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Abstract

The novel context of accessing and querying large data repositories through
ontologies that are formalized in terms of expressive DLs requires on the one
hand to consider query answering as the primary inference technique, and on the
other hand to optimize it with respect to the size of the data, which dominates
the size of ontologies. While the complexity of DLs has been studied extensively,
data complexity in expressive DLs has been characterized only for answering
atomic queries, and was still open for more expressive query languages, such
as unions of conjunctive queries (UCQs). In this paper we advocate the need
for studying this problem, and provide a significant technical contribution in
this direction. Specifically, we prove a tight coNP upper bound for answering
UCQs over SHIQ knowledge bases, for the case where the queries do not contain
transitive roles. We thus establish that for a whole range of DLs from AL to
SHIQ, answering such UCQs has coNP-complete data complexity. We obtain our
result by a novel tableaux-based algorithm for checking query entailment, inspired
by the one in [20], but which manages the technical challenges of simultaneous
inverse roles and number restrictions (which leads to a DL lacking the finite model
property).

1 Introduction

Description Logics (DLs) [2] provide the formal foundations for the standard Web
ontology languages [11]. In fact, OWL-Lite and OWL-DL are syntactic variants of
the DLs SHIF(D) and SHOIN (D), respectively [12, 22]. In the Semantic Web
and domains such as Enterprise Application Integration and Data Integration [19],
ontologies provide a high-level, conceptual view of the relevant information. However,
they are increasingly seen also as a mechanism to access and query data repositories.

∗This work was partially supported by the Austrian Science Funds (FWF) project P17212, by
the European Commission project REWERSE (IST-2003-506779), and by the European Commission
FET project TONES (FP6-7603).



This novel context poses an original combination of challenges both in DLs/ontologies
and in related areas such as data modeling and querying in databases:

(i) On the one hand, data repositories can be very large and are usually much
larger than the intensional level expressing constraints on the data. Therefore, the
contribution of the extensional data to inference complexity must be singled out, and
one must pay attention to optimizing inference techniques with respect to data size,
as opposed to the overall size of the knowledge base. In databases, this is accounted
for by data complexity of query answering [26], where the relevant parameter is the
size of the data, as opposed to combined complexity, which additionally considers the
size of the query and of the schema.

(ii) On the other hand, the data underlying an ontology should be accessed using
well established and flexible mechanisms such as those provided by database query
languages. This goes well beyond the traditional inference tasks involving objects in
DL-based systems, like instance checking [10, 23]. Indeed, since explicit variables are
missing, DL concepts have limited possibility for relating specific data items to each
other. Conjunctive queries (CQs) and unions of CQs (UCQs) provide a good tradeoff
between expressive power and nice computational properties, and thus are adopted as
core query language in several contexts, such as data integration [19].

(iii) Finally, the considered DLs should have sufficient expressive power to capture
common constructs used in data modeling [4]. This calls for expressive DLs [5], such
as SHIQ [13, 15], featuring besides full Booleans also number restrictions, inverse
and transitive roles, and role hierarchies.

As for data complexity of DLs, [10, 23] showed that instance checking is coNP-
hard already in the rather weak DL ALE , and [7] that CQ answering is coNP-hard
in the yet weaker DL AL. For suitably tailored DLs, answering UCQs is polynomial
(actually LogSpace) in data complexity [6, 7]; see [7] for an investigation of the
NLogSpace, PTime, and coNP boundaries.

For expressive DLs (with the features above, notably inverse roles), TBox+ABox
reasoning has been studied extensively using techniques ranging from reductions to
Propositional Dynamic Logic (PDL) (see, e.g., [8, 5]) over tableaux [3, 15] to automata
on infinite trees [5, 25]. For many such DLs, the combined complexity of TBox+ABox
reasoning is ExpTime-complete, including ALCQI [5, 25], DLR [8], and SHIQ [25].
However, until recently, little attention has been explicitly devoted to data complexity
in expressive DLs. An ExpTime upper bound for data complexity of UCQ answering
in DLR follows from the results on UCQ containment and view-based query answering
in [8, 9]. They are based on a reduction to reasoning in PDL, which however prevents
to single out the contribution to the complexity coming from the ABox. In [20] a tight
coNP upper bound for CQ answering in ALCNR is shown. However, this DL lacks
inverse roles and is thus not suited to capture semantic data models or UML. In [17, 18]
a technique based on a reduction to Disjunctive Datalog is used for ALCHIQ. For
instance checking, it provides a (tight) coNP upper bound for data complexity, since it
allows to single out the ABox contribution. The result can immediately be extended to
tree shaped conjunctively queries, since these admit a representation as a description
logic concept (e.g., by making use of the notion of tuple-graph of [8], or via rolling
up [16]). However, this is not the case for general CQs, resulting in a non-tight



2ExpTime upper bound (matching also combined complexity).
Summing up, a precise characterization of data complexity for UCQ answering

in expressive DLs was still open, with a gap between a coNP lower-bound and an
ExpTime upper bound. We close this gap, thus simultaneously addressing the three
challenges identified above. Specifically, we make the following contributions:

• Building on techniques of [20, 15], we devise a novel tableaux-based algorithm
for answering UCQs where all roles are simple over SHIQ knowledge bases.
Technically, to show its soundness and completeness, we have to deal both with
a novel blocking condition (inspired by the one in [20], but taking into account
inverse and transitive roles), and with the lack of the finite model property.

• This novel algorithm provides us with a characterization of data complexity for
UCQ answering in expressive DLs. Specifically, we show that data complexity
of answering such an UCQ over SHIQ knowledge bases is in coNP, and thus
coNP-complete for all DLs ranging from AL to SHIQ.

For space reasons, proofs are omitted here; they can be found in [21].

2 Preliminaries

We only briefly recall SHIQ and refer to the literature (e.g., [13, 15]) for details and
background. We denote by C, R, R+ (where R+ ⊆ R), and I the sets of concept
names, role names, transitive role names, and individuals respectively. A role R is
either an atomic role name P or its inverse P−. A concept C is either an atomic
concept name A or one of C u D, C t D, ¬C, ∀R.C, ∃R.C, ≥ nS.C, or ≤ nS.C,
where C and D denote concepts, R a role, S a simple role (see later), and n ≥ 0
an integer. A knowledge base is a triple K = 〈T ,R,A〉, where the TBox T is a set
of concept inclusion axioms C1 v C2; the role hierarchy R is a set of role inclusion
axioms R1 v R2; and the ABox A is a set of assertions A(a), P (a, b), and a 6= b,
where A (resp., P ) is an atomic concept (resp., role) and a and b are individuals.

A role S is simple, if for no role R ∈ R+ we have that R v∗ S, where v∗ denotes
the reflexive and transitive closure of the subrole relation v over R ∪ {Inv(R1) v
Inv(R2) | R1 v R2 ∈ R}. Without loss of expressivity, we assume that all concepts
in K are in negation normal form (NNF). For a concept C, clos(C) is the smallest
set of concepts containing C that is closed under subconcepts and their negation (in
NNF); and clos(K) denotes the union of all clos(C) for each C occurring in K. We
will use K to denote a knowledge base 〈T ,R,A〉, RK the roles occurring in K and
their inverses, and IK the individuals occurring in A.

The semantics of K is defined in terms of first-order interpretations I = (∆I , ·I),
where ∆I is the domain and ·I the valuation function, as usual (without unique names
assumption;1 see [2]). I is a model of K, denoted I |= K, if it satisfies T , R and A.

1The unique names assumption can be easily emulated using 6≈.



Example 1 As a running example, we use the knowledge base

K = 〈 {A v ∃P1.A, A v ∃P2.¬A }, {}, {A(a) }〉.

We assume that K has an associated set of distinguished concept names, denoted
Cq, which are the concepts that can occur in queries.

Definition 1 (Union of Conjunctive Queries) A conjunctive query (CQ) Q over
a knowledge base K is a set of atoms of the form {p1(Y1), . . . , pn(Yn)} where each pi

is either a role name in RK or a concept in Cq, and Yi is a tuple of variables or
individuals in IK matching its arity. A union of CQs (UCQ) U is defined as an
expression of the form Q1 ∨ · · · ∨Qm where Qi is a CQ for each i ∈ {1, . . . , m}.

For short, a query is either a CQ or a UCQ. We will restrict our attention to
queries where each role occurring in some pi(Yi) is a simple role, i.e., transitive roles
and super-roles of transitive roles are disallowed in queries. We denote by varind(Q)
the set of variables and individuals in query Q. An interpretation I is a model of a CQ
Q, denoted I |= Q, if there is a substitution σ : varind(Q) → ∆I such that σ(a) = aI

for each individual a ∈ varind(Q) and I |= p(σ(Y )), for each p(Y ) in Q. For a UCQ
U = Q1 ∨ · · · ∨Qm, I |= U is defined as I |= Qi for some i ∈ {1, . . . , m}. We say that
K entails query Q, denoted K |= Q, if I |= Q for each model I of K.

Example 2 Let Cq = {A}. We consider the CQs Q1 = {P1(x, y), P2(x, z), A(y)} and
Q2 = {P2(x, y), P2(y, z)} and the UCQ U = Q1 ∨ Q2. Note that K |= Q1. Indeed,
for an arbitrary model I of K, we can map x to aI , y to an object connected to
aI via role P1 (which by the inclusion axiom A v ∃P1.A exists and is an instance
of A), and z to an object connected to aI via role P2 (which exists by the inclusion
A v ∃P2.¬A). Also, K 6|= Q2. A model I of K that is not a model of Q2 is the
one with ∆I = {o1, o2}, aI = o1, AI = {o1}, P I

1 = {〈o1, o1〉}, and P I
2 = {〈o1, o2〉}.

Finally, since K |= Q1, then also K |= U .

Query answering for a certain DL L is in a complexity class C, if given any knowl-
edge base K in L and query Q, deciding K |= Q is in C; this is also called combined
complexity. The data complexity of query answering is the complexity of deciding
K |= Q where Q and all of K except A is fixed.

We only consider Boolean queries (i.e., yes/no queries, with no free variables), to
which queries with distinguished variables are reducible as usual. Note that query
answering is not reducible to knowledge base satisfiability, since the negated query is
not expressible within the knowledge base.

3 The Query Answering Algorithm

In this section, Q denotes a CQ and U a UCQ. As mentioned, we assume that all roles
occurring in queries are simple. We first describe our method for deciding K |= Q, and
then how it is extended to K |= U . Our technique builds on the SHIQ satisfiability
algorithm in [15]. The adaption to query answering is inspired by [20], yet we deal
with DLs that have no finite model property.
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Figure 1: Trees and completion forests for the example knowledge base

We use completion forests, which are finite relational structures capturing sets of
models of K. Roughly speaking, the models of K are represented by an initial comple-
tion forest FK . By applying tableaux-style expansion rules repeatedly, new completion
forests are generated non-deterministically where also new individuals might be in-
troduced. Each model of K is preserved in some of the resulting forests. Therefore,
checking K |= Q equals checking F |= Q for each completion forest F . The blocking
conditions on the rules, which ensure that expansion terminates, are more involved
than those in [15]. They require a depth parameter n (depending on Q) that ensures
a sufficient expansion of each forest F , in such a way that semantical entailment of Q
in F can be checked effectively via a syntactic mapping of the variables in Q to the
nodes in F . Thus, to witness that K 6|= Q, it is sufficient to (nondeterministically)
construct a large enough forest F to which Q cannot be mapped.

A variable tree T is a tree whose nodes are variables except the root, which might
be also an individual, and where each node v is labeled with a set of concepts L(v)
and each arc v→w is labeled with a set of roles L(v→w). For any integer n ≥ 0, the
n-tree of a node v in T , denoted Tn

v , is the subtree of T rooted at v that contains all
descendants of v within distance n. Variables v and v′ in T are n-tree equivalent in T ,
if Tn

v and Tn
v′ are isomorphic (i.e., there is a bijection from the nodes of Tn

v to those of
Tn

v′ which preserves all labels). If, for such v and v′, v′ is an ancestor of v in T and v
is not in Tn

v′ , then we say that Tn
v′ tree-blocks Tn

v . A completion forest (cf. [15]) for K
is constituted by (i) a set of variable trees whose roots are the individuals in IK and
can be arbitrarily connected by arcs; and (ii) a binary relation 6≈ on the individuals
in IK , implicitly assumed to be symmetric.

Example 3 Consider the variable tree T1 in Figure 1, with a as root, L1 = {A,
¬A t ∃P1.A, ¬A t ∃P2.¬A, A t ¬A, ∃P1.A, ∃P2.¬A}, and L2 = {¬A, ¬A t ∃P1.A,
¬At∃P2.¬A, At¬A}. Then, v1 and v5 are 1-tree equivalent in T1 and T1

1
v1

tree-blocks
T1

1
v5

.

Now we introduce the initial completion forest for K. We use a set of global
concepts gcon(K, Cq) = {¬C tD | C v D ∈ T } ∪ {C t ¬C | C ∈ Cq}. Informally, by
requiring that each individual belongs to all global concepts, satisfaction of the TBox



is enforced and, by case splitting, each individual can be classified with respect to the
distinguished concepts (i.e., those appearing in queries).

The initial completion forest for K, denoted FK , is defined as follows:2

• The nodes are the individuals a ∈ IK , and L(a) = {A | A(a) ∈ A}∪gcon(K, Cq).

• The arc a→ a′ is present iff A contains some assertion P (a, a′), and L(a→ a′) =
{P | P (a, a′) ∈ A}.

• a 6≈ a′ iff a 6= a′ ∈ A.

Example 4 In our running example, FK contains only the node a which has the label
L(a) := {A, ¬A t ∃P1.A, ¬A t ∃P2.¬A, A t ¬A}.

In the expansion rules, we use a notion of blocking that depends on a depth
parameter n: a node is n-blocked if it’s a leaf of a tree-blocked n-tree in F . Note
that if v is n-blocked, then it is m-blocked for each m ≤ n. For n ≥ 1, n-blocking
implies blocking as in [15], and for n = 0 amounts to blocking by equal node labels.
Starting from FK , we can generate a set FK of new completion forests by applying
expansion rules. The rules are analogous to those in [15], but they use “n-blocking”
and initialize newly introduced nodes with a label containing gcon(K, Cq). When
applying the expansion rules, a clash may arise in some F , i.e., two complementary
concepts C and ¬C occur in a node label, or a node that should satisfy a number
restriction ≤ nS.C has more than n distinct S successors marked C. If this is not the
case, then F is clash free. We call a completion forest n-complete, if (under n-blocking)
no rule can be applied to it. We denote by ccfn(FK) the set of n-complete and clash
free completion forests in FK . For the set of expansion rules and more details, see [21].

Example 5 Consider the completion forest F1 with the variable tree T1 from Exam-
ple 3 and with empty 6≈. F1 is 1-blocked. Analogously, consider F2 that has T2 in
Figure 1 and where 6≈ is also empty. F2 is 2-blocked. Both F1 and F2 can be obtained
from FK by applying the expansion rules. They are both complete and clash-free, so
F1 ∈ ccf1(FK) and F2 ∈ ccf2(FK).

Models of a completion forest

Viewing variables in a completion forest F as individuals, we can define models of F
as models of K (over an extended vocabulary). An interpretation I is a model of a
completion forest F for K, denoted I |= F , if I |= K and for all nodes v, w in F it
holds that (i) vI ∈ CI if C ∈ L(v), (ii) 〈vI , wI〉 ∈ RI if F has an arc v→w and
R ∈ L(〈v, w〉), and (iii) vI 6= wI if v 6≈ w ∈ F .

Clearly, the models of the initial completion forest FK and of K coincide, and
thus FK semantically represents K. Then, each time an expansion rule is applied,
all models are preserved in some resulting forest. As a consequence, it holds that for
each model I of K, there exists some F ∈ ccfn(FK) and a model of F which extends I
(for any n ≥ 0). Since the set of n-complete and clash-free forests for K semantically

2If A = ∅, then FK contains a single node a with L(a) = gcon(K, Cq).



captures K (modulo new individuals), we can transfer query entailment K |= Q to
logical consequence of Q from completion forests as follows. For any completion forest
F and CQ Q, let F |= Q denote that I |= Q for every model I of F .

Proposition 1 Let Q be a CQ in which all roles are simple and let n ≥ 0 be arbitrary.
K |= Q iff F |= Q for each F ∈ ccfn(FK).

Now we will show that, if n is sufficiently large, we can decide F |= Q for an
F ∈ ccfn(FK) by syntactically mapping the query Q into F . We say that Q can
be mapped into F , denoted Q ↪→F , if there is a mapping µ from the variables and
individuals in varind(Q) into the nodes of F , such that (i) for each individual a,
µ(a) = a; (ii) for each atom C(x) in Q, C ∈ L(µ(x)); and (iii) for each atom R(x, y)
in Q, there is an arc µ(x)→µ(y) whose label contains R′ or an arc µ(y)→µ(x) whose
label contains the inverse of R′ for some R′ v∗ R.

Example 6 Q1 ↪→F2 holds, as witnessed by the mapping µ(x) = a, µ(y) = v2, and
µ(z) = v1. Note that there is no mapping of Q2 into F2 satisfying the above conditions.

It is clear that if Q can be mapped to F via µ, then Q is satisfied in each model
I = (∆I , ·I) of F by assigning to each variable x in Q the value of its image µ(x)I .
Thus Q ↪→F implies F |= Q. To prove that the converse also holds, we have to show
that if n is large enough, a mapping of Q into F ∈ ccfn(FK) can be constructed from
a distinguished canonical model of F .

The canonical model IF of F is constructed by unraveling the forest F in the
standard way, where the blocked nodes act like ‘loops’. Its domain comprises the set
of all paths from some root in F to some node of F (thus, it can be infinite). Note
that in order for IF to be a model, F must be in ccfn(FK) for some n ≥ 1. The
formal definition of IF is then straightforward yet complex, and we must refer to the
extended report [21] for the details. Instead, we provide an example.

Example 7 By unraveling F2, we obtain a model IF2 that has as domain the infinite
set of paths from a to each vi. Note that a path actually comprises a sequence of pairs
of nodes, in order to witness the loops introduced by blocked variables. When a node
is not blocked, like v1, the pair v1

v1
is added to the path. Since T 2

v1
tree-blocks T 2

v7
, every

time a path reaches v11, which is a leaf of a blocked tree, we add v5
v11

to the path and
‘loop’ back to the successors of v5. In this way, we obtain the following infinite set of
paths:

p0 = [a
a ], p7 = [a

a , v1
v1

, v3
v3

, v5
v5

, v7
v7

],
p1 = [a

a , v1
v1

], p8 = [a
a , v1

v1
, v3

v3
, v5

v5
, v8

v8
],

p2 = [a
a , v2

v2
], p9 = [a

a , v1
v1

, v3
v3

, v5
v5

, v7
v7

, v9
v9

],
p3 = [a

a , v1
v1

, v3
v3

], p10 = [a
a , v1

v1
, v3

v3
, v5

v5
, v7

v7
, v10

v10
],

p4 = [a
a , v1

v1
, v4

v4
], p11 = [a

a , v1
v1

, v3
v3

, v5
v5

, v7
v7

, v9
v9

, v5
v11

],
p5 = [a

a , v1
v1

, v3
v3

, v5
v5

], p12 = [a
a , v1

v1
, v3

v3
, v5

v5
, v7

v7
, v9

v9
, v12

v12
],

p6 = [a
a , v1

v1
, v3

v3
, v6

v6
], p13 = [a

a , v1
v1

, v3
v3

, v5
v5

, v7
v7

, v9
v9

, v5
v11

, v7
v7

],
p14 = [a

a , v1
v1

, v3
v3

, v5
v5

, v7
v7

, v9
v9

, v5
v11

, v8
v8

],
...



This set of paths is the domain of IF2. The extension of each concept C is determined
by the set all pi such that C occurs in the label of the last node in pi. For the extension
of each role R, we consider the pairs 〈pi, pj〉 such that the last node in pj is an R-
successor of pi (the extension of the roles in R+ are transitively expanded). Therefore
p0, p1, p3, . . . are in AIF2 , and 〈p0, p1〉, 〈p1, p3〉, 〈p3, p5〉, 〈p5, p7〉, . . . are all in P

IF2
1 .

In the following, let nQ denote the number of role atoms in Q, and let n ≥ nQ.
For any forest F that is n-complete, a mapping µ of Q into F can be obtained from
any mapping σ of varind(Q) into IF satisfying Q. If we see the image of Q under σ
as a graph G (considering only the edges that correspond to simple roles), then the
length of a path connecting the images σ(x) and σ(y) of any two variables x and y in
Q will be at most nQ. Since F contains at least two non-overlapping trees of size n,
it is big enough to ensure that for each path in G there is an isomorphic one in F .

Proposition 2 Let Q be a CQ in which all roles are simple, let F ∈ ccfn(FK), with
n ≥ nQ, and let IF |= Q. Then Q ↪→F .

Example 8 IF2 models Q1, as witnessed by the substitution σ(x) = p7, σ(y) = p9 and
σ(z) = p10. From it we can obtain the mapping µ(x) = v7, µ(y) = v9 and µ(z) = v10,
which shows that Q1 ↪→F2. Note that nQ1 = 2 and the image of Q1 under σ has no
paths of length > 2.

The results given above can be extended straightforwardly to a UCQ U . As before,
we will use F |= U to denote that F semantically entails U (i.e., every model of F
is a model of U), and U ↪→F to denote syntactical mappability, which is defined as
Qi ↪→F for some Qi in U . We already know that to decide K |= U it is sufficient
to verify whether F |= U for every F in ccfn(FK) for an arbitrary n ≥ 0 (in fact,
Proposition 1 holds for any kind of query). It is only left to prove that for a suitable
n, F |= U can be effectively reduced to U ↪→F .

Again, one direction is trivial. If U ↪→F , then by definition there is some Qi in U
such that Qi ↪→F , and as this implies F |= Qi, we also have that F |= U .

Example 9 Since Q1 ↪→F2 (see Examples 6 and 8), we have U ↪→F2. F2 |= Q1

implies F2 |= U .

The other direction is also quite straightforward. Consider nU as the maximal nQi

for all Qi in U . For each F ∈ ccfn(FK), with n ≥ nU , if IF |= U , then IF |= Qi for
some Qi in U . Since n ≥ nU ≥ nQi , by Proposition 2 we know that Qi ↪→F and then
U ↪→F . Thus IF |= U implies U ↪→F as well.

Finally, we establish our key result: answering K |= U for a UCQ U reduces to
finding a mapping of U into every F ∈ ccfn(FK) for any n ≥ nU .

Theorem 3 Let U be a UCQ in which all roles are simple and let n ≥ nU . Then
K |= U iff U ↪→F holds for each F ∈ ccfn(FK).



4 Complexity of Query Answering

In the following, ‖K,Q‖ denotes the total size of the string encoding a given knowledge
base K and a query Q. As shown in [21], for a CQ Q, branching in each variable
tree in a completion forest F ∈ ccfn(FK) is polynomially bounded in ‖K, Q‖, and
the maximal depth of a variable is double exponential in ‖K, Q‖ if n is polynomial
in ‖K, Q‖. Therefore, F has at most triple exponentially many nodes. Since each
rule can be applied only polynomially often to a node, the expansion of the initial
completion forest FK into some F ∈ ccfn(FK) terminates in nondeterministic triple
exponential time in ‖K, Q‖ for n = nQ.

Theorem 4 Given a SHIQ knowledge base K and a union of conjunctive queries U
in which all roles are simple, deciding whether K |= U is in co-3NExpTime.

Proof (Sketch). It is sufficient to check for every F ∈ ccfnU (FK) whether U ↪→F ,
i.e., Qi ↪→F for some CQ Qi in U . The size of F is at most triple exponential in
‖K,Qi∗‖, where Qi∗ is such that nQi∗ = nU , thus also in ‖K, U‖. Furthermore,
Qi ↪→F can be checked by naive methods in triple exponential time in ‖K,Qi∗‖ and
thus in ‖K, U‖ as well. (We stress that this test is NP-hard even for fixed F .) 2

Notice that the result holds for binary encoding of number restrictions in K. An
exponential drop results for unary encoding if Q is fixed.

Under data complexity, U and all components of K = 〈T ,R,A〉 except for the
ABox A are fixed. Therefore, nU is constant. Thus every completion forest F ∈
ccfn(FK) has linearly many nodes in |A|, and any expansion of FK terminates in
polynomial time. Furthermore, deciding whether U ↪→F is polynomial in the size of
F by simple methods. As a consequence,

Theorem 5 For a knowledge base K in SHIQ and a union of conjunctive queries
U in which all roles are simple, deciding K |= U is in coNP w.r.t. data complexity.

Matching coNP-hardness follows from the respective result for ALE [24], which
has been extended later to DLs even less expressive than AL [7]. Thus we obtain the
following main result.

Theorem 6 On knowledge bases in any DL from AL to SHIQ, answering unions of
conjunctive queries in which all roles are simple is coNP-complete w.r.t. data com-
plexity.

This result not only exactly characterizes the data complexity of UCQs for a
range of DLs, but also extends two previous coNP-completeness results w.r.t. data
complexity which are not obvious: the result on CQs over ALCNR given in [20] to
SHIQ, and the result in [18] for atomic queries in SHIQ to UCQs.

5 Discussion and Conclusion

By the correspondence between query containment and query answering [1], our algo-
rithm can also be applied to decide containment of two UCQs over a SHIQ knowledge



base. Also, the technique is applicable to the DL SHOIQ, which extends SHIQ with
nominals, i.e., concepts denoting single individuals, by tuning of the SHOIQ tableaux
rules [14]. It remains open whether the proposed technique can be applied to even
more expressive logics, for example, containing reflexive-transitive closure in the TBox
(in the style of PDL), or to more expressive query languages.

Several issues remain for further work. The restriction of the query languages
to allow only simple roles is also adopted in [18]. To the best of our knowledge,
it is yet unknown whether conjunctive query answering remains decidable in SHIQ
when this constraint is relaxed. It remains unclear whether the algorithm which we
have presented here can be exploited, since the presence of transitive roles imposes
difficulties in establishing a bound on the depth of completion forests which need to
be considered for answering a given query. Also the combined complexity of UCQs
remains for further study. As follows from [17], it is in 2ExpTime, and thus Theorem 4
gives not a tight bound. However, we can use a more relaxed blocking condition in
our algorithm, where the root of the blocked tree is not necessarily an ancestor of
the blocked one. This lowers the worst-case size of a forest exponentially, leading
to a co-2NExpTime upper bound, which is not optimal either. We want to point
out that such blocking could be similarly used in the standard tableau algorithms for
satisfiability checking, but might be inconvenient from an implementation perspective.
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