WFM 2006 April 25 - 26, 2006, Czech Republic

Multigenerative Grammar Systems

Alexander Meduna’
meduna@fit.vutbr.cz

Roman Lukas”
lukas@fit.vutbr.cz

Abstract: This paper presents new models for all recursive enumerable languages. These
models are based on a multigenerative grammar systems that simultaneously generate
several strings in a parallel way. The components of these models are context-free
grammars, working in a leftmost way. The rewritten nonterminals are determined by a
finite set of nonterminal sequences.

Key Words: Grammar systems, Leftmost derivation, Recursive enumerable language.

1 Introduction

The formal language theory has recently intensively investigated various grammar systems
(see [1], [2], [8]), which consist of several cooperating components, usually represented by
grammars. Although this variaty is extremely broad, all these grammar systems always makes
a derivation that generates a single string. In this paper, however, we introduce grammar
systems that simultaneously generate several strings, which are subsequently composed in a
single string by some common string operation, such as concatenation.

More precisely, for a positive integer », an n-multigenerative grammar system
discussed in this paper works with n context-free grammatical components in a leftmost
way—that is, in every derivation step, each of these components rewrites the leftmost
nonterminal occurring in its current sentential form. These » leftmost derivations are
controlled n-tuples of nonterminals or rules. Under a control like this, the grammar system
generates n strings, out of which the strings that belong to the generated language are made by
some basic operations. Specifically, these operations include union, concatenation and a
selection of the string generated by the first component.

In this paper, we prove that all the multigenerative grammar systems under discussion
characterize the family of recursively enumerable languages. Besides this fundamental result,
we give several transformation algorithms of these multigenerative grammar systems.

2 Preliminaries

This paper assumes that the reader is familiar with the formal la.ng*uage theory (see [4]). For a
set, O, card(Q) denotes the cardinality of Q. For an alphabet, ¥, V' represents the free monoid
generated by V under the operation of concatenation. The unit of V" is denoted by . Set V' =
V' — {g}; algebraically, V" is thus the free semigroup generated by ¥ under the operation of
concatenation. For every w € V', |w| denotes the length of w, sym(w, i) denotes the i-th
symbol in w. A context-free grammar is a quadruple, G = (N, T, P, S), where N and T are two
disjoint alphabets. Symbols in N and 7 are referred to as nonterminals and terminals,

* Department of Information Systems, Faculty of Information Technology, Brmo University of Technology,
Bozetéchova 2, Brno 612 66, Czech Republic

19

respectively, and S € N is the start symbol of G. P is a finite set of rules of the form 4 — x,
where A € Nand x € (N U 7). To declare that a label denotes the rule, this is written as r: A
— x. The nonterminal 4 is the left-hand side of », denoted by lhs(r). The string x is the right
hand side of r, denoted by rhs(r). Let u, ve (N U T)". For every A — x € P, write udv =
uxv. Let =" denote the transitive-reflexive closure of =. The language of G, L(G), is defined
as L(G) = {w: S=" win G, for some w € T*}.

3 n-multigenerative Nonterminal-synchronized Grammar System

3.1 Basic Definition
An n-multigenerative nonterminal-synchronized grammar system (MGN) is n+1 tuple
I'=(Gy, Gy, ..., Gy, Q), where:
e G;=(N,T, P, S is a context-free grammar foreachi=1, ..., n,
e () is a finite set of n-tuples of the form (4, 42, ..., 4,), where 4; € N,
foralli=1, ..., n

3.2 Sentential n-form
LetI' = (G1, Gz, ..., Gn, O) be a MGN. The13 a sentential n-form of MGN is an n-tuple of the
form y = (x, x2, ..., X,), where x; € (N;u T;) foralli=1,...,n.
3.3 Direct Derivation Step

LetI' = (Gy, Gy, ..., Gn, Q) be a MGN. Let y = (n1d1v1, uadava, ..., und,vy) and y = (uixivy,
UaXaVa, ..., UnXyVy) are two sentential n-form, where 4; € N, u; € T,-*, and v, x; € (N; U T,-)* for
alli=1,...,n Let4d; > x;e P;foralli=1, ..., nand (4y, 4, ..., A,) € Q. Then y directly
derives ¥ inI', denoted by y = 7 .

3.4 Sequence of Derivation Steps, Part 1

LetT =(Gi, Gs, ..., Gy, O) be a MGN.

e Let ¢ by any sentential n-form of I'. I makes a zero-step derivation from 7y to y, which
is written as y = y.

e Let there exists a sequence of sentential n-forms o, %1, ..., Xk for some k£ = 1 such that
Y1 = y; for all i = 1, ..., k. Then, I' makes k-step derivation from 7y to yx, which is
written as yo =" Y k.

3.5 Sequence of Derivation Steps, Part 2
LetI"=(G\, Gy, ..., G,, Q) be a MGN, let ¥ and 7 be two sentential n-forms of T

o [Ifthereexists k> 1soy =7 inT,theny ="7,
e Ifthere exists k> 0soy =" 7 inT, then y =" Z-
3.6 n-language

LetI' =(Gy, G, ..., G, Q) be a MGN. The n-language of I', n-L(I'), is defined as:

n-L(T) = {(w1, W2, ..., Wa): (S1, 82, ..., Sp) =" (Wi, wa, ..., wn), wi € T} foralli=1, ..., n}

20

3.7 Three Types of Generated Languages

e The language generated by I" in the union mode, Lyion(I'), is defined as:
Lunion(D) = {w: (Wi, wa, ..., wy) € n-L(D),w € {wii=1,..,n}}

e The language generated by I in the concatenation mode, L.on(I'), is defined as:
Leonc(I') = {wiwa.. . wy: (w1, wa, ..., wy) € n-L(I')}

e The language generated by I” in the leftmost mode, Lg.(T), is defined as:
LgrsAT) = {w1: (w1, wa, ..., wy) € n-L(I')}
3.8 Example
I' = (G, Gz, Q), where:

o Gi=({S5, 41}, {a, b, c}, {81 > a§y, §1 = ad, 41 > bAc, Ay — bc}, S1),
o Gy=({S2 42}, {d}, {82 > S242, S2 = Az, A2 —> d},),
e O={(S1,5), (41, 42)}

is a 2-multigenerative nonterminal-synchronized grammar system.

Notice that this system generates following languages in the different modes:
o Luyion(D)={ad"b"¢"n21}ui{d:nz21},

® Len() = {a"b""d": n 21},

o Lp(I)={d"b"c":n21}.

4 n-multigenerative Rule-synchronized Grammar System

4.1 Basic Definition
An n-multigenerative rule-synchronized grammar system (MGR) is n+1 tuple
I'=(Gy, Gy, ..., G, Q), where:
e G;=(N, T, P; S) is a context-free grammar for eachi=1, ..., n,
e (is a finite set of n-tuples of the form (p1, p2, ..., pn), where p; € P;
foralli=1, ..., n.
4.2 Sentential n-form

A sentential n-form for MGR is defined analogically as the sentential n-form for a MGN.

4.3 Direct Derivation Step

LetI' = (G, Ga, ..., Gy, Q) be a MGR. Let y = (1411, u2dava, ..., updyvy) and 7 = (uixvy,
UrX2Va, ..., UpX,Vy) are two sentential n-form, where 4; € N, u; € T,-*, and v;, x; € (N; v T,r)‘ for
alli=1,...,n Letp: A > x; € Piforallalli= 1, ..., n and (pi1, p2, ..., pn) € Q. Then g
directly derives ¥ inI', denotedby y = 7.

21

4.4 Sequence of Derivation Steps

A sequence of derivation steps for MGR is defined analogically as the sequence of derivation
steps for a MGN.

4.5 n-language
An n-language for MGR is defined analogically as the n-language for a MGN.

4.6 Three Types of Generated Languages

A language generated by MGN in the X mode, for each X € {union, conc, first}, is defined
analogically as the language generated by MGR in the X mode.

4.7 Example

I = (G, Gy, Q), where:
o G =({S,4:1},{a,b,c}, {1: S > aS),2: S; > ady, 3: Ay = bAic, 4: A, — bc}, 1),
o Gr=({8},{d}, {1: 52> 5252,2: 85 > 5,3: 5 > d},),
e 0={1,1),(Q2,2),3,3),43)}.

is 2-multigenerative rule-synchronized grammar system.

Notice that this system generates following languages in the different modes:
¢ LuoD)={db'c":nz21} v {d:nz1},
o Len(D)=1{d"b""d" n>1},
o L) ={a"b"c": n21}.

5 Conversions Between MGN and MGR

5.1 Algorithm 1: Conversion From MGN to MGR

INPUT: MGN T = (G}, G, ..., Gy, Q)
OUTPUT: MGR T = (G, G, ..., G, O); L") = L(T), for each X € {union, conc, first}

METHOD:
Let G;= (N, T;, P;, S)) foralli=1, ..., n, then:

e O ={Ad >x,A2>x2,....,4, > x,): A;>x;€ P;foralli=1, ..., n,and
(A],Az, ...,An) = Q}

22

5.2 Algorithm 2: Conversion From MGR to MGN

INPUT: MGR T =(Gy, Gy, ..., Gy, Q)
OUTPUT: MGN T =(G,, G,, ..., G,, Q); L") = L(T), where X e {union, conc, first}

METHOD:
Let G,‘ = (N;', Tf, P,’, S,) foralli= 1, s then:

e G =(N,T, B, S)foralli=1, ..., n, where:

e N, ={<4,x>:4—->xeP;}U{S}
e P={<d, x>y Ad>xePyyecrx)}U{Sioyye (S}
where 7; is a substitution from N; U Tito N, U T; defined as:

t{a)= {a} foralla € T}; 7(A) = {<4,x>: A > x € P;} forall 4 € N,
. é = {(<A], X1, <A2: X2>, nevy <Ai‘t> xl'?>): (A] —> X1, AZ > X2y auny AH _>xn) € Q} o

{(S1, 82, -0, S}
5.3 Corollary
The class of languages generated by MGNs in the X mode, where X € {union, conc, first} is
equivalent with the class of language generated by MGRs in the X mode.
Proof: This corollary follows from Algorithm 1 and Algorithm 2.

6 Generative Power of MGN and MGR

6.1 Theorem 1

For every recursive enumerable language L over an alphabet T there exists a MGR,
r=((N,T, R,8),(N,,T, B,S), Q), such that:
1) {w: (51, 82) =" (w,w)} =L,
2) {W|W21 (51, Sz) :>* (W], Wz), Wi, W2 € T*, W1 # Wz} =.
Proof: Recall that for every recursive enumerable language L over an alphabet T there exist

two context-free grammars G; = (N1, T, Py, S)), G = (N2, T, P2, S») and homomorphism A:

from 7 to 7" such that L = {h(x) : x € L(G)) N L(G>)}. (see Theorem 10.3.1 in [3]).
Furthermore, for every context-free grammar, there exists an equivalent context-free grammar
in Greibach normal form (see Section 5.1.4.2 in [4]). Hence, without lost of generality, we
can assume that G| and G; are in Greibach normal form. Consider an 2-MGR I" = (G, G3, Q),
where:

Gi=(N,,T, P,S)),where N=N, u{a:aeT}, P={A>ax:A—>axeP,aeT,
xeN}u{a > h(@:.ae T}
G,=(N,,T, P,S,),where N, =N, U{@:aeT}, B={Ad—> ax:A—>axePracT,
xeNYu{a - ha):ae T}

23

Q={4,— ax,,4, > ax,). A, > ax, € ;D:, A; — ax, e}_’z,a eTYyu{(a— ha),a—
h(a):ae T}

Now, we prove that for a 2-MGR I' = (G}, G, Q) holds:

1) {w: (51, S2) = (w, w)} =L.

2) {wiwa: (81, S2) =" (w1, wa), wi, wa € T', wy # wa} = @.

Claim A: {w: (S), S2) = (w, w)} =L:
Proof: 1. We prove that L ¢ {w: (S5}, 52) =" (w, w)}:
Let w € L be any string. Then, there exists a string aja...a, € T = such that:
1) aias...a, € L(Gy)
2) aia...a, € L(G?)
3) h(aaz...an)=w
It means that there exist following derivations in G and G5:
1. 8= awx [p1] = aiax; [p2] = ... = a1a2...an [Pa),
2. Si=zay[n]l=>aay:[rn]l=... > aa..ar),
whereag; € T ,x; € Nl*,y,- € Nz*, pi€ P, rie Pyforalli=1, ..., n
Observe that for all i = 1, ..., n holds: sym(rhs(p;), 1) = sym(rhs(#;), 1) = a,.
A construction of a set Q, Q = {(41 = ax,, A2 —> ax,): 41 —> ax, € B, 4, — ax, €B,
aeTYyu{(a@a— ha),a— h(a):ae T},implies:
1) Letpi: Ai—> auie B,r: Bi—>ayv;e B,. Then(4;— au,,B;— av,) e Qforalli=1,..,n
2) (a, » h(ay), a,— h(a;)) € Qforalli=l, ..., n.

Then, there exists a sequence of derivation in 2-MGR I":
(81, 82) = (@, a,y,) = (Ala)xi, h(a)y1)
= (h(a1) a,x,, h(a\) @,y,) = (h(ar)h(ax)xa, h(ai)h(az)y2)
— .
= (h(an)h(as)...h(an), h(@)h(@)... h(an) =
(h(araz...a), h(aaz...ay)) = (W, w)
It means that (S), S») = (w, w) in I

1. We prove, that {w: (S}, S2) = (w, w)} c L:
Let (S1, S2) = (w, w) in . Then, there exists a sequence of derivation in 2-MGR T';
(S1,82) = (ax,a,y,) = (h(a)x1, h(a)yr)

= (h(a1) a,x, , h(ay) a,y,) = (h(a)h(az)x2, h(a)h(az)y2)

= (h(a)h(az)...h(ay), h(a)h(az)... h(ay)) =

(h(aiaz...an), (araz...a,)) = (w, w)

24

Analogically as in part ., we can prove that there exist derivations in G, and G, of the forms:
1. 81 = awx [p1] = aiaxx: [p2] = ... = a1az...a, [Pa),
2. Sz ay [n]l=aay:[r]l= ... = aa..a,[rm]

It means that ayas...a, € L(G)), a1az...a, € L(G>) and A(aya;...a,) =w, and sow € L.

Claim B: {wywz: (S, 52) = (w1, wa), wy, wa € T*, wizwy} =J

Proof (by contradiction): Let {wywy: (51, 52) =" (w1, w2), Wi, wa € T, wi # wa} # &. Then,
there exist two different strings wy = h(a\)h(az)...h(ay), w2 = h(b1)h(b2)...h(b,), such that:
(S1, $2) =" (w1, wa).

I. Assume that for all i = 1, ..., » holds: a; = b;: Then w; = h(a)h(a)...h(a,) =
h(b))h(by)...h(b,)= w>. But w; and w; are different string. That is a contradiction.

II. Assume that there exists k¥ < n, such that ar # by Then, there exists a sequence of
derivations in I" of the form:

(81, 82)= (@, ay,) = (A(ar)x, h(a)yr)

= (W) ayx,, h(a)a,y,) = (h(a)h(az)xz, h(a)h(az)y2)

-~

= (h(a))h(az)...h(ax-1)xk1, h(a)h(az). .. h(ak.l)yk_;)_ N
Then, there must exists a derivation (xx.1, yr-1) = (@,x, ,b,»,), where a, # b, . Because Q0 =
{4 = ax,, 42> ax,): Ay > ax, € B, Ay—> ax, eB,ae T }u{(@ > ha), a—>
h(a)): a € T }, there must by used a pair of rules (p, r) such that sym(rhs(p), 1) = sym(rhs(r),

1). Next derivation must be of the form: (xi.1, yi-1) = (@, x, , 17,(¥,), where @, = b, . Thatisa
contradiction.

6.2 Theorem 2:

For every recursive enumerable language L over an alphabet T there exists a MGR,

I" = (G1, G2, Q), such that: Lynion(I') = L.
Proof: By the Theorem 1 holds: For every recursive enumerable language L over an alphabet
T there exist a 2-MGR, T = (N, T, Py, S1), (N2, T, P, S2), Q) such that: L = {w: (S}, S>) ="
(w, w)} and {wiwa: (S1, S2) = (w1, w), wi, w2 € T, wi # wp} = @.
LetT'=T". Then, Lyyion(I') = {w: (S1, S2) = "w,w),wieT fori=1,2,we {w:i=1,2}}=
fw: (81, S2) =" (w, w), we T} U {w: (51, 8) = (w,w),wie T fori=1,2,we {wzi=1,
2V, wizwa} = {w: (S1,) = (w,w), we TYu@={w: (S, 8) =" (w,w),we T} =L

6.3 Theorem 3:

For every recursive enumerable language L over an alphabet 7 there exists a MGR,
I' = (G, G,), such that: Lg.(I') = L.

Proof: By the Theorem 1 holds: For every recursive enumerable language L over an alphabet
T there exist a 2-MGR, T'= (N, T, P1, S1), (N2, T, P2, S2), O) such that: L = {w: (S}, S2) ="
(w, w)} and {wiwz: (S, §2) = (wi, wa), wi, wa € T, wi#wy} = @.

25

Let ' =T . Then, L) = {w1: (S1, S2) = (w1, wa), w; € T fori= 1, 2} = {w: (51, $2) ="
(W, w), we T} U {wi: (S1, $) =" (wi, wo), wie T fori=1,2, w#wy}={w: (S}, S) =
w,w,we T} u@={w:(5,8)=> w,w),weT}=L

6.4 Theorem 4:

For every recursive enumerable language L over an alphabet T there exists a MGR,

I' =(Gy, G, O), such that: L, (') = L.
Proof: By the Theorem 1 holds: For every recursive enumerable language L over an alphabet
T there exist a 2-MGR, T = ((Nl, T, Py, S1), (N2, T, Pa, §2), Q) such that: L = {w: (51, $2) ="
(w, w)} and {wiwa: (S1, S2) =" (w1, wa), wi, wa € T, wi = wy} = D,
Let Gy = (N, T, P, §)), Ga = (N2, 9, R,_, S,), where P2 ={A4->gkx)Ad—>xe P}, whereg
is a homomorphism from (N, U T) to N, defined as: For all X € N»: g(X) =X, forall X e T:
2(X) = €. We prove that L. (') = L.

I. We prove that L < L..(I'): Let w € L. Then, there exists a sequence of derivation in T of
the form: (51, $2) = (w, w), thus, there exist a sequence of derivations in I" of the form (S,
$5) =" (w, g(w)). Because g(a) = ¢ for all a € T, then gw) =g forall w e T *. Thus, there
exists a sequence of derivations (S}, S2) =" (w,) inT". Hence, we =w € Leon(I).

II. We prove that L.,.(I') < L: Let w € L.on(T"). Then, there exists a sequence of derivations
(S1, S5) = (w, €) in T, because G, derives only the empty string. g(x) = € for all x € T", so
there exists a sequence of derivation in ' of the form: (S}, S3) =" (w, x), where x is any
string. Theorem 3 implies that x = w, thus: (S}, S2) =" (w, w). Thus, w € L.

7 Conclusion

Let LIMGNy) and L(MGRy) denote the language families defined by MGN in the X mode and
MGR in the X mode, respectively, where X € {union, conc, first}. From the previous results,
we obtain L(RE) = L(MGNy) = L(MGRy).

References
1. Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Grammar Systems: A Grammatical
Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.

2. Dassow, J., Paun, Gh., and Rozenberg, G.: Grammar Systems, In Handbook of Formal
Languages, Rozenberg, G. and Salomaa, A. (eds.), Volumes 2, Springer, Berlin, 1997.

3. Harrison, Michael A.: Introduction to Formal Language Theory. Addison-Wesley, London, 1978.
4. Meduna, A.: Automata and Languages: Theory and Applications, Springer, London, 2000.

5. Meduna, A.: Two-Way Metalinear PC Grammar Systems and Their Descriptional Complexity,
Acta Cybernetica, 2003.

6. Paun, Gh., Salomaa, A. and S. Vicolov, S.: On the generative capacity of parallel communicating
grammar systems. International Journal of Computer Mathematics 45, 45-59, 1992,

7. Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

8. Vaszil, G.: On simulating Non-returning PC grammar systems with returning systems, Theoretical
Computer Science (209) 1-2, 319-329, 1998.

26

