
J. O. Sørensen, K. Alnor 10-1

Creating a Data Warehouse using SQL Server

Jens Otto Sørensen
Department of Information Sciences

The Aarhus School of Business, Denmark
jos@hha.dk

Karl Alnor
Department of Information Sciences

The Aarhus School of Business, Denmark
kaa@hha.dk

Abstract:

In this paper we construct a Star Join Schema
and show how this schema can be created
using the basic tools delivered with SQL
Server 7.0. Major objectives are to keep the
operational database unchanged so that data
loading can be done without disturbing the
business logic of the operational database. The
operational database is an expanded version of
the Pubs database [Sol96].

1 Introduction

SQL Server 7.0 is at the time of writing the latest
release of Microsoft's "large" database. This version of
the database is a significant upgrade of the previous
(version 6.5) both with respect to user friendliness as
well as with respect to capabilities. There is therefore in
our minds no question about the importance of this
release to the database world. The pricing and the
aggressive marketing push behind this release will soon
make this one of the most used, if not the most used,
database for small to medium sized companies.
Microsoft will most likely also try to make companies
use this database as the fundament for their data
warehouse or data mart efforts [Mic98c].

We therefore think that it is of great importance to
evaluate whether MS SQL Server is a suitable platform
for Star Join Schema Data Warehouses.

In this paper we focus on how to create Star Join
Schema Data Warehouses using the basic tools
delivered with SQL Server 7.0. One major design
objective has been to keep the operational database
unchanged.

The Pubs database is a sample database distributed by
Microsoft together with the SQL Server. The database

contains information about a fictitious book distribution
company. An ER diagram of the Pubs database can be
found in appendix A. There is information about
publishers, authors, titles, stores, sales, and more. If we
are to believe that this is the database of a book
distribution company then some of the tables really do
not belong in the database, e.g. the table "roysched" that
shows how much royalty individual authors receive on
their books. Likewise the many-to-many relationship
between authors and titles has an attribute "royaltyper"
indicating the royalty percentage. A book distribution
company would normally not have access to that kind
of information, however, these tables do not cause any
trouble in our use of the database.

The Pubs database does not have a theoretically clean
design, some tables are even not on second normal
form. Therefore it does not lend itself easily to a Star
Join Schema and as such it presents some interesting
problems both in the design of the Star Join Schema
and in the loading of data. In the book [Sol96] there is
an expanded version (expanded in terms of tuples, not
tables) of the Pubs database containing some 168,725
rows in the largest table.

2 Setting up a Star Join Schema on the
Basis of the Pubs Database

We need to decide on what the attributes of the fact
table should be and what the dimensions should be.
Since this is a distributor database we do not have
access to information about actual sales of single books
in the stores, but we have information on "shipments to
bookstores". In [Kim96] there is an ideal shipments fact
table. We do not have access to all the attributes listed
there but some of them.

2.1 Fact Table

2.1.1 The Grain of the Fact Table

The grain of the fact table should be the individual
order line. This gives us some problems since the Sales
table of the Pubs database is not a proper invoice with a
heading and a number of invoice lines.

The Sales table is not even on second normal form
(2NF) because the ord_date is not fully dependent on
the whole primary key. Please note that the primary key

The copyright of this paper belongs to the paper’s authors. Permission to copy
without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW'99)
Heidelberg, Germany, 14. - 15. 6. 1999
(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

J. O. Sørensen, K. Alnor 10-2

of the Sales table is (stor_id, ord_num, title_id).
Therefore ord_num is not a proper invoice line number.
On the other hand there is also no proper invoice (or
order) number in the usual sense of the word i.e. usually
we would have a pair: Invoice_number and
invoice_line number, but here we just have a rather
messed up primary key. This primary key will actually
only allow a store to reorder a particular title if the
ord_num is different from the order number of the
previous order. We must create a proper identifier for
each order line or we must live with the fact that each
orderline has to be identified with the set of the three
attributes (stor_id, ord_num, title_id).

We chose here to create an invoice number and a line
number, the primary reason being that the stor_id will
also be a foreign key to one of the dimensional tables,
and we don't want our design to be troubled by
overloading the semantics of that key.

2.1.2 The Fact Table Attributes Excluding Foreign

Keys to Dimensional Tables

Quantities shipped would be a good candidate for a fact
table attribute, since it is a perfectly additive attribute
that will roll up on several dimensions. One example
could be individual stores, stores grouped by zip
number, and stores grouped by state.

Other attributes to be included in the fact table are order
date, list price, and actual price on invoice. If we had
access to a more complete set of information we would
have liked to include even more facts, such as on time
count, damage free count etc. But we will content
ourselves with these five attributes.

Our initial design for the Shipments Fact tables is as
follows:

Shipments_Fact(Various foreign keys,
invoice_number, invoice_line, order_date,
qty_shipped, list_price, actual_price).

Later we describe how to load this fact table based on
the tables in the Pubs database.

2.2 Dimensional Tables

We have not enough information to build some of the
dimensional tables that would normally be included in a
shipment star join schema. Most notable we do not
have a ship date (!) thereby apparently eliminating the
traditional time dimension, but it pops up again because
we do have an order date attribute. However we have
chosen not to construct a time dimension. We do not
have ship-from and ship mode dimensions either. What
we do have is described below.

2.2.1 Store Ship-to Dimension

We can use the stores table "as it is".

Attributes: stor_id, stor_name, stor_address, city, state,
zip.

Primary key: stor_id.

2.2.2 Title Dimension

Likewise the title dimension is pretty straightforward
but we need to de-normalize it to include relevant
publisher information. Titles and publishers have a 1-
to-many relationship making it easy and meaningful to
de-normalize. We will then easily be able to roll up on
the geographic hierarchy: city, state, and country.
Another de-normalization along a slightly different line
is to extract from the publication date the month,
quarter, and year. In other applications it might be
interesting to extract also the week-day and e.g. an
indicator of whether the day is a weekend or not, but we
will restrict ourselves to month, quarter, and year.

The titles and authors have a many-to-many
relationship apparently posing a real problem, if we
were to denormalize author information into the title
dimension. However if we look at our fact table we see
that there is really nothing to be gained by including
author information, i. e. there is no meaningful way to
restrict a query on the fact table with author information
that will give us a meaningful answer.

Attributes: title_id, title, type, au_advance, pub_date,
pub_month, pub_quarter, pub_year, pub_name,
pub_city, pub_state, and pub_country.

Primary key: title_id.

2.2.3 Deal Dimension

The deal dimension is very small and it could be argued
that it should be included as attributes in the stores'
ship-to dimension, since they are really attributes of the
store and not of the individual shipment. We have
decided to include it as a dimension in its own right and
thereby view it as an attribute of the individual
shipment. Even though this is slightly violating the
intended semantics of the Pubs database, it does give us
one more dimension to use in our tests. We need the
payterms attribute from the Sales table and the
discounttype and discount attributes from the Discount
table.

Attributes: deal_id, payterms, discounttype, and
discount

Primary key: discount_id

J. O. Sørensen, K. Alnor 10-3

2.2.4 Fact Table Primary and Foreign Keys

The Shipments fact table will have as its primary key, a
composite key consisting of all the primary keys from
the three dimension tables and also the degenerate
dimension: The invoice and the invoice_line number.
Remember that in this case as well as in most cases the
invoice dimension, is a degenerate dimension and all
the header information in an invoice really belongs in
other dimensions. One example here is the payterms
attribute that is part of the deal dimension.

Key: stor_id, title_id, discount_id, invoice_no,
invoice_lineno

2.3 The Shipment Star Join Schema

Figure 1 is a diagram of the Pubs shipment star Join
Schema.

Figure 1: Diagram of the Pubs shipment star join
schema

3 Loading the Shipment Star Join
Schema Dimensions

There are several options when you want to load tables.
The most appealing way to load the schema is to build a
Data Transformation Service Package (DTS Package)
using the DTS Designer (Microsoft, 1988b). The DTS
Designer is a graphically oriented tool for building a
number of connections and a number of data trans-
formation flows to run between the connections.

Before creating the DTS Package you need to create the
shipment star join schema database and all the tables in
it including keys and other constraints. You then create
connections and data transformation flows for each of
the dimensions, and then finally a connection and a data
transformation flow for the fact table. The data
transformation flows can be expressed i.a. in SQL
including transformations, but transformation can also
be carried out using an ActiveX script, Jscript,
PerlScript, or VBScript.

To load the dimensions we create a DTS package with
four connections (three identical connections to the

Pubs database and one to the shipment star join
schema).

These four connections must then be connected by three
data transformation flows (also known as data pumps).
All in all we get the following graphical representation
of the DTS Package shown in Figure 2.

Figure 2: Graphical representation of DTS Package for
loading dimensions

Later we will describe each of the three data
transformation flows one at a time, but first we need the
complete definition of the shipment star join schema.

3.1 The Shipment Star Join Schema

The SQL statements needed to create the star schema is
easily derived from the preceding paragraphs and the
definition of the Pubs database datatypes. An ER
diagram for the shipment star join schema can be seen
in appendix B.

3.2 The Store Ship-To Dimension Data Trans-
formation Flow

This is the easiest table to load since it can be loaded
without any modification from the Pubs database.

The SQL statement to be included in the DTS data
pump between the connection Pubs_Stores and the
connection PubsShpmtStar is:

SELECT
 s.stor_id,
 s.stor_name,
 s.stor_address,
 s.city,
 s.state,
 s.zip
FROM Stores s

The properties sheet for the data pump is shown in
Figure 3. Please note that there are four tabs on the
properties sheet: Source, Destination, Transformations,
and Advanced.

stor_id
stor_name
stor_address
city
state
zip

Stores_ship_to_dimension

Deal_Dimension

deal_id
payterms
discounttype
discount

Shipments_fact

stor_id
title_id
deal_id
invoice_no
invoice_linenumber
order_date
qty_shipped
list_price
actual_price

Titles_dimension

title_id
title
type
au_advance
pub_date
pub_month
pub_quarter
pub_year
pub_name
pub_city
pub_state
pub_country

J. O. Sørensen, K. Alnor 10-4

Figure 3: Properties sheet for the Store ship-to data
pump

On the second tab, Destination, the destination table
must be selected from a drop-down list. Because this is
basically just a copy from one table to another we do
not need to adjust anything on the third tab,
Transformations. The correct default mapping between
attributes based on the SELECT statement is already
suggested.

3.3 The Title Dimension Data Transformation
Flow

The SQL statement to be included in the DTS data
pump between the connection Pubs_Titles and the
connection PubsShpmtStar is:

SELECT
 t.title_id,
 t.title,
 t.type,
 t.advance,
 t.pubdate,
 DatePart(mm, t.pubdate) AS pub_month,
 DatePart(qq, t.pubdate) AS pub_quarter,
 DatePart(yy, t.pubdate) AS pub_year,
 p.pub_name,
 p.city,
 p.state,
 p.country
FROM Titles t, Publishers p
WHERE t.pub_id = p.pub_id

Please note the use of a non-standard SQL function to
extract the month, quarter, and year information from
the pubdate attribute. DatePart(yy, t.pubdate) should in
correct SQL92 standard syntax be EXTRACT (YEAR
FROM t.pubdate) [Can93, p. 166], but this standard
SQL92 syntax is not supported by Microsoft SQL
Server 7.0.

3.4 The Deal Dimension Data Transformation
Flow

The deal dimension is a bit more difficult as we need to
generate values for the deal_id. This will be done
automatically since we have defined deal_id to be of
type "int IDENTITY". This means that each subsequent
row is assigned the next identity value, which is equal
to the last IDENTITY value plus 1.

According to our analysis in the Deal Dimension
section on page 2, the deal dimension should have one
row for each combination of a unique payterms and
discounttype.

If we let

p = SELECT COUNT(DISTINCT s.payterms)
FROM Sales s

n = SELECT COUNT(d.discounttype)
FROM Discounts d

Then the cardinality of the deal dimension will be p*n.
The SQL statement to be included in the DTS data
pump between the connection Pubs_Titles and the
connection PubsShpmtStar is.

SELECT
 payterms = p_sales.payterms,
 discounttype = d.discounttype,
 discount = d.discount
FROM (select distinct payterms from
sales) AS p_sales, discounts d

Please note that we must not have a join condition in
the SQL statement, because we want the Cartesian
product of the two tables. Also please note that the
suggested default mapping between attributes is wrong,
therefore the Transformations section of the properties
sheet for the deal dimension must be changed to what is
shown in Figure 4. The DTS Package can now be
executed, and all three dimension tables will be loaded.

J. O. Sørensen, K. Alnor 10-5

Figure 4: Transformations for the Deal Dimension data
pump

4 Loading the Shipment Star Join
Schema Fact Table

There are a number of problems here. The most severe
is the assignment of invoice numbers and invoice line
numbers to each sale. A preliminary analysis of the
sales table indicates that most invoices only have one
invoice line, but there are also invoices with a number
of invoice lines ranging from 2 to 4. That is, the Sales
table in the operational database is already
denormalised in a way that supports the dimensional
design.

Please remember that we have changed the semantics of
how a discount is given. In the original Pubs database a
discount is something a given store receives, and not all
stores are given discounts. However, payterms are
assigned, apparently at random. In our interpretation a
certain combination of payterms and a discounttype
(with associated discount percentage) is given on every
sale (e.g. invoice number) posing us with the problem
of assigning deal_id's to the sales fact table. The best
solution would appear to be assigning a random deal_id
to every sale.

4.1 Assigning Invoice - and Invoice Line Numbers
to the Fact Table

This has to be done via a number of steps and will
involve some intermediary tables as well as a step using
an updateable cursor.

4.1.1 Step 1: Creating Intermediary Tables

The first step is to create two intermediary tables,
Invoice_Head and Extended_Sales.

Invoice_Head has four attributes, invoice_no (no line
numbers yet), stor_id, ord_num, and deal_id. The
invoice_no attribute is declared as type INT
IDENTITY.

CREATE TABLE Invoice_Head (
stor_id VARCHAR(4) NOT NULL,
ord_num VARCHAR(20) NOT NULL,
invoice_no INT IDENTITY,
deal_id INT,
CONSTRAINT PK_Invoice_Head
PRIMARY KEY (stor_id, ord_num))

Extended_Sales have the same attributes as the sales
table plus four additional attributes, deal_id, price,
invoice_no and invoice_lineno and must have the same
primary key (stor_id, ord_num, title_id) as sales,
otherwise the cursor-based updates below will fail.

CREATE TABLE Extended_sales (
stor_id VARCHAR(4) NOT NULL,
ord_num VARCHAR(20) NOT NULL,
ord_date DATETIME NOT NULL,
qty SMALLINT NOT NULL,
payterms VARCHAR(12) NOT NULL,
title_id VARCHAR(6) NOT NULL,
deal_id INT,
price MONEY NOT NULL,
invoice_no INT NULL,
invoice_lineno INT NULL,

CONSTRAINT PK_Extended_Sales
PRIMARY KEY (stor_id, ord_num, title_id))

4.1.2 Step 2: Populating the Invoice_Head Table

Because Invoice_Head.invoice_no has been declared as
INT IDENTITY, SQL Server will generate a new
value, which is equal to the last IDENTITY value plus
1, for each inserted row, starting with the value one.
Therefore the SELECT statement below has no
reference whatsoever to the invoice_no attribute. This
SELECT statement is part of the data pump between
the connections Pubs and PubsShpmtStar in figure 5
and with the proper selections on the Destination and
Transformations tabs (not shown here) Invoice_Head
will be populated.

SELECT
 s.stor_id,
 s.ord_num,
 ROUND(RAND()*9+1, 0, 1) AS deal_id
 FROM sales s
 GROUP BY s.stor_id, s.ord_num

Now we have a table with unique invoice numbers that
through joining over (stor_id, ord_num) can be

J. O. Sørensen, K. Alnor 10-6

connected to each sale. The table's invoice_no attribute
will be populated with a sequence starting with one, and
the deal_id will be populated with random numbers in
the range 1 to n*p (= 9 in our particular case) as
discussed in the introduction to this section. Care must
be taken when using the RAND function without a
seed. The SQL Server books online [Mic98a] indicates
that repeated calls to RAND will generate a sequence of
random numbers, but only if the calls are a millisecond
or more apart. Even on moderately fast machines many,
many rows will be populated within a millisecond.

4.1.3 Step 3: Populating the Extended_Sales Table

Step 3 is most conveniently done by dividing it into 3
substeps.

Step 3.1: Populating the Extended_Sales table with
sales and prices.

A simple DTS data pump will populate Extended_Sales
with values from the operational database by joining
Sales and Titles. The involved SQL statement is:

SELECT
 s.stor_id,
 s.ord_num,
 s.ord_date,
 s.qty,
 s.payterms,
 s.title_id,
 t.price
FROM Sales s JOIN Titles t ON s.title_id
= t.title_id

Furthermore the default Transformations will not do, it
has to be adjusted. This is very simple and is not shown
here.

Please note that step 2 and step 3.1 can be done in
parallel.

Step 3.2: Update Extended_Sales with invoice
numbers.

The Invoice_head table will be used to insert the correct
new invoice_numbers into the expanded copy of the
sales table.

UPDATE extended_Sales
SET invoice_no = i.invoice_no
FROM Invoice_Head i
WHERE Extended_Sales.ord_num = i.ord_num
AND Extended_sales.stor_id =i.stor_id

Please note that this time we do not need a data pump
between the two connections, because we are operating
entirely within the PubsShipmStar database. Therefore
we use an "Execute SQL Task" [Mic98b]. See also
figure 5 on page 10-7.

Step 3.3: Insert invoice line numbers into
Extended_Sales.

Inserting the correct line numbers will involve a cursor,
becauce we need to go down the rows of the table one
by one and compare the previous invoice_no with the
current, and thereby decide whether the line number
attribute should be incremented by one or reset to one.
Please note the ORDER BY clause in the cursor, this is
essential, ensuring that when a break is encountered it is
guaranteed that we will not meet that invoice number
again further down the table.

/* auxillary variables */
DECLARE
 @prev_inv_no INT,
 @cur_inv_no INT,
 @inv_lineno INT,
/* Extended_Sales attribute variables */
 @stor_id VARCHAR (4),
 @ord_num VARCHAR(20),
 @title_id VARCHAR (6),
 @invoice_no INT,
 @invoice_lineno INT

DECLARE Extended_Sales_cursor
 CURSOR FOR
 SELECT stor_id, ord_num, title_id,
invoice_no, invoice_lineno
 FROM Extended_Sales
 ORDER BY invoice_no
 FOR UPDATE OF invoice_lineno

OPEN Extended_Sales_cursor

/* Initialize and fetch first before
entering loop */
FETCH NEXT FROM Extended_Sales_cursor
 INTO @stor_id, @ord_num, @title_id,
@invoice_no, @invoice_lineno

SET @prev_inv_no = @invoice_no
SET @inv_lineno = 1

WHILE (@@fetch_status = 0)
/* equals not(eof) in 3 th gen. languages*/
BEGIN
 UPDATE Extended_Sales
 SET Extended_Sales.invoice_lineno =
@inv_lineno
 WHERE CURRENT OF
Extended_Sales_cursor

 FETCH NEXT
 FROM Extended_Sales_cursor
 INTO @stor_id, @ord_num, @title_id,
@invoice_no, @invoice_lineno

 SET @cur_inv_no = @invoice_no
 IF @cur_inv_no = @prev_inv_no
 SET @inv_lineno = @inv_lineno +1
 ELSE
 SET @inv_lineno = 1

J. O. Sørensen, K. Alnor 10-7

 SET @prev_inv_no = @cur_inv_no
END /* WHILE */

CLOSE Extended_Sales_cursor
DEALLOCATE Extended_Sales_cursor

This code is contained in the Execute SQL Task named
Step 3.3 in figure 5.

4.1.4 Step 4: Populate Shipments_Fact Table

We have both the Deal_Dimension and the Exten-
ded_Sales tables making it relatively easy to insert the
relevant tuples into the Shipment_Fact table. Once
again we will use an Execute SQL Task, see figure 5
below. The SQL statement is:

INSERT INTO Shipments_Fact
(stor_id, title_id, deal_id,
invoice_no, invoice_lineno, order_date,
qty_shipped, list_price, actual_price)

(SELECT e.stor_id, e.title_id, e.deal_id,
e.invoice_no, e.invoice_lineno,
e.ord_date, e.qty, e.price,
(1 - d.discount/100)*e.price

 FROM
Extended_Sales e JOIN Deal_Dimension d

 ON e.deal_id = d.deal_id)

These four steps conclude the loading of the fact table.
Figure 5 below is a picture of the whole process. Please
note that the dotted arrows indicate that the
transformation step is dependent on the succes of the
previous step.

Figure 5: DTS Package for loading the fact table

5 Conclusion

In this paper we have concentrated on the logical design
of a Star Join Schema and how easy this Schema can be
created using the basic tools delivered with SQL Server
7.0. In particular we have demonstrated that all
transformations have been done without changing the
operational database at all.

We have not compared with other databases and we
have not done extensive timings, since it is very
dependent on the disk subsystem, the processor power
avaliable and the amount of physical RAM. Also
equally important are the choices of indexing and size
of key attributes. In a short paper like this we can not
possibly cover all aspects of traditional Star Join
Schema data warehousing, and we have not looked into
other very interesting issues such as programming
support in traditional third generation languages, end
user tools etc.

In particular we are impressed with the relatively ease
of use compared to the complexity of the tasks that
SQL Server 7.0 offers. Microsoft SQL Server 7.0 has
many of the tools required to build a traditional Star
Join Schema Data Warehouse from the ground based on
an operational database with transaction oriented tables.

Notably, the DTS Packages allow for an integrated
approach to loading and updating the data Warehouse.

Although more ways to get data into a datawarehouse
exist, we believe that the easiness offered by the DTS
Packages will be a very strong selling point.

In our opnion the best procedure is to build a prototype
of the data warehouse along the lines given in this paper
and then test it either on the actual hardware, or if that
is not possible on hardware that have relatively well
understood scaling capabilities. This way building a
traditional data warehouse could be a process very
much like developing systems with prototypes and
substantial user involvement.

Future work along these lines could include a closer
look at the hardware required to support a large data
warehouse and various performance issues. It would
also be interesting to look closer at the OLAP Server
and the PivotTable Service, both middle-tier tools for
analyzing and presenting the data included with SQL
Server.

Step 3.1Step 2

J. O. Sørensen, K. Alnor 10-8

6 Appendix A: ER Diagram for the Pubs Database

7 Appendix B: ER Diagram for the Pubs Shipment Star Join Schema

J. O. Sørensen, K. Alnor 10-9

8 Appendix C: Commands Needed to
Create BigPubs

8.1 Creation of the schema of the operational
database BigPubs.

Please note that all testing has been done on SQL
Server 7.0 released version.

Please also note that the script used to create the sample
database schema comes from [Sol96] and is originally
intended to be used with SQL Server 6.5, but version
7.0 is capable of running it unmodified.

8.2 Bulk Loading of Data Into the Operational
Database

These commands have been executed from SQL Query
Analyser.

BULK INSERT authors FROM
"D:\Source\authors.bcp"
BULK INSERT discounts FROM
"D:\Source\discounts.bcp"
BULK INSERT employee FROM
"D:\Source\employee.bcp"
BULK INSERT jobs FROM
"D:\Source\jobs.bcp"
BULK INSERT pub_info FROM
"D:\Source\pub_info.bcp"
BULK INSERT publishers FROM
"D:\Source\publishers.bcp"
BULK INSERT roysched FROM
"D:\Source\roysched.bcp"
BULK INSERT sales FROM
"D:\Source\sales.bcp"
BULK INSERT stores FROM
"D:\Source\stores.bcp"
BULK INSERT titleauthor FROM
"D:\Source\titleauthor.bcp"
BULK INSERT titles FROM
"D:\Source\titles.bcp"

It turns out that one book does not have a price, which
is unacceptable in our use of the database. Therefore the
following SQL update has been performed on BigPubs.

UPDATE Titles SET price = 12.0 WHERE
title_id = "PC9999"

References

[Sol96] D. Solomon, R. Rankins, K. Delaney, and T.
Dhawan, Microsoft SQL Server 6.5 Unleashed,
2 ed. Indianapolis: SAMS Publishing, 1996.

[Mic98a] Microsoft Corporation, “Using Mathematical
functions,” in Accessing and Changing Data.
Included in the SQL Server Books Online. SQL
Server v. 7.0: Microsoft Corporation, 1998.

[Mic98b] Microsoft Corporation, “DTS Designer,” in
Data Transformation Services. Included in
SQL Server Books Online. SQL Server v. 7.0:
Microsoft Corporation, 1998.

[Mic98c] Microsoft Corporation, “Microsoft Back-
Office - SQL Server 7.0 Data Warehousing,” ,
1998.
http://www.microsoft.com/backoffice/sql/70/g
en/dw.htm. Read on 01-Dec-1998.

[Kim96] R. Kimball, The Data Warehouse Toolkit.
New York: Wiley Computer Publishing, 1996.

[Can93] S. J. Cannan and G. A. M. Otten, SQL - The
Standard Handbook. Maidenhead, UK:
McGraw-Hill Book Company Europe, 1993.

Acknowledgements

This work is supported in part by the Danish Social
Science Research Council, Project no. 9701783.

Part of the work was done while the first author was
visiting the Nykredit Center for Database Research,
Aalborg University in the winter of 1998/99.

