
Gauging Ontologies and Schemas by Numbers

Taowei David Wang
Maryland Information and Network Dynamics Lab

8400 Baltimore Ave.
College park MD, 20740 USA

tw7@cs.umd.edu

ABSTRACT
We survey nearly 1300 OWL ontologies and RDFS schemas.
The collection of statistical data allows us to perform analy-
sis and report some trends. Though most of the documents
are syntactically OWL Full, very few stay in OWL Full when
the syntactic errors are fixed. We also report the frequency
of occurrences of OWL language constructs and the shape
of class hierarchies in the ontologies. Finally, we note that
of the largest ontologies surveyed here, most do not exceed
the expressivity of ALC.

Categories and Subject Descriptors
H.4.m [Web Ontology Evaluation]: Miscellaneous

General Terms
Ontology Evaluation

Keywords
Ontology evaluation, ontology survey, OWL, RDFS

1. INTRODUCTION
The Semantic Web envisions a metadata-rich Web where

presently human-readable content will have machine- under-
standable semantic. The Web Ontology Language (OWL)
from W3C is an expressive formalism for modelers to de-
fine various logical concepts and relations. OWL ontologies
come in three species: Lite, DL, and Full, ordered in increas-
ing expressivity. Every Lite ontology is also a DL ontology,
and every DL ontology is also a Full ontology. OWL Lite
and OWL DL are the species that use only the OWL lan-
guage features in the way that complete and sound reasoning
procedures exist. OWL Full, on the other hand, is undecid-
able. While OWL recently became a W3C recommendation
in 2004, people have been working with it a few years, and
many interesting ontologies already exist on the Web. We
are interested in evaluating these ontologies and see if there
are interesting trends in modeling practices, OWL construct
usages, and OWL species utilization.

2. RELATED WORK
Using statistics to assess ontologies is not a new idea. Sev-

eral approaches to create benchmarking for Semantic Web
applications have exploited the statistical measures to create

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

better benchmarks. [14] describes an algorithm to extract
features of instances in a real ontology in order to generate
domain-specific data benchmark that resembles the real on-
tology. A method to count the types of triples of instances
is employed, and the distribution of these triples is used to
create the synthetic data. Tempich and Volz surveyed 95
DAML ontologies and collected various usage information
regarding classes, properties, individuals, and restrictions
[13]. By examining these numbers, they were able to cluster
the ontologies into 3 categories of significant difference.

In [9], Magkannaraki et al. looked at a collection of ex-
isting RDFS schemas and extracted statistical data for size
and morphology of the RDFS vocabularies. Here we attempt
a similar survey for both OWL and RDFS files. However,
our focus is primarily on OWL, and the data from RDFS
documents serve as a good measuring stick for comparisons.

[1] studied a sample of 277 OWL ontologies and found that
most of them are, surprisingly, OWL Full files. They showed
that many of these OWL ontologies are not in OWL Full
because of the need for semantic constructs beyond OWL
DL. Instead, majority of the OWL Full files are Full because
of syntactic errors. Here we collect a much larger size of
samples, and we apply similar analysis to attempt to fix
these OWL Full files. In addition, we show how many OWL
Full files become OWL Lite and OWL DL files after the
syntactic fix is applied. With the expressivity binning of the
surveyed ontologies, we show that the number of OWL Lite
files that makes use if OWL Lite’s expressivity is relatively
small.

3. METHODOLOGY
Here we describe the steps taken to collect the ontologies

from the Web, how the data was then gleaned of unwanted
portions, and how we analyzed the data. Our goal was to
analyze the various aspects of ontological documents, not
RDF documents that make use of ontologies or schemas.
Therefore, the FOAF 1 and DOAP 2 files, though interesting
because of their number and connectiveness, are not in the
scope of this study.

3.1 Ontology Collection
We used several Web resources to collect the ontologies

and schemas. We collected just the URIs at this stage, as our
analysis tools only requires URIs. First, we used the Seman-
tic Web Search engine Swoogle [5] to obtain a large number

1 http://xmlns.com/foaf/0.1/index.rdf
2http://usefulinc.com/doap

of semantic documents that Swoogle classify as ontologies.
Using sort:ontology 3 as the search term, we were able to
crawl on the list 4000+ files. They are a mixture of OWL,
DAML, RDF, and RDFS documents, though many were not
suitable for our purposes, and needed to be pruned. Since
we are interested primarily in OWL ontologies, and wanted
to get a representatively large sample to perform our analy-
sis, we also searched on Google 4. Using the search term
owl ext:owl, we were able to obtain 218 hits 5 at the time
of data collection. We also collected OWL ontologies from
well-known repositories: Protégé OWL Library 6, DAML
Ontology Library, 7, Open Biological Ontologies repository
8, and SchemaWeb 9.

Since we collected our URIs from several resources, some
URIs were being collected more than once. We first pruned
off these duplicate URIs. Next, we threw away the unsuit-
able data for our analysis. We pruned off all the DAML
files as they are not the focus of this study. We threw away
the various test files for OWL from W3G and test files from
Jena [2]. Though these are valid ontologies or schema files,
they were created specifically for the purpose of testing, and
do not resemble realistic ontological documents. In addition,
around 1000 WordNet RDFS files were dropped because our
tools do not handle them correctly. Finally, we ran the URIs
through the OWL reasoner Pellet’s online ontology valida-
tion tool to discard any URIs that no longer existed, or
contained unrepairable syntactic errors. At the end, we had
1276 files. We looked at each of the documents to see if
the OWL or the RDFS namespaces are defined to deter-
mine whether they are OWL ontologies or RDFS schemas.
Of the 1275 collected, 688 are OWL ontologies, and 587 are
RDFS schemas.

3.2 Statistics Collection
We used the OWL ontology editor SWOOP [7] as a frame-

work for automating the analysis tasks. For each URI we
collected a set of statistics of that document. There are
two types of statistics we collect. The first set contains the
statistics that do not change when a reasoner processes the
ontology. We call this set static statistics, and it includes,
for example, number of defined classes, what ontologies are
imported (if any), or which of the OWL species the docu-
ment belongs to. The second set, on the other hand, changes
depending on whether a reasoning service is present. This
set is called the dynamic statistics. For example, the num-
ber of concepts that have more than one parent may change
when reasoning is applied since new subsumption relation-
ships can be discovered by the reasoner. Because dynamic
statistics change, we collected both the told (without reason-
ing), and the inferred (with reasoning) dynamic statistics.
Our method is to load each URI into SWOOP, collect the
static statistics and the told dynamic statistics, then turn
on the Pellet [11] reasoner that comes with SWOOP, and

3Swoogle 2005 http://swoogle.umbc.edu/2005/ allows
this type of search. The new Swoogle 2006, which was re-
leased after the survey was completed, does not.
4http://www.google.com
5As noted in [1], the number of search results returned by
Google is only an estimate
6http://protege.stanford.edu/plugins/owl/owl-library/
7http://www.daml.org/ontologies/
8http://obo.sourceforge.net/main.html
9http://www.schemaweb.info/

collect the inferred dynamic statistics. We list selected cat-
egories that are relevant to our discussion in Table 1.

For each OWL ontology, we also collect what OWL con-
structs are used. We do this by inserting each ontology into
Jena and check all triples for OWL vocabularies. Hence
there are 38 boolean values, one for each OWL construct,
for each ontology. Note that we are not keeping track of the
usage of OWL:Thing and OWL:Nothing. In addition, the
usage of rdf:type is also not collected.

4. RESULTS
Here we report the the analysis performed, results from

our analysis, and what trends we discover.

4.1 OWL Species, DL Expressiveness, Con-
sistency

There are several factors that make an ontology OWL
Full. [1] discusses each reason in detail. Here we summarize
them into 4 categories to facilitate discussion.

1. (Syntactic OWL Full) In this category, the doc-
ument contains some syntactic features that makes
OWL Full. This includes ontologies that are missing
rdf:type assertions for its classes, properties, individ-
uals, or itself (untyped ontology). Missing type triples
is easily fixable as proposed in [1]. Our tool Pellet can
generate a patch in RDF/XML to add to the original
document to fix this type of OWL Fullness.

Another way to be in OWL Full is to have structure
sharing. Here we discuss the sharing of a bnode used
to denote a restriction as an example, but any bn-
ode sharing is likely to lead to OWL Full. An OWL
Restriction in RDF is represented as a bnode. If a re-
striction is used twice, the creator of the ontology can
choose to refer to that restriction via a bnode ID in
RDF, or to create another bnode that has the same
semantics. Although both solutions are semantically
equivalent, to reuse a bnode structure pushes the on-
tology into OWL Full in most cases.

2. (Redefinition of Built-In Vocabulary) Documents
that attempt to redefine known vocabulary (such as
those in the OWL or RDFS specification) will be in
OWL Full. In addition, attempting to add new terms
in known namespaces (OWL, RDF, RDFS, etc.) will
also place the document under OWL Full.

3. (Mixing Classes, Properties, and Individuals)
In OWL DL, the sets of owl:Class, owl:Property,
and owl:Individual must be disjoint. Those that
attempt to use, for example, classes as instances or
classes as properties do not respect such disjointness,
and are classified as OWL Full documents. Some au-
thors may choose to use instances as classes, for exam-
ple, for metamodeling purposes. However, there are
many cases where simply an oversight had occurred.
We also mention that in RDFS semantics, the set of
rdfs:Class and rdf:Property are not assumed to be
disjoint, therefore any RDFS schema will be consid-
ered as a OWL Full file. Though if the schema does
not use classes and properties interchangeably, patch-
ing up with type triples will likely take the RDFS doc-
ument out of OWL Full.

Table 1: Sample Statistics Collected
Basic Statistics Dynamic Statistics

No. Defined/Imported Classes No. Subsumptions
No. Defined/Imported Properties No. Multiple Inheritance in Class Hierarchy
No. Defined/Imported Instances Graph Morphology of the Class Hierarchy

DL Expressivity Depth, Bushiness of the Class Hierarchy
No. Individual (Type/Property) Assertions Depth, Bushiness of the Property Hierarchy

OWL Species Whether the Ontology is Consistent
No. of Symmetric Properties No. Unsatisfiable Classes

Table 2: Number of Documents in Each Species
(species determined by Pellet)

Species RDFS Lite DL Full Error
Count 587 199 149 337 3

Table 3: Number of Documents in Each Species (Af-
ter fixing)

Species RDFS(DL) Lite DL Full Error
Count 556 391 264 61 3

4. (Need for Beyond OWL DL) This group uses OWL
constructs to create an ontology that has expressivity
going beyond what OWL DL has to offer. Examples
are those that declare a DatatypeProperty to be in-
verse functional (e.g. FOAF), or those that declare car-
dinality restrictions on transitive properties.

Now we have a better idea of the syntactic and semantic
elements that make an OWL ontology OWL Full, we are
ready to look at our data. Using Pellet as an OWL species
validation tool, we initially obtain the result shown in Table
2. We note that there are 3 documents Pellet had trouble
processing. Though the species row in the table hints at
a strict ordering of the species by expressivity (except for
”Error”, of course), it is not true. The three OWL species
are in such order, but the RDFS column is a little tricky.
Recall that RDFS does not enforce the disjointness of the
set of classes, the set of properties and the set of instances.
This makes RDFS technically OWL Full. However, listing
the RDFS along with OWL Full in the same column without
clarification can be misleading. Thus we list the number of
RDFS files separate from the OWL Full files. Keep in mind
that the total number of OWL Full files from Pellet’s species
validation is 924, the sum of the OWL Full column and the
RDFS column.

We inspected the results Pellet outputs. Out of 924 OWL
Full files, 863 are fixable. 30 OWL and 31 RDFS documents
are not fixable. Of the 863 fixable ones, 115 become OWL
DL after the fix has been applied, 192 become OWL Lite,
and the remaining 556 documents are RDFS. Table 3 shows
the updated counts.

Though Table 3 resembles Table 2, there is one important
difference. Note that we use RDFS(DL) [3] instead of RDFS
in this case to emphasize that RDFS(DL) assumes the dis-
jointness of classes and properties, and is a proper subset of
OWL Lite. Of the 307 OWL documents that can be fixed,
63% become OWL Lite documents, and just 37% become
OWL DL. Two observations can be made made. First, The
majority (91%) of the OWL Full documents (from Table 2)

can be turned into a decideable portions of the languages by
adding type triples. Secondly, the majority of RDFS docu-
ments (95%) can transition to OWL easily by adding type
triples and use OWL vocabulary instead of RDFS vocabu-
lary.

Of the 30 OWL documents that cannot be fixed, nearly
all of them contain problems of redefining built-in vocabu-
lary. One ontology contains structural sharing. There are
8 ontologies that include the mixing of instances, classes, or
properties. And there are 2 cases where beyond OWL DL
features are detected. In both of these cases, a Datatype-
Property is defined to be inverse functional.

Of the 31 RDFS documents that cannot be patched, most
contain wrong vocabulary, redefinition of known vocabulary,
or illegal use built-in vocabulary (such as using rdfs:subClassOf

on xsd:time).
Although the species validation gives us a rough idea of

the distribution of expressivity among ontologies, it is not a
fine enough measure. OWL Lite has the same expressivity as
the description logic SHIF(D), and OWL DL is equivalent
to SHOIN (D). There is a large expressivity gap between
RDFS(DL) and OWL Lite. We group the DL expressivity of
the documents into bins in atttempt to find out how many
ontologies make full use of OWL Lite’s features.

We bin the expressivity of the documents as follows. For
simplicity, we ignore the presence of datatype, so SHIF(D)
is considered the same as SHIF . For all ontologies that con-
tain nominals O or number restrictions N , we put them in
the most expressive bin (Bin 4). For example, SHOIN be-
longs to Bin 4. The next group Bin 3 contains the ones that
make use of inverses I or complements C but not nominals
or number restrictions. SHIF belongs to this group. Bin
2 consists of role hierarchies H and functional properties F ,
but not the features Bin 4 or Bin 3 care about. Bin 2 would
contain ALHF , which is more expressive than RDFS(DL).
Lastly, everything else will fall into the Bin 1, e.g. AL. We
expect the first two bins to contain all of the RDFS(DL)
documents and some OWL Lite documents. The question
is, of course, how many?

Table 4 shows the count of each expressivity bin. 14 OWL
documents cannot be processed and are not included in this
part of the analysis. The 848 documents in bin 1 and 2
consists of those that are less expressive than SHIF . Sub-
tracting 848 by the number of RDFS documents from Table
2, we reveal 261 documents that are OWL Lite. This is
the number of OWL Lite files that do not make use of its
full language expressivity. If we subtract this number from
the number of OWL Lite documents in Table 3, we get 130.
Therefore, the number of ontologies that make good use of
OWL Lite features is less than 20% of the total number of
OWL ontologies we surveyed here. This is an indication that

Table 4: Expressivity Binning
Bin Bin 1 (AL) Bin 2 (ALHF) Bin 3 (SHIF) Bin 4 (SHOIN)

Count 793 55 262 151

the OWL Lite vocabulary guides users to create ontologies
that are far less expressive than what OWL Lite can express.
In fact, of the total number of OWL Lite documents (after
patching), 67% use very little above RDFS(DL).

Out of the 688 OWL ontologies, 21 are inconsistent. 18
of the inconsistent ontologies are due to missing type on
literal values. These are simple causes for inconsistency that
can be detected syntactically. Data type reasoners should
have a way to automatically fix it. The other three contain
actual logical contradictions. There are also 17 consistent
ontologies that contain unsatisfiable classes. 12 belong to
bin 4, while the rest belong to bin 3.

4.2 Usage of OWL Constructs
In Table 5, we show, for each OWL construct, the number

of ontologies that use it. The table is organized in 5 sec-
tions: Ontology, Class, Property, Individual, or Restriction-
Related. Not surprisingly, owl:Class, owl:ObjectProperty,
and owl: DatatypeProperty are used in many ontologies.
owl: ObjectProperty occurs in 185 more ontologies than
owl: DatatypeProperty does. One possible explanation
is that modelers wish to use the semantically rich property
types in OWL such as owl:InverseFunctionalProperty,
owl:SymmetricProperty, owl:TransitiveProperty, and owl:InverseOf,
which can only be used with owl:ObjectProperty in OWL
DL. The fact that owl:InverseOf alone is used in 128 on-
tologies seem to support this hypothesis.

Looking at the Class-Related Constructs, we note that
owl:Union (109) is used more often than owl:IntersectionOf

(69). We believe the difference stems from the fact that
OWL semantics assumes intersection by default when a mod-
eler says ”A is a subclass of B” and in a different part
of the document ”A is a subclass of C”. This is semanti-
cally equivalent to saying ”A is a subclass of (B and C)” in
OWL. This means in these non-nested boolean cases, one
can express an AND relationship without explicitly using
”owl:IntersectionOf”. Another possible contribution to the
higher number of owl:Union is tool artifact. It is well-known
that Protégé assumes union semantic by default. That is, if
one were to say ”R has domain A”and ”R has domain B”,
then Protégé assumes that the user means ”R has domain
(A OR B)” and uses owl:Union. However, we are not sure
how many ontologies were created by using Protégé.
owl:Imports appears in 221 OWL documents. This seems

to suggest that a good number of ontologies are being reused.
However, we do not know how widely an ontology is being
imported, nor do we know how many ontologies are being
imported. Many institutions that create a suite of ontolo-
gies often have heavy use of imports among these ontologies
(e.g. SWEET JPL 10). However cross-institutional ontology
sharing seems less common.

There are 253 OWL ontologies that have at least 1 defined
individual in this survey. However, Table 5 shows that very
few Individual-Related OWL constructs are used. Though
owl:SameAs is used much more often than the others.

10http://sweet.jpl.nasa.gov/ontology/

Table 5: OWL Construct Usage
Construct Count

Ontology-Related Constructs
owl:Ontology 567

owl:OntologyProperty 0
owl:BackwardCompatibleWith 0

owl:Imports 221
owl:InCompatibleWith: 1

owl:PriorVersion 8
owl:VersionInfo 305

Class-Related Constructs
owl:Class 580

owl:ComplementOf 21
owl:DataRange 14

owl:DeprecatedClass 2
owl:DisjointWith 97

owl:EquivalentClass 77
owl:IntersectionOf 69

owl:OneOf 43
owl:Union 109

Property-Related Constructs
owl:AnnotationProperty 28
owl:DatatypeProperty 277

owl:DeprecatedProperty 2
owl:EquivalentProperty 25
owl:FunctionalProperty 114

owl:InverseFunctionalProperty 30
owl:InverseOf 128

owl:ObjectProperty 462
owl:SymmetricProperty 20
owl:TransitiveProperty 39

Individual-Related Constructs
owl:AllDifferentFrom 6
owl:DifferentFrom 5

owl:DistinctMembers 6
owl:SameAs 18

Restriction-Related Constructs
owl:AllValuesFrom 118

owl:Cardinality 120
owl:hasValue 48

owl:MaxCardinality 60
owl:MinCardinality 99

owl:onProperty 263
owl:Restriction 263

owl:SomeValuesFrom 85

4.3 Shape of Class Hierarchy
When we think of defined vocabularies in schemas and

ontologies, we often think of the structure as a tree, where
each class is a node, and each directed edge from a parent to
a node denotes subsumption. It may be because of our ex-
perience as seeing the terms being displayed as tree widgets
in our ontology editing tools such as SWOOP or Proétegé
or because trees are easier to mentally visualize. However,
the vocabulary hierarchy can be all kinds of more general
graph structures. In figure 1 we show the kinds of graph
structure a defined set of vocabulary can take shape. The
black-dotted circle denotes the top concept (e.g. owl:Thing
in OWL ontologies). List, lists, tree, and trees should be
familiar to the reader. Multitrees can be seen as a directed
acyclic graph (DAG) where each node can have a tree of
ancestors and a tree of children. There cannot be a dia-
mond structure in a mulitree [6]. If a diamond structure
exists, then it is a general DAG. We can consider the cate-
gories list, lists, tree, trees, multitree, and DAG as a strictly
ordered list in increasing order of graph complexity.

We point out that a general graph (where cycles exist) is
possible. However, because the edges represent subsump-
tions, all the nodes on the cycle are semantically equivalent.
Some paths on the cycle may not be obvious, but reason-
ers will always discover them. Therefore when a reasoner is
present, no cyclic graphs of subsumption hierarchies can ap-
pear. There can be cycles in a told structure, though these
are easy to detect syntactically. In addition, because turn-
ing on reasoning services will discover these equivalences and
more subsumptions, the graph morphology may change be-
tween the told and the inferred structure. Below we show
scatterplots of the graph morphological changes in the OWL
documents. The scatterplots are fashioned using Spotfire 11.

In figure 2, each square represents an OWL document,
and the size of the square indicates how many classes are
in the document. Using the grid point (x,y) closest to each
document and referring to the two axes, we can find out
what morphology the class hierarchy is in. The vertical axis
indicates the morphology in the told structure. The horizon-
tal axis indicates the morphology in the inferred structure.
The data points do not lie strictly on an intersection of the
grid lines because we have jittered the positions of the data
points to avoid occlusions. The jittering also gives a better
idea of how many datapoints are in each grid intersection.

If an ontology is inconsistent when reasoner is turned on,
the class hierarchy will collapse, and there are no structures.
We use the category INCONSISTENT to denote this case.
The None structure denotes that the ontology contains no
classes, hence there are no structures. In figure 2, note the
clusters along the sub diagonal. These indicate that most
ontologies retain its told morphology after a reasoner has
been applied. However, 75 of them did change, 21 of which
became inconsistent. 42 ontologies went up to a more com-
plex structure (e.g. from trees to multitrees). Of the 42 that
went up in graph complexity, 25 came from trees to either
DAGs or multitrees. 3 multitrees and 3 lists became DAGs.
5 ontologies that had lists as the told strucure had the tree
or trees strucure when reasoning is turned on. 6 lists became
multitrees. The graph morphological changes in increasing
graph complexity indicate that more subsumptions are dis-
covered. The ones in decreasing graph complexity means

11http://www.spotfire.com/

Figure 1: Possible graph morphology of class hier-
archies.

that equivalences are discovered. The most interesting ones
are the ontologies that discover multiple inheritance in the
inferred structure when there was none in the told structure.
These are the list, lists, tree, and trees that became multrees
or DAGs. This indicates that some interesting modeling is
at work here, and there are 34 of them.

3 shows the same scatterplot, but for the RDFS docu-
ments. We do not expect there to be many, if any, changes in
graph morphology because every subclass relationship must
be explicitly asserted. In this graph, we clearly see that no
RDFS class strucure has changed as a result of a reasoning
service.

Because the morphology changes between the told and
the inferred structures can give indication on which classes
are undermodeled or heavily modeled, to be able to com-
pare them side-by-side and interactively explore them can
be potentially useful to modelers and users. Current ontol-
ogy editors and visualizers do not directly support this task
[7] [10] [8] [12].

Here we look at the distribution of the largest ontologies in
this survey. Of the 19 ontologies that have more than 2000
classes, 14 have the expressivity of ALC or lower. 2 have the
expressivity SHF , 2 have S, and 1 has SHOIF(D). In the
bottom left corner of 2, we see that there are a number of
large OWL ontologies sitting in the (DAG, DAG) position.
To explore further, we plotted the inferred graph morphol-
ogy against OWL species in 4. The upper left corner shows
that many large ontologies belong to the OWL Lite species,
and their class structures are DAGs. There are 6 ontolo-
gies with more than 10000 classes in this survey, 5 of the
6 are in the (DAG, Lite) cluster. Of these 5, 4 have DL
expressivity of ALC, 1 has the the expressivity of S. The
combination of the most generalized graph structure and the
least expressive species is interesting because it suggests that
these ontologies are modeling fairly complex domains where
the class structures are DAGS. However, none of the OWL
DL features are used in the modeling process. Whether the
modelers purposely intended to stay in OWL Lite (for fear of
computational complexity in reasoning), or that OWL Lite
provides all the constructs they needed is unclear.

5. FUTURE WORK
The future work includes a survey on a larger pool of

ontologies. For example, many DAML files can be con-

Figure 2: Scatterplot of the graph morphology of
OWL documents (told against inferred structures.)

Figure 3: Scatterplot of the graph morphology of
RDFS documents (told against inferred structures.)

Figure 4: Scatterplot of the graph morphology of
OWL documents against OWL species.

verted to OWL without any loss of semantics. The only
major difference between the two languages is that DAML
has qualified number restrictions. It would be an interesting
to see how many DAML files uses qualified number restric-
tions. In addition, the newly released Swoogle 2006 claims
to have indexed many more semantic documents, including
over 10000+ ontologies.

We see in this study that a fairly large number of on-
tologies use imports. It would be interesting to find out
which ontologies are being imported and by how many oth-
ers, what percentage of imports are not used by ontologies
developed in the same institution. Related to this issue is
finding out which are the most popularly used ontologies by
RDF files (such as people’s FOAF files). Another issue re-
lated to imports is to find out how many terms are being
used in an ontology without importing the ontologies the
terms are defined in.

It would also be interesting to attempt to partition the
OWL ontologies using the modularity framework outlined
in [4]. Partitionability of an ontology indicates that there
are, informally, self-contained domains that can be sepa-
rated, and possibly reused by other ontologies. The number
of ontologies that can be partitioned and the distribution of
the sizes of the partitions can shed some light about prac-
titioners’ modeling practices in terms of how often/many
disjoint domains are used in an ontology.

6. CONCLUSIONS
As OWL grows, assessments of how the language is being

used and how modeling trends begin to emerge is both use-
ful and interesting to the community. By collection nearly
1300 ontological documents from the Web and analyzing the
statistics collected from them, we were able to note several
trends and make interesting observations. There are higher
percentage of OWL DL and OWL Lite files than it was pre-
viously reported in [1]. Most of the OWL Full files surveyed
here can be fixed. Of the fixed OWL Full files, roughly one-
third becomes OWL DLs two-thirds become OWL Lite. In
addition, by adding type triples, most of the RDFS files can
easily transition to OWL files.

We showed that majority of OWL Lite documents fall into
the bins of very inexpressive ontologies. The number of on-
tologies that contain interesting logical contradictions in this
survey is small. But they all have high expressivity. In OWL
construct analysis, we showed that owl:intersection is
used in fewer ontologies than owl:union. owl:ObjectProperty
is more prevalent than owl:DatatypeProperty. Though
about one-third of the ontologies contain instances, very few
instance constructs are being used currently. Looking at the
graph morphologies, we are able to see where the interesting
modeling practices occur. In addition, we conjecture that
tools that presents/exploits the changes between told and
inferred structures may allow users to gain understanding
otherwise hard to obtain. We also observe that the largest
of the OWL files have the characteristic that they have a
high graph-morphological complexity and relatively low DL
expressivity. We hope these observations are useful and in-
formative to the OWL community.

7. ACKNOWLEDGMENTS
The author would like to thank Bijan Parsia for the impe-

tus to start project and the encouragements along the way.

The author would also like to thank Aditya Kalyanpur and
Evren Sirin, for their invaluable insight into the data and
many helpful discussions of OWL.

8. REFERENCES
[1] S. Bechhofer and R. Volz. Patching syntax in owl

ontologies. Proceedings of the 3rd International
International Semantic Web Conference, 2004.

[2] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: Implementing
the semantic web recommendations. Proceedings of the
13th World Wide Web Conference, 2004.

[3] B. Cuenca Grau. A possible simplification of the
semantic web architecture. Proceedings of the 13th
International World Wide Web Conference
(WWW2004), 2004.

[4] B. Cuenca-Grau, B. Parsia, E. Sirin, and
A. Kalyanpur. Modularity and web ontologies. 2006.
To Appear in Proceedings of the 10th International
Conference on Principles of Knowledge Representation
and Reasoning (KR2006).

[5] L. D. et al. Swoogle: A search and metadata engine
for the semantic web. Proceedings of the Thirteenth
ACM Conference on Information and Knowledge
Management, 2004.

[6] G. W. Furnas and J.Zacks. Multitrees: Enriching and
reusing hierarchical structure. Proceedings of ACM
CHI 1994 Conference on Human Factors in
Computing Systems, 1994.

[7] A. Kalyanpur, B. Parsia, and J. Hendler. A tool for
working with web ontologies. Int. J. on Semantic Web
and Info. Syst., 1(1), 2004.

[8] T. Liebig and O. Noppens. OntoTrack: Combining
browsing and editing with reasoning and explaining
for OWL Lite ontologies. Proceedings of the 3rd
International International Semantic Web Conference,
2004.

[9] A. Magkanaraki, S. Alexaki, V. Christophides, and
D. Plexousakis. Benchmarking rdf schemas for the
semantic web. Proceedings of the 1rd International
International Semantic Web Conference, 2002.

[10] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W.
Fergerson, and M. A. Musen. Creating semantic web
content with protégé-2000. IEEE Intelligent Systems,
16(11):60–71, 2001.

[11] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical owl-dl reasoner.
Submitted for publication to Journal of Web
Semantics.

[12] M.-A. D. Storey, M. A. Musen, J. Silva, C. Best,
N. Ernst, R. Fergerson, and N. F. Noy. Jambalaya:
Interactive visualization to enhance ontology
authoring and knowledge acquisition in Protégé.
Workshop on Interactive Tools for Knowledge Capture
(K-CAP-2001), 2001.

[13] C. Tempich and R. Volz. Towards a benchmark for
semantic web reasoners - an analysis of the daml
ontology library.

[14] S.-Y. Wang, Y. Guo, A. Qasem, and J. Heflin. Rapid
benchmarking for semantic web knowledge base
systems. Proceedings of the 4th International Semantic
Web Conference(ISWC2005), 2004.

