarity from 1 to 0.

Fig. 3. Concept to concept similarity measure graph (displayed from two angles) showing the
behaviour of the similarity measure with respect to d and d’ in a twenty depth levels ontology.

Figure 3 shows how the similarity function sim(t,t’) depends on the distance d and
d’ of the t and t’ to their lowest common ancestor.

5 Conclusions and future work

We have presented a new classification approach based on the usage of conceptual
service descriptions that can be used to assist service publishers, consumers and re-
pository administrators, in the manual service categorization and retrieval tasks.
Moreover, by proposing the classification of new services based on previous deci-
sions made for similar services, consistency is implicitly enhanced against a potential
drift over time or across multiple users. All the approach has been based on the hy-
pothesis that the augmentation of service descriptions with semantic information
enables a more precise comparison of service descriptions, and therefore an improved
accuracy of the automatic classification. As part of the ongoing work we are working
on a complete classification framework (implementing the heuristic presented) in
order to have a platform in which formally and easily test our approach.

As a continuation of the work presented here we are investigating the potential of
our classification approach to enhance service retrieval mechanisms. This line of
research is already achieving promising results as reported in [12]. In addition, we
envisage the extension of our algorithm to deal with complex descriptions of concepts
using axiomatic descriptions of preconditions and post conditions (as supported by
WSML) generalizing our matching functions in order to benefit from reasoning tools.

6 Acknowledgements

This research was supported by the Spanish Ministry of Industry, Tourism and Com-
merce (CDTI05-0436) and the Ministry of Science and Education (TIN2005-0685).
Thanks are due to Rubén Lara for all his help and feedback on the research presented.

References

1. Akkiraju, R., Farrel, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., Verma, K: Web
Service Semantics – WSDL-S, Technical Note, Version 1.0, 2005.

2. Battle, S., Bernstein, A., Booley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Mar-
tin, D., McIlraith, S., McGuiness, D., Su, J., Tabet, S.: Semantic Web Service Ontology
(SWSO), Version 1.0, 2005.

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American, 2001.
4. Bernstein, A., Kaufmann, E., Bürki, C., Klein, M.: How similar is it? Towards personalized

similarity measures in ontologies. In the 7th Internationale Tagung Wirtschaftsinformaitk.
Bamberg, Germany, 2005, pp. 1347-1366.

5. Bruno, M., Canfora, G., Di Penta, M., Scognamiglio, R.: An approach to support web
service classification and annotation. In Proceedings of the IEEE International Conference
on e-Technology, e-Commmerce and e-Services (EEE 2005), Hong Kong 2005.

6. Christiensen, E. et al: Web Service Description Language (WSDL), v1.1.
7. Corella, M. A., Castells, P.: A Heuristic Approach to Semantic Web Services Classifica-

tion. In Proceedings of the 10th International Conference on Knowledge-Based & Intelli-
gent Information & Engineering Systems (KES 2006), Bournemouth, UK, 2006.

8. Culmore, R., Rossi, G., Merelli, E.: An ontology similarity algorithm for BioAgent. In
NETTAB 02 Agents in Bioinformatics. Bologna, Italy, 2002.

9. Ehrig, M., Haase, P., Stojanovic, N.: Similarity for ontologies – a comprehensive frame-
work. Workshop on Enterprise Modelling and Ontology at PAKM 2004. Austria, 2004.

10. Heβ, A., Kushmerick, N.: Automatically attaching semantic metadata to Web Services. In
Workshop on Information Integration on the Web (IIWeb2003), Acapulco, Mexico, 2003.

11. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic Location of Services.
In 2nd European Semantic Web Conference (ESWC 2005). LNCS Vol. 3532 pp. 1-16.

12. Lara, R., Corella, M.A., Castells.: A flexible model for the discovery of Web services. 1st
International Workshop on Semantic Matchmaking and Resource Retrieval: Issues and Per-
spectives (SMR 2006), co-located with VLDB 2006. Seoul, Korea, 2006.

13. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web tech-
nology. In the International Journal of Electronic Commerce, 8(4):39 – 60. 2004.

14. Maritn, D., Burnstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B. et al: OWL-S: Semantic markup for web services, v1.1, 2004.

15. OASIS: UDDI: The UDDI technical white paper, 2004.
16. Oldham, N., Thomas, C., Sheth, A., Verma, K.: METEOR-S Web Service Annotation

Framework with Machine Learning Classification. In Proc. of the 1st Int. Workshop on Se-
mantic Web Services and Web Process Composition (SWSWPC’04), California, July 2004.

17. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web Service
Capabilities. In Proceedings of the First International Semantic Web Conference, 2002.

18. Roman, D., Lausen, H., Keller, U., de Brujin, J., Bussler, C., Domingue, J., Fensel, D.,
Hepp, M., Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Oren, E., Polleres, A., Sci-
cluna, J., Stollberg, M.: Web Service Modeling Ontology (WSMO), 2005.

19. Terziyan, V. Y., Kononenko, O.: Semantic web enabled web services: State-of-the-art and
industrial challenges. In Proc. International Conference on Web Services (ICWS), 2003.

20. Whitworth, W. A.: Choice and Chance, with one thousand exercises. Hafner Pub. Co. New
York, 1965.

Helping Architects In Retrieving Architecture
Documents: A Semantic Based Approach

Rambabu Duddukuri1, Prabhakar T.V2

1 Member, Technical Staff, Oracle India Private Ltd,

Bangalore, India -560029.
Rambabu.Duddukuri@oracle.com

2 Professor, Department Of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur India - 208016

tvp@iitk.ac.in

Abstract. Large organizations have a need and challenge of archiving the architecture

work done on software projects. Knowledge management in such organizations depends on
how well the company preserves the knowledge acquired on completed projects and how well
the company provides facilities to retrieve that architectural knowledge. Architecture
properties such as styles, patterns, tactics and quality requirements play a major role while
architecting the systems. Annotating the documents with such properties helps the architect in
searching for architecture documents at a later date. There exist a large number of relationships
between these architecture properties. A huge knowledge base is required to know about the
best practices and the existing relationships between them. In this paper, we present an
ontology for these architecture properties. We describe how this ontology can be used in
various applications like semantic based search, academic purpose and building of new systems
using the best practices.

Keywords: Software Architecture, Ontologies, Semantic search, Architecture styles,
Patterns, Tactics, Archiving, Annotation.

1. Introduction

The architecture phase has become an integral part in the design process of large
and complex systems. Architecting a system, deals with modeling high level
structures of the system in terms of views, architecture styles and patterns.
Documenting the architecture of a system is essential in understanding the design
decisions taken during this process thereby serving as a medium for the stakeholders
and project developers to communicate. Several frameworks [1, 2, 3, 4, and 5] exist
for designing the architecture of the system. All the frameworks specify representing
the system in several viewpoints in accordance to the stockholder’s concerns. The
typical job of an architect includes meeting the stakeholder concerns, making a
collection of architectural requirements in various forms, turning them into quality
scenarios and then architecting the system through various architectural styles,
patterns and available architectural knowledge such that the constraints are met. The
most important deliverable of the process of designing the architecture is the
architecture document describing the structure of the system through its various

mailto:Rambabu.Duddukuri@oracle.com
mailto:tvp@iitk.ac.in

views. This document is used to communicate to the customer, for analysis of various
quality attributes, development and future maintenance. In essence they form the
pivot around which all further activity about the software revolves.

In Software organizations where a large number of projects are documented daily,

preserving the knowledge of the architectures for further reference plays a major role.
Architectural level re-use is another activity that is impacted by documentation. Our
previous work addresses these problems [11] and provides a new way of archiving the
architecture documents and extracting these documents with a comprehensive search.
In that approach, we have tried to annotate the architecture documents with
architectural properties like styles, patterns, tactics, domain, technology components,
quality requirements, and other framework standards. We represented this metadata as
an XML file and search is performed on this metadata as an XML tag search.

Several relationships exist between the patterns and styles, which in turn relate to

the problem domain of the system. For instance, Real time systems mainly deal with
concurrency patterns, resource patterns, and safety and reliability patterns. Similarly
financial and accounting systems have their own best practices defined. The
distributed and layered architecture styles use certain pre-defined design patterns to
solve the problems that might occur with regards to distributed communication,
preserving data integrity, structuring the application logic etc. Suppose that, we try to
find some architecture documents using layered architecture style, we might generally
look for architecture documents using the patterns like structuring application logic,
domain logic, application logic etc. These relationships and the associated vocabulary
form a huge knowledge database. A taxonomy or ontology of this knowledge base
helps the architect in searching and retrieving architecture documents in a semantic
way. Figure 2 depicts the conceptual overview of the Ontology we suggest for use in
searching. The major concentration is on the architectural properties like problem
domain, architecture styles, patterns, architecture tactics, quality requirements and the
relationships that exist among them.

Figure 1: Conceptual overview Of Our Ontology

The rest of the paper is organized as follows. In the following section we provide
an outline of the related work done in this area and briefly describe the motivation
behind our work. Section 3 explains several architecture domain vocabularies that are

used in this ontology and how these architectural properties help in retrieving the
architecture documents. In section 4, we tabulate the relationships used between the
terms in our ontology and briefly describe about how this ontology along with some
applications of this Ontology. Finally in section 5, we conclude the paper by giving a
brief outlook on future work.

2. Related Work

In Grady Booch’s Handbook of Software Architecture [6], a large number of

patterns are classified which allow comparisons across domains and architecture
styles. However, he does not describe the relationships between architecture tactics
and quality requirements, mapped to the real life problem domains, which can also be
used for searching architecture documents. According to [8], a knowledge base is
developed for representation and reuse of software patterns facilitating the semantic
related search for the reuse of patterns. There is no such effort of mapping these
patterns to other architecture properties, which will prove to be an efficient searching
technique for architecture documents. Our approach to software architecture ontology
is to provide a mapping between several architectural properties like patterns, styles,
and tactics and problem domains. Figure 2 depicts several possible terms of the
OntoSoftArch Ontology and the relationships between them as a concept map [9]

Figure 2: A fragment of Our Ontology as a Concept Map

3. Architectural Descriptions

We now describe the architecture properties that can be used in annotating
the architecture documents. Our description regarding these architecture properties is
necessarily brief and mainly concentrate on the search criteria of the documents.

 Problem domain: A good architecture document depends on how well the
domain model is identified and how well the commonality and the architect depicts
variations among different instantiations of the system. Lack of domain knowledge in
the architect can result into chaos during the project development. Problem frames
[12], help in decomposing the problem into several sub problems but not help the
architect in deriving the architecture of the system. Often the major concerns of the
software architect vary from domain to domain. For example, for Telecommunication
systems, that are distributed systems, solving the problems with distributed
communication, configuration, session data storage, preserving data integrity etc. are
the main concerns. Patterns such as cache proxy, Broker, Remote proxy, Client
session state, Fine grained locking etc are used to solve such problems. There exist
many similar types of relationships between problem domain and the patterns used.
Similarly in the domain such as Aerospace and defense, quality requirements such as
performance and reliability are the main concerns. We have identified such problem
domains and the relationships with other architecture properties in our ontology.
Often the architects are faced with queries like - can we retrieve the design documents
with similar problem domain that is being worked upon? Such queries can be easily
addressed while searching the repository if the architecture documents are annotated
within this architecture property. The search will also be performed with the
architecture properties related to this domain as explained above.

 Technology components: The architecture includes hardware and software
components that are not directly part of the actual design process. The design process
helps in identifying various subsystems and the way they interact. These subsystems
are thn mapped to technology components and they are related to each other in terms
of interfaces they provide. The questions such as 1) can the architecture documents
that use MySql database be retrieved on a Linux platform? 2) Can search be
performed for the architecture documents that use the Apache webserver and ODS
gateway with CORBA middleware and Oracle as the backend? Such queries can be
easily answered if the architecture documents are annotated with all the technology
components used in that system design. Often these technologies are related to best
practices, for example the Yahoo UI library [10] is related to best practices like drag
and drop, color picker, Image viewer. Similarly J2EE technology has some patterns
such as Web Service Broker, Application Control, and Composite entity that are
applicable in that domain. The same is the case with AJAX based applications. Many
such relations are captured in our ontology; enabling search for architecture
documents based on these technological issues as well as related best practices to
these technologies.

 Architecture Styles The architecture styles depicted in [13] are classified based
on the characteristics such as data flow between components, call/return systems, data
centered systems etc. Architecture styles in [27] are classified based on the views in
which stakeholder is concerned. For example in an allocation view deployment and
work assignment, styles are used. Several relationships exist between the architecture
styles and the patterns used. For instance in layered architecture style, structuring the
presentation logic, domain logic and the application logic are the main concerns.
Several patterns such as Model view controller [26], packed abstraction controller,

transaction script, operation script, virtual proxy are used to resolve such problems.
Similarly several patterns classified under Message routing, message transformations,
message channels and message end points used in information exchange mechanisms
are used in several styles like event based systems, black board styles etc. Our
explanation regarding these styles and the relationships to other architecture
properties are necessarily brief. We have gathered different architecture styles and
relationships with other architecture properties in our ontology. Queries such as can
the architecture documents be retrieved with Interpreter and Rule based system
styles? Can search be performed for architecture documents, which use Blackboard
and Hypertext systems? Again such queries can be easily answered by annotating the
documents with the corresponding styles used in the system.

 Patterns: Application of best practices comes in the form of patterns. Several new
patterns are evolving every year depending on the technologies developed. Gamma
et.al [16] classified their patterns into three groups, Creational, Structural and
behavioral. Tichy [17] gives a catalogue of over 100 patterns and arranged them
under the categories like decoupling, state handling, virtual machine etc. Zimmer [18]
analyzed the relationships between the patterns by Gamma. He introduced three kinds
of relationships between patterns - X uses Y, X is similar to Y, X can be combined
with Y. Architecture patterns catalogued by Buschman [19] also play a significant
role in architecting the system. Also, a catalogue of 72 analysis patterns [20, 21]
classified under Accountability, Association, Inventory and Accounting. There are
also patterns associated with technologies such as CORBA, J2EE, AJAX [23, 24, 25]
etc. Often the architects are left with the questions like - what is the consequence of
using common interface and then wrapping it up to integrate it. Also, for example in
Application Integration, how different applications should be integrated is the major
concern. Patterns such as File transfer, Messaging, Remote procedure call, and shared
database provide solutions to such design problems and annotating the documents
with these patterns used in the system.

Architecture Tactics: An architecture tactic is a transformation of the system

from one state to other that affects one of the parameters defined by quality attributes
[15]. A large number of tactics have been identified and catalogued in Bass et al [15,
26]. The classified tactics are based on the quality attribute addressed. Their
classification of patterns and tactics are based on the following relationship, Quality
attributes Tactics Patterns. Consider an example of performance related tactics
and patterns. Two patterns Flyweight and Thread pool pattern uses the same tactic,
reduce computational overhead thereby meeting the quality requirement Such
relationships between quality attributes, patterns and tactics are depicted in our
ontology. Annotating the architecture documents with architectural tactics used while
making architectural decisions helps to answer queries such as 1) did we use these
tactics before and what was the result? The search will also be performed on the
documents handling the quality attribute related with that tactic.

Quality Requirements: Quality requirements are the architecture drivers for any
successful development of the system. The degree of quality achieved may vary from
system to system. The Extended ISO model [28] depicts several quality attributes.

These are classified mainly based on reliability, usability, portability, efficiency and
maintainability. Quality requirements and their attributes are defined in quality
attribute theory [14, 28]. The purpose of the quality attribute theory is to enable the
interpretation of software architecture in terms that are meaningful to quality
attributes. Several relationships exist between quality attributes and tactics as
described in the previous section. Also several relationships exist between patterns
and quality requirements such as system performance patterns, and patterns for
performance and reliability such as Fail over cluster, Load balancing cluster, Server
cluster etc. We have defined such relations between quality attributes, patterns, tactics
and problem domain in our ontology. Annotating the documents with the quality
attributes handled in those systems helps the architect in full filling his queries like -
can we retrieve the documents with throughput of the scenario between t1 and t2?

4. Ontology Relationships

Name Description

Used-to Denotes a means/ mechanism

Related-To Denotes an association relationship

Is-A Denotes a super, subclass relationship

Is – part - of / Has Denotes an aggregation relationship

Is-Similar-To Denotes an equivalence relationship

Requires Denotes an association relationship

Table 1: Relationships between the Terms

Initially we gathered all the terms to software architecture from several architecture
books and research papers. We also gathered some of the important index terms from
some of the major architecture books [1, 15, 18, 19, and 21]. We manually went
through the terms and refined the vocabulary. We found several relationships between
the terms within the domain of each architecture property as well as the relationships
between the architecture properties. We also included the relationships that are
already between the terms like architecture tactics and patterns [15].

Currently our ontology consists of 1470 terms from all the architecture properties

like problem domain, styles, patterns, tactics, technology components and several
architecture frameworks. Identification of relationships between the terms is an
ongoing effort, and we are augmenting and refining the relationships. More
explanation of the relationship along with the Ontology is available to download from
the URL http://www.cse.iitk.ac.in/~soft_arch/ontosoftarch. The viewer support tool
for viewing this ontology is also available for download. We are trying to convert
this ontology into an OWL based ontology, which allow users to load into any
ontology editors like Protégé.

http://www.cse.iitk.ac.in/%7Esoft_arch/ontosoftarch

This ontology helps the architect in understanding the existing relationships
between best practices thereby enabling him to construct a new system with existing
best practices. Consider a scenario where an architect wants to develop a system for
Financial and Accounting domain. This ontology helps him in understanding all the
analysis accountability patterns related to that domain and the quality requirements to
be considered for this system.

The ontology is useful for pedagogical purposes. This ontology helps the students

to clearly understand all the terms and concepts in software architecture and the
existing relationships between them.

A third application would be allowing the user to semantic search for the

architecture documents which are annotated based on the above said architecture
properties. Our previous work [29] talks about annotating the architecture documents
with the architecture properties as an XML file, enabling the user to search for
architecture documents based on the XML tags. In this search, the user will be giving
one architecture property based on which search should be performed. The search will
also be continued on the architecture properties related to the given architecture
property. If the user gives the query like “Search for architecture documents, which
used Client Server Architecture style”, the search will also be performed on the
architecture documents using the message exchange patterns in this architecture style.
The related terms will be extracted from our ontology and searched in the repository.

5. Conclusions

 An ontology of software architecture helps the architect in understanding the best
practices used for documenting software architectures. Ontologies can also help in
semantic annotations of architecture documents. Currently our ontology is populated
with patterns, styles, tactics, domain concepts and different frameworks. The
knowledge base contains the terms that are normally used in software architecture and
relates them semantically, allowing effective searches and reuse of best practices. We
plan to extend this ontology by adding more terms and more associations. This can
make more inferences among the terms and a full-fledged ontology can be developed.
Next step is the construction of CASE tool to allow semantic search for the
architecture documents stored in the repository based on the semantic annotations.

References

1. Clements P, Bachmann F, Len Bass, David Garlan, James Ivers, Robert Nord, and Judith
Stafford. Documenting Software Architectures: Views and Beyond.

2. IEEE recommended practise for architectural description of software-intensive systems.
IEEE Standards, pages 1–23, Sep 2000.

3. Hoffmesiter, C, Nord, R., Soni, D, Applied Software Architecture, Addison-Wesley, 2000
Kruchten, P

4. Architectural Blueprints- The “4+1” View Model of Software Architecture. Rational
Software Corp., IEEE Software, November 1995.

5. RM-ODP Standards, ISO/IEC JTC1/SC21/WG7 Reference model of Open Distributed
Processing available at
http://archive.dstc.edu.au/AU/research_news/odp/refmodel/standards.html

6. Grady Booch's Handbook of Software Architecture
8. An Ontology-based Knowledge Base for the Representation and Reuse of Software

Patterns Rosario Girardi and Alisson Neres Lindoso Federal University of
Maranhão Campus do Bacanga, São Luís - MA, Brazi

9. Novak J.D., Cornell University The Theory Underlying Concept Maps and How To
Construct Them, available at http://cmap.coginst.uwf.edu/info

10. http://developer.yahoo.com/yui/index.html.
11. Rambabu Duddukuri, Prabhakar T.V “On Archiving Architecture Documents’’ In the

Proceedings of APSEC 2005, Taipei, Taiwan.
12 Problem Frames: Analyzing and Structuring Software Development Problems by Michael

Jackson
13 Shaw, M. "Making Choices: A Comparison of Styles for Software Architecture." Carnegie

Mellon University, May 1994.
14 Barbacci, M.; Klein, M.; Longstaff, T.; & Weinstock, C. Quality Attributes Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University, 1995.
15 Len Bass, Paul Clements, Rick Kazman, and Ken Bass. Software Architecture in Practice.

2nd Edition, Addison-Wesley
16 Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson,

Vlissides; Addison-Wesley, 1995
17 A catalogue of General-Purpose Software Design Patterns, Tichy, Walter F , University of

Karlsruhe, Karlsruhe,Germany.
http://wwwipd.ira.uka.de/~tichy/publications/Catalogue.doc

18 Relationships between Design Patterns by Zimmer, Walter, in Pattern Languages of
Program Design, James O. Coplien, Douglas C. Schmidt, Editors, Addison-Wesley, 1995

19 Frank Buschmann, Regine Meunier, Hans Rohnert,Peter Sommerlad, Michael Stal, Peter
Sommerlad, and Michael Stal. Pattern-oriented software architecture.

20. Fowler, M. Analysis Patterns. Reading, Massachusetts: Addison-Wesley, 1997.
21. Fowler, M. Patterns of Enterprise Application Architecture. Reading, Massachusetts:

Addison-Wesley, 2003.
22 William J. Brown, Raphael C. Malveau, Hays W. Skip McCormick (III), and Thomas J.

Mowbray. Antipatterns: Refactoring software architectures and projects in crisis.
23 Alur, D., Crupi, J., Malks, D. Core J2EE Patterns, 2nd ed. Upper Saddle River, New Jersey:

Prentice Hall, 2005.
24 Gross, C. Ajax Patterns And Best Practices. New York, New York: Springer-Verlag, 2006
25 Mowbray, T. & Malveau, R. CORBA Patterns. N6w York, New York: Wiley, 1997.
26 Design Patterns, Quality Attributes and Software Architectural Tactics, Felix Bachmann,

Len Bass, Mark Klein.
27 Sun Microsystems. http://java.sun.com/blueprints/patterns/MVC-detailed.html, 2000.
28 Bob van Zeist, Paul Hendriks, Robbert Paulussen, and Jos Trienekens. Quality of software

products — Experiences with a quality model. http://www.serc.nl/quint-book/index.htm.

http://archive.dstc.edu.au/AU/research_news/odp/refmodel/standards.html
http://www.booch.com/architecture/index.jsp
http://cmap.coginst.uwf.edu/info
http://developer.yahoo.com/yui/index.html.
http://www.sei.cmu.edu/publications/documents/95.reports/95.tr.021.html
http://wwwipd.ira.uka.de/%7Etichy/publications/Catalogue.doc
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://www.serc.nl/quint-book/index.htm

	Preface
	Workshop Organization
	Contents
	Industry Adoption of Semantic Web - Invited Talk (Abstract)
	MOD - A Multi-Ontology Discovery System
	On the Topological Landscape of Web Services Matchmaking
	SPARQL-based OWL-S Service Matchmaking
	A flexible model for Web service discovey
	Recovery of Faulty Web Applications through Service Discovery
	A Non-Monotonic Approach to Semantic Matchmaking and Request Refinement in E-Marketplaces
	Semantic Matchmaking using Ranked Instance Retrieval
	Semantic-based Taxonomic Categorization of Web Services
	Helping Architects In Retrieving Architecture Documents: A Semantic Based Approach

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

