
Towards a Nonmonotonic Extension to OWL

Yarden Katz and Bijan Parsia

MIND Lab, University of Maryland
College Park, MD 20740

Abstract. We discuss ALCK, a nonmontonic logic that augments ALC
with the epistemic operator K, and argue that a similar extension to
OWL would be desirable. We show, however, that at its current state the
OWL syntax is too inflexible to capture even this syntactically simple-
minded extension. Finally, we introduce our implementation of ALCK as
an extension to the tableau-based OWL-DL reasoner Pellet.

1 Nonmonotonic logics, open and closed worlds

Nonmonotonic logics were proven generally successful in capturing, among other
things, several forms of common sense and database reasoning. A bold divide
between the field of nonmonotonic formalisms and first-order reasoning (where
description logics and OWL lie) rests in the closed v. open world assumption. In
database systems, it is reasonable to assume that the data at hand is complete.
Since no information outside the database is relevant, we say that our world is
closed. Formally, if Σ 6|= ϕ (where Σ is the knowledge in our database and ϕ
is some formula), we assume ¬ϕ is the case. This constitutes the closed-world
assumption (CWA). Under the open world assumption (OWA), on the other
hand, it is accepted that the knowledge in our database is perhaps incomplete.
When asked whether Σ |= ϕ, we simply come to no conclusion in case Σ 6|= ϕ
and Σ 6|= ¬ϕ.

We will not delve into the question of which semantics is “better” overall or
more appropriate for OWL. Rather, we argue that it would be desirable to be
able to “turn on” the closed-world assumption when needed in OWL, in order
the reap the benefits of nonmonotonicity, but without giving up OWL’s open-
world semantics in general. The logic ALCK allows for this interaction. Many
useful nonmonotonic features such as integrity constraints and procedural rules
(among others−we point to [1] for full treament) are formalizable in this logic.

Consider as a motivational example for CWA, an integrity constraint. Sup-
pose that for a certain application, we require all the employees in our knowledge
base to be explictly declared to be either a manager or a programmer, since em-
ployees will be treated differently according to their positions. The subsumption
axiom Employee v Manager t Programmer will not suffice, since an indi-
vidual only declared to be an instance of Employee will trivially satisfy the
disjunction even if it is not explcitly a member of either disjunct (so long as
it is not in ¬Manager u ¬Programmer of course.) Thus the knowledge base
Σ = {Employee(bob)} is a legitimate model of this concept, yet does not settle

2

the question of whether bob is actually a manager or a programmer. An integrity
constraint in this case will check that every employee is known to be one or the
other.

Integrity constraints are common in database and frame systems, where the
CWA is usually made. Without completely abandoning OWL’s open world, it
would be useful to capture such constraints. The epistemic formulation of such
integrity constraints−i.e. asking the database only for known facts−was noted
by Reiter. These constraints, phrased epistemically, can be captured in ALCK.

2 ALCK

In [1], the epistemic operator K1 is added to the description logic ALC. The K
operator allows queries that assume the CWA, making ALCK a nonmonotonic
formalism. The K operator (which is a kind of necessity operator) can be applied
to a concept or role.

We focus on the use of K in queries and assume that queries are posed to
an ALC knowledge base Σ. Intuitively, the query 〈a : KC〉 (resp. 〈aKRb〉 for
a role) is read as “Is the individual a known to be C?” More formally, we let I
be the usual interpretation, and W a set of interpretations that satisfy C. We
say Σ |= 〈a : KC〉 if and only if for every interpretation I ∈ W, a ∈ CI . The
set W must be maximal, which means that in our case it is simply the set of all
first-order models of C. Returning to our motivational example, the closed-world
query desired can be phrased as: Σ |= 〈bob : KManager t KProgrammer〉.

3 An OWL syntax for K?

The K operator is quite simple from a syntactic standpoint: it can be applied to
classes and properties. We outline several failed approaches to encoding K into
the RDF/XML syntax of OWL. It is clear that the operator cannot be encoded
as a class, for the simple reason that it applies to other classes and properties.
This left us with two options:

1. As a property? We could coin a new reserved OWL object property, owl:K.
To represent 〈a : KC〉, we must make an anonymous class related via owl:K
to C. Suppose that we want to encode 〈bob : Manager u ¬KHacker〉:

<rdf:Description rdf:about="#bob">

<rdf:type>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Manager"/>

<owl:Class>

<owl:complementOf>

<owl:Class>

1 Named after Kripke originally

3

<owl:K>

<owl:Class rdf:about="#Hacker"/>

</owl:K>

</owl:Class>

</owl:complementOf>

</owl:Class>

</owl:intersectionOf>

</owl:Class>

</rdf:type>

</rdf:Description>

There are two immediate problems with this: (1) we are forced to generate
superfluous anonymous classes to maintain the “striped” structure of the
syntax (see [4]), and (2) we are able to arbitrarily name (and refer to using
nodeID) any of our anonymous classes, causing the structure of the above
encoding to become even less clear. However, setting aside these problems,
this method will simply not work for K on properties (e.g. aKRb) as there
is no way to ”apply” a property to a property.

2. As an annotation property? The second alternative would be to represent
K as an annotation property that is used to ”label” classes. The advantage of
this approach is that annotation properties can be used to label both classes
and properties. To avoid having an empty annotation, we call the property
modality and assume that the annotation will always be the string ”K”. Let
us try to represent the assertion 〈bob : KManager u KPerson〉 using this
method:

<rdf:Description rdf:about="bob">

<rdf:type>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Manager">

<owl:modality>K</owl:modality>

</owl:Class>

<owl:Class rdf:about="#Person">

<owl:modality>K</owl:modality>

</owl:Class>

</owl:intersectionOf>

</owl:Class>

</rdf:type>

</rdf:Description>

The problem here is that we could easily reserialize this description such
that the syntax becomes ambiguous. For example, it is perfectly correct to
pull the following out of the conjunction:

<owl:Class rdf:about="#Manager">

<owl:modality>K</owl:modality>

</owl:Class>

4

And place it in the top-level. In its place in the conjunction, we can sub-
stitute <owl:Class rdf:about="#Manager">. While this is a valid serial-
ization, our assertion now lost its proper structure. With this change, our
assertion simply becomes 〈bob : Manager u KPerson〉. This is not the be-
havior we wanted; we only meant to apply K to the class Manager in the
first conjunction, and not in general.

With all these complications, remember that we haven’t mentioned more
sophisticated use of K. We have not considered the use of the operator in exis-
tential and universal role restrictions, such as ∃KR.C or ∀R.KC, for example.
Even if we adopt the first approach and ignore its severe drawbacks, it is clear
that such a syntax is not going to be human-readable.

4 Implementation

We have implemented the ALCK language as an extension to the tableau-based
OWL-DL reasoner Pellet. In addition to the K queries outlined above, we also
admit a restricted use of K in the terminology, in the form of an epistemic rule.
An epistemic rule is of the form of KC v D where C and D are ALC concepts.
Frustrated with the failure to come up with an OWL syntax extension, we have
extended the KRSS format to allow for K and epistemic rules. The extension is
trivial and is described in [3].

5 Future work and conclusion

Our examples focused on the use of K in queries posed to a first-order (ALC)
knowledge base. Extending more expressive description logics with this function-
ality (including epistemic rules) is easy. Other useful features of nonmonotonic
logics, like default rules, can be formalized by admitting K freely in the termi-
nology, and by adding another epistemic operator, A, to the language (see [2].)
However, it must be noted that modelling with both operators allowed arbitrar-
ily in the knowledge base can be far from intuitive, compared with many other
formalisms. We conclude that aside from the superficial, though problematic
barrier posed by the OWL syntax, extending the OWL semantics (or as large
a subset of it as possible) to accomodate these operators would be useful and
doable, and a task which we are actively pursuing.

References

1. Donini, F (et al). An epistemic operator for description logics. J. Art. Intel. 100
(1998) 225-274.

2. Donini, F (et al). Description logics of minimal knowledge and negation as failure.
ACM Trans. Comp. Log. (2001) 1529-3785.

3. Katz, Y. ALCK implementation in Pellet. http://www.mindswap.org/2005/alck
4. Beckett, D (et al). RDF/XML syntax specification (revised).

http://www.w3.org/TR/rdf-syntax-grammar/

