
Pushing the limits of OWL, Rules and Protégé

A simple example

Anne Cregan1,2, Malgorzata Mochol3, Denny Vrandečić4, and Sean Bechhofer5

1 University of New South Wales, Australia, annec@cse.unsw.edu.au
2 National ICT Australia (NICTA)

3 Freie Universität Berlin, Germany, mochol@inf.fu-berlin.de
4 AIFB, Universität Karlsruhe (TH), Germany, denny@aifb.uni-karlsruhe.de

5 University of Manchester, UK, sean.bechhofer@manchester.ac.uk

Abstract. The Semantic Web brings powerful languages for creating
models, based on Description Logics and Rules. These languages are
used within ontology engineering tools and applied in strong and effi-
cient reasoners. Working within the context of a Summer School, we
explored these technologies by creating a small and easy to understand
example, working firstly with OWL alone, and introducing SWRL rules
as needed, to automatically classify a number of instances according to
some intuitively simple criteria. We present the example OWL ontology,
SWRL rules, and the issues and problems we encountered. Our experi-
ence highlights the capabilities and limitations of OWL and of SWRL,
not in theoretical but in practical terms, and points to the need for bet-
ter tool support, but is primarily a lesson in ”traps for young players”
in terms of formulating classifications, that we hope will be instructive
for Semantic Web students following in our footsteps, and their tutors.

1 Introduction

The Semantic Web[4] vision is to extend the Web with machine-understandable
data, forming a global distributed knowledge store which application may lever-
age to perform tasks automatically. The base technologies for realizing this vision
are: Uniform Resource Identifiers(URIs) as a global identification mechanism for
resources; the Resource Description Framework(RDF) as a basic data model,
together with its XML-based serialisation syntax for publishing data on the
Web[16]; the Web Ontology Language(OWL) which extends RDF with more
expressive knowledge representation[15, 14]; and a yet to be defined rule lan-
guage, for which the Semantic Web Rule Language(SWRL) may be considered
a prototype[7]. The development of the Semantic Web is a joint effort of sci-
entific and business institutions around the globe, led by the World Wide Web
Consortium(W3C).
This paper describes the experiences of a group of students(Cregan, Mo-
chol, Vrandečić) and their tutor(Bechhofer) in a mini-project conducted at the
Third European Summer School on Ontological Engineering and the Semantic
Web(SSSW05) held in Spain in July 20051. The students, all PhD students at
1 http://babage.dia.fi.upm.es/sssw05/



their respective institutions, formed a project group with the aim of discover-
ing the limits of OWL in relation to the use of rules. Specifically, we wanted
to discover what tasks are beyond the expressivity of OWL and require the use
of rules, and what additional capabilities do rules provide? We used Protégé
ontology software[12], the Racer automated reasoner[3] and SWRL in our in-
vestigation: SWRL is based on a combination of the OWL DL and OWL Lite
sublanguages of OWL together with the Unary/Binary Datalog RuleML sublan-
guages of the Rule Markup Language.
To facilitate the investigation, we devised a simple example problem which we
regard as a realistic, though small, use case for Semantic Web technologies. The
paper describes the challenges that arose and our learning process in applying
various conditions to our example domain. We hope that our experience will be
helpful both as a teaching resource, adding to the (currently) limited amount of
tutorial material available for teaching Semantic Web technologies to students
(see [6, 11, 13]), and also, by highlighting the problems we experienced, will help
tool implementers and standards bodies to identify issues inherent in their ap-
proaches, and initiate discussion of possible solutions. The material discussed is
available on http://www.aifb.uni-karlsruhe.de/WBS/dvr/rove. It may also
be useful as an early test case for reasoners or editors implementing SWRL.
The paper is structured as follows: Firstly, we specify the general scenario of
our use case in section 2. Then we describe the ontology we constructed, and
present some limitations of the expressivity of OWL in section 3, and of SWRL
in section 4. Section 5 deals with problems we experienced using the tools, and
outlines some directions for future work. Lastly in section 6, we summarise our
learning experience, the issues we encountered and their significance.

2 Scenario

All participating students at SSSW05 were asked to form a group of four or five
students to conduct a mini-project. At the outset, the organizers asked the stu-
dents to make the groups as mixed as possible, to ensure everyone had a diverse
collaborative experience contrasting with their usual work/study activities. The
organizers also impressed on the students that having fun was a very important
part of the activity (no doubt as it enhances learning!). Every student belonged
to exactly one group. Each group had a unique name, and was led by exactly one
summer school tutor. Every tutor led at least one group, and some led more than
one group. All participants in the mini-project were either tutors or students,
and no-one was both a student and a tutor.
Due our chosen area of investigation we named our mini-project group“ROVE”
(Rules for Ontology Validation Effort). For the ROVE project, we chose a simple
and readily accessible domain for applying ontology representation and rules:
the student groups taking part in the Summer School mini-projects. In order to
discover the limits of OWL’s abilities, and the capabilities provided by adding
rules, we attempted to formally define and implement the informally stated
conditions the organizers had placed on group formation.



2.1 Conditions

We decided that the following conditions reflected desirable group formations:
Condition #1 : Groups should have either 4 or 5 members
Condition #2 : Groups should have at least one member of each gender
Condition #3 : Group members are of all different nationalities
Condition #4 : Group members are from all different institutions
Condition #5 : Groups should have fun. We decided it would be fun if the
tutor of the group were the favourite of all the students in the group, so we asked
all students to nominate which tutor was most attractive (see sec 4).
Our goal was to formalize these conditions and use a classifier to automatically
categorize all groups as either a GoodGroup - one that fulfills all conditions, or
a BadGroup - one which does not satisfy one or more of the stated conditions:

Group is a GoodGroup iff Cond1 ∧ Cond2 ∧ Cond3 ∧ Cond4 ∧ Cond5
Group is a BadGroup iff¬Cond1 ∨ ¬Cond2 ∨ ¬Cond3 ∨ ¬Cond4 ∨ ¬Cond5

3 ROVE Ontology

3.1 Classes and Instances

Initially we built a simple ontology (see Fig. 1) containing disjoint classes Person,
Country, Institution, and Group. Person was divided into disjoint subclasses
Tutor and Student exactly partitioning the class. Person was also divided by
gender into disjoint subclasses Man and Woman, also as an exact partition.

Fig. 1. ROVE-ontology



3.2 Properties

Object Properties were then set up as follows: each person has a Nationality
(hasNationality), and works at an Institution(worksAt). Each Group is led by
a Tutor (ledBy) and has members (hasMember), only from the class Student.
Each Student is a memberOf exactly one Group, and has a favorite Tutor (at-
tractedTo). Data Properties related Persons and Groups to name strings.

3.3 Asserting Conditions using OWL

Using this ontology, we then tried to formalise and implement as many of our
stated conditions as possible using only OWL expressivity.

Condition #1 : Groups should have either 4 or 5 members

This condition was easily implemented by setting minimum and maximum car-
dinalities on the property hasMember which related Groups to Students:

Group v ≥ 4 hasMember u ≤ 5 hasMember

As all the groups satisfied this condition and cardinality conditions are easily
formulated within OWL, we simply asserted this condition on Group.

Condition #2 : Groups should have at least one member of each gender

This condition could not be modelled in OWL in the same way as Condition #1,
as it requires hasMember to have a minimum cardinality for values from each of
the subclasses Man and Woman. We used existential restrictions to accomplish
the task, by defining GoodGroup as a subclass of Group where hasMember has
(owl:)someValuesFrom Man and (owl:)someValuesFrom Woman. However, we
wanted to capture that this condition was only one of those to be satisfied by
a good group, so we did not want to make it a sufficient condition. Yet we also
wanted to ensure that all members of the group must be either male or female,
and there was no way to do this using a necessary condition.
We then approached the problem in reverse by specifying conditions for being
a bad group rather than a good group. Note that not satisfying any one of our
five conditions is sufficient for classification as a bad group. Protégé supports
explicit specification of either ‘Necessary’, or ‘Necessary and Sufficient’ asserted
conditions (see Figure) through an interface box, but if one has conditions which
are Sufficient without being Necessary, as in this case, this can only be imple-
mented by adding a subClass. We felt it would be more intuitive for Protégé to
support the assertion of subsumption axioms through the interface box also.
By introducing two new concepts to represent groups with all male members or
all female members: ManGroup and WomanGroup, where:

WomanGroup ≡ Group u ∀hasMember.Woman
ManGroup ≡ Group u ∀hasMember.Man



and creating BadGroup as a subclass of Group, it was then simple to implement
these two sufficient conditions for being a “bad group” by making WomanGroup
and ManGroup subclasses of BadGroup:

WomanGroup v BadGroup
ManGroup v BadGroup

However, having set this up, we noticed in automatic classification that one of
the groups was not classified as a BadGroup, although it consisted of four male
students. This was due to OWL’s Open World Assumption: the group, having
four male members, could still potentially have a fifth member who may be
female, without breaking the cardinality restriction, thus the reasoner could not
classify the group as a BadGroup. To solve this problem we considered several
alternatives. We had to dismiss the possibility of defining groups by enumeration,
as this included nominals and was not supported by the available reasoners [5].
Had we pursued this path, we would have needed to rework our ontology to model
group membership as a class instead of a relation, and this did not seem intuitive
to us in any case. Instead, we decided to state the size of the groups explicitly
by creating two new concepts: BigGroup (group with exactly 5 members) and
a SmallGroup (group with exactly 4 members) as disjoint subclasses of Group,
and then assert our other conditions onto these concepts:

BigGroup ≡ Group u ≥ 5 hasMember u ≤ 5 hasMember
SmallGroup ≡ Group u ≥ 4 hasMember u ≤ 4 hasMember

Group ≡ SmallGroup tBigGroup

Conditions #3-#5

These conditions required consideration of more than one property at a time:
for example, both a student’s nationality and group membership. Whilst OWL
has a relatively rich set of class constructors, expressivity for properties is much
weaker. Whilst OWL permits chaining of properties, it does not support making
assertions about the equality of the objects at the end of two different prop-
erties/property chains. Since conditions #3-#5 require precisely this kind of
assertion, it was not possible to formulate them using only OWL.

4 ROVE Rules

In the next step, we explored the use of rules to implement our conditions, using
the Semantic Web Rule Language(SWRL)[7] plugin to Protégé with the ROVE
ontology described above. Rules are constructed in the form of an implication
between an antecedent (body) and a consequent (head): whenever the conditions
specified in the antecedent hold, then the conditions specified in the consequent
must also hold. In SWRL rules, one may assert equivalences as well as implica-
tions. SWRL provides Horn-like rules for both OWL DL and OWL Lite, includes
a high-level syntax for representing these rules[1] and is more powerful than ei-
ther OWL DL or Horn rules alone[8].



Condition #3 : Groups should have members of all different nationalities

To classify bad groups in regard to this condition we constructed a rule “Same-
NationalitiesRule” which states that if a group has any two members with the
same nationality it is a BadGroup. Specifically, if group g has member s and
member s has nationality n and group g has another member x who is different
from member s and member x also has nationality n then g is a BadGroup.
SWRL notation:

hasMember(?g, ?s) ∧ hasNationality(?s, ?n) ∧ hasMember(?g, ?x) ∧
hasNationality(?x, ?n)∧ differentFrom(?s, ?x) → BadGroup(?g)

Condition #4 : Groups should have members from all different institutions

The same approach applies as was used for different nationalities:

hasMember(?g, ?s) ∧worksAt(?s, ?i)∧ hasMember(?g, ?x) ∧worksAt(?x, ?i)∧
differentFrom(?s, ?x) → BadGroup(?g)

Condition #5 : Groups should have fun

To stress-test OWL’s abilities to represent and reason with compositions of prop-
erties and situations where there were multiple properties that connected the
classes, we devised a complex criteria for“fun group”: a fun group is one where
all the students in the group are attracted to the tutor leading their group. We
also had the ulterior motive of providing amusement for both tutors and students
when the project work was presented on the last day of the summer school.
Each student was asked which tutor they were most attracted to: if the student
asked for clarification as to what “attracted to” meant, they were told that
they may interpret it as they wished. As the school had more male tutors than
female (5 as opposed to 2) and more male students than female (35 to 20),
then assuming a traditional interpretation of “attraction” there is likely to be a
bias in the data, favoring the student body’s attraction to the female tutors, at
least in terms of raw numbers. However, while the results were a source of much
amusement for the participants (the ROVE presentation included poll results
for “Most attractive Summer School tutor”), they were inconsequential for the
real purpose of the exercise (although perhaps not to the tutors!).
We formulated the rule to capture that any group that has a member who is
attracted to someone other than the group’s tutor is a bad group:

hasMember(?g, ?s) ∧ attractedTo(?s, ?t) ∧ hasTutor(?g, ?x)∧
differentFrom(?t, ?x) → BadGroup(?g)

Incidentally, our other ulterior motive in formulating all the conditions was to
surreptitiously ensure that the ROVE group was the only group that satisfied
all conditions, and we are pleased to say that we successfully achieved this.



4.1 OWL: Not Bad does not equal Good

At this point we thought we had now captured all our conditions adequately
using OWL and SWRL, and would be able to automatically classify the groups
as good or bad. Whilst we were able to classify BadGroups, we had no way do the
converse: that is, to automatically classify GoodGroups. Stating that GoodGroups
are all groups that are not bad groups will not work: not being classified as a bad
group only indicates that the group’s status as a good or bad group is unknown.
There is no way to specify that the list of criteria is exhaustive and use negation
as failure, as OWL’s semantics adopt the open world assumption: a statement
cannot be assumed true just because its negation cannot be proven[9].
Therefore, in order to classify GoodGroups as such, we needed to reformulate all
the prior conditions in a positive form, thereby setting up necessary and sufficient
conditions for being a GoodGroup. By positive form, we mean a formulation
designed to satisfy the condition, rather than to violate it. For instance, with
the nationality condition (Condition #3), the positive form ensures all members
of the Group have different nationalities, whereas the negative form simply tests
whether any two members have the same nationality.
We found it particularly challenging to grasp the asymmetric implications of
using the positive and negative forms of rules, as intuitively we were only at-
tempting to view the situation from the opposite side. We felt that a symmetric
approach would be easier to use, as could be provided by tools, for example a
wizard creating closures over rules automatically. Maybe such a pattern should
be expressible in SWRL itself, in order to increase interoperability.
By formulating positive rules for our conditions, we were able to define Good-
Groups as exactly those Groups which satisfied all the rules:

GoodGroup ≡ MixedGenderGroup u InternationalGroupu
InterInstitutionalGroup u FunGroup

This is done by creating an OWL axiom using class descriptors defined in SWRL.
However, formulating the rules in positive form in SWRL was extremely onerous
for most of our conditions.

Condition #2 : Groups should have at least one member of each gender

Creating a MixedGenderGroup was easy: we were able to take the pure-OWL
approach previously described in section 3.3:

MixedGroup ≡ Group u ∃hasMember.Male u ∃hasMember.Female

Condition #3 : Groups should have members of all different nationalities

To define this condition positively, we constructed an InternationalGroup rule
containing as antecedent a pairwise comparison of nationalities of every member
to test whether they were all different. There need to be two forms of the rule
for BigGroup and SmallGroup, as 5-member groups require 5 different nation-
alities, not 4 : since every binary combination has to be considered, 4-member



groups require only 6 pairwise comparisons, whilst 5-member groups require 10
comparisons (

∑n−1
1 n comparisons for n members).

To show the complexity of such a rule we have shown it below for a 3-member
group only:

Part of the rule Explanation Meaning
SmallGroup(?x) if x is a small group
∧ and
hasMember(?x, ?a)∧
hasMember(?x, ?b)∧ group x has members: a, b and c Group x has 3 members.
hasMember(?x, ?c)
∧ and
differentFrom(?a, ?b)∧ member a is different
differentFrom(?a, ?c) from members b and c Group x has 3
∧ and different members
differentFrom(?b, ?c) member b is different from member c

(equality to a was checked above)
∧ and
hasNationality(?a, ?e)∧ member a has nationality e and Each group member has
hasNationality(?b, ?f)∧ member b has nationality f and nationality (no information
hasNationality(?c, ?g) member c has nationality g regarding different or same

nationalities).
∧ and
differentFrom(?e, ?f)∧ nationality e is different from
differentFrom(?e, ?g) nationalities f and g Each of the 3 group members
∧ and has different nationalities.
differentFrom(?f, ?g) nationality f is different from nationality g

(equality to e was checked above)
→ then
GoodGroup(?x) the group x is a good group

Such a rule is long and unwieldy to write with the SWRL plugin: we lamented
the lack of pre-defined predicates in SWRL, as a simple “all-different” predicate
to enter the arguments and have SWRL take care of the pairwise comparisons
would have been a great aid.

Condition #4 : Groups should have members from all different institutions

Analogously to the above, InterInstitutionalGroup is another huge rule, requiring
separate forms for 4 and 5 member groups.

Condition #5 : Groups should have fun

Although the intuition behind the definition of a FunGroup was easy - a group
where all its members were attracted to the every tutor leading the group -
formalizing the rule in positive form again proved to be an extremely tedious
task, resulting in a huge and hard to maintain rule.

5 Tool support

The first and most important problem was the lack of an appropriate reasoner
that could be plugged into a rule-enriched ontology created with Protégé. Racer
supported reasoning within OWL, but to use rules in automatic classification
obviously requires a reasoning engine which is able to operate on both OWL
ontologies and SWRL rules, and none were available for the Windows-based



Summer School environment. However, we plan to use such reasoners, like Hoo-
let [2] or KAON2 [10] and describe the results on the ROVE website.
Further problems related to the ontology engineering environment where we
identified two issues with Protégé and one with SWRL:
Issue #1: entering data proved very tedious when making instances of a su-
perclass belong to an orthogonal subclass partition: in our example, Person was
partitioned into Student/Tutor subclasses as well as Man/Woman, and when en-
tering the second SuperClass in Protégé we could not simply select a number of
instances and assign them to a class, but had to edit each instance individually.
Issue #2: the tabs containing “necessary” and “necessary & sufficient” conditions
left us wondering why there is no simple “sufficient” tab in Protégé as well to
create subsumption axioms, as described in section 3.
Issue #3: as described in section 4.1, entering SWRL rules to create a closure for
a class description with regard to a superclass was very tedious and error-prone.
Even in our simple use case, the rules quickly become very large and therefore
difficult to edit, let alone maintain and extend. A real-life example is likely to
produce rules that are not manageable manually, so creating (and especially
maintaining) such closures automatically needs to be made possible.

6 Conclusions

In this simple example of our Summer School mini-project, we showed the dif-
ficulties and challenges of implementing some intuitively very simple class con-
straints. The key learning experience were the limitations of the expressivity of
OWL. By going beyond OWL and using SWRL, we were able to formulate sev-
eral further conditions using rules, but found it challenging to fully understand
the implications of the Open World Assumption and the lack of Negation as
Failure. Without the input of our tutor, we might easily have fallen into the trap
of believing we had captured all our conditions, when in actual fact we had not.
Constructing and editing long rules in SWRL to address this was particularly dif-
ficult, and we strongly encourage developers to introduce better support for rule
construction using templates and built-in predicates. We hope our experience will
provide a lesson for Semantic Web students following in our footsteps, and will
provide insights for Semantic Web tool developers. The ROVE material is avail-
able in different stages at http://www.aifb.uni-karlsruhe.de/WBS/dvr/rove
for use in training and tool testing.

Acknowledgements We thank Antoine Zimmermann, who also was a member of
the ROVE team, Enrico Motta and Asuncion Gomez-Perez, the organizers of the
SSSW2005, and all the students, tutors and speakers. Congratulations to Natasha
Fridman-Noy who was the Summer School’s ‘most attractive tutor’. Yes Asun, now it’s
time to go to the bus.

Research reported in this paper has been partially financed by NICTA (www.nicta.
com.au), the EU project SEKT (www.sekt-project.com), the NoE KnowledgeWeb
(knowledgeweb.semanticweb.org), and the German Ministry of Research (BMBF)



project Knowledge Nets (nbi.inf.fu-berlin.de/research/wissensnetze) of the In-
terVal (interval.hu-berlin.de) Berlin Research Centre for the Internet Economy
(www.internetoekonomie.net).

References

1. R. Aggarwal. Semantic web services languages and technologies: Com-
parison and discussion. LSDIS Lab, University of Georgia, 2004. cite-
seer.ist.psu.edu/700682.html.

2. S. Bechhofer. Hoolet. Department of Computer Science, University of Manchester,
2004. http://owl.man.ac.uk/hoolet/.

3. V. Haarslev and R. Möller. Racer: An owl reasoning agent for the semantic web.
In Proc. of the International Workshop on Applications, Products and Services of
Web-based Support Systems, in conjunction with 2003 IEEE/WIC International
Conference on Web Intelligence, Halifax Canada, Oct 13, pages 91–95, 2003.

4. J. Hendler, T. Berners-Lee, and E. Miller. Integrating applications on the semantic
web. Journal of the Institute of Electronic Engineers of Japan, pages 676–680, 2002.

5. J. Hladik. Reasoning about nominals with FaCT and RACER. In Proc. of the
2003 International Workshop on Description Logics (DL2003), CEUR-WS, 2003.

6. M. Horridge, H. Knublach, A. Rector, R. Stevens, and C. Wroe. A practical guide
to building OWL ontologies using the Protégé-OWL plugin and CO-ODE tools,
2004. University of Manchester.

7. I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.Dean. Swrl:
A semantic web rule language combining owl and ruleml. DARPA DAML Program,
2003. http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

8. I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. Owl rules: A
proposal and prototype implementation. Conditionally accepted for publication.
Journal of Web Semantics, 2005.

9. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. J. of Web Semantics, 1(1):7–26,
2003.

10. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− description logic to
disjunctive datalog programs. In D. Dubois, C. Welty, and M.-A. Williams, editors,
Proceedings of the KR2004, pages 152–162. AAAI Press, 2004.

11. F. Manola and E. Miller. Resource Description Framework (RDF) Primer. W3C
Recommendation 10 February, 2004. At http://www.w3.org/TR/rdf-primer/.

12. N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-2000:
Combining interoperability and flexibility. In R. Dieng and O. Corby, editors,
Proc. of the 12th EKAW, volume 1937 of LNAI, pages 17–32. Springer, 2000.

13. A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,
H. Wang, and C. Wroe. OWL pizzas: Practical experience of teaching OWL-DL:
Common errors & common patterns. In E. Motta, N. R. Shadbolt, and A. Stutt,
editors, Proc. of the 14th EKAW, volume 3257 of LNCS, pages 63–81. Springer,
2004.

14. M. K. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide,
2004. W3C Recommendation, http://www.w3.org/TR/owl-guide/.

15. W3C. Owl web ontology language-reference. LSDIS Lab, University of Georgia,
2004. http://www.w3.org/TR/owl-ref/.

16. W3C. W3c: Rdf/xml syntax specification (revised). LSDIS Lab, University of
Georgia, 2004. http://www.w3.org/TR/rdf-syntax-grammar/.


