
The 2006 Federated Logic Conference

The Seattle Sheraton Hotel and Towers

Seattle, Washington

August 10 - 22, 2006

 ��

IJCAR Workshop

ESCoR:
Empirically Successful Computerized Reasoning

August 21st, 2006

Proceedings

Editors:

G. Sutcliffe, R. Schmidt, S. Schulz

Maintaining the ACL2 Theorem Proving SystemMatt Kaufmann and J Strother MooreUniversity of Texasfkaufmann,mooreg�s.utexas.eduAbstratThis talk will provide a view into the task of improving the ACL2 theorem proverto meet users' needs.1 IntrodutionThe goal of this talk is to provide a sense of some possible hallenges to making a the-orem proving system useful in pratie. Spei�ally, we will draw from our experienesmaintaining the ACL2 theorem proving system [KMM00b, KM04a℄. Although ACL2inorporates years of ongoing researh in automated reasoning, the fous of this talk ison the engineering required to make the system useful.Imagine you're at lunh, where two guys are blabbing to you about their work.Fortunately, this blabbing might be of some interest, sine they are talking about howthey make their theorem proving system easier to use. They de�nitely want you toask questions and share your own related experienes, though you may �nd it hard tointerrupt them after they get started.But even before we eat, they insist on providing some general bakground on theirsystem so that when they get going, at least they might make some sense. By the timedessert arrives, these two guys will be eager for questions and omments, if for no otherreason than that they an eat!Thus, this talk onsists of three parts.First, Before We Eat : While we're walking to lunh you'll get some general bak-ground on ACL2. Then while we're waiting for a table, we'll see a small example thatgives a sense of how ACL2 is used. After we're seated, we'll take a quik look at a listof features that we'll ome aross while we eat.Next, for the Main Course, we will fous on some seleted items taken from reentACL2 release notes (minimally edited in a few ases). These seleted items should givea sense of what an be involved in maintaining an empirially suessful automatedreasoning system.Finally, we will have a give-and-take during Dessert. With any luk, the ensuingquestions and omments will be stimulating and informative for all of us.We will use footnotes for material that we will make a point of skipping during thetalk, due to time onstraints.11A related talk in 1991 [Kau91℄ gives a large list of aspets of mehanized reasoning systems and
Empirically Successful Computerized Reasoning 1

2 Before We Eat | Some general bakground on ACL2\ACL2" stands for \A Computational Logi for Appliative Common Lisp." The ACL2system is the latest in the Boyer-Moore family of provers, and is joint work of Matt Kauf-mann and J Moore, with substantial early ontributions from Bob Boyer and ongoingontributions from many. The paper [KM04b℄ provides a reasonably self-ontained in-trodution to ACL2, inluding relevant bakground and how to use the system. Quotingfrom that paper:\ACL2" is the name of a funtional programming language (based on Com-mon Lisp), a �rst-order mathematial logi, and a mehanial theorem prover.ACL2, whih is sometimes alled an \industrial strength version of the Boyer-Moore system," is the produt of Kaufmann and Moore, with many earlydesign ontributions by Boyer. It has been used for a variety of importantformal methods projets of industrial and ommerial interest, inluding....A long but inomplete list of appliations is then given, inluding various algorithms,software, and hardware designs.ACL2 is freely available, distributed under the GPL [gpl℄. It an be obtained fromthe ACL2 home page [KM04a℄, whih also has links to many papers that desribe ACL2appliations, as well other useful links (mailing lists, tours, demos, doumentation,workshops, and installation instrutions).Here is some relevant data.� Some milestones:{ 1973: The Boyer/Moore \Edinburgh Pure Lisp Theorem Prover"{ 1979: Boyer and Moore, A Computational Logi [BM79℄{ 1986: Kaufmann joins Boyer/Moore projet{ 1988: Boyer and Moore, A Computational Logi Handbook (1997, 2nd ed.[BM97℄){ 1989: Boyer and Moore begin ACL2{ 1992: Final release of Boyer-Moore \Nqthm" prover{ 1993: Kaufmann formally added as a o-author of ACL2{ 2000: Kaufmann, Manolios, and Moore write a book on ACL2,Computer-Aided Reasoning: An Approah [KMM00b℄,and edit proeedings of the �rst ACL2 workshop,Computer-Aided Reasoning: ACL2 Case Studies [KMM00a℄omments on them. The fous here is narrower: What sorts of things must be done to make suh asystem useful? Our fous is atually still narrower, as for example the following are ritial but notaddressed diretly here: fundamental reasoning algorithms, exeution eÆieny, logial foundations,system arhiteture, and trust. Rather, we present here seletions from release notes that give a avorof the maintenane required on a partiular mature system, ACL2, in order to make it a system that(some) people want to use. That is, the point here is not to give an overview of what ACL2 provides,but to fous on maintenane.
2 Empirically Successful Computerized Reasoning

{ 2006: Boyer, Kaufmann, and Moore win ACM Software System Award forBoyer-Moore family of provers� Version 3.0 soure �les size: 8.3M of Common Lisp (inluding soure ode, dou-mentation strings, and omments)� There are 229 release note items stritly after Version 2.8 (Marh, 2004) as follows(but we'll look at just a few of these):{ 63 in Version 2.9, Otober, 2004{ 19 in Version 2.9.1, Deember, 2004{ 30 in Version 2.9.2, April, 2005{ 31 in Version 2.9.3, August, 2005{ 53 in Version 2.9.4, February, 2006{ 33 in Version 3.0, June, 2006An interesting aspet of ACL2 is that it is written in its own formal language (withthe exeption of a small amount of Common Lisp ode mainly of a bootstrapping na-ture). This has fored us to make ACL2's formal programming language, whih is aarefully-rafted extension of an appliative subset of Common Lisp, a language thatis both eÆient and onvenient to use. As a result, ACL2 users often employ ACL2'sprogramming environment to write tools.2.1 The user's view of ACL2: A small exampleThe following example will provide a sense of ACL2. The �rst thing to notie is thatthe syntax is Lisp's pre�x syntax, so for example we write (+ 3 4) and (len x) ratherthan more traditional notation suh as 3+4 and len(x), respetively. The syntax isase-insensitive.Suppose that we want to prove that the length does not hange when we reverse alist. Lists and some list-proessing funtions, inluding reverse and len for reverse andlength of a list, are built into ACL2. So let us submit a theorem named len-reverse,stating that for any list x, the length of the reverse of x is equal to the length of x:2ACL2 !>(defthm len-reverse(implies (true-listp x)(equal (len (reverse x)) (len x))))ACL2 Warning [Non-re℄ in (DEFTHM LEN-REVERSE ...): A :REWRITE rulegenerated from LEN-REVERSE will be triggered only by terms ontainingthe non-reursive funtion symbol REVERSE. Unless this funtion isdisabled, this rule is unlikely ever to be used.2The warning below is not too important here. Think of it as a reminder that after the proof isomplete, we should disable the de�nition of reverse so that the equality an be used as a left-to-rightrewrite rule by ACL2's inside-out rewriter. If reverse were left enabled, the rewriter would �rst replaea term of the form (len (reverse x)) by expanding the de�nition of reverse, after whih that termwould no longer math (len (reverse x)).
Empirically Successful Computerized Reasoning 3

This simplifies, using the :definition REVERSE, toGoal'(IMPLIES (TRUE-LISTP X)(EQUAL (LEN (REVAPPEND X NIL))(LEN X))).Name the formula above *1.Perhaps we an prove *1 by indution. Three indution shemes aresuggested by this onjeture. Subsumption redues that number to two.These merge into one derived indution sheme.The proof ultimately fails. But sine Goal' above did not simplify, we will take alook at it in a moment. As an aside, notie that \using the :definition REVERSE"the prover has replaed the original all of reverse with a all of revappend, whihmakes sense if we use a \print event" utility:ACL2 !>:pe reverseV -477 (DEFUN REVERSE (X)"Doumentation available via :do"(DECLARE (XARGS :GUARD (OR (TRUE-LISTP X) (STRINGP X))))(COND ((STRINGP X)(COERCE (REVAPPEND (COERCE X 'LIST) NIL)'STRING))(T (REVAPPEND X NIL))))Of ourse, if reverse hadn't been built in, we ould have de�ned it exatly as shownabove, using the defun ommand.Looking again at Goal', we realize that a suitable rewrite rule ould simplify theterm (LEN (REVAPPEND X NIL)). First let us look at the de�nition of revappend, thistime using a \print formula" query.ACL2 !>:pf revappend(EQUAL (REVAPPEND X Y)(IF (CONSP X)(REVAPPEND (CDR X) (CONS (CAR X) Y))Y))ACL2 !>Thus, if we don't know it already, we now see that (revappend x y) pushes su-essive elements of x onto y. The following lemma, aptly named len-revappend, saysthat the length of a revappend all is the sum of the lengths of the arguments. ACL2proves this by indution automatially (in less than 1/100 seond).33The reader may notie that the lemma len-revappend is about (revappend x y) rather than theoriginal term, (revappend x nil). We have generalized by hand to produe a lemma whose proofseems amenable to indution. In this talk we do not onsider researh in performing suh generalizationsautomatially; in ACL2 as it is today, the user is responsible for suh generalization, though oasionallyACL2 makes useful generalizations on the y.
4 Empirically Successful Computerized Reasoning

(defthm len-revappend(equal (len (revappend x y))(+ (len x) (len y))))Theorems are stored by default as (onditional) rewrite rules; so now, any instaneof (len (revappend x y)) enountered during a proof will be replaed by the orre-sponding instane of (+ (len x) (len y)). Thus, our original theorem, len-reverse,is now proved automatially and immediately.To a �rst approximation, it's fair to say that ACL2 users work as illustrated above.That is, they prove olletions of rewrite rules, disovering missing rules by looking atoutput from the prover. Our intention is that users an make good progress with thesystem without having to understand automated reasoning strutures and onepts, asmight be neessary in order to program tatis in tati-based provers or set parametersin resolution-based provers.2.2 Summary of some useful ACL2 featuresAs we wait for our food, we'll take a very brief look at a smattering of ACL2 featuresthat we'll see while devouring the Main Course. Oasionally these features interat inunexpeted ways, leading to maintenane tasks. Many improvements in these and otherfeatures are the diret result of user requests, whih are very important to the evolutionof the system.There is no intention here to be omplete. ACL2 is a large system not to be exploredthoroughly over the ourse of a meal! Our goal is just to give a sense of the kind ofsupport provided for one empirially suessful automated reasoning system.4� Release Notes onsist of brief notes alerting the experiened user to importantdi�erenes between one release and the next. They make frequent itations intothe doumentation (below) and are not intended to be self-ontained or to be readby the new user.� Doumentation onsists of over 1000 topis organized hierarhially. The dou-mentation soure onsists of strings in the ACL2 soure ode that are liberallysprinkled with hyperlink annotations, whih is proessed to reate HTML, EmasInfo, and (generally not used) printed views. The doumentation is extensive;for example, the HTML version of the Version 3.0 doumentation is about 3.3megabytes. Doumentation for a new release is intended to be omplete and a-urate for that release; for example, the HTML has grown about 300 kilobytessine Version 2.9, released less than two years ago. The doumentation sometimestakes about as muh time to write as the ode to implement a feature or hange,but our impression from users is that it's worth the e�ort.� Error messages and warnings provide ritial feedbak, often pointing to dou-mentation topis. We put a lot of are into these!4In order to save time, during the talk we'll run through these very quikly, just to give a sense ofwhat is oming.
Empirically Successful Computerized Reasoning 5

� Maros make it easy to extend the syntax, but they have limitations (addressedby a new feature, make-event).� A book is a olletion of legal embedded event forms (events), in partiular def-initions (defun events) and theorems (defthm events), that have been admitted :syntax has been heked, theorems have been proved, and termination has beenproved for reursive de�nitions.{ Certi�ation of a book reates a erti�ate witnessing the suessful proess-ing of the book.{ The ommand (inlude-book "foo") will load events from foo.lisp intothe urrent session.{ However, loal events, e.g., (loal (defun foo ...)), are not exportedby inlude-book. A logial story [KM01℄ involving onservativity justi�esthe dropping of loal events.{ About 850 books in about 70 diretories, mostly ontributed by users ratherthan the developers, are distributed with ACL2, with over 700 more in over200 diretories available from supporting materials for the �rst �ve ACL2workshops (not inluding the one this year, 2006). Thus there are over 1500books in our regression suite. We rely heavily on that test suite to testpurported improvements to the prover's heuristis.� Like books, enapsulate provides a modular struturing mehanism. Enapsulateevents an be used to provide partial de�nitions for funtions: that is, funtionsare total but may have inomplete axiomatizations.� The defevaluatormaro generates events that de�ne an evaluator, against whihone an provemeta-rules [BM81, HKK+05℄ that, in essene, augment the simpli�erwith formally veri�ed user-de�ned funtions.� Proof ontrol inludes in-theory events and hints, whih disable (turn o�) orenable (turn on) spei�ed rules. Supported are not only in-theory hints but oth-ers, for example direting indution, funtion expansion, or the use of previously-proved theorems. These an be attahed to spei� named goals or an be gener-ated by ode (\omputed hints"), whih an be spei�ed globally (\default hints").� Database ontrol inludes undo and undo-the-undo (oops) ommands.� An interative proof-heker loop is a goal manager that has the feel of tati-based prover interfaes, allowing a range of ommands, from individual rewritesto alls of the full prover.� Proof debug is supported by the above-mentioned proof-heker and also by autility for inspeting apparent rewriter loops, a break-rewrite debugger for therewriter, and proof-tree displays for navigating proof output.� A top-level read-eval-print loop allows for interative testing of one's funtions.Suh testing is typially relatively slow unless one issues a ompilation ommand.
6 Empirically Successful Computerized Reasoning

� EÆient exeution is supported for ground terms not only in the top-level loop,but also during proofs. EÆient exeution also relies on single-threaded objets[BM02℄, or stobjs, inluding the ACL2 state objets.� Guards provide a powerful, exible analogue of types, and help support eÆientexeution by way of a onnetion to the underlying Common Lisp. The mbe (\mustbe equal") feature allows one to attah eÆient ode to logially elegant funtions[GKM+℄.� Lisp pakages provide namespaes.� While the main proof tehnique is onditional rewriting, there are ertainly others(for example, integrated deision proedures for ground equality and linear arith-meti). And, rewriting is atually ongruene-based, i.e., an be used to replae aterm with one that is suitably equivalent even if not atually equal.� A funtional instantiation utility [BGKM91, KM01℄ allows deriving a theorem'(g) from a orresponding theorem '(f) provided the funtion g satis�es all on-straints on the funtion f .3 Main Course | A seletion of reent enhanements toACL2We now present a seletion of items from reent ACL2 release notes, annotated withexplanations and disussion about impliations for system maintenane. We introdueeah item very briey, then display the Emas Info version of the relevant release note,and �nally explain the issues if neessary.3.1 Subgoal ountingThis item illustrates the e�ort we put into prover output. Here, \:funtional-instane"refers to ACL2's funtional instantiation utility, mentioned above; but the main pointhere is about output format, not funtional instantiation...Fixed a bug that was ausing proof output on behalf of:funtional-instane to be onfusing, beause it failed to mention thatthe number of onstraints may be different from the number of subgoalsgenerated. Thanks to Robert Krug for pointing out this onfusingoutput. The fix also auses the reporting of rules used when silentlysimplifying the onstraints to reate the subgoals...Here is output from a proof attempt using ACL2 Version 2.9.3 that illustrates theproblem. Notie that \six onstraints" doesn't math up with the subgoal numbering,whih ounts down from 5 to 1. (We ount down to give the user a real-time sense ofhow muh work remains as the output srolls by.) The old output was onfusing, andthus potentially undermined the user's on�dene in his understanding of what ACL2is doing and in his belief in ACL2's orretness.
Empirically Successful Computerized Reasoning 7

We now augment the goal above by adding the hypothesis indiated bythe :USE hint. This produes a propositional tautology. The hypothesisan be derived from AC-FN-LIST-REV via funtional instantiation, providedwe an establish the six onstraints generated.Subgoal 5(EQUAL (TIMES-LIST X)(IF (ATOM X)1 (* (CAR X) (TIMES-LIST (CDR X))))).But simplifiation redues this to T, using the :definitions ATOM andTIMES-LIST and primitive type reasoning.Subgoal 4....Here is the orresponding output (suitably elided) from ACL2 3.0.We now augment providedwe an establish the six onstraints generated. By the simple :rewriterules ASSOCIATIVITY-OF-* and UNICITY-OF-1 we redue the six onstraintsto five subgoals.[. . . and so on, as before℄3.2 A rough edge in theory ontrolACL2 uses evaluation as part of its proof strategy, but it allows the user to disableevaluation of alls of a funtion f by disabling the so-alled exeutable-ounterpart rulefor f. For a partiular type of onditional rule, a forward-haining rule, evaluationof ground hypotheses had taken plae without regard to whih exeutable-ounterpartrules are disabled, thus severely impating eÆieny in at least one user's experiene...Fixed a long-standing bug in forward-haining, where variable-freehypotheses were being evaluated even if the exeutable-ounterparts oftheir funtion symbols had been disabled. Thanks to Eri Smith forbringing this bug to our attention by sending a simple example thatexhibited the problem...3.3 Prover heuristi tweaksSometimes we �nd improvements to ACL2's prover heuristis. All three items belowdesribe hanges that were arefully made in response to user feedbak, and tested withour regression suite to gain on�dene that our heuristi hanges would not severelyimpat users. These hanges are only neessary beause ACL2 attempts to providesigni�ant automation...We fixed an infinite loop that ould our during destrutor elimination
8 Empirically Successful Computerized Reasoning

(see *Note ELIM::). Thanks to Sol Swords for bringing this to ourattention and sending a nie example, and to Doug Harper for sending aseond example that we also found useful...The simplifier has been hanged slightly in order to avoid usingforward-haining fats derived from a literal (essentially, a top-levelhypothesis or onlusion) that has been rewritten. As a pratialmatter, this may mean that the user should not expet forward-hainingto take plae on a term that an be rewritten for any reason (generallyfuntion expansion or appliation of rewrite rules). Formerly, therestrition was less severe: forward-haining fats from a hypothesisould be used as long as the hypothesis was not rewritten to t. Thanksto Art Flatau for providing an example that led us to make this hange;see the omments in soure funtion rewrite-lause for details...We modified the rewriter to avoid ertain infinite loops aused by aninteration of the opening of reursive funtions with equalityreasoning. (This hange is doumented in detail in the soure ode, inpartiular funtions rewrite-fnall and fnstak-term-member.) Thanks toFares Fraij for sending us an example that led us to make this hange...There are over 36,000 lines of omments in the soure ode, some of whih survivedmultiple translations from the earliest version of the Boyer-Moore system. The om-ments are largely intended to be a reord, for the implementors, of why things are theway they are. This is important in a software projet of 35 years duration. Sometimesthe omments show how we used to do something and why and when we hanged it. Theomments also sometimes ontain interesting examples and ounterexamples illustratingsupposed properties of the ode. Despite the original intention of the implementors touse omments as a way of reording the design deisions and history, many ACL2 usersread the soure ode. Sine ACL2 is written in ACL2, this is straightforward and sortof represents a seond, more detailed, level of doumentation.3.4 A library improvement using MBEThe following release note item illustrates one maintenane aspet: we update the dis-tributed books (libraries of de�nitions and proved theorems), often in onsultation withusers...Several interesting new definitions and lemmas have been added to thertl library developed at AMD, and inorporated into books/rtl/rel4/lib/.Other book hanges inlude a hange to lemma trunate-rem-elim inbooks/ihs/quotient-remainder-lemmas.lisp, as suggested by Jared Davis...But buried in this item is a hange that we �nd partiularly interesting.We mentioned guards earlier as a exible analogue of types, and we mentioned mbeas a way to attah exeutable ounterparts eÆiently.
Empirically Successful Computerized Reasoning 9

At AMD, we found a need for more eÆient exeution of bit-vetor operations.Through Version 2.9.1, the rtl library, books/rtl/rel4/lib/, ontained the followingde�nition of the bit-slie operation that returns bits i down to j of a natural number x.(Here, defund is a de�ne-then-disable ommand, implemented in response to a user'srequest.)(defund bits (x i j)(delare (xargs :guard (rationalp x)))(if (or (not (integerp i))(not (integerp j)))0(fl (/ (mod x (expt 2 (1+ i))) (expt 2 j)))))However, we found this de�nition in terms of oor, modulo, and exponentiationoperations painfully slow to exeute. We really wanted a de�nition that uses bitwise-and and shift operations instead:(defund bits (x i j)(if (< i j)0(logand (ash x (- j)) (1- (ash 1 (1+ (- i j)))))))Fortunately, we were able to hange the de�nition of bits for purposes of exeutionwithout hanging its logial de�nition, whih saved us from having to rework our proofsof any lemmas! The mbe (\must be equal") all below says to use the form after :logias the body, with a proof obligation that the :guard (that x, i, and j are naturalnumbers) implies the equality of the :logi and :exe forms. The :guard must alsoimply ertain formulas generated for the alls in the :exe form; for example the all(ash x (- j)) arries a guard-related obligation that x and (- j) be integers, whihis trivial from the guard assumptions that x and j are natural numbers. Then alls ofbits on natural numbers will be exeuted diretly in Common Lisp using the :exeform as the de�nition.(defund bits (x i j)(delare (xargs :guard (and (natp x)(natp i)(natp j))))(mbe :logi (if (or (not (integerp i))(not (integerp j)))0(fl (/ (mod x (expt 2 (1+ i))) (expt 2 j)))):exe (if (< i j)0(logand (ash x (- j)) (1- (ash 1 (1+ (- i j))))))))3.5 Some onveniene featuresThe following three items all make life easier for the user, as we explain below eah one.
10 Empirically Successful Computerized Reasoning

..Improved w-gstak to allow a :frames argument to speify a range of oneor more frames to be printed. See *Note CW-GSTACK::...ACL2 makes very few restritions on how users introdue rewrite rules to programthe rewriter. This freedom, however, makes it possible to introdue in�nite loops. Whenthat ours, ACL2 aborts leanly (a major advane starting with Version 2.8 | previ-ously it sometimes seg faulted!) and suggests use of the tool w-gstak, whih showsthe rewrite stak. Unfortunately, the entire rewrite stak is large, so there was interestin being able to limit the number of frames printed...A new event, set-enfore-redundany, enfores a restrition that alldefthms, defuns, and most other events are redundant. See *NoteSET-ENFORCE-REDUNDANCY::...AMD's rtl library (mentioned above) employed a methodology in whih the proofwork was restrited to books in an auxiliary diretory. It seemed desirable to enforethis methodology, so that the main diretory was kept lean and the auxiliary diretoryould be modi�ed as desired. Here is how that works.Suppose we have a �le top.lisp that we want to ertify as a book.(loal (inlude-book "work/book-1"))(defthm result-1 ...)...Here, imagine that result-1 is proved in �le work/book-1.lisp. The loal anno-tation guarantees that additional theorems proved in work/book-1.lisp will ultimatelydisappear, exept for result-1, whih (as seen above) we have made expliit. When weare ertifying the present book, we expet that result-1 will be redundant beause italready appears in work/book-1.lisp. But suppose we aidentally delete result-1 inwork/book-1.lisp. ACL2 would then try to prove result-1, but we may prefer thatACL2 instead fail immediately with a lear omplaint that it didn't �nd that result-1has already been proved.The item above provides a solution. We simply start top.lisp with the form(set-enfore-redundany t).One thing we've found is that nothing is ever simple! So for example, ertainkinds of events alled deflabel events are not allowed to be redundant. So even withset-enfore-redundany, we need to allow non-redundant deflabel events...The funtion disabledp an now be given a maro name that has aorresponding funtion; see *Note MACRO-ALIASES-TABLE::. Also,disabledp now has a guard of t but auses a hard error on aninappropriate argument...
Empirically Successful Computerized Reasoning 11

For example, in ACL2 append is a maro, beause funtions must take a �xednumber of arguments but we want to be able to apply append to an arbitrary number ofarguments. We an see how this works by using ACL2's :trans1 ommand to performa single-step maroexpansion.ACL2 !>:trans1 (append x y z)(BINARY-APPEND X (BINARY-APPEND Y Z))ACL2 !>ACL2, however, is kind enough to print terms using append rather than using theorresponding funtion, binary-append. Thus, novie users might not even realize thatappend is not a funtion.ACL2 has a notion of table events that allows maintenane of information of interest,and one suh table assoiates append with binary-append. The user then may referto append in ontexts where a funtion symbol is expeted, for example when disablinga de�nition, for example:(in-theory (disable append))..The maro omp is now an event, so it may be plaed in books...The above item simply allows a ompilation diretive to be plaed in books. It's asimple thing to provide and we wish we had done it sooner in order to save users someannoyane!3.6 Common Lisp ompatibility: PakagesNamespae ontrol is provided by Common Lisp pakages. Eah symbol is in essene apair of strings: a pakage name and a symbol name. But getting this exatly right isquite triky. A rather elaborate �x was made in Version 2.8, not shown here, to dealwith an unsoundness that ould result from a subtle use, arefully employing loal, oftwo di�erent pakages with the same name. (See ACL2's doumentation topi \hidden-death-pakage" if you want to learn more about this issue. And it points to a veryelaborate omment in the soure ode that gives even more of an idea of how nasty thisissue really is.)Below are three pakage issues solved more reently than that one, and not nearlyas omplex. They show how we sometimes need to work hard to ensure ompatibilitywith the host Common Lisp...We fixed a soundness hole due to the fat that the "LISP" pakage doesnot exist in OpenMCL. We now expliitly disallow this pakage name asan argument to defpkg. Thanks to Bob Boyer and Warren Hunt for bringingan issue to our attention that led to this fix...ACL2 now requires all pakage names to onsist of standard haraters(see *Note STANDARD-CHAR-P::, none of whih is lower ase. The reason
12 Empirically Successful Computerized Reasoning

is that we have seen at least one lisp implementation that does nothandle lower ase pakage names orretly. Consider for example thefollowing raw lisp log (some newlines omitted).>(make-pakage "foo")#<"foo" pakage>>(pakage-name (symbol-pakage 'FOO::A))"foo">(pakage-name (symbol-pakage '|FOO|::A))"foo">..(GCL only) A bug in symbol-pakage-name has been fixed that ould beexploited to prove nil, and hene is a soundness bug. Thanks to DaveGreve for sending us an example of a problem with defong (see below)that led us to this disovery...3.7 Portability, and help from othersACL2 an be built on most (all?) stable Common Lisp implementations, inludingGCL, OpenMCL, Allegro CL, SBCL, CMUCL, CLISP, and Lispworks. The most reentaddition is SBCL. There are at least two reasons for porting to all of these Lisps, inspite of a ertain amount of low-level Lisp-spei� ode we need to write and maintain.One is that we sometimes �nd bugs in our ode that are in some sense \forgiven" bymost, but not all, Lisps. The other is that we want users to be able to build on whateverLisp platform they happen to have. Perhaps a third reason is to support eah Lisp'sdevelopment by providing a non-trivial test suite...Added SBCL support. Thanks to Juho Snellman for signifiant assistanewith the port. Thanks to Bob Boyer for suggesting the use of feature:al2-mv-as-values with SBCL, whih an allow thread-level parallelismin the underlying lisp; we have done so when feature :sb-thread ispresent...3.8 User-level debug supportACL2 has a break-rewrite utility that allows the user to put a breakpoint upon the ap-pliation of a spei�ed rewrite rule, optionally under spei�ed onditions. The situationbeomes ompliated when there are so-alled free variables in hypotheses. For example,onsider the onditional rewrite rule saying that if prediate p2 holds of x and y, andprediate p3 holds of y, then prediate p1 holds of x:(implies (and (p2 x y)(p3 y))(equal (p1 x) t))
Empirically Successful Computerized Reasoning 13

Now suppose the rewriter enounters the term (p1 (foo a)). So, x is bound to (foo a)when we apply the above rule. But how an we rewrite the �rst hypothesis (to true) ifwe do not have a binding for the free variable y?In this ase, ACL2 simply looks in its urrent ontext for some term � for whih(p1 (foo a) �) is known to be true. When it �nds suh an � then it binds y to �and goes on to the next hypothesis. So it will now be \thinking about" (p3 �). If therewriter annot prove this is true, it will baktrak and look for another value of y inplae of � for the �rst hypothesis.The above information an be ritial to a user who is trying to understand whya rule is failing to be applied, espeially when there is a omplex set of available rulesoperating on the hypotheses. The following item desribes an improvement that providesonvenient display of suh information...Improved reporting by the break-rewrite utility upon failure to relievehypotheses in the presene of free variables, so that information isshown about the attempting bindings. See *NoteFREE-VARIABLES-EXAMPLES-REWRITE::. Thanks to Eri Smith for requestingthis improvement. Also improved the break-rewrite loop so that terms,in partiular from unifying substitutions, are printed without hidingsubterms by default. The user an ontrol suh hiding ("eviseration");see *Note SET-BRR-TERM-EVISC-TUPLE::...The ACL2 doumentation topi \free-variables-examples-rewrite" desribeshow all this works. We'll just show a piee of that doumentation here in order to givea visual ue of what we provide.(1 Breaking (:REWRITE LEMMA-1) on (PROP U0):1 ACL2 >:eval1x (:REWRITE LEMMA-1) failed beause :HYP 1 ontains free variables.The following display summarizes the attempts to relieve hypothesesby binding free variables; see :DOC free-variables and see :DOC set-brr-term-evis-tuple.[1℄ X : X1Failed beause :HYP 3 ontains free variables Y and Z, for whih nosuitable bindings were found.[1℄ X : X2Failed beause :HYP 2 rewrote to (BAD X2).[1℄ X : X3[3℄ Z : Z1Y : Y1Failed beause :HYP 6 rewrote to (FOO X3 Y1).[3℄ Z : Z1Y : Y3Failed beause :HYP 6 rewrote to (POO X3 Y3).1 ACL2 >
14 Empirically Successful Computerized Reasoning

3.9 Some other release note items of interest� Several bugs have been �xed that are related to loal. It seems somewhat diÆultto antiipate all interations of other aspets of the system and logi with loal.� Two very di�erent kinds of hints for defthm events are generally inompatible::hints to diret the automati prover, and :instrutions to diret the replayof ommands saved during a session with the proof-heker, an interative goal-direted proof management tool. We quite sensibly aused an error if both :hintsand :instrutions were present for the same defthm event. But we addeda notion of default hints without notiing that we needed to allow them with:instrutions, in whih ase the default hints should apply to any individualinstrution that alls the full prover. (This has been �xed.)� Users an undo events and they an even undo the undo. But some heavy usersare hitting memory limitations, so we now provide the option of trading the \undothe undo" apability with the relamation of spae.� A feature new to Version 3.0, of exitement to some experiened ACL2 users, isa apability, make-event, that is similar to maros but whih is sensitive to theenvironment (e.g., the ACL2 state objet). The main idea is that expansionsthat might otherwise depend on the environment, whih is illegal for maros,5 aresaved in the book's erti�ate. But there were lots of ompliations to solve (forexample, what if the make-event is submitted interatively before erti�ation isbegun).� Users an speify a limit on bakhaining through rewrite rules, and they anspeify syntati heks to ontrol the appliation of a rewrite rule [HKK+05℄.But until a user requested it, these features were not available with onditionalmeta-rules.� ACL2 supports rewriting with ongruenes, where the original and rewritten termare equivalent but not neessarily equal. ACL2 also ahes rewrite results, foreÆieny. There are oasions when the ahed result is from an equality rewrite,but we need to rewrite with an equivalene, whih ould produe a stronger result.If we always ignore the ahe in suh ases, eÆieny beomes a problem. Butafter reeiving a user request, we instituted a ompromise where we give speialhandling in some ases when the equivalene relation is Boolean equivalene. Morereently [KM06℄, we have provided the user a means to handle this situation forother equivalene relations, together with warnings that bring this situation to theuser's attention.5It would take us too far a�eld to explain in detail why it is illegal for maros to depend on theurrent state. But it's not hard to imagine that otherwise, a maro might expand to give one de�nitionof a funtion as a book is erti�ed, but a di�erent de�nition of the same funtion when the book is laterinluded. Besides, ACL2 ompiles its books, and the Common Lisp spei�ation disallows dependeneof maros on the state.
Empirically Successful Computerized Reasoning 15

4 DessertI intend to leave time for audiene members to share related observations from theirown experienes, and to ask further questions.AknowledgmentsWe thank Robert Krug and Sandip Ray for useful omments on a draft of this pa-per. This material is based upon work supported by DARPA and the National SieneFoundation under Grant No. CNS-0429591.Referenes[BGKM91℄ R.S. Boyer, D.M. Goldshlag, M. Kaufmann, and J S. Moore. Funtionalinstantiation in �rst-order logi. In V. Lifshitz, editor, Arti�ial Intelli-gene and Mathematial Theory of Computation: Papers in Honor of JohnMCarthy, pages 7{26. Aademi Press, 1991.[BM79℄ R. S. Boyer and J S. Moore. A Computational Logi. Aademi Press, NewYork, 1979.[BM81℄ R. S. Boyer and J S. Moore. Metafuntions: Proving them orret and usingthem eÆiently as new proof proedures. In The Corretness Problem inComputer Siene. Aademi Press, London, 1981.[BM97℄ R. S. Boyer and J S. Moore. A Computational Logi Handbook, SeondEdition. Aademi Press, New York, 1997.[BM02℄ R. S. Boyer and J S. Moore. Single-threaded objets in ACL2. In S. Krish-namurthi and C. R. Ramakrishnan, editors, PADL 2002, LNCS 2257, pages9{27, 2002.[GKM+℄ D. A. Greve, M. Kaufmann, P. Manolios, J S. Moore, S. Ray, J. L. Ruiz-Reina, R. Sumners, D. Vroon, and M. Wilding. EÆient exeution in anautomated reasoning environment. Submitted.[gpl℄ http://www.gnu.org/opyleft/gpl.html.[HKK+05℄ W. A. Hunt, Jr, M. Kaufmann, R. B. Krug, J S. Moore, and E. W. Smith.Meta reasoning in ACL2. In Joe Hurd and TomMelham, editors, 18th Inter-national Conferene on Theorem Proving in Higher Order Logis: TPHOLs2005, volume 3603 of Leture Notes in Computer Siene. Springer, August2005.[Kau91℄ M. Kaufmann. An informal disussion of issues in mehanially-assistedreasoning. In M. Arher, J. J. Joye, K. N. Levitt, and P. H. Windley,editors, Proeedings of the 1991 International Workshop on the HOL The-orem Proving System and its Appliations, pages 318{337, Los Alamitos,CA, 1991. IEEE Computer Soiety Press.
16 Empirically Successful Computerized Reasoning

[KM01℄ M. Kaufmann and J S. Moore. Strutured theory development for a meh-anized logi. Journal of Automated Reasoning, 26(2):161{203, 2001.[KM04a℄ M. Kaufmann and J S. Moore. The ACL2 home page. In http: // www.s. utexas.edu/ users/moore/al2/ . Dept. of Computer Sienes, Uni-versity of Texas at Austin, 2004.[KM04b℄ M. Kaufmann and J S. Moore. How to prove theorems for-mally. In http:// www.s. utexas.edu/ users/moore/publiations/how-to-prove-thms/ . Department of Computer Sienes, University ofTexas at Austin, 2004.[KM06℄ M. Kaufmann and J S. Moore. Double rewriting for equivalential reasoningin ACL2. In Proeedings of ACL2 Workshop 2006, August 2006.[KMM00a℄ M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Rea-soning: ACL2 Case Studies. Kluwer Aademi Press, Boston, MA., 2000.[KMM00b℄ M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:An Approah. Kluwer Aademi Press, Boston, MA., 2000.

Empirically Successful Computerized Reasoning 17

SPASS+T

Virgile Prevosto1∗ and Uwe Waldmann2

1CEA – LIST, Centre de Saclay
Software Reliability Laboratory (LSL)
91191 Gif-sur-Yvette Cedex, France

virgile.prevosto@m4x.org

2Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany
uwe@mpi-inf.mpg.de

Abstract

Spass+T is an extension of the superposition-based theorem prover Spass that
allows us to enlarge the reasoning capabilities of Spass using an arbitrary SMT
procedure for arithmetic and free function symbols as a black-box. We discuss the
architecture of Spass+T and the capabilities, limitations, and applications of such
a combination.

1 Introduction

Spass (Weidenbach et al. [10]) is a saturation-based theorem prover for first-order logic
based on the superposition calculus. Such provers are notoriously bad at dealing with
integer or real arithmetic – encoding numbers in binary or unary is not really a viable
solution in most application contexts. We have extended Spass in such a way that we
can link it to a rather arbitrary SMT (Satisfiability Modulo Theories) procedure for
arithmetic and free function symbols, for instance our own ModuProve system (based
on the DPLL(T) framework of Ganzinger et al. [5]) or the CVC Lite prover by Barrett
and Berezin [2]. Briefly, the resulting system, called Spass+T, works as follows: Spass

uses its deduction rules to generate formulas as usual. In addition, it passes to the
SMT procedure all the formulas that can be handled by the procedure, i. e., all ground
formulas. As soon as one of the two systems encounters a contradiction, the problem is
solved.

The scenario described so far is a special case of hierarchic theorem proving: a combi-
nation of a base prover that deals with some subclass of formulas, say, formulas in linear
arithmetic, and an extension prover that deals with formulas over the complete signature

∗This work was partially funded by the German Federal Ministry of Education, Science, Research and
Technology (BMBF) in the framework of the Verisoft project under grant 01 IS C38. The responsibility
for this article lies with the authors. Project website: http://www.verisoft.de.

18 Empirically Successful Computerized Reasoning

and passes all formulas to the base prover that the latter can handle. The correctness
of such a hierarchic combination of deductive systems is obvious. In theory, conditions
for completeness have been given by Bachmair, Ganzinger, Sofronie-Stokkermans, and
Waldmann [1, 6]. For instance, one can get a complete hierarchic combination of provers
if base and non-base vocabulary are separated using abstraction, the term ordering is
chosen in such a way that base terms/atoms are smaller than non-base terms/atoms,
the base prover can deal with arbitrary formulas over the base vocabulary, the extension
is sufficiently complete,1 and the base theory is compact [1].

In practice, however, sufficient completeness need not hold (and cannot be checked
automatically), abstraction enlarges the search space, SMT procedures for some useful
theories can only deal with ground formulas (this is for instance the case for Nelson-
Oppen combinations of arithmetic and free function symbols), and even compactness
may be an issue. As an example, consider the two clauses ∀x, y. (f(x) 6= y + y) and
∀x, y. (f(x) 6= y + y + 1). If the base theory is Presburger arithmetic (linear integer
arithmetic), then the conjunction of these two clauses (expressing the fact that f(x) is
neither even nor odd) is inconsistent. Still any finite set of ground instances of these two
formulas is consistent. Even unification modulo the base theory would not help.

An integration of first-order theorem provers and SMT procedures can therefore
only be a pragmatic one: Completeness can be achieved for special classes of inputs,
but not in general. If we work with non-ground problem description but ground goal
formulas, then there is some hope that we can ultimately produce sufficiently many
ground formulas so that the SMT procedure can find the contradiction. If we want
to solve non-ground problems, in particular if we want to find solutions for variables,
then the purely hierarchic approach must be supplemented by some knowledge about
arithmetic that is built-in directly into Spass.

2 SPASS

Spass (Weidenbach et al. [10]) is known to be one of the most advanced implementations
of the superposition calculus. The superposition calculus is a refutationally complete pro-
cedure for arbitrary first-order clauses with equality, that is, it provides a semi-decision
procedure for the unsatisfiability of sets of clauses. Theorem proving methods such as
resolution or superposition aim at deducing a contradiction from a set of formulas by
recursively inferring new formulas from given ones. New formulas are derived according
to a set of inference rules. In the case of superposition, these rules are restricted versions
of paramodulation, resolution, and factoring, parameterized by a reduction ordering �

that is total on ground expressions (that is, ground atoms and ground terms) and by
a selection function S, which assigns to each clause a (possibly empty) multiset of (oc-
currences of) negative literals. The literals in S(C) are called selected. Selected literals,
besides being negative, can be arbitrarily chosen. Ordering and selection function impose
various restrictions on the possible inferences, which are crucial for the efficiency of the-
orem provers like Spass. Let us consider one of the inference rules of the superposition
calculus as an example:

1Intuitively, sufficient completeness means that every ground term of a base sort is provably equal
to a ground term consisting only of base symbols.

Empirically Successful Computerized Reasoning 19

Negative superposition
D′ ∨ t = t′ C ′ ∨ ¬ s[u] = s′

(D′ ∨ C ′ ∨ ¬ s[t′] = s′)σ

if (i) the literal t = t′ is strictly maximal in the first premise, (ii) no literal
is selected in the first premise, (iii) either the literal ¬ s[u] = s′ is selected
in the second premise or it is maximal and no literal is selected, (iv) t 6� t′,
(v) s[u] 6� s′, (vi) u is not a variable, and (vii) σ is a most general unifier of
t and u.

This inference rule combines the unification of t and the subterm u of s with subse-
quent replacement of uσ by t′σ. When we speak of a superposition inference we mean
an arbitrary rule of the calculus.

Note that a clause with selected literals cannot serve as the left premise of a su-
perposition inference, and that maximal terms are superposed either on maximal or
selected literals, and a smaller term is never replaced by a larger one. Moreover, only
the maximal sides of equations are replaced. The pattern of interplay between ordering
restrictions and the selection function is the same for all inference rules of the calculus.

The local restrictions of the superposition inference rules are supplemented by a
global redundancy criterion that allows us to discard formulas that are provably unnec-
essary for deriving a contradiction.

3 System Architecture

Spass+T consists of three modules: the theorem prover Spass, a (rather arbitrary)
SMT procedure for integer or real arithmetic and free function symbols, and a module
SMT-Control connecting both. The proof systems are only loosely coupled; they wait
for each other only if they have completed their own task.

Spass sends three kinds of messages to SMT-Control:

– all the ground formulas present in the input or derived during the saturation;

– proof found (signaling that Spass has derived the empty clause);

– end of file (signaling that Spass has saturated its input).

SMT-Control collects the formulas sent by Spass and repeatedly sends portions of
the set of formulas to the SMT procedure,2 until one of the following events occurs:

– Spass sends proof found ;

– the SMT procedure detects unsatisfiability;

– the SMT procedure detects satisfiability after Spass has sent end of file and the
SMT procedure has seen all the output of Spass.

The result is “proof found” in the first two cases, “no proof found” in the third one.
Lacking completeness, “no proof found” does in general not imply satisfiability.

2Under the assumption that the SMT procedure works incrementally. Alternatively the SMT proce-
dure can be restarted with increasing subsets of the set of formulas.

20 Empirically Successful Computerized Reasoning

4 The Simple Case

There are applications where we can guarantee that every base theory formula generated
by Spass is ground. In this case, the very simple setup described above is already
sufficient. An example is pointer data structure verification à la McPeak and Necula [7].
In this scenario, we consider recursive data structures involving pointers to records or to
nil . Record fields can either be scalar values or pointers. In the axioms used to describe
the behaviour of a data structure, all variables range over pointer values (i. e., there is
no quantification over scalar values). Record fields are encoded as (partial) functions, so
x.data , i. e., the data field of the record that x points to, is written as data(x). McPeak
and Necula require that every occurrence of such a function must be guarded by a
condition that ensures that the argument is non-nil. For instance, the formula stating
that the prev pointer is the inverse of the next pointer in a doubly linked list looks like

∀x. (x 6= nil ∧ next(x) 6= nil → prev(next(x)) = x),

and the formula stating that the data field of any record is positive looks like

∀x. (x 6= nil → data(x) > 0).

To avoid positive disjunctions, we replace the guard formula x 6= nil by isrecord (x),
obtaining

∀x. (isrecord (x) ∧ isrecord (next(x)) → prev(next(x)) = x),

∀x. (isrecord (x) → data(x) > 0).

Since the SMT procedure accepts not only the symbols of the arithmetical theory, such as
+, −, · , <, or ≤, but also free function or predicate symbols, the distinction between base
and non-base symbols is somewhat arbitrary – if it is useful, we may treat both theory
symbols and a subset of the free symbols as base symbols. Let us therefore consider
the guard predicate isrecord as the only non-base symbol in the signature. If we select

the occurrences of isrecord (t) in the antecedent, we ensure that the only inferences that
are possible with such clauses are (repeated) resolution steps with positive occurrences
of isrecord (s). Since isrecord (s) occurs positively only in goal formulas (or formulas
recursively derived from goal formulas), and since the term s is always ground in these
formulas, the base formulas resulting from resolution are ground and can be passed to
the SMT procedure. In effect, Spass+T mimics the derivation steps of McPeak and
Necula, and the completeness result of McPeak and Necula carries over to Spass+T.

5 Theory Instantiation

If non-ground theory literals are not guarded, then it can easily happen that the usual
inference rules of Spass do not produce those ground instances that the SMT procedure
would need to find a contradiction. Consider the following example from Boyer and
Moore [3]: Let min and max be non-theory function symbols denoting the minimum
and the maximum element of a list of numbers. Suppose that we want to refute ¬ (l <
max (a) + k) using the assumptions l ≤ min(a) and 0 < k and the universally quantified

Empirically Successful Computerized Reasoning 21

lemma ∀x. (min(x) ≤ max (x)). Analogously to Boyer and Moore, we need an additional
inference rule that computes the required ground instance of this lemma. For efficiency
reasons, we restrict ourselves to instantiations where a term headed by a non-theory
symbol occurs in at least one other ground clause – if a non-theory term occurs in only
one clause, this clause is very unlikely to be useful to the SMT procedure, at least in
linear arithmetic. We obtain the following inference rule:

Theory instantiation
C[s] L[t] ∨ D

(L[t] ∨ D)σ

if L[t] ∨ D is not ground, t is headed by a non-theory function symbol and
occurs in a maximal literal L[t] immediately below a theory symbol, all
function or predicate symbols occurring above t in L[t] are theory symbols
or equality, C[s] is ground, σ is an mgu of s and t, and (L[t]∨D)σ is ground.

In the example above, the theory instantiation inference

l ≤ min(a) min(x) ≤ max (x)

min(a) ≤ max (a)

yields the ground clause that the SMT procedure needs to derive a contradiction. There
is one problem with this rule, though: The generated formula (L[t] ∨ D)σ is subsumed
by the second premise L[t] ∨D; therefore Spass will delete it again. We export it to the
SMT procedure before the redundancy check, but we must also ensure that (L[t] ∨D)σ
can again be used as a first premise in a theory instantiation inference. To this end, we
introduce a special new predicate symbol ground and split the inference rule into two
parts:

Theory instantiation I
C[s]

ground (s)

if C[s] is ground and s is headed by a non-theory function symbol.

Theory instantiation II
ground (s) L[t] ∨ D

ground (u1) . . . ground(un) export(D′)

if L[t] ∨ D is not ground, t is headed by a non-theory function symbol and
occurs in a maximal literal L[t] immediately below a theory symbol, all
function or predicate symbols occurring above t in L[t] are theory symbols
or equality, σ is an mgu of s and t, D′ = (L[t]∨D)σ is ground, and u1, . . . , un

are the ground terms occurring in D′ that are different from s and headed
by a non-theory function symbol.

In the example above, the theory instantiation I inference

l ≤ min(a)

ground(min(a))

and the theory instantiation II inference

ground (min(a)) min(x) ≤ max (x)

ground (max (a)) export(min(a) ≤ max (a))

22 Empirically Successful Computerized Reasoning

cause min(a) ≤max (a) to be exported to the SMT procedure and ensure that the clause
ground(max (a)) is available for further theory instantiation II inferences within Spass.

If we select guard literals whenever possible, and if we choose the atom ordering so
that non-theory predicates are larger than theory predicates, then the theory instantia-

tion rule is used only as a last resort: It is applied only if there are no non-theory guard
literals that might produce ground instances in a more restricted manner.

6 Arithmetic Simplification

There are several reasons to supplement the external SMT procedure in Spass+T by
simplification techniques that are built-in directly into Spass+T. First of all, such sim-
plification techniques offer the chance to find solutions for variables, say, to replace a
clause ∀x. (¬ x + 2 = 5 ∨ p(x)) by ∀x. (¬ x = 3 ∨ p(x)) and then by p(3). Second,
they allow us to reduce different numeric subexpressions to the same number, so that
the search space of Spass+T is not cluttered by different, but numerically equivalent
clauses, such as p(2 + 1), p(1 + 2), p(1 + (1 + 1)), etc. Third, by applying arithmetic
simplification in advance, an equation like ∀x. (x + 0 = x) can be used to simplify a
formula such as p(((a + 2) − 1) − 1) to p(a).

In Spass+T, we use a combination of additional input axioms encoding some frag-
ment of arithmetic and specialized simplification rules dealing with the numeric part.
The latter include rules for evaluation of constant numeric subexpressions, such as

C[c1 + c2]

C[c0]

and
C[(t + c1) + c2]

C[t + c0]

where c1 and c2 are numeric constants and c0 = c1 + c2, and rules for elementary
(in-)equation solving, for instance

C ∨ [¬] t + c1 ∼ c2

C ∨ [¬] t ∼ c0

where c0 = c2 − c1 and ∼ is equality or an ordering relation.
All the arithmetic simplification rules we have implemented have the property that

the resulting formula is smaller than the original one in any Knuth-Bendix ordering,
provided that all constants have the same weight. Still it should be clear that there is
some risk of losing proofs by applying arithmetic simplification. As a trivial example
consider the two clauses ∀x. (p(3 · x + 4)) and ¬ p(3 · 5 + 4). These clauses are obviously
contradictory, but lacking theory unification, there is no way to derive a contradiction
as soon as the second clause has been simplified to ¬ p(19).

In contrast to formulas that describe the relationships between concrete numerical
constants, equations such as ∀x. (x + 0 = x), ∀x. (x − x = 0), or ∀x, y. ((x − y) + y = x)
are preferably added to the input as ordinary axioms. In this way they are not only avail-
able for simplification, but also for superposition or resolution inferences. In our experi-
ments, this capability turned out to be extremely useful for refuting non-ground queries.

Empirically Successful Computerized Reasoning 23

The integer ordering expansion rule, which is essential for some kinds of inductive
proofs, is in some way a hybrid between the two cases above.

Integer ordering expansion
C ∨ s ≤ t

C ∨ s = t ∨ s ≤ t − 1 C ∨ s = t ∨ s + 1 ≤ t

It is an inference rule, rather than a simplification rule, and it corresponds to resolution
inferences with the axioms ∀x, y. (¬ x ≤ y ∨ x = y ∨ x ≤ y − 1) and ∀x, y. (¬ x ≤ y ∨ x =
y ∨ x + 1 ≤ y). These are unordered resolution inferences, however, so Spass would
not perform them. The integer ordering expansion rule fills this gap, but it has to be
restricted, for instance by limiting applications to clauses with only one positive literal;
otherwise it turns out to be too productive.

7 Experiments

We have tested Spass+T both on a list of sample conjectures [8] (theorems and non-
theorems) from the TPTP library [9] and on our own list of benchmark problems, mostly
combining arithmetic and data structures. We used Spass+T with CVC Lite 2.5 as ex-
ternal decision procedure for the union of the theory of uninterpreted functions and in-
teger arithmetic. Spass+T options were chosen identically for all benchmark problems;
in particular, arithmetic simplification, theory instantiation, and (a very restricted form
of) integer ordering expansion were switched on, and precedences were chosen uniformly
in such a way that non-theory predicates (notably the containment relation for collec-
tions) became larger than theory predicates.3 Moreover, the following set of auxiliary
axioms was supplied:

INT01 ∀X,Y. ((X − Y) + Y = X).
INT02 ∀X. (X + 0 = X).
INT03 ∀X. (0 + X = X).
INT04 ∀X. (X < X + 1).
INT05 ∀X,Y. (X < Y → X ≤ Y).
INT06 ∀X. (X ≤ X).
INT07 ∀X,Y. (X < Y ↔ Y > X).
INT08 ∀X,Y. (X ≤ Y ↔ Y ≥ X).
INT09 ∀X,Y. (¬ (X < Y ∧ X ≥ Y)).
INT10 ∀X,Y. (¬ (X ≤ Y ∧ X > Y)).
INT11 ∀X,Y. (X ≤ Y ∧ Y ≤ X → X = Y).
INT12 ∀X,Y. (X − Y = X + (−Y)).
INT13 ∀X. (−(−X) = X).
INT14 ∀X. (X · 0 = 0).
INT15 ∀X. (0 · X = 0).
INT16 ∀X. (X · 1 = X).
INT17 ∀X. (1 · X = X).
INT18 ∀X. (X/1 = X).
INT19 ∀X. (X mod 1 = 0).

3Using the set DomPred option of Spass.

24 Empirically Successful Computerized Reasoning

The experiments were carried out on an office PC with a 2.40 GHz Intel Pentium 4
CPU and 512 MB RAM running Debian Linux. All times reported are wall-clock time
in seconds.

7.1 TPTP Integer Arithmetic Problems

The list of integer arithmetic problems in the TPTP library contains 147 theorems and
36 non-theorems [8]. Most of the problems are rather easy. The results are summarized
in the following table:

Category Theorems Non-theorems

Number of problems: 147 36

Proof found: 140 0
Termination in less than 1 second: 136 0
Termination in 1 to 8 seconds: 4 0

No proof found: 7 36
Termination in less than 1 second: 6 31
Termination in 1 to 8 seconds: 1 3
Non-termination: 0 2

7.2 Further Problems

Integer arithmetic. In addition to the TPTP list, we have developed a collection
of 75 theorems mostly combining arithmetic and data structures to test Spass+T. In
the following list, the second column gives the runtime of Spass+T (wall clock time in
seconds) and the result, where “+” means “Proof found”, “-” means “No proof found”,
and “∞” means that the time limit of 600 seconds was exceeded.

(1) 1.82 - ∀X,Z. (∃Y. (X + Y = Z))

(2) 0.16 + ∀Y,Z. (∃X. (X + Y = Z))

(3) 0.68 - ∀X,Z. (∃Y. (X − Y = Z))

(4) 0.16 + ∀Y,Z. (∃X. (X − Y = Z))

(5) 0.33 - ∃X. (X + X < −10)

(6) 0.19 + ∃X. (X · 3 + (−5) < −12)

(7) 0.23 + ∃X,Y. (3 · X + 5 · Y = 24)

(8) 0.22 + ∃X,Y. (3 · X + 5 · Y = 23)

(9) 0.38 - ∃X,Y. (3 · X + 5 · Y = 22)

(10) 0.69 + ∀X,Y. (¬ 4 · X + 6 · Y = 21)

(11) 1.01 + ∀X,Y,Z. (2 · X + Y + Z = 10 ∧ X + 2 · Y + Z = 10 → ¬ Z = 0)

Empirically Successful Computerized Reasoning 25

(12) 1.65 + ∀X,Y,Z. (X < 5 ∧ Y < 3 ∧ X + 2 · Y > 7 → Y = 2)

(13) 4.77 + ∀X. (∃Y. (Y < X ∧ ¬ ∃Z. (Y < Z ∧ Z < X)))

(14) 0.21 + ¬ ∃X. (0 < X ∧ ∀Y. (Y < X → Y + 1 < X))

Integer arithmetic plus free function or predicate symbols.

(15) 0.18 + ∀X,Y. (X + Y = f(X) ∧ Y − f(X) = 0 → Y = f(0))

(16) 0.91 + ∀X. (f(X) > X) → f(f(f(6))) ≥ 9

(17) 3.75 + ∀X. (f(X) > X) → ∀Y,Z. (f(f(Y) + Z) ≥ Y + Z + 2)

(18) 1.23 + ∀X,Y. (X < Y → f(X) < f(Y)) → ∀Y. (f(f(Y) + 2) > f(f(Y)))

(19) 1.40 - ∀X,Y. (X < Y → f(X) < f(Y)) → ∀Y. (f(f(Y) + 2) > f(f(Y)) + 1)

(20) 0.18 + ∀X. (f(X) > 1) → 7 − 2 · f(3) < 4

(21) 1.01 + ∀X. (f(X) > X) → ∀X. (X − f(X) < 0)

(22) 1.17 - ∀X,Y. (g(X,Y) = g(X,Y + 2)) ∧ g(3, 3) = g(3, 4) → g(3, 2) = g(3, 5)

(23) 0.20 + p(14 · 3 + 8) → p(50)

(24) 0.24 + ∀X. (p(X + 3)) → p(5)

(25) 0.46 - ∀X. (p(2 · X)) → p(10)

(26) 0.59 - p(0)∧∀X. (p(X) → p(X +1))∧∀X. (p(X) → p(X −1))→∀X. (p(X))

Integer arithmetic and arrays. The formulas

ARR01 ∀A, I,X. (read (write(A, I,X), I) = X).
ARR02 ∀A, I, J,X. (I = J ∨ read (write(A, I,X), J) = read (A, J)).

were used to axiomatize arrays for the following problems:

(27) 0.29 + ∀A,A′. (A = write(write(write(write(A′, 3, 33), 4, 444), 5, 55), 4, 44)
→ read (A, 3) = 33)

(28) 0.61 + ∀A,A′, I. (A = write(write(write(write(A′, 3, 33), 4, 44), 5, 55), I, 66)
→ read (A, 4) = 44 ∨ read (A, 4) = 66)

(29) 1.43 + ∀A,A′, I.(A = write(write(write(write(A′, 3, 33), 4, 444), 5, 55), 4, 44)
∧ 3 ≤ I ∧ I ≤ 4

→ 33 ≤ read (A, I) ∧ read (A, I) ≤ 44)

(30) 0.25 + ∀A,A′. (A = write(write(write(write(A′, 3, 33), 4, 444), 5, 55), 4, 44)
→ ∃I. (read (A, I) = 33))

26 Empirically Successful Computerized Reasoning

(31) 0.15 + ∀A,A′. (A = write(write(write(write(A′, 3, 33), 4, 444), 5, 55), 4, 44)
→ ∃I. (read (A, I) < 40 ∧ 30 < read (A, I)))

(32) 0.39 + ∀A,A′. (∀I. (read (A′, I) > I)
∧ A = write(write(A′, 3, 5), 7, 9)

→ ∀I. (read (A, I) > I))

(33) 3.78 + ∀A,A′, J. (∀I. (read (A′, I) > I)
∧ A = write(A′, J, J + 3)

→ ∀I. (read (A, I) > I))

(34) 0.37 + ∀A,A′. (A = write(write(write(write(A′, 3, 33), 4, 444), 5, 55), 4, 44)
∧ ∀I. (read (A′, I) < 100)

→ ∀I. (read (A, I) < 100))

(35) 0.30 + ∀A,A′, J,K. (∀I. (J ≤ I ∧ I ≤ K → read (A′, I) > 0)
∧ A = write(A′,K + 1, 3)

→ ∀I. (J ≤ I ∧ I ≤ K + 1 → read (A, I) > 0))

(36) 5.65 + ∀A,A′, J,K. (∀I. (J ≤ I ∧ I ≤ K → read (A′, I) > 0)
∧ A = write(A′, J + 2, read (A′, J + 1) + 1)

→ ∀I. (J ≤ I ∧ I ≤ K → read (A, I) > 0))

(37) 3.52 - ∀A, J,K. (∀I. (J ≤ I ∧ I ≤ K → read (A, I) > 0)
→ ∀I. (J + 3 ≤ I ∧ I ≤ K → read (A, I) > 0))

(38) 31.75 + ∀A. (∀I. (1 ≤ I ∧ I ≤ 10 → read (A, I) > I)
∧ ∀I. (11 ≤ I ∧ I ≤ 20 → read (A, I) > 20 − I)

→ ∀I. (6 ≤ I ∧ I ≤ 15 → read (A, I) > 5))

(39) 0.23 + ∀A. (∀I. (20 ≤ I ∧ I ≤ 30 → read (A, I) = I + 25)
→ ∃I. (read (A, I) = 50))

(40) 0.56 - ∀A. (∀I. (20 ≤ I ∧ I ≤ 30 → read (A, I) = 2 · I + 3)
→ ∃I. (read (A, I) = 53))

(41) 0.27 + ∀A,A′, I, J,K. (¬ read (A′, I) = read (A′, J)
∧ A = write(write(write(A′, J, 0),

K, read (A′,K) + 1), I, 0)
→ ∃L. (¬ read (A,L) = read (A′, L)))

(42) 9.90 + ∀A,A′, I, J,K. (A = write(write(write(A′, I, 3), I + 2, 2), I + 4, 1)
∧ I ≤ J ∧ J ≤ I + 3

→ ∃K. (J ≤ K ∧ K ≤ J + 3 ∧ read (A,K) ≤ 3))

Empirically Successful Computerized Reasoning 27

Integer arithmetic and collections. The formulas

COL01 ∀I. (¬ I ∈ ∅).
COL02 ∀I, S. (I ∈ add (I, S)).
COL03 ∀I, S. (¬ I ∈ remove(I, S)).
COL04 ∀I, S, J. (I ∈ S ∨ I = J ↔ I ∈ add (J, S)).
COL05 ∀I, S, J. (I ∈ S ∧ ¬ I = J ↔ I ∈ remove(J, S)).

were used to axiomatize collections of integers for the following problems:

(43) 0.31 + ¬ 4 ∈ add (1, add (3, add (5, ∅)))

(44) 0.56 + ∀S, I, J. (S = add (5, add (3, add (1, ∅)))
∧ I ∈ S ∧ J ∈ S ∧ ¬ I = J

→ I + J < 9)

(45) 0.23 + ∀S, S ′. (∀I. (I ∈ S ′ → I > 0)
∧ S = add (2, remove(7, S ′))

→ ∀I. (I ∈ S → I > 0))

(46) 0.27 + ∀S, S ′. (∀I. (I ∈ S ′ → I > 0)
∧ S = remove(4, remove(1, remove(2, S ′)))

→ ∀I. (I ∈ S → I > 2))

(47) 0.64 + ∀S. (∀I. (I ∈ S → I ≥ 0)
∧ ¬ 0 ∈ S ∧ ¬ 1 ∈ S

→ ∀I. (I ∈ S → I ≥ 2))

(48) 0.23 + ∀S. (∀I. (I ∈ S → I ≥ 0)
∧ ∀I. (I ∈ S ↔ I ∈ remove(0, remove(1, S)))

→ ∀I. (I ∈ S → I ≥ 2))

(49) 1.92 + ∀S, S ′, J. (∀I. (I ∈ S ′ → I > 0)
∧ J ∈ S′ ∧ S = add (J + 2, remove(J, S ′))

→ ∀I. (I ∈ S → I > 0))

(50) 2.29 + ∀S, S ′, J,K. (∀I. (I ∈ S ′ → I > 0)
∧ J ∈ S′ ∧ K ≥ 0 ∧ S = add (J + K, remove(J, S ′))

→ ∀I. (I ∈ S → I > 0))

(51) 1.37 + ∀S, S ′. (∀I. (I ∈ S ′ → I > 0)
∧ ∀I. (I ∈ S → ∃J. (J ∈ S ′ ∧ I > J))

→ ∀I. (I ∈ S → I > 1))

(52) 1.95 + ∀S, S ′. (∀I. (I ∈ S ′ → I > 0)
∧ ∀I. (I ∈ S → ∃J. (J ∈ S ′ ∧ 2 · I − 5 · J > 0))

→ ∀I. (I ∈ S → I > 2))

(53) 1.90 + ∀S, S ′. (∀I. (I ∈ S ′ → I > 0)
∧ ∀I. (I ∈ S → ∃J,K. (J ∈ S ′ ∧ K ∈ S′ ∧ I = J + K))

→ ∀I. (I ∈ S → I > 1))

28 Empirically Successful Computerized Reasoning

(54) 0.36 + ∀S. (S = add (10, add (30, add (50, ∅)))
→ ∃I. (20 ≤ I ∧ I ≤ 40 ∧ I ∈ S))

Integer arithmetic and collections with counting. The formulas

CCO01 ∀I. (¬ I ∈ ∅).
CCO02 ∀I, S. (I ∈ add (I, S)).
CCO03 ∀I, S. (¬ I ∈ remove(I, S)).
CCO04 ∀I, S, J. (I ∈ S ∨ I = J ↔ I ∈ add(J, S)).
CCO05 ∀I, S, J. (I ∈ S ∧ ¬ I = J ↔ I ∈ remove(J, S)).
CCO06 ∀S. (count(S) ≥ 0).
CCO07 ∀S. (S = ∅ ↔ count(S) = 0).
CCO08 ∀I, S. (¬ I ∈ S ↔ count(add (I, S)) = count(S) + 1).
CCO09 ∀I, S. (I ∈ S ↔ count(add (I, S)) = count(S)).
CCO10 ∀I, S. (I ∈ S ↔ count(remove(I, S)) = count(S) − 1).
CCO11 ∀I, S. (¬ I ∈ S ↔ count(remove(I, S)) = count(S)).
CCO12 ∀I, S. (I ∈ S → S = add(I, remove(I, S))).

were used to axiomatize collections of integers with a counting operation for the following
problems:

(55) 22.09 + ∀S. (count(remove(5, S)) ≥ 7
→ count(remove(4, S)) ≥ 6)

(56) 3.71 + ∀S. (count(add (5, S)) = count(add (3, S))
→ count(remove(5, S)) = count(remove(3, S)))

(57) 2.20 + ∀S, I. (count (S) + 1 ≥ count(add (I, S)))

(58) 11.95 + ∀S, I,K. (K > 0 → count(S) + K ≥ count(add (I, S)))

(59) 19.49 + ∀S, I,K. (K > 0 → count(S) + K ≥ count(add (I, add (I, S))))

(60) 0.42 + ∀S, I. (count (remove(2, S)) = 0
∧ count(remove(3, S)) = 0

→ count(remove(I, S)) = 0)

(61) 0.32 + ∀S. (2 ∈ S ∧ count(S) = 1 → ¬ 5 ∈ S)

(62) 23.22 + ∀S. (2 ∈ S ∧ 3 ∈ S ∧ count(S) = 2 → ¬ 5 ∈ S)

(63) 28.16 + ∀S, I. (2 ∈ S ∧ 3 ∈ S ∧ count(S) = 2 ∧ I > 3 → ¬ I ∈ S)

(64) 118.41 + ∀S, I, J. (I < 3 ∧ 6 < J
∧ I ∈ S ∧ J ∈ S
∧ count(S) = 2

→ ¬ 5 ∈ S)

(65) 0.34 + ∃S, I. (count (S) + 1 > count(add (I, S)))

Empirically Successful Computerized Reasoning 29

(66) 309.91 + ∃S. (count(S) = 3)

(67) 269.01 + ∀S, I, J,K. (I > J ∧ J > K
∧ I ∈ S ∧ J ∈ S ∧ K ∈ S

→ count(S) > 2)

(68) 0.53 + ∀S, J. (∀I. (I ∈ S → J > I)
→ count(add (J, S)) > count(S))

(69) 4.04 + count(add (1, add (3, ∅))) = 2

(70) 1.02 + count(add (5, remove(3, add (3, ∅)))) = 1

(71) ∞ - count(add (1, add (5, remove(3, add (2, ∅))))) = 3

(72) 3.49 + ∀S, I. (count (remove(I, add (I, S))) = count(remove(I, S)))

(73) ∞ - ∀S, I. (count (add (0, remove(I, add (I, S))))
= count(add (0, remove(I, S))))

Integer arithmetic and pointer data types. The formulas

PNT01 ∀X. (¬ isrecord (X) → length(X) = 0)
PNT02 ∀X. (isrecord (X) → length(X) ≥ 1)
PNT03 ∀X. (isrecord (X) → length(X) = length(next(X)) + 1)
PNT04 ∀X. (¬ isrecord (X) → ¬ isrecord (split1 (X)))
PNT05 ∀X. (isrecord (X) → isrecord (split1 (X)))
PNT06 ∀X. (isrecord (X) → data(split1 (X)) = data(X))
PNT07 ∀X. (isrecord (X) ∧ ¬ isrecord (next(X))

→ ¬ isrecord (next(split1 (X))))
PNT08 ∀X. (isrecord (X) ∧ isrecord (next(X))

→ next(split1 (X)) = split1 (next(next(X))))
PNT09 ∀X. (¬ isrecord (X) → ¬ isrecord (split2 (X)))
PNT10 ∀X. (¬ isrecord (next(X)) → ¬ isrecord (split2 (X)))
PNT11 ∀X. (isrecord (X) ∧ isrecord (next(X)) → isrecord (split2 (X)))
PNT12 ∀X. (isrecord (X) ∧ isrecord (next(X))

→ data(split2 (X)) = data(next(X)))
PNT13 ∀X. (isrecord (X) ∧ isrecord (next(X))

→ next(split2 (X)) = split2 (next(next(X))))

were used to axiomatize singly linked lists with pointers and two recursive functions
split1 and split2 (computing the sublists of odd-numbered and even-numbered elements
of a list) for the following problems:

(74) 20.02 + ∀X,Y. (isrecord (X) ∧ isrecord (next(X)) ∧ Y = next(next(X))
∧ (2 · length(split2 (Y)) = length(Y) − 1

∨ 2 · length(split2 (Y)) = length(Y))
→ (2 · length(split2 (X)) = length(X) − 1

∨ 2 · length(split2 (X)) = length(X)))

30 Empirically Successful Computerized Reasoning

(75) 17.18 + ∀X,Y. (isrecord (X) ∧ isrecord (next(X)) ∧ Y = next(next(X))
∧ length(split1 (Y)) + length(split2 (Y)) = length(Y)

→ length(split1 (X)) + length(split2 (X)) = length(X))

7.3 Discussion

Summarizing the previous section, we see that Spass+T solves 63 out of the 75 problems
in our list. In order to check to what extent the mechanisms implemented in Spass+T
contribute to these proofs, we have gradually disabled various features and re-run the
tests. The following table shows the number of proofs found for several combinations of
features:

SMT Theory Arithmetic Auxiliary Problems
procedure instantiation simplification axioms solved (out of 75)

+ + + + 63
+ + - + 52
+ - + + 56
- - + + 39
- - - + 12
+ + + - 53

How does Spass+T compare to a system like Simplify (Detlefs, Nelson, and Saxe [4])?
The automatic theorem prover Simplify was developed as the proof engine of ESC/Java
and ESC/Modula-3. It handles universal quantifiers in the input by computing (hope-
fully) relevant instances in a similar way as the theory instantiation rule of Spass+T
and analyzing the resulting formulas using SAT checking and a Nelson-Oppen combina-
tion of decision procedures. Simplify (version 1.5.4) solves 40 out of the 75 problems in
our list. The difference to Spass+T is partially due to the fact that Simplify solves only
four out of 23 problems that involve existential quantifiers, namely (41) and (51)–(53).
Somewhat surprisingly, however, Simplify fails also for (55), (56), (59), and (68)–(74).
On the other hand, due to the highly optimized implementation and the reduced search
space, all problems that Simplify does solve are solved in less than one second.

It is perhaps illustrative to have a closer look at those problems that Spass+T failed
to prove. Spass+T has some support for solving non-ground equations, but it makes
no attempt to be complete in this domain, and in particular it does not use any kind of
theory unification. This accounts for most of the missed proofs in the TPTP list and in
theorems (1)–(14), as well as for (22), (25), and (40). It may look strange that Spass+T
succeeds for (2) and (4), but fails for (1) and (3), but the explanation is easy: (2) and (4)
are proved by superposition with INT01. We could add the symmetric version of INT01,
so that (1) and (3) become provable as well, but having both INT01 and its symmetric
version in the clause set destroys termination and seems to create more problems than
it solves. Similarly, (7) and (8) can be handled by superposition with INT14 or INT16

plus elementary equation solving, whereas (9) would require a fully-fledged Diophantine
equation solver.

Theorem (19) is rather difficult for an automated system because for proving it one
has to “invent” a term that does not occur in the problem, namely f(f(Y) + 1), and

Empirically Successful Computerized Reasoning 31

then use transitivity. Moreover, as one might expect, Spass+T has no chance to prove
the induction theorem (26). On the other hand, an extension of the theory instantiation

rule would enable Spass+T to prove the pigeonhole-like formula ∀X,Y. (f(X) = f(Y)→
X = Y) ∧ 6 < f(3) ∧ f(3) < 9 ∧ 6 < f(4) ∧ f(4) < 9 → f(5) < 6 ∨ 9 < f(5) from the
TPTP list. Two changes are required: The inference rule theory instantiation II has to
take an arbitrary number of premises

ground(s1) . . . ground(sk) L[t1, . . . , tk] ∨ D

ground (u1) . . . ground(un) export(D′)

moreover it has to be applicable even if the terms ti occur below a negated equation
symbol. So far, we have not implemented this modification, since the extended rule
would be extremely prolific.

Even though the CCO axioms have a simple operational reading, it seems to be
difficult for automated provers to detect this fact, as one can see from the poor results
for straightforward computation tasks like (71) or (73). Simplify even exceeds the 600
second time limit for the simpler variants (69), (70), and (72).

There is one odd case left: Surprisingly, Spass+T succeeds to prove formula (37),
if theory instantiation or integer ordering expansion are switched off, but fails to find
the proof if both inference rules are switched on. It turns out that, in the latter case,
Spass+T triggers a bug in CVC Lite.

7.4 Download

A current snapshot of Spass+T for Linux including the benchmark problems can be
downloaded from http://www.mpi-inf.mpg.de/~uwe/software/.

8 Outlook

The development of Spass+T is ongoing work. More effort has to be spent on fine-tuning
the theory instantiation rule and the arithmetic simplification rules. A more challenging
extension is the implementation of subsumption checks for clauses with theory literals,
which might turn Spass+T into a decision procedure for some classes of formulas. We
are also looking into using Spass+T with non-numeric base theories, such as arrays,
lists, or bitvectors.

Acknowledgments: We are grateful to Christoph Weidenbach and Thomas Hillen-
brand for helpful discussions.

References

[1] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational theorem
proving for hierarchic first-order theories. Applicable Algebra in Engineering, Com-

munication and Computing, 5(3/4):193–212, 1994.

[2] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the Coop-
erating Validity Checker. In Rajeev Alur and Doron A. Peled, editors, Computer

32 Empirically Successful Computerized Reasoning

Aided Verification, 16th International Conference, CAV 2004, LNCS 3114, pages
515–518, Boston, MA, USA, 2004. Springer-Verlag.

[3] Robert S. Boyer and J Strother Moore. Integrating decision procedures into heuris-
tic theorem provers: A case study of linear arithmetic. In Jean E. Hayes, Donald
Michie, and Judith Richards, editors, Machine Intelligence 11: Logic and the ac-

quisition of knowledge, chapter 5, pages 83–124. Oxford University Press, 1988.

[4] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Journal of the ACM, 52(3):365–473, May 2005.

[5] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Ce-
sare Tinelli. DPLL(T): Fast decision procedures. In Rajeev Alur and Doron A.
Peled, editors, Computer Aided Verification, 16th International Conference, CAV

2004, LNCS 3114, pages 175–188, Boston, MA, USA, 2004. Springer-Verlag.

[6] Harald Ganzinger, Viorica Sofronie-Stokkermans, and Uwe Waldmann. Mod-
ular proof systems for partial functions with weak equality. In David Basin
and Michaël Rusinowitch, editors, Automated Reasoning: Second International

Joint Conference, IJCAR 2004, LNAI 3097, pages 168–182, Cork, Ireland, 2004.
Springer-Verlag. Corrected version at http://www.mpi-sb.mpg.de/~uwe/paper/
PartialFun-bibl.html.

[7] Scott McPeak and George C. Necula. Data structure specifications via local equal-
ity axioms. In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided

Verification, 17th International Conference, CAV 2005, LNCS 3576, pages 476–
490, Edinburgh, Scotland, UK, 2005. Springer-Verlag.

[8] Stephan Schulz and Geoff Sutcliffe. http://www.cs.miami.edu/~tptp/TPTP/

Proposals/IntegerArithmetic.p, March 15, 2006.

[9] Geoff. Sutcliffe and Christian B. Suttner. The TPTP Problem Library: CNF
Release v1.2.1. Journal of Automated Reasoning, 21(2):177–203, 1998.

[10] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Christian
Theobalt, and Dalibor Topić. SPASS version 2.0. In Andrei Voronkov, editor,
Automated Deduction – CADE-18, 18th International Conference on Automated

Deduction, LNAI 2392, pages 275–279, Copenhagen, Denmark, 2002. Springer-
Verlag.

Empirically Successful Computerized Reasoning 33

Search for faster and shorter proofs
using machine generated lemmas

Petr Pudlák
Charles University in Prague

pudlak@artax.karlin.mff.cuni.cz

Abstract

When we have a set of conjectures formulated in a common language and proved from
a common set of axioms using an automated theorem prover, it is often possible to automat-
ically construct lemmas that can be used to prove the conjectures in a shorter time and/or
with shorter proofs.

We have implemented a system that repeatedly tries to improve the set of assumptions
for proofs of given conjectures using lemmas that it extracts from the proofs constructed
by an automated theorem prover. In many cases it can significantly reduce the total time or
the overall sum of the lengths of the proofs of the conjectures.

We present several examples of such sets of conjectures and show the improvements
gained by the system.

1 Motivation

Imagine a professor of mathematics who gives the same lectures every year. She works in a
standard theory and she has a fixed set of theorems that she wants to present and prove every
year during the course. And because she wants to save her and her students’ time, she would like
to have as efficient proofs as possible. She would like to find such lemmas that would shorten
the total time she has to spend for presenting the proofs.

Our aim will be to search for lemmas in such environment and try to use them to make the
proofs of conjectures more efficient.

Finding useful lemmas has of course much more serious applications, namely reducing the
amount of resources necessary to prove a particular set of conjectures or to prove conjectures
that could not be proved without such lemmas.

Currently the system only restructures and compacts the proofs and doesn’t handle conjec-
tures that the prover was not able to prove at the beginning. It can only improve existing proofs.
In future we hope to be able to also search for proofs of the conjectures that couldn’t be proved
from the initial set of assumptions.

2 Previous research

The idea of an automated discovery of lemmas or theorems is not a new one. There were many
different approaches to solve this task.

34 Empirically Successful Computerized Reasoning

Owen L. Astrachan and Mark E. Stickel [AS92] used the idea of reusing lemmas to speed
up a model elimination theorem prover.

Art Quaife [Qua92] used Otter [McC94] to prove many fundamental mathematical theo-
rems. He included the theorems he had already proved as assumptions for the more complicated
ones. The sequence in which the theorems were proved was determined by Quaife, based on his
mathematical knowledge.

Marc Fuchs, Dirk Fuchs and Matthias Fuchs sought for lemmas using genetic programming
to improve tableau-based proof search [FFF99].

The HR system [Col02a], named after mathematicians Hardy and Ramanujan, uses a model
generator to construct models based on a set of axioms, attempts to formulate conjectures and
then prove them using an automated theorem prover. A brief description can be also found in
[Col02b].

Larry Wos and Gail W. Pieper describe the technique of lemma adjunction in [WP03] and
also discuss many different approaches for evaluating lemmas.

Article [SGC03] summarizes many different criteria for constructing and identifying quality
lemmas. Humans generally use the inductive approach – from many similar problems they try
to induce a more general conjecture. This approach requires good knowledge of the particu-
lar field of mathematic and also good mathematical intuition. Another approach described is
generative, when more sophisticated techniques (for example syntactic manipulation) are used
to construct new conjectures. An example of such a system is the HR [Col02b] program. The
manipulative approach tries to construct interesting conjectures from already existing theorems.
Finally, the deductive approach tries to automatically construct many logical consequences from
a set of axioms using an automated theorem prover and then filter them and pick those that are
interesting for the researcher.

The authors of [SGC03] also categorize different possible filters for interestingness. The
filters include non-obviousness, novelty, suprisingness, intensity and usefulness.

Our approach is somewhat different from those mentioned above. It lies in between the
manipulative and the deductive approach. We observe proofs of all the given problems and
identify lemmas that are common to many of the proofs. The filter we develop and use for
selecting good lemmas falls into the usefulness category - our measure is, how much each lemma
could contribute to the proofs of other conjectures. Unlike other measures, this one can easily
be evaluated by comparing different proofs conducted by the prover.

The lemmas that we produce are therefore interesting from the point of view of a machine.
Hence, this can give us an interesting comparison between human and machine opinions on the
usefulness of a lemma.

The ideas in the article [SGC03] and personal communication with many other researchers
inspired our work which we present in this paper together with the empirical results we have
obtained.

3 Overview of the system

In sequel we assume that a consistent theory is given with some (possibly infinite) set of axioms.
All the formulas we work with are formulated in the language of the theory and the conjectures
that are to be proved and the lemmas that are constructed are proved using axioms selected from
the axioms of the theory.

Empirically Successful Computerized Reasoning 35

The systems starts by proving the conjectures one by one. The proofs of the conjectures that
were successfully proved are then analyzed by the system. Formulas that appear multiple times
in the proofs are then used as additional assumptions when looking for less costly proofs of the
conjectures. The system tries to optimize the set of such formulas. We will call such formulas
lemmas.

3.1 Basic notions

Let us first define some basic notions we will use throughout the text.

Notation 1 (Axiom, conjecture, lemma, proof) By an axiom we understand either an axiom
of the underlying theory or a well known theorem of the theory that we use as an assumption.

A conjecture is a formula given on the input that is to be proved by the system. The system
tries to find the most efficient proof of the conjecture using different sets of assumptions. Each
such a set can contain some of the axioms, other conjectures or lemmas.

A lemma is a formula constructed by the system that is proved in a similar fashion as the
conjectures are, and is used to improve the proofs of the conjectures or the proofs of other
lemmas.

A proof is an output of a successful run of the prover. As we use a single theorem prover
with the same settings on every run, the proof only depends on the conjecture being proved and
on the set of assumptions being used.

The aim of the system is to find such lemmas and such sets of assumptions for the conjec-
tures and the lemmas that either the total time required to prove the conjectures and the lemmas
or the overall size or length of the proofs is minimized.

3.2 System input

Initially, the system is given a set C of conjectures and for each conjecture C from C the system
is given an initial set of assumptions AC. The set AC consists of a subset of axioms of the
underlying theory and (possibly) of some other conjectures from C.

The idea is that the proofs of conjectures in C need not use the set of all the axioms of the
theory (which might be infinite) and that some other conjectures from C might be useful. The
user may have his own idea, which conjectures to add as assumptions to AC.

In the process of computation the system tries to optimize the set of lemmas and for each
lemma the set of its assumptions.

3.3 System output

At the end the system outputs the conjectures given at the input along with the lemmas that
participate in the fastest/shortest set of proofs. For each conjecture and each lemma it outputs
the optimal set of assumptions it has found, in the sense described later.

4 An example

In our example we use a commonly used encoding to encode an axiomatization of propositional
logic into terms, thus forcing the prover to use only the specified axioms and rules for inferences.
Then we use the system to prove some basic propositional theorems.

36 Empirically Successful Computerized Reasoning

Note that the automated theorem provers were already used to look for interesting axiomat-
ics of propositional logic, for example [MVF+02]. However, our aim is not to look for a new or
otherwise interesting axiomatic, we use the system to optimize the proofs of several theorems.

We will denote the code of a formula by an over-line. For example for a propositional
formula ϕ we denote the term that codes it by ϕ. Negation is coded by a unary function n and
implication is coded by a binary function i. The fact that ϕ is a theorem ` ϕ is coded by a unary
predicate t. The following table summarizes the codes:

¬ϕ n(ϕ)
ϕ → ψ i(ϕ,ψ)
` ϕ t(ϕ)

We use “→” just for implication in propositional logic we are coding. We use “⇒” for im-
plication in predicate logic in which the conjectures are presented and in which the prover
actually works. Thus the statement “if ϕ is provable then ψ → χ is provable” would be coded
as t(A)⇒ t(i(B,C)).

In order to increase the difficulty of the task we’ve used Meredith’s single axiom for propo-
sitional logic. It has only a single axiom schema and a single rule.

The axiom schema is defined for any formulas ϕ, ψ, χ, ξ and η, but the theorem prover
computes with their codes, which are represented by the variables A, B, C, D and E in the
language of the theorem prover. As these variables are universally quantified, the prover can
replace each variable by any coded formula. The same applies to the coded modus ponens rule.

The coded representations of the schema and the rule are:

Meredith: ` ((((ϕ → ψ)→ (¬χ →¬ξ))→ χ)→ η)→ ((η → ϕ)→ (ξ → ϕ))
t(i(i(i(i(i(A,B), i(n(C),n(D))),C),E), i(i(E,A), i(D,A))))

MP: ϕ,ϕ → ψ ` ψ

(t(A)∧ t(i(A,B)))⇒ t(B)

This set of axioms was used as the initial set of assumptions for all the conjectures. No other
dependencies between the conjectures were specified. The system was let to discover all the
lemmas by itself from the proofs of the conjectures.

Table 1 shows the conjectures whose proofs the system was improving. The conjectures
were proved using E prover[Sch02]. The cost of the proofs was measured in the number of
processed clauses. This measure closely corresponds to the time the prover spends on a problem,
but it is not dependent on the hardware the prover runs on. In the second column the conjectures
are presented in their coded form. The third column shows the number of processed clauses the
prover spent on each of the conjectures if they were proved only using the original assumptions.
The fourth column shows the cost of the proofs after the system had finished the improvements
using lemmas generated from the proofs. Note that to obtain the total cost of the final proofs
we also have to include the cost of the proofs of the generated lemmas. The full listing of the
generated lemmas is included in Table 10. As we can see, the total cost of proofs needed to
prove the conjectures in this case was reduced to 3%.

5 Description of the system

Let us first discuss how the lemmas are generated. The modification of the set of assumptions
of the conjectures by using the lemmas will be described in the next part.

Empirically Successful Computerized Reasoning 37

conjecture coding into terms original cost final cost
¬(ϕ →¬ψ) ` ϕ t(n(i(A,n(B))))⇒ t(A) 938 62
¬(ϕ →¬ψ) ` ψ t(n(i(A,n(B))))⇒ t(B) 1673 17
ϕ ` ¬ϕ → ψ t(A)⇒ t(i(n(A),B)) 31 4
ψ ` ¬ϕ → ψ t(B)⇒ t(i(n(A),B)) 13 3
¬(ϕ → ϕ) ` ψ t(n(i(A,A)))⇒ t(B) 41 8
` ϕ → (ψ → ϕ) t(i(A, i(B,A))) 17 4
ϕ →¬(ψ →¬χ),ϕ ` χ (t(i(A,n(i(B,n(C)))))∧ t(A))⇒ t(C) 287 20
` ϕ → ϕ t(i(A,A)) 15 2
` ¬ϕ → (ϕ → ψ) t(i(n(A), i(A,B)))) 5731 4
` ¬¬ϕ → ϕ t(i(n(n(A)),A)) 3297 7
` ϕ →¬¬ϕ t(i(A,n(n(A))) 3682 4
total cost of the conjectures: 15725 135
cost for proving the lemmas: 375
total cost: 15725 510

Table 1: Formulas proved from the Meredith’s axiomatization.

5.1 Generation and evaluation of lemmas

Notation 2 (Subsumption) By c v d we denote that the clause c that subsumes the clause d.

Let a set of proofs1 P be given. We collect all the clauses that appear in the proofs and that were
derived only from the assumptions into a single set

L =
[
P∈P

{c |c is a clause in P derived only from assumptions and without Skolem symbols}

We do not include clauses that were derived from the negated conjecture, because they are
not true formulas in our theory. Also we remove those clauses that contain Skolem symbols
created by the prover, because these symbols have different meaning in different runs of the
prover. (In future we might implement the reverse skolemization algorithm [CP80, CP93] to
deal with such formulas.)

Thus, the clauses in L don’t contain any skolem symbols, but they have no special form,
they can contain arbitrary number of positive and/or negative literals.

Note that although it would be an obvious thing to do, we don’t use the conjectures as lem-
mas. The reason is that the conjectures are not necessarily clauses, therefore we can’t process
them the same way as the clauses produced by the prover. As it turns out, many of the con-
jectures are then anyway discovered as lemmas by the system. However, this issue deserves a
better solution in the future.

From the set L we construct a minimal L′ set with respect to subsumption such that L′ has
the following properties:

1. L′ ⊆ L, therefore L′ contains only true formulas.

1Recall that for us a proof is a successful run of the prover that proves a particular conjecture from a given set of
assumptions.

38 Empirically Successful Computerized Reasoning

2. for every d ∈ L there is c ∈ L′ such that c v d.

3. for any pair c ∈ L′, d ∈ L′ we know that c doesn’t subsume d: c 6v d.

Therefore, L′ contains just the most general variants of the lemmas appearing in L.
The clauses from L′ are then used as lemmas to modify the set of assumptions of the con-

jectures.
Now let us have a clause c that is a lemma, c = L1, . . . ,Lk,¬Lk+1, . . . ,¬Ln where Li are

atomic formulas. Let |Li| be the number of function symbols appearing in Li. Let P by a proof
whose set of assumptions we want to improve by c. We would like to have an estimate that
would tell us, if it is likely that c will contribute to the proof P. A natural idea suggests itself
that the more often an atomic formula Li occurs in the proof P the more likely the lemma will
contribute and also that the longer Li is (measured in the number of symbols) the more likely it
will shorten/speed up the proof. Therefore our estimation formula is defined by

weight(c,P) =
n

∑
i=1

|Li| · (the number of occurrences of Li in P) (1)

There are many other possible estimation methods. One may, for example, take into account
the number of formulas in the proof which the lemma subsumes, look for similar terms in the
lemma and in the proof, etc.

5.2 Evaluation of the proofs

In order to evaluate the applicability of lemmas, we need to have a criterion for the cost of a
proof:

Notation 3 (Measure of a proof) A proof measure is a function that maps proofs into non-
negative real numbers.

We use the following proof measures:

the number of processed clauses reported by the prover; this measure is closely related to the
time the prover spends while searching for the proof of the conjecture, but is independent
of the hardware of the computer the prover runs on;

the length of the proof is the number of formulas appearing in the proof that is constructed by
the prover;

the size of the proof is the total number of occurrences of function symbols (not predicate
symbols) appearing in the proof that is constructed by the prover.

The length and the size of a proof are also independent on the hardware of the computer being
used.

Notation 4 If we are proving a conjecture C from assumptions A1, . . . ,An, we denote the mea-
sure of the proof by

||A1, . . . ,An �C||

If the prover is not able to conduct the proof we set

||A1, . . . ,An �C||= +∞

Empirically Successful Computerized Reasoning 39

Remark 1 (The proof size/length) If we could prove all the given conjectures together, the
size/length of the resulting hypothetical proof would be of course less than the sum of the
sizes/lengths of the individual proofs of the conjectures. But in most cases the prover is not
able to prove all the conjectures together, therefore the system proves the conjectures one by
one. The system then tries to compact the proofs of the conjectures to make them closer to the
size of the hypothetical proof.

The number of generated lemmas is usually very large, so only some of them will be in-
cluded in the output. Such lemmas are marked as accepted. Each lemma is initially unaccepted.
When the system figures out that the lemma is worth including in the output, it marks it as
accepted.

For each conjecture or lemma C the system maintains a list SC of sets of assumptions that
were used to produce different proofs of the conjecture.

Each such a set S∈ SC is marked as accepted iff all the lemmas it contains are accepted. The
initial set of assumptions of each conjecture contains no lemmas, hence it is always accepted.
Now, we may define:

Notation 5 (Best accepted set of assumptions) The best accepted set of assumptions

Sbest
C ∈ SC

of a conjecture C is an accepted set of assumptions that produces the best proof of C with respect
to the proof measure:

∀S : ((S ∈ SC) ∧ (all the lemmas in S are accepted)) ⇒ ||S �C|| ≥ ||Sbest
C �C|| (2)

If there are several sets of assumptions that match the criteria for the best accepted set (they
produce proofs of the same measure), we arbitrarily choose one among them.

Let us call the proof of C produced from Sbest
C the best accepted proof of C.

Remark 2 (System output) The output of the system consists of all the input conjectures and
all the accepted lemmas at the time the system finishes execution. For each of these conjectures
or lemmas the best accepted set of assumptions is presented.

5.3 Modifying the set of assumptions to get better ones

The outline of the work of the system is as follows:

1. The system first tries to prove all the given conjectures one by one. Let C be the set of
those conjectures that were successfully proved. Let L be the set of constructed lemmas
and let La ⊆ L be the set of lemmas that are accepted. Initially, these sets are empty.

2. The system takes the best accepted proofs of all the conjectures and accepted lemmas.
From those proofs the system constructs new lemmas as described in section 5.1. It sets

L = L∪{the newly constructed lemmas}

40 Empirically Successful Computerized Reasoning

3. The system produces pairs consisting of a best assumption set of a conjecture and of a
lemma that will be used to improve the set of assumptions of the best proof of the con-
jecture. It takes all the new lemmas together with the lemmas it already has constructed
before and combines them with all the best accepted sets of assumptions of all the con-
jectures and accepted lemmas. This way it produces every possible pair of

L×{Sbest
C |C ∈ C∪La}

However some pairs of a lemma l and the best set of assumptions Sbest
C of a conjecture C

have to be excluded, namely

• if already l ∈ Sbest
C , or

• if the lemma l is the conjecture C itself, or

• if the conjecture C is directly or indirectly used to prove l; this means that either C
is one of the assumptions in the best accepted set of l, or it is one of the assumptions
in the best set of some conjecture that is an assumption of l, and so on.

Otherwise it could happen for example that there would be two equivalent lemmas, one
proving another with a one-step proof.

4. These pairs are sorted according to the estimate described in section 5.1.

5. The system subsequently takes these pairs (l,Sbest
C) starting with the one with the highest

weight:

(a) It tries to conduct a new proof of C using Sbest
C ∪{l}. The gain of this single im-

provement is
g = ||Sbest

C �C||− ||Sbest
C , l �C||

(b) If g is positive, it means that the lemma l has brought an improvement. The lemma l
is then checked, if its total gain to all the conjectures whose set of assumptions were
improved by l is larger than the cost of the proof of l. If so, the system sets

La = La∪{l}

which means that l is marked as accepted.
If l is accepted, we want to incorporate the lemmas that originate from the proof of
l as well as the lemmas that originate from the proofs of the conjectures that use l
as an assumption. Hence, in such a case the process is restarted from the beginning
and the system goes again to point 2.

(c) Until there are any unprocessed pairs (l,Sbest
C) the system takes the next pair and

goes again to 5a.

6. When all the pairs are exhausted and no improvement was made the system outputs the
conjectures C, the accepted lemmas La and their best accepted sets of assumptions Sbest

C ,
C ∈ C∪La, as described above, and halts.

Empirically Successful Computerized Reasoning 41

It may happen that as the result of adding l, some of the assumptions in Sbest
C are not needed

any more and do not appear in the proof. In such a case the system omits them and tries to prove
the conjecture only using this reduced set of assumptions. If the proof attempt succeeds, it
is evaluated the same way as described above. This practice helps to reduce the number of
assumptions appearing in the proofs. Without it, the prover would soon become overwhelmed
by the number of assumptions and no further improvement would be possible. In the current
version of the system this check is not iterated, so the proof conducted from the reduced set of
assumptions is not checked again for redundant assumptions.

6 Experimental results

The system is still under development, therefore we don’t have an in-depth statistics of its
behavior. However, we have performed tests on different sets of conjectures from different
sources and we present a selection of them.

All experiments were run on a Linux machine with Intel® Pentium® 4 CPU 3.4GHz with
2GB of RAM. The conjectures were proved using E prover with resource limits set to 80 sec-
onds, 512MB RAM and 100000 processed clauses.

We have developed an independent server component that lies between the actual system
and the automated prover. The component caches all conducted proofs on a hard-disk and if a
client requests the server to perform a proof that has already been processed, the server returns
the cached version. This greatly speeds up the development of the system, particularly if we
rerun the system many times with different settings or with slight modifications on the same set
of problems.

For some cases we include a full list of the conjectures and the lemmas, for others we only
summarize the results.

6.1 TPTP problems – set theory

We used several selected TPTP [SS98] problems concerning set theory. These problems orig-
inate from [Qua92]. For presentation in this paper we have converted the machine syntax into
a more human-readable form. The meaning of the symbols that we use is summarized in Ta-
ble 2. The conjectures that were proved are shown in Table 3. The table also shows the results
obtained when running the system with the proofs being measured by the number of processed
clauses. The second column labeled “level” is an inductively defined property defined for both
the conjectures and the lemmas. The axioms have level 0. If a conjecture or a lemma is proved
just from the axioms, it has level 1. Each lemma or conjecture has its level set to the maximum
level of its assumptions plus 1. This can give us an approximation on how complicated the
conjecture or the lemma is. The third column labeled || · ||i shows the initial cost of the proof
of the conjecture while the fourth column labeled || · || f shows the final cost of the proof of the
conjecture when the system terminates. The fifth column shows the actual formula converted
into a human-readable form. The last column shows which lemmas were finally used to prove
the conjecture.

Some of the conjectures in the listings may have levels greater than 1 although they don’t
use any lemmas or the level of a particular conjecture is higher than one plus the level of the
lemmas that are used to prove it. The reason is that the user has specified that some other

42 Empirically Successful Computerized Reasoning

A ⊆ B subclass
{A,B} unordered pair
〈A,B〉 ordered pair
{A} singleton
A[1] first member of an ordered pair A
A[2] second member of an ordered pair A
A ∈ B membership
A class complement
A×B cross product
/0 null class
A∩B intersection
U universal class
member of(A) choice function (from the axiom of choice)

Table 2: Meaning of the symbols used in the TPTP set theory sample

conjectures should be used as assumptions to prove the conjecture and they increase the level of
the conjecture.

We can see that often the conjectures that were harder to prove with respect to the proof
measure have a higher level. This means that they were finally proved using several layers of
lemmas.

Several conjectures that were too complicated are omitted for brevity.
The lemmas that the system generated with the processed clauses count proof measure are

in Table 4. The lemmas are clauses, but for the presentation we have converted them into a more
readable form using implication notation. As the lemmas have no initial set of axioms given by
the user, they also have no initial cost, so only their final cost is shown.

They are sorted by their total accumulated improvement with respect to the proof measure,
the more useful lemmas are at the beginning of the table. This is however only an informative
ordering, as it depends very much on the order in which the lemmas were tried. For example,
consider some two almost same lemmas l1 and l2. Whichever is chosen second will bring no
improvement as the assumption sets were already improved by the one chosen first.

The lemmas are more or less complicated formulas that the system found useful for proving
the conjectures. This can give us an interesting comparison, as the input conjectures were
selected by a human, whereas the lemmas were constructed by a machine. Tables 5 and 6 show
the results on the same set of conjectures when different proof measures were selected. Many
of the lemmas appear in all three tables, although in different positions. Such lemmas seem to
be essential for the automated prover when working with this particular theory.

Note that some of the lemmas the system has found are just conjectures reformulated as
clauses. In such a case the system usually proves such conjecture using the lemma in a single
step and then further improves the proof of the lemma.

Table 7 shows the summary of achieved results. For each proof measure the initial and the
final cost of the proofs is shown.

Empirically Successful Computerized Reasoning 43

no. level || · ||i || · || f formula lemmas
C1 1 1 1 ∀X : X = X
C2 1 5 2 ∀X : (X ⊆ X)
C3 1 2 2 ∃X : ∀Z : ¬(Z ∈ X)
C4 2 6 2 ∀X : (/0 ⊆ X) L18
C5 2 16 9 (/0 ∈ U) L5
C6 2 4 3 ∀X ,Y : ((Y ∈ {X})⇒ Y = X) L14
C7 1 3 3 ∀Z : (Z = /0∨∃Y : (Y ∈ Z))
C8 1 2 2 ∀X : ({X} ∈ U)
C9 2 11 4 ∀X : ((X ⊆ /0)⇒ X = /0) L18 L11

C10 2 8 2 ∀X ,Y : ({X} ∈ 〈X ,Y 〉)
C11 3 19 4 ∀X ,Y : ((X ∈ Y)⇒ ({X} ⊆ Y)) L1
C12 1 9 9 ∀X ,Y : ¬(Y ∈ (X ∩X))
C13 1 2 2 ∀X ,Y : (〈X ,Y 〉 ∈ U)
C14 1 11 11 ∀X ,Y,Z : (((X ⊆ Y)∧ (Y ⊆ Z))⇒ (X ⊆ Z))
C15 2 7 3 ∀X : ((X ∈ U)⇒ (X ∈ {X})) L12
C16 1 22 21 ∀X ,Y : ({X ,X} ⊆ {X ,Y})
C17 2 9 4 ∀X : ((X ∈ U)⇒{X} 6= /0) L12
C18 2 21 3 ∀X : (¬(X ∈ U)⇒{X}= /0) L8
C19 1 3 3 ∀X : ({member o f (X)}= X ⇒ (X ∈ U))
C20 2 7 2 ∀X ,Y : ({X ,{Y}} ∈ 〈X ,Y 〉)
C21 1 10 10 ∀X ,Y : (({member o f (X)}= X ∧ (Y ∈ X))⇒ member o f (X) = Y)
C22 6 87 25 ∀X ,Y : ((X ⊆ {Y})⇒ (X = /0∨{Y}= X)) L16
C23 1 19 10 ∀X ,Y : (({X}= {Y}∧ (Y ∈ U))⇒ X = Y)
C24 3 15 10 ∀X ,Y : (({X}= {Y}∧ (X ∈ U))⇒ X = Y) L12 L17
C25 2 12 4 ∀X ,Y : ((X ∈ U)⇒{X ,Y} 6= /0) L9
C26 2 9 4 ∀X ,Y : ((Y ∈ U)⇒{X ,Y} 6= /0) L12
C27 1 3 3 ∀X : (〈X[1],X[2]〉= X ⇒ (X ∈ U))
C28 6 610 7 ∀X ,Y,Z : (((X ∈ Z)∧ (Y ∈ Z))⇒ ({X ,Y} ⊆ Z)) L1 L2
C30 8 706 213 ∀W,X ,Y,Z : ((〈W,X〉= 〈Y,Z〉∧ (X ∈ U))⇒ X = Z) L3 L10 L5 L17

L9
C31 2 20 12 ∀W,X ,Y,Z : ((〈W,X〉= 〈Y,Z〉∧ (W ∈ U))⇒W = Y) L14 L9
C32 2 32 4 ∀X ,Y : ((¬(X ∈ U)∧¬(Y ∈ U))⇒{X ,Y}= /0) L8
C33 2 16 11 ∀X ,Y,Z : (((Y ∈ U)∧ (Z ∈ U)∧{X ,Y}= {X ,Z})⇒ Y = Z) L12 L14
C34 2 16 11 ∀X ,Y,Z : (((X ∈ U)∧ (Y ∈ U)∧{X ,Z}= {Y,Z})⇒ X = Y) L14 L9
C35 3 21 4 ∀X ,Y : ({{X},{X , /0}}= 〈X ,Y 〉∨ (Y ∈ U)) L10

Table 3: Selected conjectures from the TPTP set theory sample with the proof cost measured by
the number of clauses processed by the prover.

no. level || · || formula lemmas
L1 4 32 (A ∈C)∧ (B ∈C) ⇒ ({A,B} ⊆C) L7
L2 5 4 (A ∈C) ⇒ ({A,B} ⊆C)∨ (B ∈C)
L3 7 5 (B ∈ D)∧ (A ∈C) ⇒ ({{A,A},{A,{B,B}}} ∈ (C×D)) L6
L4 3 6 (A ∈C)∧ (A ∈ B) ⇒ (A ∈ (B∩C)) L7
L5 1 8 (A ∈ B) ⇒ (A ∈ U)
L6 6 7 (B ∈ D)∧ (A ∈C) ⇒ (〈A,B〉 ∈ (C×D)) L7
L7 2 8 (B ∈C) ⇒ (A ∈ U)∨ ({B,A} ⊆C) L13 L5
L8 1 32 /0 = {A,B}∨ (A ∈ U)∨ (B ∈ U)
L9 1 8 (A ∈ U) ⇒ (A ∈ {A,B})

L10 2 3 /0 = {A,A}∨ (A ∈ U) L8
L11 1 6 (B ⊆ A)∧ (A ⊆ B) ⇒ A = B
L12 1 7 (A ∈ U) ⇒ (A ∈ {B,A})
L13 1 31 (A ∈C) ⇒ ({A,B} ⊆C)∨ (B ∈ {A,B})
L14 1 5 (A ∈ {C,B}) ⇒ A = B∨A = C
L15 1 2 (A ⊆ U)
L16 5 4 (A ⊆ {B,C})∧ (C ∈ A)∧ (B ∈ A) ⇒ A = {B,C}
L17 2 4 (A ∈ U)∧A = B ⇒ (A ∈ {B,C}) L9
L18 1 6 (/0 ⊆ A)

Table 4: Lemmas found for the TPTP set theory sample with the proof cost measured by the
number of clauses processed by the prover.

44 Empirically Successful Computerized Reasoning

no. level || · || formula lemmas
L1 1 37 (A ∈ {C,B}) ⇒ A = B∨A = C
L2 2 64 /0 = {A,B}∨ (A ∈ U)∨ (B ∈ U) L1
L3 2 43 (A ∈C)∧ (B ∈C) ⇒ ({A,B} ⊆C) L1
L4 1 24 (A ∈ U) ⇒ (A ∈ {B,A})
L5 1 24 (A ∈ U) ⇒ (A ∈ {A,B})
L6 3 28 /0 = {A,A}∨ (A ∈ {A,A}) L2 L4
L7 3 44 (A ∈ U) ⇒ (A ∈ B)∨ (A ∈ B) L2
L8 1 34 (A ∈ (B∩C))∧ (A ∈C) ⇒ false
L9 1 23 {A}= {A,A}

L10 1 21 (A ∈ B) ⇒ (A ∈ U)
L11 1 11 (A ∈ /0) ⇒ false
L12 1 18 ({A,B} ∈ U)
L13 2 75 〈A,B〉= {{A},{A,{B}}} L9
L14 1 31 ((A∩B)⊆ B)
L15 2 42 (A ∈ U)∨ ({A,A} ⊆ B) L1 L10

Table 5: Lemmas found for the TPTP set theory sample with the proof cost measured by the
proof size.

no. level || · || formula lemmas
L1 2 19 /0 = {A,B}∨ (A ∈ U)∨ (B ∈ U) L2
L2 1 15 (A ∈ {C,B}) ⇒ A = B∨A = C
L3 3 16 (A ∈ U) ⇒ (A ∈ B)∨ (A ∈ B) L1
L4 4 20 (A ∈ B) ⇒ ({A,A} ⊆ B) L2
L5 1 8 {A}= {A,A}
L6 1 11 (A ∈ U) ⇒ (A ∈ {A,B})
L7 1 11 (A ∈ U) ⇒ (A ∈ {B,A})
L8 1 10 (A ∈ /0) ⇒ false
L9 1 16 (B ⊆ A)∧ (A ⊆ B) ⇒ A = B

L10 2 10 〈A,B〉= {{A},{A,{B}}} L5
L11 1 9 ({A,B} ∈ U)
L12 1 15 (A ∈C)∧ (A ∈ B) ⇒ (A ∈ (B∩C))
L13 1 16 (A ∈ B) ⇒ (A ∈ U)

Table 6: Lemmas found for the TPTP set theory sample with the proof cost measured by the
proof length.

proof measure initial cost final cost
number of processed clauses 3991 1921 (48%)
proof size 3487 2794 (80%)
proof length 1086 878 (81%)

Table 7: Results for the TPTP set theory sample.

Empirically Successful Computerized Reasoning 45

6.2 Mizar problems – Boolean properties of sets

These theorems address basic boolean properties of sets in the Mizar database for mathematics.
The conjectures were converted from the Mizar language by Josef Urban [Urb04, Urb03] into a
form suitable for automated theorem provers.

The system was rather effective for reducing the number of processed clauses required to
prove these set of conjectures. Table 8 shows the summary of achieved results. For each proof
measure the initial and the final cost of the proofs is shown.

proof measure initial cost final cost
number of processed clauses 62706 1852 (3.0%)
proof size 10680 9351 (88%)
proof length 3687 3046 (83%)

Table 8: Results for the Mizar boolean properties of sets.

As the list of the conjectures and the lemmas in this case is rather long, we did not include
it in this paper.

6.3 Meredith’s axiomatization of propositional logic

In this section we give detailed results for the example in section 4. The formulas are presented
using standard logic symbols.

Table 9 shows the conjectures along with the results obtained when running the system with
the proofs being measured by the number of processed clauses and Table 10 shows the lemmas
that were found.

no. level || · ||i || · || f formula lemmas
C1 8 15 2 ` (A → A) L27
C2 11 3682 2 ` (A →¬¬A)
C3 7 3297 2 ` (¬¬A → A)
C4 2 17 2 ` (A → (B → A))
C5 9 5731 2 ` (¬A → (A → B))
C6 8 41 5 ¬(A → A) ` B L27
C7 5 31 3 A ` (¬A → B)
C8 3 13 3 B ` (¬A → B) L18
C9 11 1673 16 ¬(A →¬B) ` B L22 L8 L4

C10 7 938 62 ¬(A →¬B) ` A L17 L9 L16
L30 L18 L4

C11 12 287 20 (P →¬(Q →¬R)), P ` R L21 L30 L8 L4

Table 9: Conjectures from the Meredith’s axiomatization example with the proof cost measured
by the number of clauses processed by the prover.

Because we code propositional formulas into terms of predicate logic, we can express much
more than just that a propositional formula is a theorem. We can also express meta-theorems
that speak about provability of different formulas and what are the relations between them. For
example, recall how that modus ponens rule was coded as (t(A)∧t(i(A,B)))⇒ t(B). The system
derived many lemmas of similar nature, thus discovering many admissible rules. This fact
becomes much more interesting in the case of modal logic, described in the next section, where
the deduction theorem does not hold, hence the admissible rules have much greater importance.

46 Empirically Successful Computerized Reasoning

no. level || · || formula lemmas
L1 6 7 C ` (A → (¬¬B → B)) L14 L4
L2 6 24 D ` (A → (B → (¬¬C →C))) L12 L4 L3
L3 3 8 (((D → B)→ (E → B))→ (B →C)) ` (A → (B →C)) L23 L4
L4 1 4 A, (A → B) ` B
L5 3 5 A ` ((A → B)→ (C → B)) L18 L12
L6 8 6 ((((B →C)→ (¬D →¬A))→ D)→ B) ` (A → B) L27 L12
L7 7 4 ` ((((¬A →¬B)→ A)→C)→ (B →C)) L12
L8 8 6 C ` (A → ((¬B →¬A)→ B))
L9 5 28 ((C → E)→ (¬B →¬D)) ` (((A → B)→C)→ (D →C)) L18 L4 L19

L10 8 7 (((¬C →¬A)→C)→ B) ` (A → B) L7 L4
L11 8 4 ` (((A → B)→¬(¬B →¬C))→ (C →¬(¬B →¬C))) L7 L12
L12 1 6 ((((B → D)→ (¬E →¬C))→ E)→ A) ` ((A → B)→ (C → B))
L13 6 13 (((B →C)→ D)→ (¬C →¬A)) ` (A → (B →C)) L9 L12 L4
L14 5 4 ` (A → (B → (¬¬C →C))) L2
L15 10 4 B ` (A →¬¬A)
L16 2 7 D, C ` (A → (B →C)) L18
L17 5 7 ((C →C)→ B) ` (A → B) L31
L18 2 6 B ` (A → B)
L19 4 7 C, A ` (¬A → B)
L20 6 6 ` (((A → (B → B))→C)→ (D →C)) L17 L31 L12
L21 11 4 B ` (A →¬¬A) L15
L22 6 14 ((C → D)→ B), (¬D →¬A) ` (A → B) L9 L18 L4
L23 2 4 ` ((((A → B)→ (C → B))→ (B → D))→ (E → (B → D))) L12
L24 6 4 ` (((A →¬¬B)→C)→ (B →C)) L12
L25 3 4 ` (((A → (¬B →C))→ D)→ (B → D)) L23 L12
L26 3 11 (D →C), D ` (A → (B →C)) L18 L4
L27 7 4 ` (A → A) L32
L28 1 6 C ` (A → (B → A))
L29 7 3 C ` (A → (B → B))
L30 6 5 (¬B →¬D) ` (((A → B)→C)→ (D →C)) L9 L18
L31 4 4 ` (((A → A)→ B)→ (C → B)) L25 L12
L32 6 4 ` (A → (B → (C →C))) L17 L31
L33 9 2 ` (((A → B)→¬¬C)→ (C →¬¬C)) L9 L13 L11

Table 10: Lemmas found for the Meredith’s axiomatization with the proof cost measured by the
number of clauses processed by the prover.

proof measure initial cost final cost
number of processed clauses 15725 510 (3.2%)
proof size 1299 1024 (79%)
proof length 314 277 (88%)

Table 11: Results for the Meredith’s axiomatization of propositional logic.

Empirically Successful Computerized Reasoning 47

Table 11 shows the summary of achieved results. Again, for each proof measure the initial
and the final cost of the proofs is shown.

6.4 S5 modal logic

S5 modal logic uses meta-theorems (mentioned above), since the theorem of deduction doesn’t
hold in S5. From this point of view S5 is an interesting example.

This set of conjectures is similar to the previous example. We have used [Hal05] to construct
an axiomatization for S5 modal logic with the three Hilbert’s axioms for propositional logic,
axioms K, T and 5 and modus ponens and necessitation rule. We have used the same formula
coding with an additional unary function symbol l(. . .) for the modal operator 2.

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

Number of proved (not necessarily accepted) lemmas

proof cost
no. of accepted lemmas

Figure 1: Run of the system on the S5 axiomatization with with the proof cost measured by the
number of clauses processed by the prover.

For this example we also show a graph that illustrates performance of the system, see Fig-
ure 1. The x axis shows time points distinguished by the total number of lemmas (both accepted
and unaccepted) the system has used at least in one proof. The thick line shows how the total
cost of the proofs evolved and corresponds to the tick marks on the left. The thin line shows the
number of lemmas that were marked as accepted and corresponds to the tick marks on the right.
As we can see, the cost of the proofs was reduced to about 1/3 with the first 10 lemmas. The
cost of the proofs then gradually decreased and the lemmas that were accepted often brought
only a slight gain. There were two more significant improvements at the points 40, 81 and 97,
when interesting lemmas were discovered and sudden advancements were made.

Most of the the lemmas that were discovered say that a particular proposition is a theorem
of S5. But the system also discovered several lemmas that describe admissible rules of S5. For
example the lemma L40 in Table 15 states that from 2B and B → A we can derive 2A.

Table 16 shows the summary of achieved results. For each proof measure the initial and the
final cost of the proofs is shown.

48 Empirically Successful Computerized Reasoning

no. level || · ||i || · || f formula lemmas
C1 6 11 2 ` (A → A) L19
C2 1 2 2 ` (2P → P)
C3 9 1086 2 ` (A →¬¬A)
C4 2 5 3 ` A∨¬2A L43
C5 1 3 3 ` ¬A∨2A
C6 9 1089 2 ` (¬¬A → A)
C7 7 3586 2 ` ((¬A → A)→ A)
C8 7 44 2 ` (¬A → (A → B)) L25
C9 8 680 15 `2(A →¬2¬A) L37 L2 L36

L33
C10 5 15332 72 ` (P →2¬2¬P) L17 L2 L1
C11 6 43 5 ¬(A → A) ` B L19
C12 8 58 3 A ` (¬A → B)
C13 2 5 3 B ` (¬A → B) L10
C14 6 90 10 ¬(A →¬B) ` B
C15 7 1293 6 ¬(A →¬B) ` A L20 L23
C16 8 30413 2 ` ((A → B)→ (¬B →¬A))
C17 9 23254 3 ` (A → (¬B →¬(A → B))) L19
C18 10 9580 4 A, B ` ¬(A →¬B) L14
C19 1 3 3 `2(¬2¬P →2¬2¬P)
C20 7 5471 171 ¬(B →¬A) ` ¬(A →¬B) L28 L2 L13

L22 L1 L42 L9
L24

C21 1 8 6 2(A → B),2(B → A) `2(2A →2B)
C22 10 23271 26 ¬(A →¬¬(B →¬C)) ` ¬(¬(A →¬B)→¬C) L20 L23 L14

Table 12: Conjectures in the S5 axiomatization, prover processed clauses count measure

no. level || · || formula lemmas
L1 2 59 (A →C), (A → (C → B)) ` (A → B) L4
L2 3 40 (A →C), (C → B) ` (A → B) L1
L3 3 40 C, (A → (C → B)) ` (A → B) L1
L4 1 39 22B, (B → A) ` 2A
L5 5 25 ` (¬¬A → A) L3
L6 6 44 (¬B → A) ` (¬A → B)
L7 4 59 (A → (¬C →¬B)) ` (A → (B →C)) L2
L8 1 33 (¬A →¬B), B ` A

Table 13: Lemmas found for the S5 axiomatization with the proof cost measured by the proof
size.

no. level || · || formula lemmas
L1 1 13 (A →C), (A → (C → B)) ` (A → B)
L2 2 12 (A →C), (C → B) ` (A → B)
L3 2 13 C, (A → (C → B)) ` (A → B) L1
L4 4 10 (¬B → A) ` (¬A → B) L7
L5 3 8 ` (¬¬A → A)
L6 1 13 22B, (B → A) ` 2A
L7 1 10 (¬B →¬A) ` (A → B)

Table 14: Lemmas found for the S5 axiomatization with the proof cost measured by the proof
length.

Empirically Successful Computerized Reasoning 49

no. level || · || formula lemmas
L1 3 8 (A →C), (A → (C → B)) ` (A → B) L32
L2 4 11 (A →C), (C → B) ` (A → B)
L3 1 9 (B → (C → D)) ` (A → ((B →C)→ (B → D)))
L4 6 8 C, (C → B) ` (A → B) L24
L5 2 11 22B, (B → A) ` 22A L43
L6 8 5 A ` (¬¬(A → B)→ B) L13
L7 7 247 ` (¬A → ((B → A)→¬B)) L8 L25 L1 L15
L8 5 30 ((C → A)→ ((C → B)→ D)) ` ((A → B)→ ((C → A)→ D)) L3 L31 L1
L9 5 11 (A → (B → D)), (B → (D →C)) ` (A → (B →C)) L2 L32

L10 1 6 B ` (A → B)
L11 3 21 ((C → A)→ B) ` (A → B) L10 L32 L15
L12 6 10 D, (D →C) ` (A → (B →C)) L10
L13 4 8 (A → (C → B)), C ` (A → B) L10 L1
L14 9 6 B, A ` ¬(A →¬B) L20 L6
L15 1 4 B, (B → A) ` A
L16 1 5 A, B ` 22A
L17 4 5 (B → (A →C)) ` (A → (B →C)) L11 L32
L18 6 5 ((A → B)→ A) ` ((A → B)→ B) L19 L1
L19 5 4 ` (A → A)
L20 2 7 (¬A →¬B), B ` A L37 L15
L21 6 7 ((C →C)→ B) ` (A → B) L19
L22 5 9 (A → (C → B)), ((C → B)→C) ` (A → B) L2 L1
L23 6 11 ¬(A →C) ` (¬A → B) L29 L24
L24 5 10 (A →C), ¬C ` (A → B) L28 L2
L25 6 4 ` (¬A → (A → B)) L29
L26 6 32 (C → (A → D)) ` (A → (B → (C → D))) L10 L9
L27 2 7 2B, (B → A) ` A L43
L28 1 4 ¬A ` (A → B)
L29 5 6 (A → (¬C →¬B)) ` (A → (B →C)) L2
L30 6 5 (¬A → (B →¬C)) ` ((¬A → B)→ (C → A)) L29 L32
L31 4 4 ((A → (B →C))→ (((A → B)→ (A →C))→ D)) ` ((A → (B →C))→ D) L1
L32 2 7 (A → (B →C)) ` ((A → B)→ (A →C)) L15
L33 7 4 ` (¬¬A → (B → A)) L29 L25
L34 8 4 ` (A → (¬¬B → B)) L17 L33
L35 1 9 (¬C →¬B) ` (A → (B →C))
L36 4 4 (A → ((C → A)→ B)) ` (A → B) L1
L37 1 6 (¬B →¬A) ` (A → B)
L38 8 6 (A → (¬B → (C → B))) ` (A → (¬B →¬C)) L7 L9
L39 7 6 (¬A → A) ` (¬A → B) L25 L1
L40 2 9 2B, (B → A) ` 2A L43
L41 8 6 ` (A → (B →¬¬B)) L17 L29 L33
L42 6 11 (A → D), (D →C) ` (A → (B →C)) L2 L24
L43 1 5 2A ` A

Table 15: Lemmas found for the S5 axiomatization with the proof cost measured by the number
of clauses processed by the prover.

proof measure initial cost final cost
number of processed clauses 115327 2091 (1.8%)
proof size 632 379 (60%)
proof length 642 389 (61%)

Table 16: Results for S5 modal logic.

50 Empirically Successful Computerized Reasoning

The system again performed very well in the case when the measure was the number of
processed clauses. This time, the total cost of the proofs was reduced to less than 2%.

7 Future work

As the system is particularly efficient in speeding up the prover, we believe that it could be
modified to search for lemmas that would make it possible to prove conjectures that the prover
alone wasn’t able to prove. This will require a change of strategy, because currently the system
looks primarily for lemmas that improve already existing proofs of the conjectures and therefore
are not general enough to prove some new unknown conjecture.

We would also like to investigate the nature of the lemmas that help to improve particular
proof measures in order to develop a better strategy for their evaluation.

Finally, we plan to perform a in-depth testing of the system on various sets of conjectures
from different sources.

8 Conclusion

Given a related set of conjectures, it is possible to automatically construct lemmas that can
significantly reduce the cost of the proofs of the conjectures. The results are summarized in
Table 17 for convenience.

processed clauses proof size proof length
set of conjectures || · ||i || · || f || · ||i || · || f || · ||i || · || f
TPTP set theory 3991 1921 (48%) 3487 2794 (80%) 1086 878 (81%)
Mizar set properties 62706 1852 (3.0%) 10680 9351 (88%) 3687 3046 (83%)
Meredith’s axiomatization 15725 510 (3.2%) 1299 1024 (79%) 314 277 (88%)
S5 modal logic 115327 2091 (1.8%) 632 379 (60%) 642 389 (61%)

Table 17: Summary of the results of the system on the presented sets of conjectures.

The system that we have developed performs well on different sets of conjectures, particu-
larly if the cost of the proofs of the conjectures is measured in the number of clauses processed
by the prover. The system can also improve the size and/or the length of the proofs, although it
is not as effective in these cases.

References

[AS92] Owen L. Astrachan and Mark E. Stickel. Caching and lemmaizing in model elim-
ination theorem provers. In Deepak Kapur, editor, CADE, volume 607 of Lecture
Notes in Computer Science, pages 224–238. Springer, 1992.

[Col02a] Simon Colton. Automated Theory Formation in Pure Mathematics. Distinguished
Dissertations. Springer, 2002.

Empirically Successful Computerized Reasoning 51

[Col02b] Simon Colton. The HR program for theorem generation. In Andrei Voronkov,
editor, CADE, volume 2392 of Lecture Notes in Computer Science, pages 285–289.
Springer, 2002.

[CP80] P. T. Cox and T. Pietrzykowski. A complete, nonredundant algorithm for reversed
skolemization, volume 87 of Lecture Notes in Computer Science. Springer, May
1980.

[CP93] Ritu Chadha and David Plaisted. Finding logical consequences using unskolemiza-
tion, volume 689 of Lecture Notes in Computer Science. Springer, May 1993.

[FFF99] Marc Fuchs, Dirk Fuchs, and Matthias Fuchs. Generating lemmas for tableau-
based proof search using genetic programming. In Wolfgang Banzhaf, Jason Daida,
Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E.
Smith, editors, Proceedings of the Genetic and Evolutionary Computation Con-
ference, volume 2, pages 1027–1032, Orlando, Florida, USA, July 1999. Morgan
Kaufmann.

[Hal05] John Halleck. Logic systems, 2005. http://www.cc.utah.edu/˜nahaj/logic/structures/.

[McC94] W. W. McCune. OTTER 3.0 reference manual and guide. Technical Report ANL-
94/6, Argonne National Laboratory, Argonne, Illinois, 1994.

[MVF+02] William McCune, Robert Veroff, Branden Fitelson, Kenneth Harris, Andrew Feist,
and Larry Wos. Short single axioms for boolean algebra. J. Autom. Reasoning,
29(1):1–16, 2002.

[Qua92] Art Quaife. Automated Development of Fundamental Mathematical Theories.
Kluwer Academic Publishers, 1992.

[Sch02] S. Schulz. E – A brainiac theorem prover. Journal of AI Communications, 15(2-
3):111–126, 2002.

[SGC03] G. Sutcliffe, Y. Gao, and S. Colton. A Grand Challenge of Theorem Discovery. In
J. Gow, T. Walsh, S. Colton, and V. Sorge, editors, Proceedings of the Workshop on
Challenges and Novel Applications for Automated Reasoning, 19th International
Conference on Automated Reasoning, pages 1–11, 2003.

[SS98] G. Sutcliffe and C. B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

[Urb03] Josef Urban. Translating Mizar for first order theorem provers. In MKM, volume
2594 of Lecture Notes in Computer Science, pages 203–215. Springer, 2003.

[Urb04] Josef Urban. MPTP - motivation, implementation, first experiments. Journal of
Automated Reasoning, 33(3-4):319–339, 2004.

[WP03] Larry Wos and Gail W. Pieper. Automated Reasoning and the Discovery of Missing
and Elegant Proofs. Rinton Press, 2003.

52 Empirically Successful Computerized Reasoning

Lightweight Relevance Filtering for Machine-Generated

Resolution Problems

Jia Meng1, Lawrence C. Paulson2

1National ICT, Australia
jiameng@nicta.com.au

2Computer Laboratory, University of Cambridge, U.K.
LP15@cam.ac.uk

Abstract

Irrelevant clauses in resolution problems increase the search space, making it
hard to find proofs in a reasonable time. Simple relevance filtering methods, based
on counting function symbols in clauses, improve the success rate for a variety of
automatic theorem provers and with various initial settings. We have designed
these techniques as part of a project to link automatic theorem provers to the
interactive theorem prover Isabelle. They should be applicable to other situations
where the resolution problems are produced mechanically and where completeness
is less important than achieving a high success rate with limited processor time.

1 Introduction

Resolution-based automatic theorem provers (ATPs) are complete for first-order logic:
given unlimited resources, they will find a proof if one exists. Unfortunately, we seldom
have unlimited resources. Removing unnecessary axioms from the problem reduces the
search space and thus the effort needed to obtain proofs. Identifying unnecessary axioms
while retaining completeness appears to be as difficult as proving the theorem in the first
place. In general, it is hard to see how we can know that an axiom is redundant except
by finding a proof without using it. Syntactic criteria may be helpful when the amount
of redundancy is extreme, especially if we can relax the requirement for completeness.

The relevance problem dates back to the earliest days of resolution. As first defined
by Robinson [Rob65], a literal is pure if it is not unifiable with a complementary literal
in any other clause. Clauses containing pure literals can be removed without affecting
consistency. This process is a form of relevance test, since pure literals often indicate
that the axioms describe predicates not mentioned in the (negated) conjecture. It can
be effective, but it is not a full solution.

If a resolution theorem prover is invoked by another reasoning tool, then the problems
it receives will have been produced mechanically. Machine-generated problems may
contain thousands of clauses, each containing large terms. Many ATPs are not designed
to cope with such problems. Traditionally, the ATP user prepares a mathematical
problem with the greatest of care, and is willing to spend weeks running proof attempts,
adjusting weights and refining settings until the problem is solved. Machine-generated

Empirically Successful Computerized Reasoning 53

problems are not merely huge but may be presented to the automatic prover by the
dozen, with its heuristics set to their defaults and with a small time limit.

Our integration of Isabelle with ATPs [MQP06] generates small or large problems,
depending on whether or not rewrite rules are included. A small problem occupies 200
kilobytes and comprises over 1300 clauses; a large problem occupies about 450 kilobytes
and comprises 2500 clauses, approximately. Even our small problems look rather large
to a resolution prover. We have run extensive tests with a set of 285 such problems (153
small, 132 large). Vampire does well on our problem set, if it is given 300 seconds per
problem: it can prove 86 percent of them. Unfortunately, given 30 seconds per problem,
which is more realistic for user interaction, Vampire’s success rate drops to 53 percent.
(See Fig. 7 in Sect. 5.) Can a cheap, simple relevance filter improve the success rate for
short runtimes? Completeness does not matter to us: we are happy to forgo solutions
to some problems provided we obtain a high success rate.

In the course of our investigations, we found that many obvious ideas were incorrect.
For example, ATPs generate hundreds of thousands of clauses during their operation,
so an extra fifty clauses at the start should not do any harm. However, they do.

Paper outline. We begin with background material on Isabelle, ATPs, and our
link-up between the two, mentioning related work on other such link-ups (Sect. 2). We
describe our initial attempts to improve the success rate of our link-up (Sect. 3), and then
describe a family of related relevance filters (Sect. 4). We proceed to our experimental
results, illustrating the benefits of filtering through a series of graphs (Sect. 5). Finally,
we present brief conclusions (Sect. 6).

2 Background

Resolution theorem provers work by deriving a contradiction from a supplied set of
clauses [BG01]. Each clause is a disjunction of literals (atomic formulae and their nega-
tions) and the set of clauses is interpreted as a conjunction. Clause form can be difficult
to read, and the proofs that are found tend to be unintuitive, but there is no denying that
these provers are powerful. In the sequel we refer to them as automatic theorem provers
or ATPs. (This term includes clausal tableau provers, but not SAT solvers, decision
procedures etc.) Our experiments mainly use E versions 0.9 and 0.91dev001 [Sch04],
SPASS V2.2 [Wei01] and Vampire 8 [RV01a].1

Interactive theorem provers allow proofs to be constructed by natural chains of rea-
soning, generally in a rich formalism such as higher-order logic, but their automation
tends to be limited to rewriting and arithmetic. Quantifier reasoning tends to be weak:
many interactive systems cannot even prove a simple theorem like ∃x∀y P (x, y) →
∀y ∃xP (x, y) automatically. Developers of interactive tools would naturally like to har-
ness the power of ATPs, while preserving the intuitive reasoning style that their users
expect.

We are adding automated support to the interactive prover Isabelle. There are many
differences between our project and other related work [BHdN02, SBF+03]. The chief
difference is that Isabelle’s built-in automated support gives the ATPs tough competi-

1We downloaded Vampire from the CASC-20 website, http://www.cs.miami.edu/ tptp/CASC/20/;
it calls itself version 7.45.

54 Empirically Successful Computerized Reasoning

tion. By typing auto, the Isabelle user causes approximately 2000 lemmas to be used as
rewriting rules and for forward and backward chaining. A related tool, blast, performs
deep searches in a fashion inspired by tableau provers. Even ten years ago, using early
predecessors of these tools, Isabelle users could automatically prove theorems like this
set equality [Pau97]: ⋃

i∈I

(Ai ∪Bi) =
(⋃

i∈I

Ai

)
∪

(⋃
i∈I

Bi

)
Set theory problems, and the combinatory logic examples presented in that paper,

remain difficult for automatic theorem provers. When we first got our link-up working,
we were disappointed to find that ATPs were seldom better than auto. We have devoted
much effort to improving its success rate. We found that bugs in our link-up were
partly to blame for the poor results. Much of our effort went to improving the problem
presentation; for example, we found a more compact representation of types. We devoted
some time to identifying prover settings to help ATPs cope with huge problems. Above
all, we have struggled to find ways to filter out irrelevant axioms.

Of previous work, the most pertinent is the integration between the Karlsruhe Inter-
active Verifier (KIV) and the tableau prover 3TAP, by Ahrendt and others [ABH+98].
Reif and Schellhorn [RS98] present a component of that integration: an algorithm for
removing redundant axioms. It relies on analysing the structure of the theory in which
the conjecture is posed. Specifically, their method is based on four criteria for reduction,
which they call the minimality, structure, specification and recursion criteria. We did
not feel that this method would work with Isabelle theories, which tend to be large: a
typical theory introduces many functions and definitions, and proves many theorems.
For instance, the theory of the natural numbers proves nearly 200 theorems. Also, a
typical Isabelle problem lies at the top of a huge theory hierarchy that includes the full
Isabelle/HOL development, any included library theories, and theories for the user’s
problem domain. We decided to try other methods, which are described in the sequel.

The Isabelle-ATP linkup generates problems that contain conjecture clauses along
with clauses from four other sources:

• Classical clauses arise from the theorems Isabelle uses for forward and backward
chaining.

• Simplification clauses arise from the theorems Isabelle uses as rewrite rules. They
contain equalities.

• Arity and class inclusion clauses do not correspond to Isabelle theorems. Instead,
they express aspects of Isabelle’s type system. Isabelle’s axiomatic type classes
are sets of types that meet a given specification. For instance, the type nat of
natural numbers is a member of order, the class of partial orderings; we express
its membership as the unit clause order(nat). An arity relates the type classes of
the arguments and results of type constructors. For example, an arity clause

∀ τ [type(τ) → order(list(τ))]

says if the argument of list is a member of class type, then the resulting type of
lists belong to class order. For more information, we refer readers to our previous
papers [MP04, MQP06].

Empirically Successful Computerized Reasoning 55

Although the arity and class inclusion clauses typically number over one thousand,
they probably pose no difficulties for modern ATPs. They are Horn clauses that contain
only monadic (unary) predicates, which are not related by any equations. Most arity
clauses have one literal, while class inclusion clauses consist of two literals. Pure literal
elimination probably suffices to remove redundant arity and class inclusion clauses, so
ATPs may delete most of them immediately.

3 Initial Experiments

We have tuned the Isabelle-ATP link-up with the help of a set of problems in clause
form. We obtained these by modifying our link-up to save the clause form problems
it was producing. They simulate attempted calls to our system at various points in
several Isabelle proofs. The original Isabelle proofs for some of these problems require
multiple steps, explicit quantifier instantiations, or other detailed guidance. The set
now numbers 285 problems. Many have trivial proofs and the only difficulty lies in the
problem size. Other problems take a few minutes to prove, and a few remain unsolved.

Our first task was to verify that the problems were solvable. If a problem could
not be proved by any ATP, we could remove irrelevant clauses manually, using our
knowledge of the problem domain, in the hope of rendering it provable. This process
was too laborious to carry out for every failing problem. Over time, with the help of
the filtering techniques described below, we were able to obtain proofs for all but five of
our problems. We also uncovered problems that were incorrectly posed, lacking crucial
lemmas, and found several bugs. These ranged from the trivial (failing to notice that
the original problem already contained the empty clause) to the subtle (Skolemization
failing to take account of polymorphism).

The laborious hand-minimization can be automated. A simple idea is to note which
axioms take part in any successful proofs—call them referenced axioms—and to remove
all other axioms from the unsolved problems. We have automated this idea for the
provers Vampire and E. Both clearly identify references to axiom clauses, which they
designate by positive integers. Simple Perl scripts read the entire clause set into an array;
referenced axioms are found by subscripting and written to a new file. We thus obtain a
reduced version of the problem, containing only the clauses referenced. Repeating this
process over a directory of problems yields a new directory containing reduced versions
of each solved problem. If both Vampire and E prove a theorem, then the smaller file
is chosen. We then concatenate the solutions, removing conjecture clauses. The result
is a file containing all referenced axioms. Another Perl script intersects this file with
each member of the problem set, yielding a reduced problem set where each problem
contains only referenced axioms.

Auto-reduction by using only referenced axioms has an obvious drawback: some
unsolved problems are likely to need some axioms that have not been referenced before.
Even so, this idea improved our success rate from about 60 percent to 80 percent. It is
not clear how to incorporate this idea into an interactive prover, since then its success on
certain problems would depend upon the previous history of proof attempts, making the
system’s behaviour hard to predict. Auto-reduction’s immediate benefit is that it yields
evidence that the original problems have proofs: a reduced problem is easily checked to

56 Empirically Successful Computerized Reasoning

be a subset of the original problem, and with few exceptions it is easy to prove. Fewer
suspect problems require hand examination.

Using only referenced axioms does not guarantee that problems will be small. At
present, there are 405 referenced clauses. Most of these are specific to various problem
domains; approximately 150 of these correspond to standard Isabelle/HOL theorems,
and are common to all problems. A proof about protocol verification could have another
90 clauses, for a problem size of about 240. Two points are noteworthy:

1. The problems are smaller if not small, and

2. referenced clauses may be somehow more suitable for automated proof than other
clauses.

This second point suggests the concept of pathological clauses. Is it possible that
there are a few particularly bad clauses whose removal would improve the success rate?

It is difficult to test the hypothesis that the success rate is lowered by a few patho-
logical clauses. There is no reason to believe that the same clauses will turn out to be
pathological for all ATPs. Identifying pathological clauses seems to require much guess-
ing and manual inspection. Surely a pathological clause would contain highly general
literals such as X = Y , X < Y , X ∈ Y , or their negations.

We eventually blacklisted 148 theorems from the standard Isabelle/HOL library.
A theorem could be blacklisted for various reasons, such as having too big a clause
form, being too similar to other theorems, or dealing with too obscure a property. This
effort yielded only a small improvement to the success rate, probably because Isabelle’s
sets of classical and simplification rules already exclude obviously prolific facts such as
transitivity. The main benefit of this exercise was our discovery that the generated
problems included large numbers of functional reflexivity axioms: that is, axioms such
as X = Y −→ f(X) = f(Y). They are redundant in the presence of paramodulation;
since we only use ATPs that use that inference rule for equality reasoning, we now omit
such clauses in order to save ATPs the effort of discarding them. This aspect of our
project was in part a response to SPASS developer Thomas Hillenbrand’s insistence—in
an e-mail dated 23 July 2005—on “engineering your clause base once and forever”.

4 Signature-Based Relevance Filters

Automatic relevance filtering is clearly more attractive than any method requiring man-
ual inspection of clauses. We decided not to adopt Reif and Schellhorn’s approach
[RS98], which required analysis of the theory in which each problem was set, and in-
stead to define relevance with respect to the provided conjecture clauses. The simplest
way of doing this is to enable the Set of Support option, if it is available. Wos’s SOS
heuristic [WRC65], which dates from 1965, ensures that all inference rule applications
involve at least one clause derived from a conjecture clause. It prevents inferences among
the axioms and makes the search goal-directed. It is incomplete in the presence of the
ordering heuristics used by modern ATPs, but SPASS still offers SOS and it greatly
improves the success rate, as the graphs presented below will demonstrate.

We tried many simple relevance filters based on the conjecture clauses. We already
knew that simple methods could be effective: in an earlier experiment, we modified the

Empirically Successful Computerized Reasoning 57

link-up to block all axiom clauses except those from a few key theories. That improved
the success rate enough to yield proofs for eight hitherto unsolved problems. Clearly if
such a crude filter could be beneficial, then something based on the conjecture clauses
could be better still. Having automatically-reduced versions of most of our problems
allows us to test the relevance filter without actually running proofs: yet more Perl
scripts compare the new problems with the reduced ones, reporting any missing axioms.

The abstraction-based relevancy testing approach of Fuchs and Fuchs [FF99] is
specifically designed for model elimination (or connection tableau) provers. It is not
clear how to modify this approach for use with saturation provers, which are the type
we use almost exclusively. Their approach has some curious features. Though it is
based upon very general notions, the specific abstraction they implement is a symbol
abstraction, which involves “identifying some predicate or function symbols” and form-
ing equivalence classes of clauses. We confess that we were not able to derive any ideas
from this highly mathematical paper.

4.1 Plaisted and Yahya’s Strategy

Plaisted and Yahya’s relevance restriction strategy [PY03] introduces the concept of
relevance distance between two clauses, reflecting how closely two clauses are related.
Simply put, the idea is to start with the conjecture clauses and to identify a set R1 of
clauses that contain complementary literals to at least one of the conjecture clauses.
Each clause in R1 has distance 1 to the conjecture clauses. The next round of iteration
produces another set R2 of clauses, where each of its clauses resolves with one or more
clauses in R1; thus clauses in R2 have distance 2 to the conjecture clauses. The iteration
repeats until all clauses that have distances less than or equal to some upper limit are
included. This is an all-or-nothing approach: a clause is either included if it can resolve
with some already-included clause, or, not included at all.

We found this method easy to implement (in Prolog), but unfortunately too many
clauses are included after two or three iterations. This method does not take into
account the ordering restrictions that ATPs would respect, thereby including clauses on
the basis of literals that would not be selected for resolution. Also, this strategy does
not handle equality.

Plaisted and Yahya’s strategy suggests a simple approach based on signatures. Start-
ing with the conjecture clauses, repeatedly add all other clauses that share any function
symbols with them. This method handles equality, but it again includes too many
clauses. Therefore, we have refined Plaisted and Yahya’s strategy and designed several
new algorithms that work well (Sect. 5).

4.2 A Passmark-Based Algorithm

Our filtering strategies abandon the all-or-nothing approach. Instead, we use a measure
of relevance, and a clause is added to the pool of relevant clauses provided it is “suffi-
ciently close” to an existing relevant clause. If a clause mentions n functions, of which
m are relevant, then the clause receives a score (relevance mark) of m/n. The clause is
rejected unless its score exceeds a given pass mark, a real number between 0 and 1. If
a clause is accepted, all of its functions become relevant. Iterate this process until no

58 Empirically Successful Computerized Reasoning

new clauses are accepted. To prevent too many clauses from being accepted, somehow
the test must become stricter with each iteration.

In the first filtering strategy, we attach a relevance mark to each clause and this
mark may be increased during the filtering process. The pseudo-code for our algorithm
is shown in Figure 1.

The pseudo-code should be self-explanatory. We only give a few more comments
below.

• When the function relevant clauses is first called, the working relevant clauses
set W contains the goal clauses, while T contains all the axiom clauses and U is
empty.

• In function find clause mark, |R| is the number of elements in the set R.

• Isabelle allows overloading of functions, so that for example <= can denote
the usual ordering on integers as well as subset inclusion. Therefore function
find clause mark regards two functions as matching only if their types match as
well.

• The multiplication by P M in function find clause mark makes the relevance test
increasingly strict as the distance from the conjecture clauses increases, which
keeps the process focussed around the conjecture clauses and prevents too many
clauses from being taken as relevant.

4.3 Using the Set of Relevant Functions

We have refined the strategy above, removing the requirement that a clause be close to
one single relevant clause. It instead accumulates a pool of relevant functions, which is
used when calculating scores. This strategy is slightly simpler to implement, because
scores no longer have to be stored, and it potentially handles situations where a clause
is related to another via multiple equalities. To make the relevance test stricter on
successive iterations, we increase the pass mark after each successive iteration by the
formula p′ = p + (1 − p)/c, where c is an arbitrary convergence parameter. If c = 2,
for example, then each iteration halves the difference 1 − p. The algorithm appears in
Figure 2.

Since the value of c is used to modify that of p, the optimal values of these parameters
need to be found simultaneously. We ran extensive empirical tests. It became clear that
large values of c performed poorly, so we concentrated on 1.6, 2.4 and 3.2 with a range
of pass marks. We obtained the best results with p = 0.6 and c = 2.4. These values give
a strict test that rapidly gets stricter, indicating that our problems require a drastic
reduction in size.

To illustrate these points, Figure 3 presents two graphs. They plot success rates
and problem sizes as the pass mark increases from 0.0 (all clauses accepted) to 0.9 (few
clauses accepted). Success rates are for Vampire in its default mode, allowing 40 seconds
per problem. Problem sizes refer to the average number of clauses per problem, ignoring
conjecture clauses and the clauses that formalize Isabelle’s type system. Vampire’s
success rate peaks sharply at 0.6, by which time the average problem size has decreased
from 909 to 142 clauses. Since the aim of these experiments was to determine the best

Empirically Successful Computerized Reasoning 59

function relevant_clauses:
input: W, working relevant clauses set

T, working irrelevant clauses set
P, pass mark
U, used relevant clauses set
(Each clause is attached with a relevance mark)

output: relevant clauses to be input to ATPs
begin
while W not empty do {

for each clause-relevance-mark pair (C,M) in T do
{ update_clause_mark (W, (C,M)) }

#partition (C,M) pairs in T into two sets
Rel set contains (C,M) if P ≤ M
Irrel := T - Rel;
U := W ∪ U;
W := Rel;
T := Irrel;

}
return U;
end

function update_clause_mark:
input: W, relevant clauses set

(C,M), a clause-mark pair
effect: updates the relevance mark of C
begin
for each clause-mark (P,P_M) in W do {

PC := functions_of P;
CF := functions_of C;
R := CF ∩ PC; #where names and types agree
IR := CF − R; #remaining functions of clause C
M := max(M, P_M * |R| / (|R| + |IR|));

}
end

Figure 1: A Passmark-Based Filtering Strategy

60 Empirically Successful Computerized Reasoning

function relevant_clauses:
input: RF, set of relevant functions

T, working irrelevant clauses set
A, relevant clauses accumulator
P, pass mark

output: relevant clauses to be input to ATPs
begin
repeat {

for each clause Ci in T do
{ Mi := clause_mark (RF,Ci) }

Rel := set of all clauses Ci such that P ≤ Mi

T := T - Rel;
A := A ∪ Rel;
P := P + (1 - P) / c;
RF := (functions_of Rel) ∪ RF;

} until Rel is empty
return A;
end

function clause_mark:
input: RF, a set of relevant functions

C, a clause
output: the relevance mark of C
begin
CF := functions_of C;
R := CF ∩ RF; #where names and types agree
IR := CF − R; #remaining functions of clause C
return |R| / (|R| + |IR|);
end

Figure 2: An Improved Filtering Strategy Using a Set of Relevant Functions

Empirically Successful Computerized Reasoning 61

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50%

60%

70%

80%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000

Figure 3: Success Rates and Problem Sizes Against Pass Marks

values for p and c, the choice of ATP probably makes little difference. In particular, if
the filter has removed essential axioms, then no ATP will find a proof; this is why the
success rate drops when p > 0.6. We repeat that these graphs are for illustration only;
our parameter settings are based on tests that took hundreds of hours of processor time.

4.4 Taking Rarity into Account

Another refinement takes account of the relative frequencies of the functions in the
clause set. Some functions are common while others are rare. An occurrence of a rare
function would seem to be a strong indicator of relevance, while its very rarity would
ensure that not too many new clauses are included. In the relevance quotient m/n,
we boost m to take rarity into account. while leaving n to denote the total number of
functions. Taking rarity into account in n would prevent the inclusion of clauses that
involve another rare function, such as a Skolem function (each Skolem function is rare,
since it only occurs in a few clauses).

This strategy requires a suitable frequency function, which calculates the weight of
a symbol according to the number of its occurrences in the entire set of axiom clauses.
It is similar to our strategy mentioned in Sect.4.3, except for the function clause mark
shown in Figure 4.

A few explanations may be helpful here.

• The relevance mark of a clause C calculated by clause mark is not the percentage
of relevant functions in C any more. Instead, we use func weight function to
compute the sum of relevant functions’ marks weighted by their frequencies.

• A suitable frequency function (frequency function) is needed. After much test-

62 Empirically Successful Computerized Reasoning

function clause_mark:
input: RF, a set of relevant functions

C, a clause
ftab, a table of the number of occurrences of each function in the clause set

output: the relevance mark of C
begin
CF := functions_of C;
R := CF ∩ RF; #where names and types agree
IR := CF − R; #remaining functions of C
M := 0;
for each function F in R do { M := M + func_weight (ftab, F) }
return (M / (M + |IR|));
end

function func_weight:
input: ftab, a table of the number of occurrences of each function in the cause set

F, a function symbol
output: the frequency weighted mark for F
begin
freq := number_of_occurrences (ftab, F);
return (frequency_function freq);
end

Figure 4: A Filtering Strategy for Rarely-Occurring Functions

Empirically Successful Computerized Reasoning 63

ing we found that it should decrease gently as the frequency increases. If a func-
tion occurs n times in the problem, then we increase its contribution from 1 to
1 + 2/ log(n + 1). An even gentler decrease, such as 1 + 1.4/ log(log(n + 2)), can
work well, but something like 1 + 1/

√
n penalizes frequently-occurring functions

too much. Hence, our definition of frequency function is

frequency_function n = 1 + 2/log(n+1)

4.5 Other Refinements

Hoping that unit clauses did not excessively increase resolution’s search space, we exper-
imented with adding all “sufficiently simple” unit clauses at the end of the procedure. A
unit clause was simple provided it was not an equation; an equation was simple provided
its left- or right-hand side was ground (that is, variable-free). We discovered that over
100 unit clauses were often being added, and that they could indeed increase the search
space. By improving the relevance filter in other respects, we found that we could do
without a special treatment of unit clauses. A number of attempts to favour shorter
clauses failed to produce any increase in the success rate.

Definition expansion is another refinement. If a function f is relevant, and a unit
clause such as f(X) = t is available, then it can be regarded as relevant. To avoid
including “definitions” like 0 = N × 0, we check that the variables of the right-hand
side are a subset of those of the left-hand side. Definition expansion is beneficial, but
its effect is small.

As of this writing, our system still contains a manually produced blacklist of 117
(down from 148) HOL theorems. We also have a whitelist of theorems whose inclusion is
forced; it contains one single theorem (concerning the subset relation), which we found
that the filter was frequently rejecting. We can probably reduce the blacklist drastically
by checking which of those theorems would survive relevance filtering. However, having
a high success rate is more important to us than having an elegant implementation.

5 Empirical Results

Extensive testing helped us determine which methods worked best and to find the best
settings of the various parameters. The graphs compare the success rates of filtered
problems against raw ones. The runtime per problem increases from 10 to 300 seconds.
Success rates are plotted on a scale ranging from 40 to 90 percent. We tested the three
provers we have found to be best—E, SPASS and Vampire—in their default mode and
with alternative settings. E version 0.9 “Soom” is surpassed by version 0.91dev001
(Fig. 5), a development version of “Kanyam” that includes heuristics designed for our
problem set. (Version 0.9 surpasses the official Kanyam release, E version 0.91, on our
problems.) SPASS (Fig. 6) seems to perform better if SOS is enabled and splitting is
disabled.2 Vampire does extremely well in its CASC mode (Fig. 7).

We ran these tests on a bank of Dual AMD Opteron processors running at 2400MHz.
The Condor system3 managed our batch jobs.

2The precise option string is -Splits=0 -FullRed=0 -SOS=1.
3http://www.cs.wisc.edu/condor/

64 Empirically Successful Computerized Reasoning

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Figure 5: E, Versions 0.9 and 0.91dev001

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Figure 6: SPASS, Default Settings and with SOS

Empirically Successful Computerized Reasoning 65

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Figure 7: Vampire, Default Settings and in CASC Mode

The graphs offer compelling evidence that relevance filtering is beneficial in our
application. The success rate for the filtered problems exceeds that for the raw ones in
virtually every case. This improvement is particularly striking given that eight percent
of the filtered problems appear to be missing essential clauses, compared with their
automatically-reduced counterparts. Perhaps gains are made elsewhere, or these eight
percent are too difficult to prove anyway. A further surprise is that, with the exception of
Vampire running in CASC mode, increasing processor time to 300 seconds does not give
an advantage to the raw problems. The success rate for raw problems should eventually
exceed that of the filtered ones, but the crossover point appears to be rather distant.
Exceptions are E version 0.91dev001, where crossover appears to be taking place at 280
seconds, and Vampire in CASC mode, where by 300 seconds the two lines are close.

6 Conclusions

We wish to refute large, machine-generated sets of clauses. Experiments with the notion
of “referenced axioms” demonstrate that reducing the problem size greatly improves the
success rate. However, this technique introduces a dependence on past proof attempts,
so we have sought methods of reducing the problem size through a simple analysis of
the problem alone.

We have presented simple ideas for relevance filtering along with empirical evidence
to demonstrate that they improve the success rate in a great variety of situations.
The simplicity of our methods is in stark contrast to the tremendous sophistication
of automated theorem provers. It is surprising that such simple methods can yield

66 Empirically Successful Computerized Reasoning

benefits. We believe that the secret is our willingness to sacrifice completeness in order
to improve the overall success rate. Our method may be useful in other applications
where processor time is limited and completeness is not essential. It is signature based,
so it works for any problem for which the conjecture clauses have been identified. Our
version of the filters operates on Isabelle theorems and assumes Isabelle’s type system,
but versions for standard first-order logic should be easy to devise.

Our filtering gave the least benefit with the specially-modified version of the E prover.
Developer Stephan Schulz, in an e-mail dated 14 April 2006, had an explanation:

E has a number of goal-directed search heuristics. The new version always
selects a fairly extreme goal-directed one for your problems . . . [which] will
give a 10 times lower weight to symbols from a conjecture than to other
symbols (all else being equal). I suspect that this more or less simulates
your relevance filtering.

Such a setting could probably be added to other ATPs, and in a fashion that preserves
completeness.

The weighting mechanisms of other ATPs may be able to simulate our filter. How-
ever, finding good configurations requires expert knowledge of each ATP being used.
We were never able to improve upon the default configuration of E, despite its good
documentation and helpful developer. (Many ATPs do not have these benefits.) In
contrast, our filter provides a uniform solution for all ATPs.

We do not feel that our methods can be significantly improved; their technological
basis is too simple. More sophisticated techniques, perhaps based on machine learning,
may yield more effective relevance filtering.

As an offshoot of the work reported above, we have submitted 565 problems to the
TPTP library. These are 285 raw problems plus 280 solutions: versions that have been
automatically reduced as described in Sect. 3 above.

Acknowledgements

The research was funded by the epsrc grant GR/S57198/01 Automation for Interactive
Proof and by the L4.verified project of National ICT Australia. Stephan Schulz provided
a new version of the E prover, optimized for our problem set.

References

[ABH+98] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel,
Wolfgang Reif, Gerhard Schellhorn, and Peter H. Schmitt. Integrating au-
tomated and interactive theorem proving. In Wolfgang Bibel and Peter H.
Schmitt, editors, Automated Deduction— A Basis for Applications, volume
II. Systems and Implementation Techniques, pages 97–116. Kluwer Academic
Publishers, 1998.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Robin-
son and Voronkov [RV01b], chapter 2, pages 19–99.

Empirically Successful Computerized Reasoning 67

[BHdN02] Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automatic proof con-
struction in type theory using resolution. Journal of Automated Reasoning,
29(3-4):253–275, 2002.

[BR04] David Basin and Michaël Rusinowitch, editors. Automated Reasoning —
Second International Joint Conference, IJCAR 2004, LNAI 3097. Springer,
2004.

[FF99] Marc Fuchs and Dirk Fuchs. Abstraction-based relevancy testing for model
elimination. In Harald Ganzinger, editor, Automated Deduction — CADE-16
International Conference, LNAI 1632, pages 344–358. Springer, 1999.

[MP04] Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive
proof using resolution. In Basin and Rusinowitch [BR04], pages 372–384.

[MQP06] Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for in-
teractive proof: First prototype. Information and Computation, 2006. in
press.

[Pau97] Lawrence C. Paulson. Generic automatic proof tools. In Robert Veroff,
editor, Automated Reasoning and its Applications: Essays in Honor of Larry
Wos, chapter 3. MIT Press, 1997.

[PY03] David A. Plaisted and Adnan Yahya. A relevance restriction strategy for
automated deduction. Artificial Intelligence, 144(1-2):59–93, March 2003.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23–41, 1965.

[RS98] Wolfgang Reif and Gerhard Schellhorn. Theorem proving in large theories.
In Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction—
A Basis for Applications, volume III. Applications, pages 225–240. Kluwer
Academic Publishers, 1998.

[RV01a] Alexander Riazanov and Andrei Voronkov. Vampire 1.1 (system description).
In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Automated
Reasoning — First International Joint Conference, IJCAR 2001, LNAI 2083,
pages 376–380. Springer, 2001.

[RV01b] Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Rea-
soning. Elsevier Science, 2001.

[SBF+03] Jörg Siekmann, Christoph Benzmüller, Armin Fiedler, Andreas Meier, Im-
manuel Normann, and Martin Pollet. Proof development with Ωmega: The
irrationality of

√
2. In Fairouz Kamareddine, editor, Thirty Five Years of Au-

tomating Mathematics, pages 271–314. Kluwer Academic Publishers, 2003.

[Sch04] Stephan Schulz. System description: E 0.81. In Basin and Rusinowitch
[BR04], pages 223–228.

68 Empirically Successful Computerized Reasoning

[Wei01] Christoph Weidenbach. Combining superposition, sorts and splitting. In
Robinson and Voronkov [RV01b], chapter 27, pages 1965–2013.

[WRC65] Lawrence Wos, George A. Robinson, and Daniel F. Carson. Efficiency and
completeness of the set of support strategy in theorem proving. Journal of
the ACM, 12(4):536–541, 1965.

Empirically Successful Computerized Reasoning 69

Translating Higher-Order Problems to First-Order Clauses

Jia Meng1, Lawrence C. Paulson2

1National ICT, Australia
jiameng@nicta.com.au

2Computer Laboratory, University of Cambridge, U.K.
LP15@cam.ac.uk

Abstract

Proofs involving large specifications are typically carried out through interactive
provers that use higher-order logic. A promising approach to improve the automa-
tion of interactive provers is by integrating them with automatic provers, which
are usually based on first-order logic. Consequently, it is necessary to translate
higher-order logic formulae to first-order form. This translation should ideally be
both sound and practical. We have implemented three higher-order to first-order
translations, with particular emphasis on the translation of types. Omitting some
type information improves the success rate, but can be unsound, so the interactive
prover must verify the proofs. In this paper, we will describe our translations and
experimental data that compares the three translations in respect of their success
rates for various automatic provers.

1 Introduction

Interactive theorem provers, such as HOL4 [GM93], Isabelle [NPW02] and
PVS [ORR+96] are widely used for formal verifications and specifications. They provide
expressive formalisms and tools for managing large scale proof projects. However, a ma-
jor weakness of interactive provers is the lack of automation. In order to overcome the
problem, we have integrated Isabelle with automatic theorem provers (ATPs) [MQP06].
ATPs combine a variety of reasoning methods and do not require users’ instructions
on how to use an axiom or when to use an axiom. For example, they do not require
equalities to be oriented, but use them as undirected equations.

Among the many logics used by interactive provers, higher-order logic (HOL) is the
most popular one because of its expressiveness. One of the most widely used logics in
Isabelle is Isabelle/HOL. In contrast, most of the powerful ATPs are based on first-order
logic (FOL). Therefore, it is important to translate HOL problems into FOL format.

Those HOL problems that do not involve function variables, predicate variables or
λ-abstractions can be translated directly to FOL format. However, we must be careful
about how to translate HOL problems that are truly higher-order. In particular, we need
to include the problem’s type information to preserve soundness. A sound approach is to
include all types for all terms. Unfortunately, this will result in large terms and clauses,
and much of the type information is redundant. A more compact type representation

70 Empirically Successful Computerized Reasoning

could enhance the performance of ATPs. Omitting some type information could lead to
unsoundness, which ultimately we will prevent through proof reconstruction (Sect. 2.5).

We have implemented three HOL to FOL translations, and we believe two of them are
new. We have also carried out extensive experiments in order to assess their effectiveness
with the provers E [Sch04], SPASS [Wei01] and Vampire [RV01].

Paper outline. We first describe three HOL to FOL translations and discuss their
soundness (Sect. 2). We then describe the experiments we ran (Sect. 3) and finally offer
some conclusions (Sect. 4).

2 Background

Higher-order logic (HOL) extends first-order logic (FOL) in several respects. The main
difference is that HOL terms can denote truth values and functions. Function values
can be expressed using λ-abstractions or by currying : that is, by applying a function
to fewer than the maximum number of arguments. In FOL, a function must always be
supplied the same number of arguments. In translating from HOL to FOL, the only way
to reconcile this difference is to regard all HOL functions as constants while providing
a two-argument function (called app and is abbreviated by @ below) to express function
application. In addition, we need a predicate B to convert all top-level FOL terms of
boolean type to predicates. These translations allow first-order provers to solve many
problems that contain higher-order features, though they do not yield the full power of
higher-order logic.

For example, the HOL formula ∀F p(F (x)) is translated to

{++B(@(p,@(F,x)))}

We use the combinators I, K, C, B and S to represent λ-abstractions, asserting the
combinator reduction equations as axioms. (Although K and S suffice in theory, the
resulting translation is exponential in the number of abstractions.) Another axiom we
assert is function extensionality:

∀fg [(∀x f(x) = g(x)) → f = g].

It has the following clause form, where e is a reserved Skolem function symbol, yielding
some x such that f(x) 6= g(x).

{--equal(@(F,@(@(e,F),G)),@(G,@(@(e,F),G))),
++equal(F,G)}

Finally, equality in Isabelle may appear in a λ-abstraction, and thus is treated as
an ordinary function symbol. We use a new function symbol fequal to represent the
function version of equality. Through λ-reduction, this equality may be promoted to
predicate level, becoming an ordinary equality. Promotion requires two additional ax-
ioms:

{++B(@(@(fequal,X),Y)),--equal(X,Y)}
{--B(@(@(fequal,X),Y)),++equal(X,Y)}

Empirically Successful Computerized Reasoning 71

Not all subgoals require the full power of HOL. Often the initial steps of the proof
replace complicated constructions by simple ones. Of the remaining subgoals, many
are purely first-order. Others are higher-order but use no λ-abstractions. These special
cases admit more efficient translations into first-order clauses, though naturally we must
also provide a translation that accommodates the general case.

2.1 Types in Isabelle/HOL

We have just seen how to represent HOL formulae in FOL form. A more important
issue is to embed type information of HOL formulae in FOL clauses. Let us review how
this works for problems that are already first-order [MP04, MQP06]. Before that, we
give a brief overview of Isabelle/HOL’s polymorphically sorted type system. We refer
readers to the two papers above for more information.

Isabelle/HOL supports axiomatic type classes, where a type class is a set of types.
For example, the type for real numbers real is a member of type class linorder. A type
class is axiomatic because it may have a set of properties—specified by axioms—that
all its member types should satisfy. A type may belong to several type classes and an
intersection of type classes is a sort. Moreover, each type constructor has one or more
arities, which describe how the result type class depends upon the arguments’ type
classes. For example, type constructor list has an arity that says if its argument is a
member of class linorder then the resulting list’s type is also a member of linorder.

Constants can be overloaded and types can be polymorphic, allowing instantiation
to more specific types. For example, the ≤ operator has the polymorphic type α →
α → bool; when it has type nat → nat → bool it denotes the usual ordering of the
natural numbers, and when it has type α set → α set → bool it denotes the subset
relation. The latter type is still polymorphic in the type of the set’s elements. Isabelle’s
overloading cannot be eliminated by preprocessing because polymorphic theorems about
≤ are applicable to all instances of this function, despite their different meanings.

When we translate Isabelle formulae to FOL clauses, we need to formalize types,
especially in view of Isabelle’s heavy use of overloading. We need to ensure that Isabelle
theorems involving polymorphic functions are only used for appropriate types. To ac-
complish this, polymorphic functions carry type information as additional arguments
and we translate Isabelle types to FOL terms. For example, we translate x ≤ y where
x and y are α set to le(x, y, set(α)). We also translate Isabelle’s axiomatic type classes
into first-order clauses. For this, we translate type classes to FOL predicates and types
to FOL terms.

This translation is reasonably compact, and it enforces overloading (≤ on sets is
not confused with ≤ on integers), but it does not capture other aspects of types. For
example, if we declare a two-element datatype two, then we obtain the theorem

∀x [x = a ∨ x = b].

The corresponding clause does not mention type two:

{++equal(X,a), ++equal(X,b)}

It therefore asserts that the universe consists of two elements; given our other axioms,
ATPs easily detect the inconsistency. We simply live with this risk for the moment,

72 Empirically Successful Computerized Reasoning

pending the implementation of proof reconstruction. A simple way of detecting such
issues is to check whether a proof refers to at least one conjecture clause: if not, then the
axiom clauses by themselves are inconsistent. This method detects some invalid proofs,
but not all of them.

Since HOL problems require currying, we need a different type embedding method
from first-order ones. We have implemented three type translations, namely fully-typed,
partial-typed and constant-typed.

2.2 The Fully-Typed Translation

The fully-typed translation, which resembles Hurd’s translation [Hur02], is sound. The
special function typeinfo, which we abbreviate to T, pairs each term with its type. For
instance, the formula P < Q is translated to

{++B(T(@(T(@(T(<, a=>a=>bool), T(P,a)), a=>bool), T(Q,a)), bool))}

This translation is sound because it includes types for all terms and subterms, right
down to the variables. When two terms are unified during a resolution step, their types
are unified as well. This instantiation of types guarantees that terms created in the
course of a proof continue to carry correct types. Isabelle unifies polymorphic terms
similarly. In fact, the resolution steps performed by an ATP could in principle be
reconstructed in Isabelle. Each FOL axiom clause corresponds to an Isabelle theorem.
If two FOL clauses are resolved, then the resolvant FOL clause will correspond to the
Isabelle theorem produced by Isabelle’s own resolution rule.

The fully-typed translation introduces much redundancy. Every part of a function
application is typed: the function’s type includes its argument and result types, which
are repeated in the translation of the function’s argument and by including the type of
the returned result. Through experiments (Sect. 3), we have found that these large terms
degrade the ATPs’ performance. A more compact HOL translation should improve the
success rate.

Hurd [Hur03] uses an untyped translation for the same reason. No term or predicate
has any type information. Because this translation can produce unsound proofs, Hurd
relies on proof reconstruction to verify them. If reconstruction fails, Hurd calls the ATP
again, using a typed translation. Hurd says that this happens less than one percent of
the time. This combination of an efficient but unsound translation with a soundness
check achieves both efficiency and soundness. We intend to take the same approach.

If we are to achieve a compact HOL translation, we will have to omit some types,
potentially admitting some unsound proofs. We cannot use a completely untyped trans-
lation because our requirements differ from Hurd’s. His tactic sends to ATPs a few
theorems that are chosen by users. In contrast, we send ATPs hundreds of theorems,
many involving overloading. Omitting the types from this large collection would result
in many absurd proofs, where for example, the operator ≤ simultaneously denoted “less
than” on integers and the subset relation. We have designed and experimented with two
compact HOL translations: the partial-typed and constant-typed translations. These
translations attach the most important type information (such as type instantiations of
polymorphic constants) that can block some incorrect resolutions.

Empirically Successful Computerized Reasoning 73

2.3 The Partial-Typed Translation

The partial-typed translation only includes the types of functions in function calls. The
type is translated to a FOL term and is inserted as a third argument of the application
operator (@). Taking the previous formula P < Q as an example, we translate it to

{++B(@(@(<, P, a=>a=>bool), Q, a=>bool))}.

Here, the type of < is a=>a=>bool, and we include this type as an additional argument
of function application @.

In a HOL formula, a function may be passed to another function as an argument. If
a function appears without arguments, we do not include its type. The FOL clauses are
derived from Isabelle formulae, which we know to be well-formed and type correct. The
partial-typed translation avoids the redundancy of the fully-typed translation. Most
of the time, this type encoding also ensures correct treatments of Isabelle overloading:
Isabelle overloaded constants are most likely to appear as operators (functions and
predicates) in formulae, whose types are inserted by the partial-typed encoding.

However, the partial-typed translation can still yield unsound proofs. It is vulnerable
to the example involving datatype two, described in Sect. 2.1 above.

2.4 The Constant-Typed Translation

In the constant-typed translation, we include types of polymorphic constants only. Fur-
thermore, we do not include a constant’s full type but only the instantiated values of its
type variables. Monomorphic constants do not need to carry types because their names
alone determine the types of their arguments. A polymorphic constant is translated to
a first-order function symbol. Its arguments, which represent types, are obtained by
matching its actual type against its declared type. This treatment of types is similar to
the one we use for problems that are already first-order.

Again considering our standard example, if P and Q are natural numbers (type nat),
we translate the formula P < Q to

{++B(@(@(<(nat), P), Q))}.

Similarly, if P and Q are sets (type α set), it becomes

{++B(@(@(<(set(a)), P), Q))}.

As for equality, if it appears as a predicate, then we do not insert its type. However,
if it appears as a constant in a combinator term, then we include its argument’s type as
its argument. Similarly, we translated the equality axiom above to the two clauses

{++B(@(@(fequal(T),X),Y)),--equal(X,Y)}
{--B(@(@(fequal(T),X),Y)),++equal(X,Y)}

This translation can reduce the size of terms significantly. However, like the partial-
typed one, it can be unsound.

74 Empirically Successful Computerized Reasoning

2.5 Which Translation to Use and Soundness Issues

Of the three HOL to FOL translations above, the fully-typed one is sound but pro-
duces excessively large terms. The partial-typed and constant-typed translations are
more compact, but may introduce unsound proofs. If we use either of the compact
translations, then we must verify proofs in Isabelle to ensure soundness.

There are several factors that affect the decision about which translation should be
used as the default.

• Can we verify the proofs for partial-typed and constant-typed translations? The
answer is yes. Although the FOL clauses carry insufficient type information, the
clauses still correspond to Isabelle lemmas and goals. Our approach to proof
reconstruction, which is currently being implemented, involves following the low-
level resolution steps. If two clauses cannot be resolved due to incompatible types,
Isabelle will detect this.

• What benefit do we obtain from using the compact translations? Our experi-
mental results (Sect. 3) show that the compact translations can boost the success
rate significantly. Therefore, it is worthwhile to use a compact translation, even
if occasional unsound proofs require retrying the problem using the fully-typed
translation.

Moreover, we aim to reconstruct proofs in Isabelle even if we use fully-typed trans-
lation. This is so that proofs can go through Isabelle kernel. Since proof reconstruction
is needed regardless of which translation is used, the only potential extra cost involved
in using a compact translation is that of occasional retries.

3 Experiments

It is obvious that the constant-typed translation is the most compact, while the fully-
typed one is the least compact. We can therefore predict that the constant-typed trans-
lation will deliver the best results with ATPs, while the fully-typed one will turn out
to be the worst. However, such claims need to be backed up by observations, especially
given that the fully-typed translation is the best for soundness.

For our experiments, we took 79 problems generated by Isabelle, most of which are
higher-order. Since our HOL translation can also be used for purely FOL problems
and our experiments were aimed at testing efficiency of the translation methods, we
translated all problems (both HOL and FOL) using the three translation methods we
mentioned in the previous section. We used our relevance filter [MP06] to reduce the
sizes of the problem. We ran these tests on a bank of Dual AMD Opteron processors
running at 2400MHz, using Condor1 to manage our batch jobs.

Each graph compares the success rates of the three translations, for some prover,
as the runtime per problem increases from 10 to 300 seconds. These short runtimes
are appropriate for our application of ATPs to support interactive proofs, We tested
three provers: E (Fig. 1), SPASS 2.2 (Fig. 2) and Vampire 8 (Fig. 3). We used E version

1http://www.cs.wisc.edu/condor/

Empirically Successful Computerized Reasoning 75

0s 50s 100s 150s 200s 250s 300s40%

50%

60%

70%

80% full

partial

constant

Figure 1: E, Version 0.91dev001

0.91dev001, a development version that surpasses E 0.9 “Soom”. SPASS ran in auto-
matic mode and, in a second run, with SOS enabled and splitting disabled.2 Vampire
ran in its default mode and with its CASC option.

On the whole, the constant-typed translation did indeed yield the highest success
rate, while the fully-typed translation yielded the lowest, especially when runtime is
increased. This is as we would expect, but a glance at the graphs shows that the
situation is more complex than this. Against expectations, the partial-typed translation
frequently outperforms the constant-typed one. For runtimes below about 200 seconds,
the partial-typed translation gives the best results with SPASS (default settings) and
Vampire. As runtime increases to 300 seconds, the constant-typed translation comes
out top (or nearly) in all five graphs.

At its default settings, SPASS does not perform well with any translation. It is safe
to conjecture that only trivial problems are being proved, where the translation makes
little difference. By enabling SOS, which makes the proof search more goal-directed,
SPASS delivers excellent results with the constant-typed translation.

Readers may ask whether the fully-typed translation has a lower success rate because
the other translations are finding unsound proofs for our problems. We have found that
three of the 79 problems have unsound proofs. For one of the problems, incorrect axioms
cause all three of its translations to be unsound, so this error does not bias the results.
For the other two problems, the compact translations are indeed to blame, giving a
bias of 2/79 or 2.5% against the fully-typed translation. The advantage given by the
compact translations is much greater than this. We do regard this unsoundness rate as
too high, and we are considering a number of options for reducing it.

To obtain a quantitative picture of the differences between the three translations, we
chose one of the problems and used tptp2X [SS04] to summarize its syntactic features.
This problem is of median size in our problem set. It has 1150 clauses after relevance
filtering, of which 105 are non-trivial: the remainder constitute a monadic Horn theory
that describes Isabelle’s type class system. Table 1 shows the figures common to all
three translations. Table 2 shows variations among the translations.

A major difference is the maximal term depth, where fully-typed appears to have
the greatest maximal term depth while constant-typed has the least. Shallower terms

2The precise option string is -Splits=0 -FullRed=0 -SOS=1.

76 Empirically Successful Computerized Reasoning

0s 50s 100s 150s 200s 250s 300s40%

50%

60%

70%

80% full

partial

constant

0s 50s 100s 150s 200s 250s 300s40%

50%

60%

70%

80% full

partial

constant

Figure 2: SPASS, Default Settings and with SOS

0s 50s 100s 150s 200s 250s 300s40%

50%

60%

70%

80% full

partial

constant

0s 50s 100s 150s 200s 250s 300s40%

50%

60%

70%

80% full

partial

constant

Figure 3: Vampire, Default Settings and in CASC Mode

Empirically Successful Computerized Reasoning 77

Number of clauses 1150 (6 non-Horn; 198 unit)
Number of literals 2105 (152 equality)
Maximal clause size 3 (1 average)
Number of predicates 74 (0 propositional; 1–2 arity)

Table 1: Common to All Translations

No. of functors No. of variables Max. term depth File size
full 51 (42 constant) 1292 (69 singleton) 19 (1 average) 223460
partial 50 (42 constant) 1265 (66 singleton) 13 (1 average) 196663
constant 49 (10 constant) 1292 (106 singleton) 8 (1 average) 171724

Table 2: Differences between Three Translations

may be easier to process by ATPs, which may be a reason why constant-typed performs
better overall. In addition, constant-typed produces the smallest problem file. Finally,
although the fully-typed and constant-typed translations have the same number of vari-
ables, the latter has more singleton variables, which are variables that occur in a clause
only once.

These statistics again suggest that the constant-typed translation should give the
best results, so we have no explanation for the many situations in which the partial-
typed translation performs best. The dips in the graphs, where the success rate drops
as the runtime goes up, are also puzzling. A notable one is with Vampire, default
settings, with the fully-typed translation (Fig. 3). Vampire’s limited resource strategy,
which discards clauses that cannot be used within the time limit, may explain its dips.
For E and SPASS we have no explanation, but we have no doubt that the dips are real.
Similar dips appear in our other experiments [MP06], and all of these measurements are
made by automatic procedures.

4 Conclusions

We have described three HOL to FOL translations, which differ in their treatment of
types. We have carried out extensive experiments to evaluate the effectiveness of the
three translations. We have also obtained some statistics concerning how compact our
translations are. Of the three translations—fully-typed, partial-typed and constant-
typed—the constant-typed translation produces the most compact output.

Naturally, we would expect a provers’ success rate to increase with a more compact
clause form. This is what we have seen with E and with SPASS (provided SOS is
enabled). However, we are surprised to see the simplest and most compact format does
not always yield the best results with Vampire. Given that Vampire gives the best
overall results, the partial-typed translation is worth considering. Because the more
compact translations can be unsound, proofs found using them must be validated in
some way, such as by proof reconstruction.

The higher-order logic we have investigated is Isabelle/HOL. However, our transla-
tions should be equally applicable to the similar logic implemented in the HOL4 system.

78 Empirically Successful Computerized Reasoning

Any translations for PVS would have to take account of predicate subtyping, but their
treatment of basic types might be based on our techniques.

Acknowledgements

The research was funded by the epsrc grant GR/S57198/01 Automation for Interactive
Proof and by the L4.verified project of National ICT Australia. Joe Hurd has given
much helpful advice on how to translate from HOL to FOL. The referees made many
useful suggestions for improving this paper.

References

[BR04] David Basin and Michaël Rusinowitch, editors. Automated Reasoning —
Second International Joint Conference, IJCAR 2004, LNAI 3097. Springer,
2004.

[GM93] Michael J. C. Gordon and Thomas F. Melham. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cambridge Univ.
Press, 1993.

[Hur02] Joe Hurd. An LCF-style interface between HOL and first-order logic. In
Andrei Voronkov, editor, Automated Deduction — CADE-18 International
Conference, LNAI 2392, pages 134–138. Springer, 2002.

[Hur03] Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In
Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Applica-
tion of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-
212448 in NASA Technical Reports, pages 56–68, September 2003.

[MP04] Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive
proof using resolution. In Basin and Rusinowitch [BR04], pages 372–384.

[MP06] Jia Meng and Lawrence C. Paulson. Lightweight relevance filtering for
machine-generated resolution problems. These proceedings, 2006.

[MQP06] Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for in-
teractive proof: First prototype. Information and Computation, 2006. in
press.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial
2283.

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Com-
bining specification, proof checking, and model checking. In Rajeev Alur
and Thomas A. Henzinger, editors, Computer Aided Verification: 8th Inter-
national Conference, CAV ’96, LNCS 1102, pages 411–414. Springer, 1996.

Empirically Successful Computerized Reasoning 79

[RV01] Alexander Riazanov and Andrei Voronkov. Vampire 1.1 (system descrip-
tion). In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Au-
tomated Reasoning — First International Joint Conference, IJCAR 2001,
LNAI 2083, pages 376–380. Springer, 2001.

[Sch04] Stephan Schulz. System description: E 0.81. In Basin and Rusinowitch
[BR04], pages 223–228.

[SS04] Geoff Sutcliffe and Christian Suttner. The TPTP problem library for au-
tomated theorem proving. On the Internet at http://www.cs.miami.edu/
∼tptp/, 2004.

[Wei01] Christoph Weidenbach. Combining superposition, sorts and splitting. In
Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Rea-
soning, volume II, chapter 27, pages 1965–2013. Elsevier Science, 2001.

80 Empirically Successful Computerized Reasoning

Three Stories on Automated Reasoning for

Natural Language Understanding

Johan Bos
University of Rome “La Sapienza”

bos@di.uniroma1.it

Abstract

Three recent applications of computerised reasoning in natural language process-
ing are presented. The first is a text understanding system developed in the late
1990s, the second is a spoken-dialogue interface to a mobile robot and automated
home, and the third is a system that determines textual entailment. In all of these
applications, off-the-shelf tools for reasoning with first-order logic (theorem provers
as well as model builders) are employed to assist in natural language understanding.
This overview is not only an attempt to identify the added value of computerised
reasoning in natural language understanding, but also to point out the limitations
of the first-order inference techniques currently used in natural language processing.

Introduction

Since the mid 1990s I’ve been using tools from automated deduction (mainly theorem
provers and model builders) to solve problems in natural language understanding. I’ve
done this both from the perspective of computational linguistics (testing and improving
a linguistic theory by means of a computational implementation) as well as that of
natural language processing (using inference in applications such as question answering
and textual entailment). In this paper I will write about some recent projects that I was
involved in, with the aim of convincing researchers — both from the natural language
engineering and the automated deduction communities — that computerised reasoning
can be successfully applied to natural language understanding.

Right — what’s new about this claim? Isn’t it obvious that one needs some form
of computerised reasoning to model natural language understanding? Indeed, in my
opinion it is. However, it is astonishing to see how few tools from automated reasoning
have made it in real applications. Why is that? I think there are a couple of reasons for
this.

First of all, a rather high level of interdisciplinarity is required. One needs not only
to know about linguistics (and in particular (formal) semantics), but also about natural
language processing, knowledge representation, and automated inference. As a matter
of fact, not many researchers match this profile, and looking back to the 1980s and
1990s, there seem fewer and fewer interested in taking on the pursuit. Or as Steve
Pulman put it on the recent ICoS (Inference in Computational Semantics) conference:
“I feel like an endangered species.”

Empirically Successful Computerized Reasoning 81

Secondly, there is an enormous gap between formal linguistic theory and practical
implementation. There is a vast amount of formal linguistics theory on the semantics
of natural language. However interesting most of it is, it doesn’t always lead directly
to computational implementation. Many of the phenomena that are accounted for in
formal theory are quite rare in natural data, so a natural language engineer won’t loose
much by ignoring it. But more crucially, from a an automated reasoning point of view,
almost all semantic phenomena are formalised in higher-order logic (a trend set by noone
less than Richard Montague), which is, as is well-known, a computational nightmare.

Third, it is not trendy to use theorem proving in natural language processing. In
contrast, stochastic approaches dominate the field, and after having been successfully
applied to speech recognition and syntactic processing, it won’t take long until statistics
will play a major role in semantic processing. Having said that, time and time again I am
surprised by the opinion that using theorem proving in natural language understanding is
classified as the “traditional approach.” What tradition? OK – it was tried in the 1970s
and 1980s, but it never got to work really well, for reasons that should not really surprise
us: theorem proving hadn’t matured into a state as we know it today, and moreover,
trivially, computers lacked the memory and speed to perform the computations required
by inference. Yet, we have only started to understand the limitations and opportunities
of computerised reasoning in natural language understanding.

After this introduction I will present three applications demonstrating successful use
of first-order inference tools. The first is a text-understanding system that calculates
presuppositions of sentences and performs consistency and informativeness checks on
texts. The second is a spoken dialogue system, interfaced to a mobile robot and an au-
tomated home environment, that uses theorem proving and model building for planning
its linguistic and non-linguistic actions. The third is a system for recognising textual
entailment. In all of these applications I will discuss the reasoning tools used, how they
are used, what added value they had, and what their limitations were.

1 Presupposition Projection

In the mid 1990s I started to implement tools for the semantic analysis of English
texts, as part of my thesis work at the University of the Saarland in Saarbrücken,
Germany. One of the aims was to follow linguistic theory as close as possible and see
how much of it could be implemented straight away. I adopted Discourse Representation
Theory (DRT), initially developed by Hans Kamp, because it accounted for a wide range
of linguistic phenomena in a unified framework, and, crucially, had a model-theoretic
semantics [KR93]. In particular I was interested in modelling presupposition projection,
and I followed a recent proposal by Rob van der Sandt, whose theory of presupposition
was casted in DRT [VdS92].

My implementation efforts resulted in the doris system (Figure 1). It had a rea-
sonable grammer coverage (substantially more than a toy grammar, but certainly not
reaching the level of today’s wide coverage grammars). It parsed English sentences and
computed an underspecified discourse representation of the input sentence, followed by
resolving ambiguities. The linguistic phenomena covered included pronouns, quantifier
and negation scope, and presuppositions [Bos01].

82 Empirically Successful Computerized Reasoning

Figure 1: Screenshot of the DORIS system. In the upper window users can type or
select an English sentence. The lower window provides several parameters, for instance
the selection of various theorem provers.

Presuppositions are propositions taken for granted by the speaker, and “triggered”
by words or phrases. Rather informally, p presupposes q if both p and ¬p entail q.
For instance, the phrase “Mia’s husband” presupposes that Mia is married, and that
Mia is a woman, because “Jody likes Mia’s husband” and the negation of this sentence
“Jody doesn’t like Mia’s husband” both entail that Mia is married and is a woman. The
problem with presuppositions is that they are sometimes neutralised by the linguistic
context, and that it is quite hard to pin down exactly when they are and when they
are not, especially in sentences that contain some form of implication, negation, or
disjunction. Consider, for instance, the following three sentences (with the relevant
presupposition trigger typeset in bold face):

(a) If Mia has a date with Vincent, then her husband is out of town.
(b) If Mia has a husband, then her husband is out of town.
(c) If Mia is married, then her husband is out of town.

Here (a) presupposes that Mia is married, but (b) and (c) do not. Van der Sandt’s
theory explained this by constructing various possibilities of positioning the presuppo-
sition, and then checking whether these were acceptable by posing acceptability con-
traints upon them: consistency as well as informativeness of the resulting text, both
on the global and local level of discourse. For (c), there are two positions where the
presupposition can “land” (which are underlined):

(c-1) Mia has a husband. If Mia is married, then her husband is out of town.
(c-2) If Mia is married/has a husband, then her husband is out of town.

However, in the first paraphrase (c-1) the antecedent of the conditional violates
the constraint of (local) informativeness: if Mia has a husband, then the fact that she

Empirically Successful Computerized Reasoning 83

is married is not new information. In the second paraphrase (c-2) all acceptability
constraints are satisfied. As a consequence, (c-1) is rejected, and (c-2) is accepted, as
possible interpretation.

Despite the adequacy of the predictions of the theory, there was a still a problem:
the acceptability contraints required logical inference. But how cuold you implement
this? Even though DRT was an established semantic theory backed up with a model-
theory, there were no (efficient) theorem provers available that could reason with the
semantic representations employed by DRT. Discussions with Patrick Blackburn and
Michael Kohlhase (both in Saarbrücken, at the time) developed the idea of using first-
order theorem provers to implement Van der Sandt’s acceptability constraints. As the
core of DRT is a first-order language, it turned out to be pretty straightforward to
translate the DRT representations into ordinary first-order formula syntax, something
that first-order theorem provers could digest. Soon after, contacts were made with Hans
de Nivelle, whose theorem prover bliksem was among the first that was put to the test
[DN98]. And it looked promising: bliksem could handle most of the problems given to
it in reasonable time.

However, as some natural language examples could cause hundreds of consistency
checking tasks (due to a combinatorial explosion of linguistic ambiguities), it took a
long time before bliksem had dealt with them all. Michael Kohlhase and Andreas
Franke came to the rescue, by offering MathWeb, a web-based inference service [FK99].
MathWeb farmed out a set of inference problems to different machines using a common
software bus. Using the internet and many machines around the world (I recall that there
were machines running in Edinburgh, Budapest, Saarbrücken, and Sydney, among other
sites), MathWeb could basically be viewed as a parallel supercomputer. (This sounds
perhaps quite ordinary right now, but at the time it was a sensation.) To cut a long story
short, doris was interfaced directly to MathWeb, and many different theorem provers
for first-order logic were added: spass [WAB+99], fdpll [Bau00], otter [MP96], and
vampire [RV02].

In sum, the doris system demonstrated that first-order inference could play an
interesting role in natural language processing, albeit with limitations [BBKdN01]. It
generated a new application area for automated deduction (in fact, some of the problems
generated by doris made it to the TPTP collection, thanks to Geoff Sutcliffe), and it
opened a whole new vista of research in computational semantics. (Incidentally, it also
helped to precisely formulate the acceptability constraints of Van der Sandt’s theory of
presupposition projection.)

So, what were these limitations? Scalability was one of them. A theorem prover
would do well on a couple of sentences, but — not surprisingly given the computational
properties of first-order logic — it would just choke on larger texts. Linguistic coverage
was another. Some linguistic phenomona require richer semantic representations and
therefore harder problems (for instance, tense and aspect require a richer sortal hierar-
chy, cardinal expression require counting, and plurals require elements of set theory).

The last version of doris was released in 2001 [Bos01]. Although it was an important
step in the development of computational semantics, its limited grammatical coverage
and unfocussed application domain left it without a future. At the time I thought that
it would take at least twenty years to develop a parser that achieved both wide-coverage
and syntactic representations of enough detail to construct meaningful semantic repre-

84 Empirically Successful Computerized Reasoning

sentations (I was, fortunately, very wrong! See Section 3). In order to reach a new level
of sophistication in computational semantics, I instead focussed on small domains, in
which the grammatical coverage and necessary background knowledge could be specified
a-priory. Human-computer dialogue systems turned out to be the killer application.

2 Spoken Dialogue Systems

At the University of Edinburgh I was involved in developing a spoken dialogue system
which was interfaced with a (real) robot. The robot was a RWI Magellan Pro robot, with
sonars, infrared sensors, bumpers, and a video camera. It had an on-board computer
connected to the local network via a wireless LAN interface. The robot moved about at
the basement of Buccleuch Place, and people could direct it, ask it questions, or provide
it with new information, all via speech. A typical conversation could be:

Human: Robot?
Robot: Yes?
Human: Where are you?
Robot: I am in the hallway.
Human: OK. Go to the rest room!

Figure 2: An early version of Godot the talking robot with the roboticist Tetsushi Oka
(6 Buccleuch Place, Edinburgh, 2001).

Such kinds of dialogues were relatively straightforward to model with the then state-
of-the-art in human-machine dialogue. Yet, the robot was still “semantically challeng-
ing”: it had no means to draw inferences. What I aimed to do was using components of
the doris system to give the robot means to do consistency checking, answer questions,

Empirically Successful Computerized Reasoning 85

and calculate its next actions. In particular, I was interested in letting the robot react
to inconsistent information or obvious information, envisioning dialogues such as:

Human: Where are you?
Robot: I am in the hallway.
Human: You are in my office.
Robot: No, that’s not true!
Human: You are in the hallway.
Robot: Yes, I know.

I knew this was feasible because of the doris experience: theorem provers can easily
handle the amount of information, and the amount of background knowledge, given the
limited domain and environment, was easy to compute and maintain. And so it turned
out to be: using spass as theorem prover, the robot was checking whether each assertion
of the user was consistent with its current state and knowledge of the dialogue.

After having implemented this, I was interested in using first-order theorem proving
for planning the actions of a directive, primarily from a semantic point of view. I
considered commands that involved negation, disjunction, or quantification. Examples
of utterances that I had in mind included:

(a) Turn on a light.
(b) Switch in every light.
(c) Switch on every light in the hallway.
(d) Turn off every light except the light in the office.
(e) Go to the kitchen or the rest room.

In (a), the robot had to turn on a light that was currently switched off (and of course
it had to complain when all the lights were already on). In (b), it had to turn on all
lights that were currently off (some of the lights could be on already). In (c), it should
only consider lights in the hallway (restrictive quantification). In (d), it should consider
all lights minus those in the office (negation). In (e), it should have either gone to the
kitchen or to the rest room (disjunction).

This was hard to do with a theorem prover. It seemed a natural task for a finite model
builder though. Via the doris system I already came into contact with Karsten Konrad’s
model builder kimba [KW99], but I had never used model builders other than checking
for satisfiability. I started using Bill McCune’s mace because it searched models by
iteration over domain size, and generally generating models that were both domain-
minimal and minimal in the extensions of the predicates [McC98]. Model building was
successfully integrated such that the minimal models produced by mace where used
to determine the actions that the robot had to perform [BO02]. The robot in action
was regularly demonstrated to visitors at Buccleuch Place (Figure 2) as well as to the
general public at the Scottish museum in Edinburgh (Figure 3).

Of course there were the usual limitations. As I was using a first-order language with
possible worlds to model the semantics of actions, I was forced to erase the dialogue
memory after every second utterance in order to keep the response time acceptable. Also,
the number of different objects in the domain was very limited (given the background
axioms of the robot, mace produces models in reasonable time for models up to domain
size 20). Nevertheless, the overall system was impressive, and showed what one could
do with general purpose, off-the-shelf, first-order inference tools in a practical system.

86 Empirically Successful Computerized Reasoning

Figure 3: Godot the talking robot at the Scottish Museum (Edinburgh, 2003).

3 Recognising Textual Entailment

The rapid developments in statistical parsing were of course of interest to the semanticist.
Yet most of these parsers produced syntactic derivations that were unsuitable to produce
semantic representations in a systematic, principled way. It is not an exaggeration to say
that the release of a stastistical wide-coverage parser for CCG (Combinatorial Categorial
Grammar) in 2004 corresponded to a breakthrough in computational semantics. This
CCG parser, implemented by Stephen Clark and James Curran [CC04], and trained on
an annotated treebank developed by Julia Hockenmaier and Mark Steedman [HS02], had
the best of both worlds: it achieved wide coverage on texts, and produced very detailed
syntactic derivations. Because of the correspondence between syntax and semantic rules
in CCG, this framework was the ideal setting for doing semantics.

Because CCG is a heavily lexicalised theory, it has a large number of lexical cat-
egories, and very few rules. In order to translate the output of the parser (a CCG
derivation) into a DRT representation (which was my main aim, in order to reuse the
existing tools that I developed for DRT and inference), I coded a lambda-expression
for each of the ca. syntactic 400 categories that were known to the parser. Using the
lambda-calculus to produce DRT representations, we simply had a parser that trans-
lated newspaper texts into semantic representations, with a coverage of around 95%
[BCS+04, Bos05]. This was a great starting point for doing computerised reasoning for
natural language on a wider scale.

In the same year the first challenge to recognising textual entailment (RTE) were
organised. This is basically a competition for implemented systems to detect whether
one (small) text entails another (small) text. To give an impression of the task, consider

Empirically Successful Computerized Reasoning 87

an example of a positive and and an example of a negative entailment pair are (where
T is the text, and H the hypothesis, using the terminology of the RTE):

Example: 115 (TRUE)

T: On Friday evening, a car bomb exploded outside a Shiite mosque in Iskandariyah, 30 miles
south of the capital, killing seven people and wounding 10, doctors said on condition of
anonymity.

H: A bomb exploded outside a mosque.

Example: 117 (FALSE)

T: The release of its report led to calls for a complete ivory trade ban, and at the seventh
conference in 1989, the African Elephant was moved to appendix one of the treaty.

H: The ban on ivory trade has been effective in protecting the elephant from extinction.

In the RTE challenge a participating system is given a set of entailment pairs and
has to decide, for each T-H pair, whether T entails H or not. This turned out to be a
very hard task. The baseline (randomly guessing) already gives a score of 50%, as half
of the dataset correspond to true entailments, and the other half to false ones. The best
systems on the RTE-1 campaign achieved a score approaching 60%.

With the CCG parser and semantics at my disposal, I decided to implement a system
that used logical inference to approach the RTE challenge. The overall idea, given
the available tools, was straightforward: produce a DRT representation for T and H,
translate these to first-order logic, and then use an off-the-shelf prover to check whether
T ′ → H ′. We used vampire as theorem prover [RV02], motivated by its performance
at the recent CASCs.

At first, the performance was limited. The system performed quite well on cases such
as 115 above, but unfortunately the RTE challenge doesn’t contain many of these. Most
of the examples require a lot of background knowledge to draw the correct inference. I
used WordNet (an electronic dictionary) to compute some of these background axioms
automatically. Yet still there were knowledge gaps. It would be nice to have a theorem
prover that would be able to say that it “almost found a proof”, instead of just saying
“yes” or “(probably) no”.

Back to model building. Finite model builders, such as mace [McC98], said more
than just “yes” or “no”. They also give you a finite model if there is one. As this model
is a clearly defined mathematical entity, it is ideal to simulate the “almost found a proof”
scenario. That is, by generating minimal models for T ′ and for T ′∧H ′, we hypothesised
that comparing the number of entities of the two models would give us a useful handle
on estimating entailment. If the difference is relatively small, it is likely that T entails
H. Otherwise it is not. (To deal with negation, one also has to calculate the models for
¬T ′ and ¬(T ′ ∧ H ′) and compare the model sizes. To deal with disjunction, one has to
do this for all minimal models for T and H — but as of now it is unclear to me how to
implement the latter in a neat way...)

This turned out to work well — not as good as one would hope (because it is hard
to get the right background knowledge), but significantly better than the baseline. We
used standard machine learning techniques to estimate the thresholds of the model sizes.
We used both the size of the domain as well as the number of instantiated relations in
the model. It turned out that mace was quite slow for longer sentences. We tried

88 Empirically Successful Computerized Reasoning

paradox [CS03], which is faster, but it does not always return minimal models (with
respect to the predicate extensions). To overcome this, we used paradox to calculate
the domain size, and then called mace to generate the model given that domain size.

Figure 4: Example output screen for recognising textual entailment using the theorem
prover vampire and the model builders mace and paradox.

Conclusion

First-order inference tools, such as automated theorem provers and model builders, can
be successfully used in natural language understanding applications. Obviously, there
are limitations, but in many interesting applications these limitations play a subordinate
role. Whether computerised (logical) reasoning will ever become part of mainstream re-
search in natural language processing is questionable, though. We will have to see to
what extent statistical approaches (currently dominating computational linguistics) can
be applied to natural language understanding tasks. Meanwhile, collaboration between
researchers working in automated deduction and computational linguistics should be
stimulated to get a better understanding of the boundaries of applying automated rea-
soning to natural language understanding.

References

[Bau00] Peter Baumgartner. FDPLL – A First-Order Davis-Putnam-Logeman-
Loveland Procedure. In David McAllester, editor, CADE-17 – The 17th

International Conference on Automated Deduction, volume 1831 of Lecture

Notes in Artificial Intelligence, pages 200–219. Springer, 2000.

Empirically Successful Computerized Reasoning 89

[BBKdN01] Patrick Blackburn, Johan Bos, Michael Kohlhase, and Hans de Nivelle. In-
ference and Computational Semantics. In Harry Bunt, Reinhard Muskens,
and Elias Thijsse, editors, Computing Meaning Vol.2, pages 11–28. Kluwer,
2001.

[BCS+04] J. Bos, S. Clark, M. Steedman, J.R. Curran, and Hockenmaier J. Wide-
Coverage Semantic Representations from a CCG Parser. In Proceedings of

the 20th International Conference on Computational Linguistics (COLING

’04), Geneva, Switzerland, 2004.

[BO02] Johan Bos and Tetsushi Oka. An Inference-based Approach to Dialogue
System Design. In Shu-Chuan Tseng, editor, COLING 2002. Proceedings

of the 19th International Conference on Computational Linguistics, pages
113–119, Taipei, Taiwan, 2002.

[Bos01] Johan Bos. DORIS 2001: Underspecification, Resolution and Inference for
Discourse Representation Structures. In Patrick Blackburn and Michael
Kohlhase, editors, ICoS-3, Inference in Computational Semantics, pages
117–124, 2001.

[Bos05] Johan Bos. Towards wide-coverage semantic interpretation. In Proceed-

ings of Sixth International Workshop on Computational Semantics IWCS-

6, pages 42–53, 2005.

[CC04] S. Clark and J.R. Curran. Parsing the WSJ using CCG and Log-Linear
Models. In Proceedings of the 42nd Annual Meeting of the Association for

Computational Linguistics (ACL ’04), Barcelona, Spain, 2004.

[CS03] K. Claessen and N. Sörensson. New techniques that improve mace-style
model finding. In Model Computation – Principles, Algorithms, Applica-

tions (Cade-19 Workshop), Miami, Florida, USA, 2003.

[DN98] Hans De Nivelle. A Resolution Decision Procedure for the Guarded Frag-
ment. In Automated Deduction - CADE-15. 15th International Conference

on Automated Deduction, pages 191–204. Springer-Verlag Berlin Heidel-
berg, 1998.

[FK99] Andreas Franke and Michael Kohlhase. System description: Mathweb,
an agent-based communication layer for distributed automated theorem
proving. In CADE’99, 1999.

[HS02] J. Hockenmaier and M. Steedman. Generative Models for Statistical Pars-
ing with Combinatory Categorial Grammar. In Proceedings of 40th Annual

Meeting of the Association for Computational Linguistics, Philadelphia,
PA, 2002.

[KR93] H. Kamp and U. Reyle. From Discourse to Logic; An Introduction to

Modeltheoretic Semantics of Natural Language, Formal Logic and DRT.
Kluwer, Dordrecht, 1993.

90 Empirically Successful Computerized Reasoning

[KW99] Karsten Konrad and D.A. Wolfram. System description: Kimba, a model
generator for many-valued first-order logics. In 16th International Confer-

ence on Automated Deduction CADE-16, 1999.

[McC98] W. McCune. Automatic Proofs and Counterexamples for Some Ortholat-
tice Identities. Information Processing Letters, 65(6):285–291, 1998.

[MP96] W. McCune and R. Padmanabhan. Automated Deduction in Equational

Logic and Cubic Curves. Lecture Notes in Computer Science (AI subseries).
Springer-Verlag, 1996.

[RV02] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire.
AI Communications, 15(2–3), 2002.

[VdS92] R.A. Van der Sandt. Presupposition Projection as Anaphora Resolution.
Journal of Semantics, 9:333–377, 1992.

[WAB+99] Christoph Weidenbach, Bijan Afshordel, Uwe Brahm, Christian Cohrs,
Thorsten Engel, Enno Keen, Christian Theobalt, and Dalibor Topic. Sys-
tem description: Spass version 1.0.0. In Harald Ganzinger, editor, 16th In-

ternational Conference on Automated Deduction, CADE-16, volume 1632
of LNAI, pages 314–318. Springer-Verlag, Berlin, 1999.

Empirically Successful Computerized Reasoning 91

A Flexible DL-based Architecture

for Deductive Information Systems

Michael Wessel, Ralf Möller
Hamburg University of Technology (TUHH), Germany

{mi.wessel, r.f.moeller}@tuhh.de

1 Introduction

Description Logics (DLs) are nowadays an accepted standard for decidable knowledge
representation. DLs also provide the theoretical foundation for representing and reason-
ing with ontologies as well as for the Semantic Web. Thus, DL systems (e.g., Fact++,
Pellet, RacerPro) and DL-based technology in general will play an increasingly important
role for building the next generation of deductive, ontology-based information systems.

The RacerPro description logic system [HM01a] implements the very expressive DL
ALCQHI

R
+(D−), also known as SHIQ(D−) [HST99, HM01b]. RacerPro’s most promi-

nent feature is the support for so-called ABoxes which allow for the representation of a
“concrete state of the world” in terms of individuals and relationships. In the following,
we assume familiarity with DLs as well as DL systems.

In order to provide the information technology backbone for next generation infor-
mation systems (IS), current DL systems still have a long way to go. Nowadays, building
ontology-based IS with a DL system is still a non-trivial task: One the one hand, DLs
somehow live in their own “realm” and are thus not really interoperable with the rest
of “more conventional” IS infrastructure (e.g., existing relational databases). One the
other hand, only recently issues such as persistency and powerful query languages (QLs)

have been considered and incorporated into DL systems. DLs itself have their deficien-
cies as well and are thus not a panacea for arbitrary information representation and
(ontology-based) retrieval tasks: Due to the complexity of the inference problems, scal-
ability (in the average case) is not easy to achieve and nowadays only achievable for
knowledge bases (KBs) which use simple DLs. Standard DLs are well suited for the rep-
resentation of (and reasoning about) semi-structured (or even unknown/indeterminate)
information, but things become more complicated if, say, n-ary relationships or special
“non abstract” domains such as space are considered. Then, either non-standard DLs
or complicated logical encodings are needed. For non-standard DLs, no working sys-
tems exist, and complicated logical encodings are likely to decrease the performance and
complicate the information handling and maintenance.

To get working systems on time today, we must thus agree upon pragmatic solutions.
This also implies that existing technology (i.e., existing DL system such as RacerPro)
must be exploited and possibly extended for the task of IS building. Due to the intel-
lectual inherent complexity of the field, application and system studies on how to use
DL system in real-world IS scenarios are thus of utmost importance in order to provide
guidance.

92 Empirically Successful Computerized Reasoning

In this paper, we consider the IS domain of deductive geographic information sys-
tems (GIS), which can be called a “non-standard domain”. We describe the problems
encountered and pragmatic solutions found during the endeavor of building an ontology-

based query answering system for digital city maps, the DLMAPS system [Wes03a]. We
use RacerPro as a DL system, which can be called an empirically successful system, since
it is widely used.1 In this IS domain of digital city maps, we must

1. pragmatically solve the map representation problem, especially regarding the spa-
tial and thematic aspects,

2. provide an expressive spatio-thematic query language (QL) which supports ontology-
based query answering (w.r.t a “city map background ontology”). This QL must
be able to address spatial as well as thematic aspects of the map objects.

The paper provides the following contributions:
We describe how an existing DL system such as RacerPro can be used for building

an ontology-based IS in such a “non-standard” IS domain for which a standard DL such
as ALCQHI

R
+(D−) is not very well suited. This mainly concerns the representation

of the spatial aspects of the maps, which we call the “spatial representation problem”
in the following. We will demonstrate which representation options are available in this
setting.

We demonstrate what can be done with nowadays available state-of-the art DL
(and Semantic Web) technology such as RacerPro, and identify and motivate and design
pragmatic extensions to tackle the spatial representation problem. Making this explicit
by means of this paper will help other users to build their own IS with enabling DL
technology by exploiting similar “design patterns” as we did.

Spatial representations are, in principle, possible with expressive spatial concrete

domains (CDs) [HLM99, LM05] or specialized DLs [Wes03b] or spatial modal logics
[LW04]. However, no optimized mature DL system supporting these non-standard DLs
exist, and building a DL system which supports them is a non-trivial task.

Even if the spatial representation is achieved, then additionally an expressive spatio-
thematic QL is needed for the IS. Designing and implementing such a QL is again a
non-trivial task. We will demonstrate (from a pragmatic perspective) how such a QL
can be designed. Moreover, the QL is also implemented and available for other users.

RacerPro has been extended in 2003 by an expressive QL called nRQL [WM05, KG06].
Given that we have solved the spatial representation problem, we can use and extend
nRQL by “spatial atoms” to get the desired spatio-thematic query language. The nRQL

query answering engine (which is an integral part of RacerPro) can be called an empir-
ically successful system, since it is used by many RacerPro users. At the time of this
writing, this engine is (to the best of our knowledge) the only optimized ABox query
answering engine which provides complex ABox queries and also addresses issues such
as life cycle management of queries (queries are managed as objects which have a state),
concurrent and incremental query answering, version control of query answers, defined
queries, etc.

Another contribution of this paper is the identification and description of (software)
abstractions which we claim can be useful for other developers of ontology-based IS with

1And is commercially distributed by the start-up company Racer Systems.

Empirically Successful Computerized Reasoning 93

DL system components as well: We have based the DLMAPS system on the so-called
substrate data model. This data model serves as a layer of indirection and abstraction,
shielding the IS from the details of the used DL system (a kind of “semantic middle
ware”). But more importantly, the substrate data model enables us to attach or asso-
ciate additional information on or with ABox individuals, for which no encoding in an
ABox is possible or appropriate. We will show how the substrate data model can be used
to solve the spatial representation problem of the map. The resulting representations
will by hybrid; thus, a hybrid QL will be needed to combine the information distributed
on the different substrate layers.

The paper is structured as follows. We first describe the IS domain of digital
city maps, the concrete map data we use, and the idea of ontology-based queries to
such city maps. We then present various options how to represent the maps. Next we
describe the nRQL ABox QL which plays a crucial role here, since nRQL is the QL which
is extended to become a hybrid spatio-thematic QL in this paper. Finally, the resulting
QL is presented. Then comes the conclusion.

2 The Scenario - Ontology-Based Queries To a City Map

For what follows, we call the TBox or ontology of the DLMAPS IS the intensional com-

ponent, whereas the actual map data is kept in the extensional component. Ontology-

based query answering then means that the (defined) vocabulary from the intensional
component can be used in queries to retrieve the desired information (by means of
query answers) from the extensional component. The query answering component is
responsible for computing these answers.

The data in the DLMAPS IS are digital vector maps from the city of Hamburg
provided by the land surveying office (“Amt für Geoinformation und Vermessungswesen
Hamburg”); these maps are called the DISK (“Digitale Stadtkarte”). Part of the DISK is
visualized by the Map Viewer component of our system in Fig. 1. Each map object (also
called geographic feature) is thematically annotated. The basic thematic annotation (TA)

has been established by the land surveying office itself. The TA says something about
the “theme” or semantics of the map object. Simple symbols/names such as “green
area”, “meadow”, “public park”, “lake” are used. A few hundred TAs are used and
documented in a so-called thematic dictionary (TD), which is GIS-typically organized
in thematic layers (e.g., one layer for infrastructure, one for vegetation, etc.).

Sometimes, only highly specific TAs are available, such as “cemetery for non Chris-
tians”, and generalizing “common sense” vocabulary such ‘as “cemetery” is often miss-
ing. This is unfortunate, since it prevents the usage of common sense vocabulary for
query formulation. We can repair this defect by adding a background ontology (in the
form of a TBox) providing generalizing TAs by means of taxonomic relationships. On
the other hand, defined concepts (“if and only if”) can be added and exploited to au-

tomatically enrich the given basic annotations. Thus, we might define our own needed
TA “public park containing a lake” as a “park which is public which contains a lake”
with a TBox axioms such as

public park containing a lake≡̇park u public u ∃contains.lake
or

bird sanctuary park≡̇park u ∀contains.¬building

94 Empirically Successful Computerized Reasoning

Figure 1: The Map Viewer of the DLMAPS System

and we might want to retrieve all instances of these concepts. This is what ontology
based query answering is all about. Inference is required to obtain these instances,
since there are no known instances of public park containing a lake (this is not among
the basic TAs provided by the land surveying office). For simple queries, instance

retrieval queries might be sufficient as a QL. However, in our scenario one must retrieve
constellations2 of map objects which satisfy a complex query expression; thus, a QL with
variables is needed.

A definition such as public park containing a lake refers to thematic as well as to

spatial aspects of the map objects:
• Thematic aspects: the name of the park, that the park is public, the amount of

water contained in the lake, etc.
• Spatial aspects: the spatial attributes such as the area of the park (or lake), the

concrete shape, qualitative spatial relationship such as “contain”, quantitative (metric)
spatial relationships such as the distance between two objects, etc.

We use the following terminology: a thematic concept refers only to thematic aspects,
similarly a spatial concept solely to spatial aspects, whereas a spatio-thematic concept

refers to both. We also talk of thematic, spatial and spatio-thematic queries. A strict
separation might be difficult sometimes.

Thus, there are different thematic and spatial aspects one would like to represent
and address with the spatial QL. Since the concrete geometry is given by the map,
the spatial aspects of the map objects are in principle intrinsically represented and
available. This mainly concerns the spatial relationships which are depicted in the
map. However, also attributes like the area etc. can in principle be computed from
the geometry (although this will not be very accurate). A function that exploits the
geometry to dynamically check the requested spatial aspect (i.e., spatial property or

2We use the term “constellation” to stress that a certain spatial arrangement of map objects is
requested with a query.

Empirically Successful Computerized Reasoning 95

PSfrag replacements

AAA

A
A

B B BBBA,B

EQ DC EC PO TPP NTPP

Figure 2: RCC8 base relations: EQ = Equal, DC = D isconnected , EC = Externally
Connected, PO = Partial Overlap, TPP = Tangential Proper Part, NTPP = N on-
Tangential Proper Part. All relations with the exception of TPP and NTPP are
symmetric; the inverse relations of TPP and NTPP are called TPPI and NTPPI .

relation) is called an inspection method in the following.
It is obvious that qualitative spatial descriptions are of great importance. On the

one hand, they are needed in order to be able to define concepts in the TBox such as
“public park containing a lake”. On the other hand, they are needed in the spatial
QL (“retrieve all public parks containing a lake”). A popular and well-known set of
qualitative spatial relationships is given by the RCC8 relations, see Fig. 2.

One the other hand, since the concrete geometry is given by means of the map, in
principle, no qualitative representation is needed in the extensional component. How-
ever, if we want to use a RacerPro ABox for the extensional component, then the
spatial representation options are limited, and we must necessarily make use qualitative
descriptions for the map representation, see below.

The DLMAPS system will support ontology-based spatio-thematic conjunctive queries
to the DISK. To give a first impression of what will be possible, suppose we want to
identify the chemical plants in the DISK which might be responsible for a chemically
contaminated lake:

ans(?lake, ?park, ?creek, ?industrial area, ?chemical plant)←
lake(?lake), chemically contaminated(?lake),
park(?park), public(?park), contains(?park, ?lake),
creek(?creek), f lows in(?creek, ?lake),
crosses(?creek, ?industrial area),
contains(?industrial area, ?chemical plant), unreliable(?chemical plant).

We assume that the reader has an intuitive understanding of such a query. The different
conjuncts of such a query are called query atoms in the following. A ground query atom

is an atom in which the free variables have been substituted with (satisfying) individuals
resp. “constants”. We formalize these notions subsequently. An atom with one variable
is equivalent to a simple instance retrieval query.

3 Representing and Querying the DISK

It is clear that the kind of representation we will devise for the DISK in the extensional
component will also determine what we can query, and how we can query (i.e., which
techniques to be used for computing the query answers). Without doubt, the thematic
aspects of the DISK map objects can be represented satisfactory with a standard DL.

To solve the spatial representation problem of the DISK in the extensional compo-
nent, we consider three representation options and analyze their impacts:
• Representation Option 1 – Use a Single ABox: We can represent “as

much spatial aspects as possible” in a ALCQHI
R

+(D−) ABox. Regarding the spatial

96 Empirically Successful Computerized Reasoning

PSfrag replacements

a a

b

b
c

c

EQ

EQEQ

PO

TPPI NTPP

ABox

Geometry (SBox)

?*x

?x

Figure 3(a): Concrete geometric scene Figure 3(b): Hybrid map substrate:
and corresponding RCC8 network variables are bound in parallel

(inverse edges omitted)

relationships, we can only represent qualitative relationships. From the concrete map
geometry, we can compute a so-called RCC network and represent this by means of
RCC role assertions in the ABox, e.g. (i, j) : TPPI etc. In Abb. 3(a) a “scene” and its
corresponding RCC8 network is depicted. Such a network will always take the form of
a an edge labeled complete graph, a so-called Kn (see graph theory), due to the JEPD

property of the RCC base relations: The base relations are jointly exhaustive, pairwise
d isjoint). Moreover, an RCC network derived from a geometric scene will always be
RCC consistent (see below).

Moreover, selected spatial attributes such as area and length can be represented in
the CD of the ABox; we then use concept assertions such as i : ∃(has area). =12.345.

Moreover, since the represented spatial aspects are accessible to RacerPro, this sup-
ports richer spatio-thematic concept definitions in the TBox, for example

public park containing a lake≡̇park u public u ∃contains.lake
(we are using ∃contains.lake instead of (∃TPPI .lake)t(∃NTPPI .lake)). Obviously,

an individual i in the ABox can only be recognized as an instance of that concept if
RCC role assertions are present in that ABox.

In principle, the specific properties of qualitative spatial relationships resp. roles can-
not be captured completely within ALCQHI

R+(D−) (we will elaborate this point below
when we discuss qualitative spatial reasoning with the RCC substrate). This means that
the computed taxonomy of the TBox will not correctly reflect the “real” subsumption
relationships, and that the TBox might be incoherent without being noticed. We believe
that careful modeling can avoid this. Another option is to compute the taxonomy of
the TBox “offline” with a specialized (non-optimized, prototypically) DL system with
space semantics such as an ALCIRCC8 prover (see [Wes03b]), even though this DL is
undecidable, [LW04].3 The deduced implied subsumption relationships can be made
syntactically explicit by means of additional TBox axioms, and the augmented TBox
can replace the original one.

Much more importantly in our setting is the observation that ontology-based query

answering can still be achieved in a way that correctly reflects the semantics of the spa-
tial relationships with RacerPro. Consider the instance retrieval query

(?x, public park containing a lake) on the ABox

3One could at least try to compute the taxonomy.

Empirically Successful Computerized Reasoning 97

A = {i : park u public, k : lake, j : meadow, (i, j) : TPPI , (j, k) : NTPPI}.
If this ABox has been computed from the concrete geometry of the map, then it must
also contains (i, k) : NTPPI , since each RCC network which has been computed from
a spatial constellation which shows (i, j) : TPPI and (j, k) : NTPPI must also show
(i, k) : NTPPI . In order to retrieve the instances of public park containing a lake, we
check each individual separately. Let us consider i. Checking that i is an instance of
public park containing a lake is reduced to checking the unsatisfiability of the ABox

A∪ {(i, k) : NTPPI } ∪
{i : (¬park t ¬public t ((∀NTPPI .¬lake) u (∀TPPI .¬lake)))}

This ABox is obviously unsatisfiable and thus, i is a public park containing a lake.
Regarding concepts that “contain or imply” universal role or number restrictions,

we can answer queries completely only if we turn on a “closed domain reasoning mode”,
we must close the ABox w.r.t. the RCC role assertions and enable the unique name

assumption (UNA) in order to keep the semantics of the RCC roles.
To close the ABox A w.r.t. the RCC role assertion, we count for each individual i ∈

individuals(A) and each RCC role R the number of R-successors, n = |{ j | (i, j) : R ∈ A}|,
and add so-called number restrictions i : (≤ R n) u (≥ R n) to A. This assertion is
satisfied in an interpretation I iff n = { j | (iI , j) ∈ RI }; thus, i must have exactly n
R successors in every model.

In combination with the UNA, this enables a closed domain reasoning on the indi-
viduals which are mentioned in the RCC role assertions and thus prevents the reasoner
from generating “new anonymous RCC role successors” in order to satisfy an existential
restriction such as ∃NTPPI .lake. In order to satisfy ∃NTPPI .lake, it must then nec-
essarily reuse one of the existing individuals in the ABox, thus the domain is “closed”
[Wes03a]. Let us demonstrate this using the concept

bird sanctuary park≡̇park u ∀contains.¬building.
Assuming that both lake and meadow imply ¬building, we can show that i is an instance
of a bird sanctuary, since the ABox

A ∪ {(i, k) : NTPPI } ∪
{i :≤1 TPPIu ≥1 TPPI , i :≤1 NTPPIu ≥1 NTPPI , . . .} ∪
{i : (¬park t ((∃TPPI .building) u (∃NTPPI .building)))}

is again unsatisfiable, because the alternative i : ¬park immediately produces an incon-
sistency. Thus, the alternative {i : (∃TPPI .building) u (∃NTPPI .building)} is consid-
ered. Due to i :≤1 TPPIu ≥1 TPPI , only j can be used to satisfy ∃TPPI .building, and
only k to satisfy ∃NTPPI .building. Since j : meadow and thus j : ¬building, k : lake
and thus k : ¬building, the ABox must be unsatisfiable.

Thus, we have argued that spatio-thematic ontology-based query answering can be
done on such an ABox representation of the DISK.

Moreover, we must not resort to simple instance retrieval queries, but can use a
powerful ABox QL such as nRQL. With nRQL we can pose queries (here in mathematical
syntax) such as

ans(?living area, ?park, ?lake)←
living area(?living area), park(?park),
contains(?park, ?lake), adjacent(?living area, ?park),
(∀adjacent.¬industrial area)(?living area)

Note that ∀adjacent.¬industrial area is a complex query concept; we could have put

98 Empirically Successful Computerized Reasoning

a concept definition such as healthy living area≡̇∀adjacent.¬industrial area into the
TBox and used the atom healty living area(?living area) instead. The concrete nRQL

syntax will be shown and used below.
However, the discussed ABox representation has the following drawbacks:

• 1. The size of the generated ABoxes is huge. Since the RCC network is explictly
encoded in the ABox, the number of required role assertions is quadratic in the number
of map objects (resp. individuals).
• 2. Most spatial aspects cannot be handled that way. For example, distance

relations are very important for map queries. It is thus not possible to retrieve all
subway stations within a distance of 100 meters from a certain point.
• 3. Query processing will not be efficient. More efficient query processing can be

done if spatial index structures are added.
• 4. In the DLMAPS system, the geometric representation of the map is needed

anyway, at least for presentation purposes. Thus, from a non-logical point of view, the
ABox cannot be the only representation used by the extensional component of such a
system. Thus, it seems plausible to exploit the representation for query answering as
well.
• 5. Most importantly, we have demonstrated that this kind of ontology-based query

answering only works if the domain is closed. However, DL systems and thus RacerPro

are not really good at closed domain reasoning, since the open domain assumption

is made in DLs. In contrast, since the geometry of the map is completely specified,
there is neither unknown nor underspecified spatial information. This motivates the
classification of the map as “spatial data”, in contrast to “spatial information”. Thus,
regarding the spatial aspects, deduction or logical inference is not needed. Instead,
model checking would be sufficient regarding the spatial aspects. All these points thus
motivate
• Representation Option 2 – Use a Map Substrate: Due to the problems with

spatio-thematic concepts and since closed domain reasoning is anyway all that we can
achieve here, it seems more appropriate to represent the spatial aspects primarily in a
different representation layer which we can associate with an ABox, a kind of “spatial
database”, that contains instances of spatial datatypes (polygons etc.). We already men-
tioned that the geometry of the map must be represented in the extensional component
anyway (at least for presentation purposes). This also reflects appropriately that there
is neither unknown nor underspecified information regarding the spatial aspects of the
map. Everything is explictly given (the “logical theory” of the map is thus complete).
This is a reasonable assumption in this scenario.

In the following, this spatial medium is called an SBox. If we say that spatial
aspects are primarily represented in the SBox, then this does not necessarily exclude
the (additional) representation possibilities of dedicated spatial aspects in the ABox
as just discussed. The resulting hybrid (SBox,ABox) representation is illustrated in
Fig. 3(b), we call it a map substrate. It is shown that some ABox individuals have
corresponding instances in the SBox, and vice versa, since the mapping function is
partial and injective. This association / mapping function is called the ∗-function in the
following.

If spatial information about the map is now primarily kept in the SBox, then it is no
longer available for ABox reasoning. Thus, nRQL (or instance retrieval) queries are no

Empirically Successful Computerized Reasoning 99

longer sufficient to address the spatial aspects – we will thus extend nRQL to become a
hybrid spatio-thematic QL, offering also spatial query atoms to query the SBox: SnRQL.
The SnRQL query answering engine will combine the retrieved results from the SBox
and ABox part of the hybrid map substrate representation. The purely thematic part
of the query will be a plain nRQL query which will be answered on the ABox, and the
spatial part of the query will contain spatial atoms which are evaluated on the SBox.

Since the SBox represents the geometry of the map, it can evaluate the requested
spatial aspects on the SBox “on the fly” during query evaluation by means of inspection

methods (see Page 5). The SBox provides a spatial index, supporting the efficient com-
putation of spatial relationships by means of spatial selection operations. Computed
spatial aspects can also be made explicit and “materialized” in order to avoid repeated
re-computation (e.g., computed RCC relations can be materialized as edges).

By means of query rewriting and expansion, the hybridness of SnRQL can be made
transparent for the users. Ideally, a user can abstract from the details of the DISK

representation in the extensional component of the DLMAPS system. He/she must not
known how and where a special aspect of the DISK is physically represented (in the ABox
or SBox) in order to be able to formulate queries which return the intended results. The
exploited query expansion and rewriting procedures are currently hard-coded, though.

In order to provide these flexible representation options, to “break out” of the strict
DL ABox framework, but nevertheless keep a clear mathematical semantics, we base
the DLMAPS IS on a semi-structured graph-based substrate data model which provides
this flexibility. As explained, it serves both as a mediator and software abstraction
(“semantic middle ware”), but also enables us to formally describe and combine different
representation layers to build hybrid representations such as a map substrate. Since
ABoxes play a role here as well, the data model must also generalize the notion of an
ABox:

Definition 1 A substrate is an edge- and node-labeled directed graph (V,E,LV , LE),
with V being the set of substrate nodes, and E being a set of substrate edges. The node
labeling function LV : V → LV maps vertices to descriptions in an appropriate node
description language LV , and likewise for LE : E → LE , where LE is an edge description
language. �

The languages LV and LE are not fixed and can be seen as subsets of first-order predicate

logic (in appropriate syntax). For example, we can consider an ABox as a substrate if
we identify V with the ABox individuals, E with the pairs of individuals mentioned as
arguments in role assertions in that ABox, LV with the set of ALC concepts, and LE with
the set of ALC role names closed under conjunction. Using the first-order perspective,
V is a set of constant symbols, and LV and LE are indexing functions. Obviously, an
encoding of LE and LV into first-order logic is possible. Moreover, an associated TBox
manifests itself in additional first-order sentences which are assumed to be “intrinsically
encoded” into the substrate as well.

We do not claim that this data model is interesting from a theoretical perspective;
its “generic definition” is of course also its weakness. Thus, it must be specifically in-

stantiated. However, the given definition enables a formal specification of the semantics
of our substrate representation and query answering framework on which we have based
the DLMAPS system.

100 Empirically Successful Computerized Reasoning

The data model is somehow inspired by the work on E-Connections [KLWZ04] or
the tableaux data structure [HST99], as well as by RDF. However, we feel that we need
more flexibility than, e.g., E-Connections or RDF can provide; e.g., RDF does not allow
us to describe the geometry of map object. Moreover, a substrate is not simply a “graph
database”, since DL ABoxes are considered part of the framework and thus, inference
is required in order to answer queries. We have the feeling that first-order logic is all we
need here in order to formally describe the data model, it semantics and its inference
services as well as the generic substrate query language (see below).

As just explained, an ABox can be seen as a specialized substrate. The substrate
establishes a graph perspective on the ABox (by means of the indexing functions).
Moreover, an SBox can be seen as a specialized substrate as well. Here, the nodes are
instances of spatial datatypes. We need not leave the framework of first-order logic if we
agree that the geometry of such nodes can be described using an appropriate geometry

description language. We do not want to go into the details (of logical encoding of
instances of spatial data types) here.

In order to make use of the substrate representation, a substrate QL is needed. The
substrate QL framework enables the creation of specialized substrate QLs which can
be tailored for special kinds of substrates (e.g., ABox, SBoxes). This QL framework is
based on the general notion of ground query atom entailment. All that matters is that
a notion of logical entailment (|=) between a substrate S and a ground query atom for

S is defined and decidable. Thus, give the (unary and binary) ground query atoms P (i)
and Q(i, j) for i, j ∈ V , S |= P (i) and S |= Q(i, j) must be defined and decidable.

The |= relation is, in principle, the standard first-order one. The |= relation defined
for a substrate can intrinsically encode a rich background theory, for example, the addi-
tional axioms of a background TBox, or domain closure axioms, or even the full set of
Clark completion axioms. These additional axioms are thus not explicitly represented
in the substrate as sentences, but are assumed to be part of the inherent structure of
the substrate. The models relation is thus further constrained. For example, in the case
of an SBox, deciding the |= relation boils down to simple model checking. We will give
an example for such a background theory when we discuss the RCC substrate.

The substrate QL framework provides a great flexibility, extensibility and adapt-
ability, since specialized query atoms can be tailored for specific instantiations of the
substrate data model. If only a notion of entailment is defined and decidable for these
specialized atoms, then the substrate query answering engine immediately supports the
evaluation of these atoms. In fact, it suffices to overload a single Clos multimethod
entails-p. Moreover, decidability of the QL is automatically guaranteed by the frame-
work. Complex substrate queries are combined from query atoms by means of body
constructors. The substrate QL framework provides the following constructors: nega-
tion as failure (NAF, “\”), conjunction (“,” and “∧”), union (“∨”), as well as a pro-

jection operator (“π”). The semantics (and decidability) of these generic QL operators
will become clear if we consider nRQL, which is a specialized substrate QL tailored for
RacerPro ABoxes; it thus shares the same semantics for the body constructors as all
substrate QLs.

Definition 2 A hybrid substrate is a triple (S1, S2, ∗), with Si, i ∈ {1, 2} being sub-
strates (Vi, Ei, LVi

, LEi
) using LV i and LE i, ∗ being a partial and injective function

Empirically Successful Computerized Reasoning 101

∗ : V1 7→ V2. �

The DLMAPS system is designed in such a way to work on ABoxes, SBoxes, or map

substrates:

Definition 3 A map substrate is a hybrid substrate (S1, S2, ∗), where S1 is an SBox,
and S2 is an ABox (substrate). �

Given the hybrid representation, a hybrid query now contains two kinds of query atoms:
Those for S1, and those for S2. In order to distinguish atoms meant for S1 from atoms
meant for S2 easily, we simply prefix variables in query atoms which for S2 with a “?∗”
instead of “?”; the same applies to constants / individuals. Intuitively, the bindings

which will be established for variables must reflect the ∗-function: If ?x is bound to
i ∈ V1, then ? ∗ x will automatically be bound to ∗(i) ∈ V2, and vice versa (w.r.t. ∗−1).
Such a binding is called ∗-consistent. We will only consider ∗-consistent bindings. The
notion of ∗-consistent bindings is also depicted in Fig. 3(b).

Assume we use a map substrate for the DISK representation now. Then, the nRQL

example query given above will become a hybrid SnRQL query; nRQL atoms now use
∗-prefixed variables (since the ABox is S2, and the SBox is S1):

ans(?living area, ?park, ?lake)←
living area(? ∗ living area), park(? ∗ park),
contains(?park, ?lake), adjacent(?living area, ?park),
\ (π(?living area) (adjacent(?living area, ?industrial area),

industrial area(? ∗ industrial area)))

Please note that the last conjunct in the query is the “equivalent” of the nRQL atom
(∀adjacent.¬industrial area)(?living area).

By means of the definition of the semantics of the QL (see below) it will become
clear that π(? ∗ living area) (adjacent(? ∗ living area, ? ∗ industrial area), . . .) is in
fact equivalent to (resp. has the same extension as) ans(? ∗ living area)← adjacent(? ∗
living area, ? ∗ industrial area), This subquery therefore retrieves all map objects
which are adjacent to an industrial area. The NAF operator complements this subquery
result (see next Section on nRQL semantics). Thus, the binding to ?living area must
be an instance of living area which does not have a (known) adjacent industrial area.

This implies that that all known adjacent areas are not industrial areas.
• Representation Option 3 – Use an ABox + RCC Substrate: We have

argued that in general we cannot completely capture the inherent properties of the
RCC relations in an ALCQHI

R
+(D−) ABox, since ALCQHI

R
+(D−) lacks the required

expressivity. However, we have argued that (see Option 1) at least for ontology-based
spatio-thematic query answering a ALCQHI

R
+(D−) ABox can still be used, given that

the RCC network in the ABox was computed from a concrete map. The RCC network
is thus complete (lacks no edges) and automatically RCC consistent. Moreover, we must
enable closed domain reasoning for the RCC roles.

In order to make a comparable query answering functionality available to other users
of the RacerPro system without having to add the whole SBox functionality to RacerPro

(spatial datatypes and spatial indexes, etc.), we devise yet another kind of substrate,
the RCC substrate, which captures the semantics of the RCC relations by exploiting

102 Empirically Successful Computerized Reasoning

techniques from qualitative spatial reasoning. Users of RacerPro can associate an ABox
A with an RCC substrate RCC by means of a hybrid substrate (A,RCC, ∗) and query
this hybrid substrate with nRQL + RCC query atoms (see below). Note that, unlike a
map substrate, there the ABox is S1 and thus the “primary” substrate.

The RCC substrate is basically an RCC network consistency checker which can
decide (relational) consistency of RCC networks and entailment of RCC relations resp.
RCC ground query atoms:

Definition 4 An RCC substrate RCC is a substrate such that V is a set of RCC nodes
with LV = ∅, and LE = 2{EQ,DC,EC,PO,TPP,TPPI ,NTPP,NTPPI}. �

An edge label represents a disjunction of RCC base relations, representing coarser or
even unknown knowledge regarding the spatial relation. Disjunctions of base relations
are thus RCC relations as well. The properties of the RCC relations are captured by the
so-called JEPD property (see Page 6) as well as the so-called RCC composition table.
This table is used for solving the following basic inference problem: Given: RCC

relations R(a, b) and S(b, c). Question: Which relation T holds between a and

c? The table thus lists, at column for base relation R and row for base relation S, the
possible values for T . In general, T will not be a base relation, but a set: {T1, . . . Tn}.
The RCC table is given as a setRCCT of sentences of the form {R◦S = {T1, . . . , Tn}, . . .}.

An RCC network RCC (viewed as set of first-order ground atoms) containing only
base relations is said to be consistent iff it satisfies a number of first-order sentences:

RCC′ = RCC ∪
{ ∀x, y, z.R(x, y) ∧ S(y, z)→ T1(x, z) ∨ · · · ∨ Tn(x, z) |

R ◦ S = {T1, . . . , Tn} ∈ RCCT } ∪
{∀x, y.

∨

R∈RCC
R(x, y)} ∪

{∀x, y.
∨

R,S∈RCC,R 6=S R(x, y) ∧ ¬S(x, y)} ∪
{∀x.EQ(x, x)}

For example, the network RCC = {NTPP(a, b),DC (b, c),PO(a, c)} is inconsistent, be-
cause if a is contained in b (atom NTPPI (a, b)), and b is disconnected from c (atom
DC (b, c)), then a must be disconnected from c as well. The RCC8 composition ta-

ble contains the axiom NTPP ◦ DC = DC. Thus, RCC ′ |= DC(a, c), which con-
tradicts PO(a, c), due to the JEPD property. Entailment of RCC relations or RCC
ground query atoms can be reduced to inconsistency checking: RCC ′ |= R(a, b) iff

S ∪ ({EQ,DC,EC,PO, TPP,TPPI , NTPP,NTPPI } \ R) is not consistent. An
RCC network is consistent iff at least one of its configurations is consistent. A con-
figuration of an RCC network is obtained by choosing (and adding) one disjunct from
every non-base relation in that network. Thus, a configuration contains only base rela-
tions. Consider now RCC = {NTPP(a, b),DC (b, c)}. We have RCC ′ |= DC (a, c), since
RCC′∪{(EQ∨EC∨PO∨TPP∨TPPI ∨NTPP∨NTPPI)(a, c)} is inconsistent, because
its configurations RCC ′ ∪ {EQ(a, c)} . . .RCC ′ ∪ {NTPPI (a, c)} are all inconsistent.

Since the RCC substrate defines a notion of logical entailment, the semantics of
the RCC relations will be correctly captured for query answering: Consider the hybrid
substrate (A,RCC, ∗)
A = {hamburg : german city, paris : french city, france : country, germany : country}

with
RCC = {NTPP(∗hamburg , ∗germany),EC (∗germany , ∗france),NTPP (∗paris , ∗france)}

Empirically Successful Computerized Reasoning 103

and with the obvious (trivial) mapping ∗
∗ = {(hamburg , ∗hamburg), (paris , ∗paris), (france , ∗france), (germany , ∗germany)}.

Then, the query
ans(?city1, ?city2)← city(?city1), city(?city2),DC (? ∗ city1, ? ∗ city2)

will correctly return
?city1 = hamburg , ?city2 = paris , and vice versa, even though DC (∗paris , ∗hamburg)

is not explicitly present in RCC. Thus, unlike the |= relation for the SBox which only
requires model checking, “spatial inference” is required for query answering on the RCC
substrate.

4 The nRQL ABox Query Language

The nRQL ABox QL is now described in some detail here, since this is the QL which is
used and extended to a spatial QL in this paper.

At a first glance, it will seem that nRQL is in a line of QLs which is closely related
to Horn logic (query) languages such as Datalog: After all, nRQL provides some form
of conjunctive queries. As such, one might criticize nRQL for not being “state of the
art in logic programming techniques”. However, considering nRQL as some-kind of non-
recursive Datalog with Negation is inappropriate and pragmatically misleading, since the
language has been designed under a different perspective. nRQL is an instantiation of a
more general QL framework, the substrate QL framework. We claim that this framework
provides more flexibility and options for extensions than, for example, Datalog, and
demonstrate this in this paper. In order to support this claim, it is thus crucial that
we formally define syntax and semantics of nRQL resp. of the generic substrate QL
framework.

In the following we will use the concrete syntax of nRQL. A nRQL query consists of
a query head and a query body :

(retrieve (?x ?y) (and (?x woman) (?x ?y has-child)))

has the head (?x ?y) and the body (and (?x woman) (?x ?y has-child)). The
query returns all mother-child pairs from the ABox which is queried. In a nutshell,
nRQL can be characterized as follows:
• Variables and individuals can be used in queries. The variables range over

the individuals of an ABox (this is called active domain semantics), and are bound to
those ABox individuals which satisfy the query. The notion of satisfiability of a query
used in nRQL is defined in terms of logical entailment. A variable is bound to an ABox
individual iff it can be proven that this binding holds in all models of the knowledge
base. Returning to our example query body (and (?x woman) (?x ?y has-child)),
?x is only bound to those individuals which are instances of the concept woman having
a known child ?y in all models of the KB.

nRQL distinguishes variables which must be bound to differently named individuals

(prefix ?, e.g., ?x, ?y cannot be bound to the same ABox individual) from variables
for which this does not hold (prefix $?, e.g., $?x, $?y). Individuals from an ABox are
identified by using them directly in the query, e.g. betty.
• Different types of query atoms are available: these include concept query

atoms, role query atoms, constraint query atoms, and same-as query atoms. To give
some examples, the atom (?x (and woman (some has-child female))) is a concept

104 Empirically Successful Computerized Reasoning

query atom, (?x ?y has-child) is a role query atom, (?x ?x (constraint

(has-father age) (has-mother age) =)) is a constraint query atom (asking for the
persons ?x whose parents have equal age), and (same-as ?x betty) is a same-as query
atom, enforcing the binding of ?x to betty.

As the given example concept query atom demonstrates, it is possible to use com-
plex concept expressions within concept query atoms. Regarding role query atoms,
the set of role expressions is more limited. However, it is possible to use inverted
roles (e.g., role expressions such as (inv R)) as well as negated roles within role query
atoms. Note that negated roles are not supported in the concept expression language
of ALCQHI

R
+(D−); thus, they are only available in nRQL. For example, the atom (?x

?y (not has-father)) will return those bindings for ?x, ?y for which RacerPro can

prove that the individual bound to ?x cannot have the individual bound to ?y as a
father. If the role has-father was defined as having the concept male as a range, then
at least all pairs of individuals in which ?y is bound to a female person are returned,
given male and female can be proven to be disjoint.
• Complex queries are built from query atoms using the boolean constructors and,

union, neg, project-to. This holds for all substrate QLs. We have already seen an
example: (and (?x woman) (?x ?y has-child)) is a simple conjunctive query body.

These constructors can be combined in an arbitrary (orthogonal) way to create complex
queries. This is why we call nRQL an orthogonal language.

The neg operator implements a negation as failure semantics (NAF): (neg (?x

woman)) returns all ABox individuals for which RacerPro cannot prove that they are in-
stances of woman. Thus, (neg (?x woman)) returns the complement set of (?x woman)

w.r.t. the set of all ABox individuals. If used in front of a role query atom, e.g. (neg (?x

?y has-child)), then this returns the complement of (?x ?y has-child) (w.r.t. to all
pairs of ABox individuals), i.e. all pairs of individuals which are not in the extension of
has-child in all models. The semantics of nRQL ensures that DeMorgan’s Laws hold:
(neg (and a1 . . . an)) is equivalent to (union (neg a1) . . . (neg an)).

Note that (?x (not woman)) has a different semantics from (neg (?x woman)),
since the former returns the individuals for which RacerPro can prove that they are not

instances of woman, whereas the latter returns all instances for which RacerPro cannot

prove that they are instances of woman.
• Support for retrieving told values from the CD: Suppose that age is a

so-called concrete domain attribute of type integer. Thus, the age attribute fillers of a
certain individual must be concrete domain values of type integer. We can use the
following query to retrieve all adults as well as their ages: (retrieve (?x (told-value

(age ?x)) (?x (min age 18)))), and a possible answer might be (((?x michael)

((told-value (age michael)) 34))). Please refer to [WM05, KG06] for more details
and the design rationale.
• Support for CD constraint checking : The so-called constraint query atoms

allow one to “compare” concrete domain attribute fillers of different individuals. Con-
sider the query

(retrieve (?x (told-value (age ?x)))

(and (?x (and woman (an age))) (?x ?y has-child)

(?y ?y (constraint (has-father age) (has-mother age)

(<= (+ age-2 8) age-1)))))

Empirically Successful Computerized Reasoning 105

which returns the list of women and their ages. The women are required to have children
whose fathers are at least 8 years older than their mothers. Note that (has-father age)

denotes a “path expression”: starting from the individual bound to ?y we retrieve the
value of the concrete domain attribute age of the individual which is the filler of the
has-father role (feature) of this individual. In a similar way, the age of the mother
of ?y is retrieved. These concrete domain values are then used as actual arguments
to evaluate the compound concrete domain predicate (<= (+ age-2 8) age-1). Here,
age-2 refers to (has-mother age), and age-1 refers to (has-father age). Note that
the suffixes -1, -2 have been added to the age attribute in order to differentiate the
two values. Obviously, this mechanism is not needed if the two chains are ended by
different attributes.
• Special support for querying OWL documents, e.g., retrieving told datatype

value fillers of OWL datatype and OWL annotation properties. Retrieval of these
datatype values is supported in a similar style as in the concrete domain case, by means
of concept query atoms and head projection operators. We do not go into detail here,
please refer to [KG06].
• The body projection operator (project-to): Sometimes this operator is

required in order to reduce the “dimensionality” of a tuple set, for example, before
computing its complement with neg.

Let us motivate the necessity for such an operator: Consider (retrieve (?x) (and

(?x mother) (?x ?y has-child))). This query returns all mothers having a known

child in the ABox. Now, how can we query for mothers which do not have a known child?
Our first attempt will be the query (retrieve (?x) (and (?x mother) (neg (?x

?y has-child)))). A bit of thought and recalling that (neg (?x ?y has-child))

returns the complement set of (?x ?y has-child) w.r.t. the Cartesian product of
all ABox individuals will reveal that this query doesn’t solve the task. In a sec-
ond attempt, we will probably try (retrieve (?x) (neg (and (?x mother) (?x ?y

has-child)))). However, due to DeMorgan’s Law and nRQL’s semantics, this query
is equivalent to (retrieve (?x) (union (and (neg (?x mother)) (?y top)) (neg

(?x ?y has-child)))) – first the union of two two-dimensional tuple sets is con-
structed, and then only the projection to the first element of these pairs (?x) is re-
turned. Obviously, this set contains also the instances which are not known to be
mothers, which is wrong as well. Thus, the need for the projection operator be-
comes apparent: (retrieve (?x) (and (?x mother) (neg (project-to (?x) (?x

?y has-child))))) solves the task. This body projection operator was not present
in earlier versions of nRQL, special syntax was introduced to address these problems,
namely the special unary atoms (?x (has-known-successor has-child)), (?x NIL

has-child) and (NIL ?X child-of). These atoms (which still work) can now be
seen as “syntactic sugar” for the bodies (project-to (?x) (?x ?y has-child)), (neg
(project-to (?x) (?x ?y has-child))) and (neg (project-to (?x)

(?y ?x has-child))). The project-to operator can be used at any position in a
query body.

We can now define syntax and semantics of nRQL. Please note that all substrate
QLs share in principle the same syntax and semantics, only atom (and possibly also
head projection operator) are redefined appropriately, as already mentioned:

106 Empirically Successful Computerized Reasoning

Definition 5 (Syntax of nRQL) A nRQL query has a head and a body .
A head can contain the following (note that {a|b} represents a or b):

head := (head entry∗)

object := variable | individual

variable := a symbol beginning with “?”
individual := a symbol

head entry := object | head projection operator

head projection operator := (cd attribute object) |
(told-value (cd attribute object)) |
(told-value (datatype property object)) |
(annotations (annotation property object))

The body is defined as follows:

body := atom | ({and | union} body ∗) | (neg body) |
(project-to (object ∗) body)

atom := (object concept expr) | (object object role expr) |
(object object (constraint chain chain constraint expr)) |

(same-as object object)

chain := (role expr ∗ cd attribute)

The “bridge” to the RacerPro syntax is given by the following rules:

concept expr := a RacerPro concept, with some extensions for OWL
role expr := a RacerPro role or the special role equal |

(inv role expr) | (not role expr)

constraint expr := a (possibly compound) RacerPro concrete domain
predicate, e.g. (< (+ age-1 20) age-2)

cd attribute := a RacerPro concrete domain attribute
datatype property := a RacerPro role used as OWL datatype property

�

Note that nRQL permits the use of negated roles in role atoms, as well as the special
role equal. The equal role can only be used in nRQL, not in ALCQHI

R
+(D−) concept

expressions. The semantics of equal is fixed: equalI =def ID2,∆I = { 〈i, i〉 | i ∈ ∆I }.

Definition 6 (Semantics of nRQL) Let A be a RacerPro ABox, and TA denote its
associated TBox. Denote the set of individuals used in A with IndsA.

Let q be a nRQL query body. The function vars(q) is defined inductively:
vars((x concept expr)) =def {x}, vars((x1 x2 role expr)) =def {x1, x2},
vars((x1 x2 (constraint ...))) =def {x1, x2},
vars(({ and | union | neg } q1 . . . qm)) =def

⋃

1≤i≤m
vars(qi), BUT

vars((project-to (x1 . . . xm) . . .)) =def {x1 . . . xm}. Thus, vars “stops at projections”.
Assume that 〈x1,q, . . . , xn,q〉 is a lexicographic enumeration of vars(q). Denote the

ith element in this vector with xi,q, indicating its position in the vector.
Let T be a set of n-ary tuples 〈t1, . . . , tn〉 and 〈i1, . . . , im〉 be an index vector

with 1 ≤ ij ≤ n for all 1 ≤ j ≤ m. Then we denote the set T ′ of m-ary tuples

Empirically Successful Computerized Reasoning 107

with T ′ =def { 〈ti1 , . . . , tim〉 | 〈t1, . . . , tn〉 ∈ T } = π
〈i1,...,im〉

(T), called the projection

of T to the components mentioned in the index vector 〈i1, . . . , im〉. For example,
π
〈1,3〉{〈1, 2, 3〉 , 〈2, 3, 4〉} = {〈1, 3〉 , 〈2, 4〉}.

Let ~b = 〈b1, . . . , bn〉 be a bit vector of length n, bi ∈ {0, 1}. Let m ≤ n. If ~b is a bit
vector which contains exactly m ones, and B is a set, T is a set of m-ary tuples, then
the n-dimensional cylindrical extension T ′ of T w.r.t. B and ~b is defined as
T ′ =def { 〈i1, . . . , in〉 | 〈j1, . . . , jm〉 ∈ T , 1 ≤ l ≤ m, 1 ≤ k ≤ n

with ik = jl if bk = 1,

and bk is the lth one (1) in ~b,
otherwise, ik ∈ B }

and denoted by χ
B,〈b1,...,bn〉

(T). For example,
χ
{a,b},〈0,1,0,1〉({〈x, y〉}) = {〈a, x, a, y〉 , 〈a, x, b, y〉 , 〈b, x, a, y〉 , 〈b, x, b, y〉}.

We denote an n-dimensional bit vector having ones at positions specified by the index
set I ⊆ 1 . . . n as ~1n,I . For example, ~14,{1,3} = 〈1, 0, 1, 0〉. Moreover, with IDn,B we de-

note the n-dimensional identity relation over the set B: IDn,B =def { 〈x, . . . , x〉
︸ ︷︷ ︸

n

| x ∈ B }.

The semantics of a nRQL query is given by the set of tuples it returns if posed to an
ABox A. This set of answer tuples is called the extension of q and denoted by qE .

In order to simplify the specification of the semantics, the query body q first un-
dergoes some syntactical transformations. In a first step, q is rewritten by consistently
replacing all its individuals with representative (fresh) variables throughout the body:
If the individual i has been replaced with the variable xi, then we also add the conjunct
(same-as xi i) to q, yielding a body of the form (and q (same-as xi i) . . .). In a
second step, the role chains (see syntax rule chain) possibly present in constraint query
atoms are decomposed. This means they are replaced by conjunctions of role query
atoms such that only concrete domain attributes remain in chains of constraint query
atoms. Fresh variables are used for this purpose.

We can now define the semantics of the different query atoms, being part of q ′. Keep
in mind that

〈
x1,q′ , . . . , xn,q′

〉
is the variable vector of q′ and that n is the total number

of variables returned by vars(q′). The semantics for the different nRQL query atoms is
given as:

(q ′

xi
concept expr)E =def χ

IndsA,~1n,{i}
(concept instances(A, concept expr))

(q ′

xi
q ′

xj
rolen expr)E =def χ

IndsA,~1n,{i,j}
(role pairs(A, role expr)), if i 6= j

(q ′

xi
q ′

xi
role expr)E =def χ

IndsA,~1n,{i}
(role pairs(A, role expr) ∩ ID2,IndsA

)

(same-as q ′

xi
ind)E =def χ

IndsA,~1n,{i}
({ind})

(same-as ind q ′

xi
)E =def χ

IndsA,~1n,{i}
({ind})

(same-as q ′

xi
q ′

xj
)E =def χ

IndsA,~1n,{i,j}
(ID2,IndsA

), if i 6= j

(same-as q ′

xi
q ′

xi
)E =def χ

IndsA,~1n,{i}
(ID2,IndsA

)

(q ′

xi
q ′

xj
(constraint attrib1 attrib2 P))E =def

χ
IndsA,~1n,{i,j}

(predicate pairs(A, attrib1, attrib2, P)), if i 6= j

(q ′

xi
q ′

xi
(constraint attrib1 attrib2 P))E =def

χ
IndsA,~1n,{i}

(predicate pairs(A, attrib1, attrib2, P) ∩ ID2,IndsA
)

108 Empirically Successful Computerized Reasoning

This definition uses some auxiliary functions, providing the bridge to the classical ABox
retrieval functions offered by RacerPro. These functions have the standard DL semantics
in terms of logical entailment:

concept instances(A, concept expr) =def

{ i | i ∈ IndsA, (A, TA) |= concept expr(i) }
role pairs(A, role expr) =def

{ 〈i, j〉 | i, j ∈ IndsA, (A, TA) |= role expr(i, j) }
predicate pairs(A, attrib1, attrib2, P) =def

{ 〈i, j〉 | i, j ∈ IndsA, (A, TA) |=
∃x, y : attrib1(i, x) ∧ attrib2(j, y) ∧ P (x, y) }

Moreover, a nRQL role expression (role expr) can also be a negated (or inverse) role.
In the case of role expr = equal we have (A, TA) |= equal(i, j) iff iI = jI in all models
(∆I , ·I) of (A, TA), and in the case of role expr = ¬equal we must have iI 6= jI in
all models. The predicates P are made from the vocabulary offered by RacerPro for
building CD predicates (e.g., < (+(age2, 8), age1) is a CD predicate with free variables
age1, age2, and + is a functor with the standard semantics).

The semantics of complex nRQL bodies can be defined easily now:

(and q1 . . . qi)
E =def

⋂

1≤j≤i
qE
j

(union q1 . . . qi)
E =def

⋃

1≤j≤i
qE
j

(neg q)E =def (IndsA)n \ qE

(project-to (xi1,q . . . xik,q) q)E =def π
〈i1,...,ik〉

(qE)

So far we have specified the semantics of a query body. To get the answer of a query, the
head has to be considered. This can be seen as a further projection of qE to the variables
mentioned in the head. If the head contained an individual, then this individual has also
been replaced by the representative variable in the head. If a head projection operator is
encountered, the functional operator is applied to the binding of the argument variable.
The value is included in the query answer (producing nested binding lists); a more
formal definition of this function application is omitted here. �

5 Hybrid Spatio-Thematic Queries

According to the discussion in Section 3, we are either using a single ABox A (option 1),
a (hybrid) map substrate (SBox,A, ∗) (option 2), or or a hybrid substrate (A,RCC, ∗)
(option 3) for DISK representation in the DLMAPS system. nRQL is used in all settings.
We already explained how we make a substrate QL such as nRQL hybrid: A hybrid query
uses now two kinds of query atoms, those for S1, and those for S2. Variables / individuals
in atoms for S2 are simply prefixed with *. Then, in a query body, any combination
of atoms for S1 and S2 is permitted, and variables are bound in a ∗-consistent way, see
Page 11.

Basically, all substrate QLs share the same body syntax (Def. 5). The atoms are
substrate specific, as explained. Also the head projection operators can be specific. The

Empirically Successful Computerized Reasoning 109

semantics of complex query bodies in Def. 6 is shared by all substrate QLs. However,
each specialized atom must define its own extension by means of the dedicated |= rela-
tion; e.g., for an arbitrary atom, its extension atomE must be defined (w.r.t. substrate
S). That’s all. For a hybrid query language, we additionally require that the computed
binding tuples respect the ∗-function, that is, computed bindings must ∗-consistent. We
do not go into formal details here.

Which spatio-thematic QL is now applicable for the different representation options
in the DLMAPS system?
• For option 1: We can only use plain nRQL, as explained.
• For option 2: The resulting hybrid QL is called SnRQL. It provides the following
spatial atoms in addition to nRQL:
• RCC atoms: Atoms such as (?x ?y (:tppi :ntppi)) etc. Spatial prepositions

such as :contains, :adjacent, :crosses, :overlaps, :flows-in are available.
• Distance Atoms: (?x ?y (:inside-distance <min> <max>)), where <min>,

<max specifies an interval [min;max]; NIL can be used for 0 resp. ∞ (this applies to
the subsequent interval specifications as well). For example, the extension of (i ?x

(:instance-distance nil 100)) consists of all SBox objects which are not further

away than 100 meters from i. Either the shortest distance or the distance of the centroids
of these objects can be used for distance computation.
• Epsilon Atoms: (?x ?y (:inside-epsilon <min> <max>)). With that atom,

all objects ?y are retrieved, such that ?y is contained within the buffer zone of size
[min;max] around ?x. This buffer zone consists of all points (x, y) whose shortest

distance to the fringe of ?x is contained within [min;max].
• Geometric Attribute Atoms: Atoms regarding geometric attributes, e.g. length

and area: The extension of (?x (:area 100 1000)) consists of all polygons whose area
is in [100; 1000]. Also :length is understood.

Moreover, simple type checking atoms such as (?x :is-polygon), (?x :is-line)

etc. are available.
To give a final example, consider this SnRQL query in concrete syntax which selects

an appropriate home for a millionaire:

(retrieve (?villa ?living-area ?golf-club ?church)

(and (?*living-area (and living-area

(or (all classification first-class-area)

(string= name "Beverley Hills"))))

(?living-area ?villa :contains)

(?*villa (and villa (all status for-sale) (> has-price 10000000)

(some has-comfort swimming-pool)))

(?church ?living-area (:inside-epsilon nil 200))

(?living-area ?golf-club :adjacent)

(?*golf-club (and golf-club (all members millionaire)))))

The extensions of the atoms are computed on the fly from the geometry with spatial

inspections methods (see Page 5). As argued, this can be understood as a kind of
(spatial) model checking.
• For option 3, the resulting hybrid QL is called nRQL + RCC atoms. This language
can only offer RCC atoms, since the geometry of the map is not represented. The syntax
of the SnRQL RCC atoms is identical to the RCC atoms just discussed.

110 Empirically Successful Computerized Reasoning

6 Conclusion

Building ontology-based IS with enabling DL technology is a non-trivial task, especially
for IS in non-standard domains such as the one considered here. The space of design
decisions is very large. Since decidability is not always easy to achieve it is thus of even
more importance to identify pragmatic and practical solutions which, even though if
they do not exploit or advance the latest theoretical state-of-the-art techniques in DL
research, can nevertheless be considered an advance w.r.t. the current state-of-the-art of
IS technology and provide guidance and “road maps” for similar designs. We claim that
our framework for building pragmatic combinations of specialized representation layers
(including DL ABoxes) for which orthogonal specialized substrate QLs can be defined
provides a great deal of flexibility for building similar ontology-based IS. Moreover, the
implemented functionality is available for other users and system designers. Thus, we
believe that these pragmatic solutions can be called empirically successful. DLMAPS can
be found under http://www.sts.tu-harburg.de/~mi.wessel/dlmaps/dlmaps.html.

References

[HLM99] V. Haarslev, C. Lutz, and R. Möller. A description logic with concrete domains and
a role-forming predicate operator. Journal of Logic and Computation, 9(3):351–384,
1999.

[HM01a] V. Haarslev and R. Möller. RACER System Description. In Int. Joint Conference
on Automated Reasoning, 2001.

[HM01b] V. Haarslev and R. Möller. The Description Logic ALCNHR+ Extended with Con-
crete Domains: A Practically Motivated Approach. In International Joint Conference
on Automated Reasoning, 2001.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive
description logics. In Proc. International Conference on Logic for Programming and
Automated Reasoning, 1999.

[KG06] Racer Systems GmbH & Co. KG. RacerPro User’s Guide
1.9.0. Technical report, Racer Systems GmbH & Co. KG,
http://www.racer-systems.com/products/racerpro/users-guide-1-9.pdf,
2006.

[KLWZ04] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-Connections of Abstract
Description Systems. Artificial Intelligence, 156(1):1–73, 2004.

[LM05] C. Lutz and M. Milicic. A Tableau Algorithm for DLs with Concrete Domains and
GCIs. In Proc. of the International Workshop on Description Logics, 2005.

[LW04] C. Lutz and F. Wolter. Modal logics of topological relations. In Proc. of Advances
in Modal Logics, 2004.

[Wes03a] M. Wessel. Some Practical Issues in Building a Hybrid Deductive Geographic In-
formation System with a DL Component. In Proc. of the 10th Int. Workshop on
Knowledge Representation meets Databases, 2003.

[Wes03b] M. Wessel. Qualitative Spatial Reasoning with the ALCIRCC-family – First Re-
sults and Unanswered Questions. Technical report, May 2003. Available at
http://www.sts.tu-harburg.de/~mi.wessel/papers/report7.pdf.

[WM05] M. Wessel and R. Möller. A High Performance Semantic Web Query Answering
Engine. In Proc. International Workshop on Description Logics, 2005.

Empirically Successful Computerized Reasoning 111

Real World Verification

Experiences from the Verisoft Email Client

Gerd Beuster, Niklas Henrich, Markus Wagner∗

University Koblenz-Landau

{gb}|{nikhen}|{wagnermar}@uni-koblenz.de

Abstract

This paper reports our experiences developing a completely verified email client.
The formal specification of the email client includes all informal requirements and
security goals. Compliance to the formal specification has been proven for the
complete source code. The email client is part of project Verisoft, where pervasively
verified systems are developed.

1 Introduction

The goal of the Verisoft project is to create the tools and methods to allow the perva-
sive formal verification of computer systems, and to show that verification of real world
systems is viable [Pau05]. In Verisoft, formal methods and verification technology are
used throughout all aspects of system developing, including verified hardware, verified
development tools, and verified operating systems and verified application programs.
Four concrete systems are developed in Verisoft. Of these four systems, three are devel-
oped by or in cooperation with partners from the industry, and one is developed by the
academic partners. The industry projects include an Emergency Call System developed
in cooperation with the BMW group, a Biometric Identification System developed in
cooperation with T-Systems, and Hardware verification developed in cooperation with
Infineon Technologies. The academic project develops a secure email system. This pa-
per reports our experiences developing a completely verified email client as part of the
academic system.

1.1 The Academic System

The goal of the academic project is to show that common desktop technology can be
formally specified and verified. For this reason, the technology used in the academic
system tries to stay as close to “normal” systems, technologies, and standards as pos-
sible. The academic system is made up of different parts, as depicted in figure 1. The

∗This work was funded by the German Federal Ministry of Education, Science, Research and Tech-
nology (BMBF) in the framework of the Verisoft project under grant 01 IS C38. The responsibility for
this article lies with the authors. See http://www.verisoft.de for more information about Verisoft.

112 Empirically Successful Computerized Reasoning

Networking /
Communication

Application
Software

Software
System

Hardware

Tools

TCP/IP

Mail Server (SMTP)

Memory
Manage−
ment

Email Client
(User Interface)

Signature
Module

Operating
System

Micro−
kernel

Processor

Host System

Com−
piler

Keyboard
Screen
Network

File System

Figure 1: Components of the academic system

verified compiler compiles programs written in the C dialect C0 [LPP05]. The machine
code is run on fully verified hardware (processor) [ABKS05]. Three layers of software
build upon the hardware. The first layer consists of a fully verified micro-kernel, mem-
ory management unit and an accompanying operating system called Simple Operating
System [GHLP05]. The networking and communication layer consists of a fully veri-
fied SMTP mail server using a fully verified TCP/IP stack. This allows the academic
Verisoft system to interconnect with the “real world” like Intranets or the Internet. The
application software sits on top of the system software and communication layer.

As part of the Academic Verisoft System, we developed a completely verified email
client. The formal specification of the email client includes all informal requirements and
security goals. Compliance to the formal specification has been proven for the complete
source code. Each of the three main Sections 2–4 deals with one of the core results
of our work on the Verisoft email client. Section 2 explains how we formally specified
secure user interfaces. Section 3 describes the lessons learned from the early stages of
specification, and why developing a prototype was important. Section 4 reports our
experiences from verifying the Verisoft email client.

1.2 Related Projects

Another important fundamental research project in the area of verification and anal-
ysis is the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (AVACS), which is funded by the Deutsche Forschungs-
gemeinschaft (DFG). About 70 scientists of the Universities of Oldenburg, Freiburg and
Saarbruecken as well as the Max-Planck-Institute of Computer Sciences of Saarbruecken
are working on the improvement of techniques for mathematically precise verification,
including the development of tools. The goal of their work is to automate safety analyses
of critical embedded systems which are used for example in aircrafts, motor vehicles or

Empirically Successful Computerized Reasoning 113

railway transportation [DHO04].
Significant prior projects are DAEDALUS and VERIFIX. The DEADALUS con-

sortium was a research and technology development project in the Fifth Framework
Programme (FP5) of the European Union. With the contributions of universities from
France, Germany, Denmark, and Israel, the project developed methods and tools to
support the industrial validation of critical concurrent software by static analysis and
abstract testing [Gou01, CC02]. The goal of VERIFIX, another project funded by DFG,
was the construction of mathematically correct compilers, which included the develop-
ment of formal methods for specification and implementation of a compiler. One of the
project’s results was a fully verified LISP interpreter [GZ99].

2 User Interface Specification

Within the academic part of the Verisoft project, the Verisoft email client, for short
Vericlient, provides the interface to the user. When a user accesses the academic system,
he interacts with the email client. The email client itself has internal interfaces to
four components: The I/O facilities (via the operating system), the SMTP server for
delivery and reception of emails, and the signature module for generation and checking
of signatures. For its internal operation, the email client makes use of data structures
provided by the C library.

Providing a user interface is the core functionality of the email client. Vericlient
provides a text-based user interface as shown in Figure 2. Since a general design goal of
the Verisoft email system was to provide a secure environment for using email services,
special emphasis was put onto the security of the user interface.

2.1 User Interface Security Requirements

The definition of a secure user interface is based on the common definition of secure
computing as

Confidentiality Information is available to authorized parties only.
Integrity Neither the system nor services provided by and data

processed by the system can be manipulated.
Availability Accessibility of services and data is guaranteed.

We adapted these concepts to user interface security by restricting these definitions
to the aspects involving the user interface and human-computer interaction. For Con-
fidentiality, this means that eavesdropping on the input/output facilities must not be
possible. Integrity of the user interface is guaranteed if manipulation of the user inter-
face is not possible, i.e. if the user’s assumptions about the state of the application,
gained by observing and manipulating the application via the user interface, corresponds
to the actual state of the application. Availability of the user interface means that an
attacker can not get the user interface into a state where the full functionality is no
longer accessible.

114 Empirically Successful Computerized Reasoning

Figure 2: Vericlient prototype running: The numbers indicate the following screen
areas: (1) Status / current state of the email client (2) Editing area (3) Public key (4)
Commands available

Confidentiality A third party can not gain information from observing human-
computer interaction.

Integrity Whenever the user issues a command, all relevant information,
most notably the state of the program and the data processed,
is shown on the screen correctly.

Availability The functionality provided by the user interface is always ac-
cessible.

Translating these security constraints into a formal specification and writing an email
client application satisfying the constraints posed a number of challenges. It turned out
that a number of constraints raised by the email client development group required
functionality from outside the email client. For example, neither Confidentiality, nor
Integrity, nor Availability can be guaranteed if an attacker can manipulate the I/O
devices. Therefore a key requirement for a system using keyboard input and screen
output is the impossibility of man-in-the-middle attacks against the keyboard and the
screen. If an attacker can get in between the legitimate application and its input/output
facilities, the attacker can manipulate the user at will.

There is no easy way to prevent physical man-in-the-middle attacks like, for example,
covering the real keyboard with a faked keyboard as described in [BR02]. However, the
prevention of software-based attacks with Trojan horses, worms, viruses etc. is possible
if the operating system provides means to guarantee exclusive access to the keyboard
and screen. We call the process of acquiring exclusive access “locking” and the release
of the lock “unlocking.” Locking a resource is not sufficient to guarantee security. The
user must also know which process locks a resource and whether the system is busy

Empirically Successful Computerized Reasoning 115

or not. Providing (and verifying) this functionality is beyond the realm of a client
application like Vericlient; it has to be provided by the operating system. Therefore, in
the specification phase of the project a lot of communication with other development
group was necessary. Most changes where requirement from the operating system group.

2.2 User Interface Specification

In order to formally specify and verify the security of a user interface, it was necessary
to bring together formal methods, human computer interaction, and computer security.
All three of them are established fields of research. There are also works combining
each two of the fields. Formal methods have been used to specify human computer
interaction. User interfaces have been designed and evaluated under security aspects.
System security has been treated with formal methods. For the Verisoft email client,
we had to combine all three fields.

Confidentiality relies mainly on the operating system, which has to ensure that eaves-
dropping on the application and the communication channel is not possible. Availability
depends on all components involved. For the email client, it has to be shown that it
is always possible to write, sign and send email, and that is always possible to receive
email, check the signature, and read it. Integrity, defined as the requirement that data is
displayed correctly whenever the user issues a command, is primarily the responsibility
of the email client.

Usually, the specification of user input and system output is rather informal. Speci-
fications declare that something “is shown on the screen” and the user “enters a text.”
In most cases, this informal description is sufficient. However, if we want to formally
verify the integrity of a system, a formal definition is required.

In order to ensure integrity with formal methods, it is necessary that a) the output
device provides the “right” information, b) the information is up-to-date whenever the
user issues a command, and c) that the user is able to understand the information shown
by the output device. For the latter, a formal user model is required. While there are
some (semi-)formal methods for the description of user interfaces and human-computer
interaction, these are usually not suited for automatic reasoning. Our approach was to
formalize and extend the GOMS user model technique in a way that makes it suitable
for modeling human-computer interaction, including potential human errors, and for
automated reasoning [BB]. GOMS is a modeling technique (more specifically, a family
of modeling techniques) for analyzing the complexity of interactive systems. The user’s
behavior is modeled in terms of Goals, Operators, Methods and Selection rules. Briefly,
a GOMS model consists of methods that are used to achieve goals. A method is a
sequential list of operators that the user performs and (sub)goals that must be achieved.
If there is more than one method which may be employed to achieve a goal, a selection
rule is invoked to determine what method to choose, depending on the context.

For the Vericlient, we assume that the user knows about the system state if he
gets information about the last operation of the system (“email has been sent”), and
the data on which the operation was performed (i.e. the actual email). Guaranteeing
that screen output is up-to-date whenever the user issues a command is tricky, because
user interfaces are inherently asynchronous. There will always be moments during the
execution of the application, when the screen output does not reflect the actual state of

116 Empirically Successful Computerized Reasoning

Update
Screen

Update
Screen

Command
Get

Keyboard
& Screen

Lock

Exit

[Failed]

[OK]

Command
Execute

[Quit]

Figure 3: Statechart describing the main event loop.

the system, because only parts of the output screen have been updated, or because the
system just finished an internal operation and the screen output had not been updated.
The same is true for user input. Since keyboard input is usually buffered, it is possible
that the user triggers actions without having seen the current screen output.

We solved the problem of asynchronous input/output by defining strict points in the
main execution loop when the screen is updated, and by imposing restrictions on the
input buffer. A statechart of the main execution loop is given in Figure 3.

After locking keyboard and screen (required to guarantee Confidentiality and Au-
thenticity), the event loop receives keystrokes and executes the commands associated
with the keystrokes. It also takes care of keeping the screen up-to-date. Since the screen
may be inconsistent during state updates (i.e., the current screen display may not re-
flect the internal state of the system), the screen update function is called twice: Once
before the system waits for the next keystroke, and again before command execution.
In the second update, the screen area for displaying the current state shows the message
“processing.” When processing is finished, the loop starts over again, unless the user
has issued the command “quit.” Before the next command is accepted, the input buffer
is emptied. This way, the user can be ensured that the screen display is consistent with
the actual state of the application whenever the message “processing” is not shown.

The functional behavior of the email client, and thus the information to be displayed,
is defined by the statechart shown in Figure 4. For example, the system transits from
state Unsigned to state Signed if command “sign” was issued and the signing oper-
ation was successful. Of course, the states in such a statechart are abstractions of the
application’s actual internal configuration, which is much richer in detail. Nevertheless,
we assume that these states are the right abstraction in that the user has sufficient
information about the internal configuration of the application if he or she knows in
what abstract state the application is.

2.3 Example: Editing Mail

Not only the state of the system, but also the data has to be displayed correctly. Defin-
ing “correct” display of an email under security aspects is a challenging task. In the
real world, “phishing” attacks are major form of electronic fraud [Bac05]. Many of

Empirically Successful Computerized Reasoning 117

H

H

typing

Edit Pub. Key

Not Changed

Changed

move cursor

Edit Email

typing

Changed

Not Changed

H

poll / new email arrived

Checked

Not Checked

Sent

Unsigned

Signed

Command Mode

Run Mode

move cursor

check
[SUCCESS]

send

sign

[SUCCESS]

[SUCCESS]

[out of memory]

Receive Mode

Send Mode

generate key pair

insert pub. key
quit viewing

edit|view

quit editing

edit|view

quit

quit viewing | editing

Exit

Figure 4: Statechart of email client applications. State transitions represent execution
of program functions.

these attacks are based on exploitation of incorrect or ambiguous display of email mes-
sages. General concepts against these attacks are beyond the scope of this paper. For
the Verisoft email client, these attacks are prevented by restricting the way emails are
displayed. The Verisoft module for viewing and editing shows the pure ASCII represen-
tation of the email.

In the following, we present a short excerpt of the specification of the Verisoft email
editing module. This example allows us to demonstrate how an interactive user interface
component can be specified. The email viewing and editing component has the following
characteristics: It is a full screen editor; the user can roam freely over the text using the
cursor keys. The text edited may not fit the screen. In that case, the editor will scroll
when the cursor reaches the screen borders.

The email message editing field is represented by a data structure textEdit :=
(s, cx, cy, co, ro) with s a list of strings where each element represents a line of the text,
(cx, cy) the cursor position and (ro, co) row and column offsets. If the text is larger than
the size of the screen, the offsets indicate which part of the email are shown.

The part of the main execution loop’s updateScreen responsible for showing the
email (with (x, y) a position on the screen) is specified as:

updateScreen[y, x] =

s[y + ro][x + co] if length(s) < y + ro and
length(s[y + ro]) < x + co

blank otherwise

118 Empirically Successful Computerized Reasoning

The specification of main execution loop function execute for email editing is defined
by the OCL specification given in Table 1. Note that INSERT CHAR represents the set of
all printable characters.

context execute(cmd, textEdit)

pre cmd ∈ { CURSOR LEFT, CURSOR RIGHT, CURSOR UP,
CURSOR DOWN, INSERT CHAR, DELETE CHAR,
QUIT }

post if cmd = CURSOR LEFT then

textEdit = cursorLeft(textEdit@pre) and

result = CURSOR MOVED

else if cmd = CURSOR RIGHT then

textEdit = cursorRight(textEdit@pre) and

result = CURSOR MOVED

else if cmd = CURSOR UP then

textEdit = cursorUp(textEdit@pre) and

result = CURSOR MOVED

else if cmd = CURSOR DOWN then

textEdit = cursorDown(textEdit@pre) and

result = CURSOR MOVED

else if cmd ∈ INSERT CHAR then

textEdit =
insertChar(cmd, textEdit@pre) and

result = CHAR INSERTED

else if cmd = DELETE CHAR then

textEdit = deleteChar(cmd, textEdit@pre) and

result = CHAR DELETED

else

result = QUIT

end if

Table 1: Command execution function

The auxiliary functions describing the effects of cursor movements and inserting/deleting
characters are straightforward. As an example, we only provide a definition for cursorRight:

cursorRight(a) = (s, cx′, cy′, co′, ro′)

with

cx′ =

cx + 1 if a.cx + 1 < length(a.s[a.cy])
0 if a.cx + 1 ≥ length(a.s[a.cy]) and

a.cy + 1 < length(a.s)
cx otherwise

cy′ =

cy + 1 if a.cx + 1 ≥ length(a.s[a.cy]) and
a.cy + 1 < length(a.s)

cy otherwise

Empirically Successful Computerized Reasoning 119

co′ =

co + 1 if cx′ = co + screenWidth

0 if cx′ = 0
co otherwise

ro′ =

{

ro + 1 if cy′ = ro + screenHeight

ro otherwise

The correctness of the specification was ensured in two ways: It has been shown that
the editing component specification allows to enter an arbitrary text, and it has been
shown that the order of characters is preserved when an arbitrary text is shown by the
email client. While these two refinement proofs ensure basic correctness of the editing
component, they do not capture the interactive behavior of the editing component. A
prototypical implementation (see also Section 3) was used to ensure that the specification
of the editing component follows the user’s intuition about an interactive editor.

We have shown how user interface security is formalized and specified for the Verisoft
email client. In the next Sections, we report our experiences from implementing and
verifying the Verisoft email client specification.

3 Specification and Prototypical Implementation

The most direct way to develop a fully formally specified and verified application would
be to start by writing a formal specification. From this, one would either write an
implementation and proof its correctness, or refine the specification down to the imple-
mentation level, generating the correctness proofs on the way.

Because of the character of the Verisoft project, this approach could not be followed
strictly. Since Verisoft started largely from scratch, all parts of Verisoft, including the
specification languages, the calculus, and the system components the email client relies
on, were developed in parallel. Over the course of the projects, more and more tools were
finished, the calculus and languages got fixed, and specifications and implementations
of other components became available. This led to a somewhat different design model.

At the beginning of the project, we started by informally defining the global de-
sign goals of the Verisoft email client. We developed a semi-formal specification using
OCL and statecharts. Based on this specification, a prototype was developed. The
prototype served two purposes. First, it allowed us to test the informal specification.
Verifying software is even more costly in terms of time and money than normal software
development. Therefore we wanted to ensure that the specification of the email clients
did not contain design errors. The main functionality of the email client is to provide
the user interface for other system parts, like the SMTP component and the signature
component. The design of the user interface of the email client must not only comply
to security requirements (“the email is shown correctly”), it must also comply to the
user’s expectation about “proper behavior” of a user interface. The prototype allowed
us to test our email client design before finalizing the formal specification.

For the development of the prototype, we used ordinary C, not C0, and we used
the ncurses library[Str91] instead of Verisoft’s operating system functionality for screen
output. The client compiles in a standard Linux environment. This has the advantage,
that we could provide a working prototypical version of the email client without being

120 Empirically Successful Computerized Reasoning

dependent on other system parts. C0 is a subset of C. By restricting our coding style
to the constructs allowed by C0, we learned how to deal with the limitations inherent
to the language. The prototype was more an evolutionary prototype than a throwaway
prototype. After more and more libraries and the final definition of C0 became available,
we adjusted the prototype step-by-step until it become the final implementation of
Vericlient.

The development of a prototype was crucial. We gained several insights on the
run-time behavior of the Vericlient and it helped to improve and even to correct the
specification. With the help of the prototype, we detected glitches in the user-interface
(for example, characters were inserted at the wrong place in email messages because of
an off-by-one error) as well as errors in the statechart specification of Vericlient’s overall
behavior. Since these errors were in the specification, they would not have been noticed
until Vericlient would have been fished.

Errors found at the earlier stages are easier to correct than errors found in a late
stage. This is even more the case for a verification projects, where errors in the speci-
fication may require the component to be proved again. A prototype helps to identify
errors or wrong decisions in the early design and specification phase of a project. Since
it was possible to evolutionary develop the final version from the prototype, the work
spent on the prototype was efficiently integrated into the project.

Over the course of the project, more functionality from other parts of the academic
Verisoft project became available. The Vericlient prototype gradually turned into the
final implementation of the Verisoft email client by integrating these modules once they
became available. The prototypical code developed to run in a normal Linux environ-
ment was maintained in parallel to the code developed for the Verisoft environment. The
advantage of this approach was that from the very beginning of the project, a working
version existed and changes in the specification could be tested. From our experience,
the little extra work required to develop two versions in parallel pays out enormously.
Since a working version of the email client existed from the very beginning, we always
knew precisely if the interfaces and specifications provided by other modules fit into the
email client, or if changes were required.

4 Verification and Integration

The goal of Verisoft is the pervasive verification of both system hardware and software.
In order to allow integration of the components developed in different parts of the
project, a common set of formal methods and tools is required. As a general design
decision, the Verisoft participants agreed to use Isabelle/HOL [NPW02] as the main
verification tool. Norbert Schirmer developed an Isabelle theory for the verification of C0
programs in Isabelle/HOL. The core of this theory is a Verification Condition Generator
for translation of specifications and code into HOL [Sch05]. C0 is a subset of C with
some limitations for easier verification. Side effects are not allowed in expressions, and
there can only be one return statement in each function. Pointers are typed. Pointer
arithmetic is forbidden, and arrays can not be allocated dynamically. The verified
compiler developed by Leinenbach et al.[LPP05] translates C0 programs into machine
code and into a format suitable for input into the Isabelle system.

Empirically Successful Computerized Reasoning 121

Implementation (Isabelle)

Implementation (C0)

Formal Specification (Isabelle)

Top Level Goals
(Informal)

Top Level Goals
(Formal)

Informal Specification

Paper

OCL State Charts

Proof

Tool

Figure 5: Types of models used in the specification of the Verisoft email client

The verification process of the Verisoft email client is depicted in Figure 5. Based
on the informal specifications, formal Isabelle specifications were developed. The pro-
totypical C implementation of the email client was adapted to C0, and correctness of
the automatically generated Isabelle translation of the code was proven. Independent of
this, formal definitions of the email client security requirements given in Section 2.1 were
developed. From the functional correctness of the email client specification, compliance
to the top level verification goals was deduced.

4.1 Verifying the Email Client

An important lesson from verifying the Verisoft email client is that implementation
follows verification. When there was a problem in verifying a piece of code, we did
not hesitate to change the implementation in order to make it easier to verify. Since
the tool for automatic translation from C0 to the Isabelle representation of C0 was
developed in Verisoft, and was therefore not available at the begin of the project, we
started by manually translating parts of the code and verifying it. We learned that
this goes very well with verification of the large and complex functions of the Verisoft
email client. In order to verify a large function, we started with small pieces of the code
and the specification. Once these fractions where verified successfully, more parts of the
specification and of the code were added. The final implementation of the Verisoft email
client consists of about 2800 lines of code. Verifying the Verisoft email client required
an Isabelle proof script of twice the size of the code. Compared to typical text book
examples, the proofs were rather simple. The Verisoft email client does not use data
structures more complex than lists of strings, and operations on the data structures do

122 Empirically Successful Computerized Reasoning

not involve recursion etc.

4.2 Interfaces to other components

The Verisoft email client has interfaces to a number of other components of the Verisoft
system: The operating system provides system calls to the I/O devices. Remote proce-
dure calls are used to pass mail to and from the SMTP server, and to the cryptographic
module for signing and checking signatures. The C0 library provides essential data
structures used by the email client. Since all of these components were developed in
parallel to the Verisoft email client, their specifications and implementations became
available over the course of the project.

In Section 3, we explained how we solved the problem of not having implementations
of other components available at the begin of the project. For the specification and
verification part, our approach to deal with this problem depended on the type of missing
component.

Some of the components are essentially “black boxes” for the email client. For
verifying the functional properties of the email client, the actual specification of the
signature component and the SMTP server are irrelevant. For the email client, we just
have to show that the SMTP and cryptographic functionality is executed at certain
points during the execution of the email client. Specification of these components is
needed only in the last step, when the email system is integrated and the top level goals
of the email system are proven. Therefore, we were able to specify and verify the email
client independent of these modules.

The situation was different for the data structures. For the specification and correct-
ness proofs about the email client, we had to make use of the specification of the string
and list data structures. Here, the Isabelle/HOL verification environment was benefi-
cial. HOL provides native string and data structures. In the first phases of the project,
we replaced the C0 data structures by their corresponding HOL data structures. Since
the C0 data structures are defined as refinements of the native HOL data structures,
integration of the real data structures was fairly straightforward. Only some additional
pre-conditions had to be changed in order to take into account the cases where the
behavior of the C0 data structure differs from the behavior of the HOL data structures.
For example while HOL data structures do not have upper bounds, the length of C0
data structures is limited.

It turned out that this two-step approach did not cause a significant overhead, be-
cause the old proofs, conducted with the HOL data structures, did not become obsolete.
They just had to be extended to deal with the additional constraints of the C0 data
structures.

In conclusion, using non-verified, interface compatible libraries built-in into the tools
and replacing them later on with their verified counterpart turned out to be a good
approach. It allowed us to start verifying at a time when the final libraries were not
available.

4.3 Integration

Different parts of the Verisoft academic system, and even different part of the Verisoft
email client, use different kinds of formal methods. Parts are specified in terms of pre-

Empirically Successful Computerized Reasoning 123

and post-conditions. These were verified in Hoare calculus. Other parts rely on temporal
properties. These were specified in temporal logics and proven by model checking. In
order to integrate both aspects, the specification and implementation of the email client
was split in two parts: The temporal properties were modeled as the state transition
diagram shown in Figure 4. The functional properties were embedded in this state
transition diagram. Each state transition represented a function call specified in Hoare
logics. Since all states are represented explicitly in Vericlient, and the main execution
loop executes the statechart, integration was achieved by showing that each functional
call executes the state transitions defined in the statechart.

5 Conclusions

Completely verifying the Verisoft email client posed a number of challenges:

• Other parts of the system, including the specification and implementation language
and the calculus, were not available when the project started.

• Interactive user interfaces and secure human-computer interaction had to be spec-
ified and verified.

• Theorems proven in different formal methods had to be integrated.

All of these problems were solved. Implementing a prototype and using prototypical
specifications of the other components proved to be a viable solution for the problem
that not all system parts were available in the beginning, a situation quite typical for
large-scale academic and industrial projects. Starting with a prototype, we could test
the viability of our specification and start verifying without having all other system
parts available. When more and more parts of the system became available, most of the
work spent on the prototype could be reused.

Formally specifying secure human-computer interaction required genuine scientific
work. By formalizing the user model and by adapting and formalizing secure computing
for human-computer interaction, it was possible to verify user interface security with
the formal methods employed in the Verisoft project. Here, it was beneficial that not
all other parts of the Verisoft academic system were already available at the start of
the project, because the requirements for a secure user interface directly affected the
specification of other parts, like the I/O device interface of the operating system.

For the integration of results achieved by Hoare calculus verification with results
achieved by model checking, it was a big advantage to have both methodologies inte-
grated into Isabelle/HOL. This way, the same statechart specification could be used
for model checking, and in the definition of pre- and post-conditions of the individual
functions.

References

[ABKS05] Nathaniel Ayewah, Sven Beyer, Nikhil Kikkeri, and Peter-Michael Seidel.
Challenges in the formal verification of complete state-of-the-art processors.
In International Conference on Computer Design, San Jose, 2005.

124 Empirically Successful Computerized Reasoning

[Bac05] Daniel Bachfeld. Nepper, Schlepper, Bauernfänger — Risiken beim Online-
Banking. c’t magazin für Computertechnik, pages 148–153, 2005.

[BB] Bernhard Beckert and Gerd Beuster. A method for formalizing secure user
interfaces. In Submitted to Eighth International Conference on Formal En-
gineering Methods (ICFEM 2006).

[BR02] L. Bussard and Y. Roudier. Authentication in ubiquitous computing. In
UBICOMP 2002, Workshop on Security in Ubiquitous Computing, Göteborg,
Sweden, September 2002.

[CC02] Patrick Cousot and Radhia Cousot. Modular static program analysis. In
N. Horspool, editor, Proceedings of the International Conference on Com-
piler Construction (CC 2002), LNCS 2304, pages 159–178, Grenoble, France,
April 6–14 2002.

[DHO04] W. Damm, H. Hungar, and E.-R. Olderog. On the verification of cooper-
ating traffic agents. In F.S. de Boer, M.M. Bonsangue, S. Graf, and W.-P.
de Roever, editors, Proc. FMCO ’03: Formal Methods for Components and
Objects, LNCS 3188, pages 78–110, 2004.

[GHLP05] Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang Paul. On
the correctness of operating system kernels. In Proceedings, 18th Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs
2005), LNCS 3603, pages 2–16. Springer, 2005.

[Gou01] Éric Goubault. Static analyses of floating-point operations. In P. Cousot,
editor, SAS’01, LNCS 2126, pages 233–258, Paris, July 2001.

[GZ99] Gerhard Goos and Wolf Zimmermann. Verification of compilers. In Correct
System Design, pages 201–230, 1999.

[LPP05] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the formal
verification of a c0 compiler. In Proceedings, 3rd International Conference
on Software Engineering and Formal Methods (SEFM 2005), Koblenz, Ger-
many, 5–9 September 2005.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[Pau05] Wolfgang Paul. Towards a worldwide verification technology. In Proceedings
of the Verified Software: Theories, Tools, Experiments Conference (VSTTE
2005), Zurich, Switzerland, October 2005.

[Sch05] Norbert Schirmer. A verification environment for sequential imperative pro-
grams in Isabelle/HOL. In F. Baader and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 3452, pages
398–414, 2005.

[Str91] John Strang. Programming with curses. O’Reilly & Associates, Inc., 1991.

Empirically Successful Computerized Reasoning 125

Towards Determining the Subset Relation between

Propositional Modal Logics

Florian Rabe1,∗

1Carnegie Mellon University, International University Bremen

July 3, 2006

Abstract

We present design and implementation of a system that tries to automatically
determine the subset relation between two given axiomatizations of almost arbi-
trary propositional modal logics, which is an open challenge problem for automated
theorem proving. A test suite shows that relatively simple strategies can lead to sat-
isfactory results, but also that certain subproblems are hard for current automated
theorem provers.

1 Introduction

Plain propositional modal logic is standard knowledge (see, e.g., [HC96]). However,
there is a fundamental problem that has not been addressed in a focussed way, namely
the automated decision whether among two given axiomatizations one is weaker or
stronger than the other one. For example, the Modal Logic $ 100 Challenge ([Sut])
calls for a program that can answer this problem for the most common Hilbert-style
axiomatizations of K, T, S1, S10, S3, S4 and S5 (see [Hal] for an overview and a list of
references to various modal logics and axiomatizations).

In general, this problem is undecidable (see [HV89] for an example). But decidabil-
ity can be established separately for lots of modal logics (e.g., [HM92]), e.g., using a
complete Kripke semantics ([Kri63]) and methods like filtration ([Lem66]). There is a
variety of implementations (see, e.g., [HS00], [GTG02]) of theorem provers for specific
modal logics.

However, such separate implementations are relative to a specific modal logic. Some-
times the set of axioms can be varied, in particular by imposing additional restrictions
on the used Kripke frames like reflexivity and transitivity. But we are not aware of a
modal theorem prover permitting an arbitrary set of inference rules. Furthermore, to
decide whether two distinct axiomatizations generate the same logic, a decision pro-
cedure for that logic is difficult to use since it is not always clear which derived rules
it uses implicitly. Also, checking the subset relation between modal logics requires to
derive rules whereas theorem provers focus on deriving axioms.

∗The author was supported by a fellowship for Ph.D. research of the German Academic Exchange
Service.

126 Empirically Successful Computerized Reasoning

The presented work describes a general approach to the above-mentioned challenge
problem. We provide a modular framework into which different strategies can be plugged
in. Thus incomplete strategies covering different cases can be combined. Experimental
results show that in certain cases, this works surprisingly well and identify the subprob-
lems that still present the greatest challenges.

Sect. 2 gives the main definitions, Sect. 3 and 4 describe the currently implemented
strategies, Sect. 5 introduces the system, and Sect. 6 analyzes its current and potential
future strength.

2 Definitions

We encode modal logic in first-order logic, i.e., every modal formula is a first-order
term. We use the following symbols for the first-order meta logic: ∀, ∃, ¬, ∧, ⇒, .=.
The theory T of first-order logic with equality is defined as follows:

• primitive function symbols or (disjunction, binary), not (negation) and box (ne-
cessity, both unary),

• further function symbols and (conjunction), imp (implication), eqv (equivalence),
simp (strict implication), seqv (strict equivalence, all binary) and dia (possibility,
unary) along with equality axioms that (classically) define these symbols in terms
of the primitive ones, in particular strict implication and strict equivalence as

– ∀x, y simp(x, y) .= box(imp(x, y)),

– ∀x, y seqv(x, y) .= and(box(imp(x, y)), box(imp(y, x))),

• a unary predicate symbol p (expressing provability).

A modal formula is a term of this first-order language, in particular propositional
variables of modal logic are identified with first-order variables, and henceforth, just
called variables. Provability of f(X) is encoded as ∀X p(f(X)) (see below for the
implicit use of uniform substitution). Here, and throughout the paper, X abbreviates
x1, . . . , xm.

Axiom/rule Encoding
�(A → B) → (�A → �B) ∀x, y p

(
imp(box(imp(x, y)), imp(box(y), box(x)))

)
A A → B

B
∀x, y

(
(p(y) ∧ p(imp(x, y))) ⇒ p(y)

)
A

�A
∀x (p(x) ⇒ p(box(x)))

Figure 1: Encoding of K

Furthermore, we define:

Empirically Successful Computerized Reasoning 127

• A rule is an additional axiom for T that is in Horn form and does not contain
equality. In other words, the rule scheme

h1(X) . . . hn(X)
c(X)

is encoded as
∀X

(
(p(h1(X) ∧ . . . ∧ p(hn(X))) ⇒ p(c(X))

)
.

If n = 0, the rule is called an axiom.

• A modal logic is an extension of T with a finite set of rules.

• A theorem of the modal logic L is a formula f(X) such that ∀X p(f(X)) is a
consequence of L. We write this as f ∈ L.

• A modal logic M is a subset of the modal logic L, written M ⊆ L, iff all theorems
of M are theorems of L.

As an example, Fig. 1 gives the common and the encoded axiomatization of the modal
logic K.

Let US be the rule of uniform substitution, i.e., substitution of all occurrences of
a variable with the same modal formula. Then the above encoding is sound in the
following sense: If L is a modal logic in our sense arising as the encoding of a Hilbert-
style set S of axioms and rules and if f is the encoding a modal formula φ, then f ∈ L
iff φ is a theorem of S ∪ {US}.

We only consider modal logics with the following two properties.
Firstly, the set of theorems is closed under uniform substitution. This is fundamental

for the soundness of the above encoding. We do not know of any used modal logic that
does not have this property.

Secondly, the set of theorems contains all classical propositional tautologies. This
assumption is connected to a principal simplification of the challenge problem: We do
not assume specific, let alone minimal axiomatizations for the propositional part. This
greatly increases performance without dropping too much of the original challenge. In
fact, it can be argued that proving propositional theorems from specific axiom sets
should be another challenge independent from the modal logic challenge (see for exam-
ple the problems in the Logic Calculi domain of TPTP ([SS98])). Furthermore, there
is no discussion which propositional formulas are considered theorems (except for in-
tuitionistic logic, but all modal logics considered in the challenge are classical) so that
the choice of axioms becomes just a matter of implementation. For modal logic on
the contrary, there are different applications and interpretations that naturally lead to
different and not necessarily equivalent axiomatizations.

3 Positive Criteria

The most straightforward approach would be to let a first-order theorem prover prove
the inclusion directly, e.g., by renaming the predicate p to q in one of two modal logics,
say Lp and Lq and then trying to prove ∀x(p(x) ⇒ q(x)), which corresponds to Lp ⊆ Lq.

128 Empirically Successful Computerized Reasoning

This is far from possible. Instead we break the problem down into subproblems treating
every rule of Lq separately. The resulting problems can be attacked by existing tools.

In the sequel, we present simple criteria how to do that. These criteria are not
necessarily complete and cover different situations. For the remainder of this section,
let L and M be modal logics and let M ′ be as M but with an additional rule r.

Let n = 0, i.e., r is an axiom, say r = ∀Xp(c(X)). Clearly, we have

Lemma 1. M ′ ⊆ L iff M ⊆ L and c ∈ L

This criterion can be used quite well by theorem provers. It can fail if r is complex.
The following more sophisticated criterion using relational semantics and correspondence
results can be applied less often but is successful in some cases in which Lem. 1 fails in
practice.

Lemma 2. Let

1. L be normal, i.e., K ∈ L and L is closed under MP (modus ponens) and N (ne-
cessitation) (see Fig. 2 for the formulas; most of the time we use the same names
as [Hal]),

2. F be a set of axioms of L that are Sahlqvist formulas,

3. P be the first-order property of Kripke frames completely characterized by F ,

4. c′ be the standard first-order translation of the modal formula c by making worlds
explicit,

5. c′ be first-order provable from P .

Then c ∈ L.

By standard first-order translation, we mean the relational semantics of modal logics,
e.g., �P is translatated to ∀w∀x(Acc(w, x) → P (x)) for an accessibility realtion Acc.

This result is due to Sahlqvist [Sah75]. Lots of practically relevant axioms are
Sahlqvist formulas, e.g., any formula of the form A → B where B is a positive formula
and A is constructed by applying conjunction, disjuncton and possiblity to boxed atoms
and negative formulas. P can be computed from F using the SCAN algorithm ([GO92])
for second-order quantifier elimination, for which an implementation is available. We
are currently working on implementing this strategy, so far only the special case where
P does not exclude any Kripke frames is used.

Note that we cannot use relational semantics in general since Kripke semantics may
be not sound (e.g., for S1) or not complete (see, e.g., [Tho74]) for a given modal logic. It
is necessary to find a set of Kripke frames that corresponds to the modal logic and show
that this set of frames is complete for it. The above criterion gives the most important
class of modal logics where this has been done.

If r is not an axiom, the situation is more complicated. The obvious naive approach
is given by

Lemma 3. M ′ ⊆ L if M ⊆ L and r is a first-order consequence of L.

Empirically Successful Computerized Reasoning 129

Axioms
K ∀X, Y p(imp(box(imp(X, Y)), imp(box(X), box(Y))))
T ∀X p(imp(box(X), X))
4 ∀X p(imp(box(X), box(box(X))))
B ∀X p(imp(X, box(dia(X))))
5 ∀X p(imp(dia(X), box(dia(X))))
T2 1 ∀X, Y p(eqv(dia(or(X, Y)), or(dia(X), dia(Y))))
T2 2 ∀X p(imp(X, dia(X)))
M1 ∀X, Y p(simp(and(X, Y), and(Y, X)))
M2, H2 ∀X, Y p(simp(and(X, Y), X))
M3 ∀X, Y, Z p(simp(and(and(X, Y), Z), and(X, and(Y, Z))))
M4, H1 ∀X p(simp(X, and(X, X)))
M5 ∀X, Y, Z p(simp(and(simp(X, Y), simp(Y, Z)), simp(X, Z)))
M6, H5 ∀X p(simp(X, dia(X)))
M8 ∀X, Y p(simp(simp(X, Y), simp(dia(X), dia(Y))))
M9, H7 ∀X p(simp(dia(dia(X)), dia(X)))
M10 ∀X p(simp(dia(X), box(dia(X))))
AS1 6 ∀X, Y p(simp(and(X, simp(X, Y)), Y))
H3 ∀X, Y, Z p(simp(and(and(Z,X), not(and(Y, Z))), and(X, not(Y))))
H4 ∀X p(imp(not(dia(X)), not(X)))
H6 ∀X, Y p(simp(simp(X, Y), simp(not(dia(Y)), not(dia(X)))))
Other Rules
MP ∀X, Y ((p(X) ∧ p(imp(X, Y))) ⇒ p(Y))
N ∀X (p(X) ⇒ p(box(X)))
REM ∀X, Y (p(eqv(X, Y)) ⇒ p(eqv(dia(X), dia(Y))))
SMP ∀X, Y ((p(X) ∧ p(simp(X, Y))) ⇒ p(Y))
AD ∀X, Y ((p(X) ∧ p(Y)) ⇒ p(and(X, Y)))

Figure 2: Rules

130 Empirically Successful Computerized Reasoning

The opposite direction does not hold making this criterion incomplete. Essentially,
two things can go wrong.

Firstly, deriving r from L means to show that whenever L contains instances of
the hypotheses of r, it also contains the appropriate instance of the conclusion. The
necessary and sufficient condition, however, is that whenever M ′ contains instances
of the hypotheses, then L contains the appropriate instance of the conclusion. For a
trivial example, let M be empty, r be the rule ∀x(p(x) ⇒ p(not(x))), and L be any
consistent non-empty modal logic. Clearly r is not derivable from L, but M ′ is empty
(An axiomatization without axioms has no theorems.) and therefore, a subset of L.

Secondly, even if the opposite direction holds, Lem. 3 may be ineffective in practice,
namely if r is only admissible in M but not derivable. For a simple special case of that,
the following lemma gives an inductive admissibility criterion.

Lemma 4. Let r be of the form ∀x(p(x) ⇒ p(f(x))) for some formula f in one variable.
Then M ′ ⊆ L if

• M ⊆ L and

• for every rule of L with hypotheses h1, . . . , hn and conclusion c,

∀X
(n∧

i=1

(
p(hi(X)) ∧ p(f(hi(X)))

)
⇒ p(f(c(X)))

)
is a first-order consequence of L.

This can be proven by a straightforward induction over the theorems of L (The
second assumption is just what is needed to make the induction step.). The most
important application is the case where f(x) = box(x), i.e., where r is the necessitation
rule.

Not all rules of modal logics can be easily encoded in the above way since some rules
have complicated side conditions. The most important examples are (We refer to rules
by abbreviations of their names, see Fig. 2 for the definitions.)

• substitution of strict equivalents (EQS): if f and seqv(a, b) are theorems then f ′

which is as f but with a subformula a replaced with b is a theorem,

• propositional necessitation (Ga): if a is a theorem with no occurrences of box or
dia, then box(a) is a theorem.

It is reasonable to assume that any meta-language allowing for a natural encoding
of these rules will be so strong that efficient automated solutions are unlikely. Instead
we use

Lemma 5. If M contains the rules SMP, AD, M1, M2, M4 and M5, then M enriched
with EQS has the same theorems as M enriched with the following rules:

• ∀x, y, z(p(seqv(x, y)) ⇒ p(seqv(or(z, x), or(z, y)))),

• ∀x, y, z(p(seqv(x, y)) ⇒ p(seqv(or(x, z), or(y, z)))),

Empirically Successful Computerized Reasoning 131

• ∀x, y(p(seqv(x, y)) ⇒ p(seqv(not(x), not(y)))),

• ∀x, y(p(seqv(x, y)) ⇒ p(seqv(box(x), box(y)))),

• ∀x, y((p(x) ∧ p(seqv(x, y))) ⇒ p(y)).

This can be proven by using the assumptions made about M (without EQS) to show
that strict equivalence is a congruence relation in M . That is equivalent to M being
closed under EQS (see [Por80], [Tho68]). This lemma covers the most important case,
in which EQS occurs, namely Lewis’s family S1 to S5 ([Lew18]). In other cases, we are
not able to express EQS.

A similar criterion for Ga is more complicated. While the necessary axiomatization of
a further predicate prop that expresses the side condition is trivial, this predicate would
not be preserved under uniform substitution and therefore, cannot be used. Instead a
second sort, say s2, with function symbols for propositional logic must be used along with
with a predicate symbol t and an axiomatization such that ∀X : s2. t(f(X)) expresses
that f is a propositional tautology. Furthermore, a function symbol i : s2 → s1 and
axioms of the form

∀x1, x2 : s1, y1, y2 : s2.
(
(i(y1) = x1 ∧ i(y2) = x2) ⇒ i(and2(y1, y2)) = and(x1, x2)

)
are necessary.

If all previous definitions are appropriately extended to this more general setting,
we have

Lemma 6. If L has all propositional tautologies as theorems, then L enriched with Ga
has the same theorems as L enriched with the rule ∀y : s2.(t(y) ⇒ p(box(i(y))).

Currently, this is not supported by the implementation.

4 Negative Criteria

The simplest approach to disprove a subset relation M ⊆ L is to use a first-order model
finder to show that a theorem of M does not follow from L.

Lemma 7. If f is a theorem of M , and if there is a first-order model for L enriched
with ∃X¬p(f(X)), then M 6⊆ L.

This approach is essentially the same as using matrix models for modal logics (see,
e.g., [McK41]). It is not complete since only finite models can be checked, but this is
often sufficient in practice.

Kripke models provide another strong criterion. It is clearly not complete but suc-
cessful in many cases. The idea of this approach is to find a Kripke model m′ = (U,R, α)
such that the formulas satisfied by m′ include the theorems of L but not f for some
f ∈ M ; here U is the set of worlds, R the accessibility relation, and α an assignment of
truth values to the variables of f . Firstly, m′ must satisfy all rules of L, i.e., an instance
of the conclusion of a rule holds in all worlds whenever the appropriate instances of all
hypotheses of the rule hold in all worlds. And secondly m′ must satisfy not(f) in one
world.

132 Empirically Successful Computerized Reasoning

Implementing that is less trivial than it sounds. If Kripke semantics is used to
translate modal logic to first-order logic, the possibility to quantify over all formulas is
lost, which is necessary to check whether a model satisfies a rule. And we are not aware
of a model finder for (monadic) second-order logic. To circumvent this problem, we fix
the number of worlds in U , say n, and proceed as follows.

We search for a first-order model m, from which m′ can be generated. The signature
for m contains constants 1, . . . , n (intended semantics: one constant per world of U),
the constant t (intended semantics: truth value of truth; we use any of the worlds
as the truth value for falsity), and the binary predicate Acc (intended semantics: the
accessibility relation R). m must satisfy that all worlds are different from each other
and from t. Furthermore, the signature contains one constant xi for every variable x
occurring in f and for every i = 1, . . . , n (intended semantics: xi gives the value of the
assignment α to x in world i).

Let · be the following translation from the language over T to this new signature:

• ∀x F = ∀x1, . . . , xn F ,

• the meta language connectives ∧ and ⇒ remain unchanged,

• p(f(X)) =
n∧

i=1
f(X)(i) where f(X)(i) is given by the remaining cases,

• and(f1(X), f2(X))(i) = f1(X)(i) ∧ f2(X)(i) and accordingly for the other propo-
sitional connectives,

• x(i) = xi
.= t for a variable x,

• box(f1(X))(i) =
n∧

j=1
(Acc(i, j) ⇒ f1(X)(j)),

• dia(f1(X))(i) =
n∨

j=1
(Acc(i, j) ∧ f1(X)(j)).

Here, the intended semantics of ∀X p(f(X)) is that f holds in all worlds of m′ and that
of f(X)(i) is that f holds in the world i. Then the needed requirements for m are that
it satisfies r for all rules r of L and not(f(X))(1).

These requirements can be sent to a first-order model finder. From the generated
model m, m′ is constructed by

• U : the universe of m minus the interpretation of t,

• R: the restriction of the interpretation of Acc to U ,

• for a variable x of f and a world i of U , α(x)(i) is true if xi is equal to t in m,
and it is false otherwise.

Then we have

Lemma 8. If f is a theorem of M and there is an n such that a model for L and not(f)
as described above can be found, then M 6⊆ L.

The follows directly from the above construction.

Empirically Successful Computerized Reasoning 133

5 Implementation

The implementation of the presented criteria was done in SMLNJ ([SML]) and is avail-
able as [Rab]. It requires binary files for Vampire ([RV02]) and Paradox ([CS03]) to
be present in the current directory because these are invoked to solve the generated
subproblems.

The main function is invoked as Main.compare(f1,f2) where f1 and f2 are the
names of files containing the modal logics in TPTP syntax ([SS98]). The content of the
file definitions.tptp contains the propositional axiomatization and is added to each
logic.

compare calls both subsumes(f1,f2) and subsumes(f2,f1). Firstly,
subsumes(big,small) calls inclusion(big,small) to prove small ⊆ big. It tries all
strategies given in the list incl strategies trying to derive each rule of small as a
consequence of big. Proven rules are added to big. If all rules are proven, a proof
object is returned, otherwise the exception fail is raised.

In the latter case, the underived rules, say l, are passed to noninclusion(big,l),
which calls each disproving strategy given in the list nonincl strategies with each
element of l. If a counter-example is found a proof object is returned. compare collects
these results and outputs the final result.

Optionally, whenever an external call is carried out the user is prompted for con-
firmation. It is possible to skip a call and choose whether the program should assume
that the call has succeeded or failed.

Strategy Criterion Prover/Model finder Remarks
Direct Lem. 1, 3 Vampire
Inductive Lem. 4 Vampire
Sahlqvist Lem. 2 – not implemented yet
Containsk Lem. 2 Vampire special case of Sahlqvist, im-

plemented but not yet used in
performance test

Naivemodel Lem. 7 Paradox implemented but not yet used
in performance test

Kripke Lem. 8 Paradox

Figure 3: Strategies and provers

Strategies are functors that take a prover (or model finder) as an argument. Each
strategy implements a sufficient criterion and tries to establish it by calling the prover.
The provers are wrapper structures that invoke external first-order tools.

Strategies and provers are designed to be modular, which makes it easy to add
further strategies and provers in the future. Currently only a minimal set of strategies
is implemented, see Fig. 3. Testing showed that using the CASC competition ([PSS02])
winners Vampire and Paradox already gives quite satisfactory results.

134 Empirically Successful Computerized Reasoning

Log1 Axiomatization Log2 Axiomatization R R′ Pr. + Pr. −
K MP, N, K M MP, N, REM,

T2 1, T2 2
⊂ 6⊇ K

K MP, N, K S1 0 SMP, AD, EQS,
M1-M5

6= − inc.

S1 0 SMP, AD, EQS,
M1-M5

S4 MP, N, K, T, 4 ⊂ 6⊇ M5

S1 SMP, AD, EQS,
M1-M5, AS1.6

S4 MP, H1-H7 ⊂ 6⊇ M5

S3 SMP, AD, EQS,
M1-M6, M8

S5 MP, N, K, T, B, 4 ⊂ 6⊇ M5, M8

S5 MP, N, K, T, 5 S5 SMP, AD, EQS,
M1-M5, M10

= ⊆ M5

Figure 4: Example instances and results

6 Experimental Results

The 100 $ challenge mentions eight logics with a total of about 25 axiomatizations that
can be expressed in our encoding. This leads to about 600 combinations of logics. Fig. 4
shows the experimental results for a set of six examples. Running the program partially
for other cases showed that this set is fairly representative for difficult instances. Here,
the relationship between the logics (fifth column) is Log1 R Log2 where R ∈ {⊂,⊃,=
, 6=}. The program’s answer R′ is given in the sixth column: For partial success of the
search, R′ can also be in {⊆,⊇, 6⊆, 6⊇,−}. The symbol 6= denotes incomparability, and
− denotes complete failure. Note that the strategies Containsk and Naivemodelwere
not used for this test.

As can be seen, none of the cases could be solved completely. The seventh column
gives the problems with positive criteria, which consisted of rules that could not be
proven although they were provable. The eighth column gives the problems with nega-
tive criteria, which occurred only in one case where the used criterion was incomplete.

Comparing the run time shows that if a relation could be determined, this was
done relatively fast: less than 30 minutes on a 3 GHz Intel Xeon machine. And this
time was mainly spent waiting for the five-minute time limit of a failing Vampire call.
Successful Vampire calls returned results within seconds, only sometimes minutes. Even
more interesting, hardly any improvement could be observed by increasing Vampire’s
time limit: In the case of the third row, even 20 hours did not suffice to derive M5.
Since M5 is a base axiom occurring in several natural axiomatizations, this becomes an
interesting challenge problem for automated theorem proving. Calls to negative criteria
did not contribute significantly to the run time.

This shows that the run time is essentially determined by the time limit for failing
prover calls. Due to the nature of the problem, such calls occur frequently. This suggests
that a more sophisticated switching between trying to prove inclusion or non-inclusion
and varying the time limit for porver calls may lower the run time significantly.

Empirically Successful Computerized Reasoning 135

The most interesting conclusion to be drawn about proving inclusion is that the
complicated theoretical problems of rules that are only admissible but not derivable and
of the incompleteness of the criterion in Lem. 3 are less relevant than expected: Both
problems did not strike at all. All rules that could not be derived are axioms (K, M5 and
M8). For these, however, the strategy Direct is complete. Apparently even a relatively
small complexity of an axiom leads to de-facto unprovability.

As to proving non-inclusion, the incompleteness of the strategy Kripke hit twice:
Both K and M1 to M5 hold in all Kripke models and their negation can never be
satisfied. An obvious improvement of the current implementation is to apply rules that
could not be derived to axioms in order to obtain more potential counter-examples. It
is not clear if this will be successful in practice or if other approaches (like the recently
implemented strategy Naivemodel) have to be considered.

It is not clear whether the strategy Sahlqvist obeys the spirit of the 100 $ challenge:
Since it uses an external completeness result, it can be argued that the strategy uses
hidden knowledge about the problems and is not a pure theorem prover. However, the
performance of this strategy provides an enticing argument: Already the very special
case implemented in the strategy Containsk (which does not even use the Sahlqvist
results) can derive M5 in all four critical cases within seconds, and M8 can be derived
by Sahlqvist. Thus, although this strategy can never help to prove K itself or non-
normal axioms, it solves the problems in the last four rows of Fig. 4.

7 Conclusion and Future Work

We are bringing together different techniques to implement and integrate them into a
framework directed at a specific challenge problem of theorem proving. Clearly, the
current implementation is not much more than a proof of concept, but the current
version already brings promising results. Implementing the algorithm of Lem. 2 fully or
even partially will strengthen it significantly.

We also found that pure proof search without using semantical correspondence re-
sults seems to be practically incomplete for relevant problems. And the question how
to derive non-normal axioms or K is open. However, we expect that a larger set of
strategies (e.g., splitting as described in [Kra99]) will cover almost all interesting cases.

Less sophisticated possible future work includes

• utilizing different provers to exploit their respective strengths,

• tweaking, dynamically assigning or iteratively increasing the search depth, which
is now fixed (5 minutes for Vampire, 4 worlds for Kripke models),

• redesigning the main functions to minimize the time spent with failing calls, in par-
ticular dynamically switching between trying to prove inclusion or non-inclusion,
and keeping better track of positive and negative partial results,

• parallelizing external calls.

By publishing this work in progress, we hope to gain support and feedback for the
further attack of this problem.

136 Empirically Successful Computerized Reasoning

References

[CS03] K. Claessen and N. Sorensson. New techniques that improve MACE-style finite
model finding. In CADE-19 Workshop on Model Computation - Principles,
Algorithms, Applications, 2003.

[GO92] D. Gabbay and H. Ohlbach. Quantifier elimination in second-order predicate
logic. South African Computer Journal, 1992.

[GTG02] E. Giunchiglia, A. Tacchella, and F. Giunchiglia. SAT-based decision proce-
dures for classical modal logics. Journal of Automated Reasoning, 28(2):143–
171, 2002.

[Hal] J. Halleck. Logic systems. See http://www.cc.utah.edu/~nahaj/logic/
structures/systems/index.html.

[HC96] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Rout-
ledge, 1996.

[HM92] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

[HS00] U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and
first-order resolution. In R. Dyckhoff, editor, Automated Reasoning with An-
alytic Tableaux and Related Methods, International Conference (TABLEAUX
2000), pages 67–71, 2000.

[HV89] J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge
and time. Journal of Computer and System Sciences, 38(1):195–237, 1989.

[Kra99] M. Kracht. Tools and Techniques in Modal Logic. Elsevier, 1999.

[Kri63] S. A. Kripke. Semantical analysis of modal logic I. Normal modal propositional
calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
9:67–96, 1963.

[Lem66] E. J. Lemmon. Algebraic Semantics for Modal Logics II. The Journal of
Symbolic Logic, 31:191–218, 1966.

[Lew18] C. Lewis. A Survey of Symbolic Logic. University of California Press, 1918.

[McK41] J. C. McKinsey. A solution of the decision problem for the lewis systems
s2 and s4 with an application to topology. The Journal of Symbolic Logic,
6:117–134, 1941.

[Por80] J. Porte. Congruences in Lemmon’s S0.5. Notre Dame Journal of Formal
Logic, 21(4):672–678, 1980.

[PSS02] F. Pelletier, G. Sutcliffe, and C. Suttner. The Development of CASC. AI
Communications, 15(2-3):79–90, 2002.

Empirically Successful Computerized Reasoning 137

[Rab] F. Rabe. Determining the subset relation between propositional modal logics.
http://kwarc.eecs.iu-bremen.de/frabe/Research/moloss.

[RV02] A. Riazanov and A. Voronkov. The design and implementation of Vampire.
AI Communications, 15:91–110, 2002.

[Sah75] H. Sahlqvist. Completeness and correspondence in the first and second order
semantics for modal logic. In S. Kanger, editor, Proceedings of the Third
Scandinavian Logic Symposium, pages 110–143. North-Holland, 1975.

[SML] Standard ML of New Jersey. See http://www.smlnj.org.

[SS98] G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

[Sut] G. Sutcliffe. The modal logic $100 challenge. See http://www.cs.miami.
edu/~tptp/HHDC/.

[Tho68] I. Thomas. Replacement in Some Modal Systems. The Journal of Symbolic
Logic, 33(4):569–570, 1968.

[Tho74] S. K. Thomason. An incompleteness theorem in modal logic. Theoria, 40:30–
34, 1974.

138 Empirically Successful Computerized Reasoning

Prospective Logic Programming with ACORDA

Gonçalo Lopes and Lúıs Moniz Pereira
Centro de Inteligência Artificial - CENTRIA

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
goncaloclopes@gmail.com

lmp@di.fct.unl.pt

Abstract

As we face the real possibility of modelling programs that are capable of non-
deterministic self-evolution, we are confronted with the problem of having several
different possible futures for a single such program. It is desirable that such a
system be somehow able to look ahead, prospectively, into such possible futures, in
order to determine the best courses of evolution from its own present, and then to
prefer amongst them. This is the objective of the ACORDA, a prospective logic
programming system. We start from a real-life working example of differential
medical diagnosis illustrating the benefits of addressing these concerns, and follow
with a brief description of the concepts and research results supporting ACORDA,
and on to their implementation. Then we proceed to fully specify the implemented
system and how we addressed each of the enounced challenges. Next, we take on
the proffered example, as codified into the system, and describe the behaviour of
ACORDA as we carefully detail the resulting steps involved. Finally, we elaborate
upon several considerations regarding the current limitations of the system, and
conclude with the examination of possibilities for future work.

1 Introduction

Part of the Artificial Intelligence community has struggled, for some time now, to make
viable the proposition of turning logic into an effective programming language, allow-
ing it to be used as a system and application specification language which is not only
executable, but on top of which one can demonstrate properties and proofs of correct-
ness that validate the very self-describing programs which are produced. At the same
time, AI has developed logic beyond the confines of monotonic cumulativity and into
the non-monotonic realms that are typical of the real world of incomplete, contradic-
tory, arguable, revised, distributed and evolving knowledge. Over the years, enormous
amount of work and results have been achieved on separate topics in logic program-
ming (LP) language semantics, belief revision, preferences, and evolving programs with
updates[DP07, PP05, ABLP02].

As we now have the real possibility of modelling programs that are capable of non-
deterministic self-evolution, through self-updating, we are confronted with the problem
of having several different possible futures for a single starting program. It is desir-
able that such a system be able to somehow look ahead into such possible futures to
determine the best paths of evolution from its present, at any moment. This involves

Empirically Successful Computerized Reasoning 139

a notion of simulation, in which the program is capable of conjuring up hypothetical
what-if scenarios and formulating abductive explanations for both external and internal
observations. Since we have multiple possible scenarios to choose from, we need some
form of preference specification, which can be either a priori or a posteriori. A priori
preferences are embedded in the program’s own knowledge representation theory and
can be used to produce the most relevant hypothetical abductions for a given state
and observations, in order to conjecture possible future states. A posteriori preferences
represent choice mechanisms, which enable the program to commit to one of the hy-
pothetical scenarios engendered by the relevant abductive theories. These mechanisms
may trigger additional simulations in order to posit which new information to acquire,
so more informed choices can be enacted, in particular by restricting and committing
to some of the abductive explanations along the way.

A large class of higher-order problems and system specifications exist which would
benefit greatly from this strategy for evolving knowledge representation, especially in
domains closer to the human level of reasoning such as expert systems for medical
diagnosis, and systems for enhanced proactive behavioural control.

1.1 Iterated Differential Diagnosis

In medicine, differential diagnosis is the systematic method physicians use to identify
the disease causing a patient’s symptoms. Before a medical condition can be treated
it must first be correctly diagnosed. The physician begins by observing the patient’s
symptoms, taking into consideration the patient’s personal and family medical history
and performing additional examinations if current information is lacking. Then the
physician lists the most likely causes. The physician asks questions and performs tests
to eliminate possibilities until he or she is satisfied that the single most likely cause
has been identified. The term differential diagnosis also refers to medical information
specially organized to aid in diagnosis, particularly a list of the most common causes of
a given symptom, annotated with advice on how to narrow down the list.

This listing of the most likely causes is clearly an abduction process, supported by
initial observations. Encoding this process in logic programming would result in a set of
literals and rules representing both the expected causes and the knowledge representa-
tion theory leading up to them. This set could be subsequently refined through a method
of prospection with a priori and a posteriori preferences, like the one described above.
This prospective process can result in the decision to perform additional observations
on the external environment, and be iterated.

In this case, the external observations correspond to the disease’s signs and other
examinations performed by the physician during the process of diagnosis. The abduc-
tive explanations correspond to the possible causes (e.g. medical conditions or simply
bad habits) responsible for the symptoms. A priori preferences and expectations are
necessarily determined according to the patient’s symptoms and they can be updated
during the course of the prospection mechanism. An appropriate knowledge representa-
tion theory can be derived from current medical knowledge about the causes of a given
disease.

Being such a good example of abduction, we provide next a practical example of
iterated differential diagnosis, based upon real medical knowledge from the field of den-

140 Empirically Successful Computerized Reasoning

tistry, in order to better illustrate the kinds of problems involved. Further on we shall
proffer an encoding of the problem on our system, along with results from an interactive
diagnosis session.

1.1.1 Differential Diagnosis in Dentistry: A Use Case

A patient shows up at the dentist with signs of pain upon teeth percussion. The expected
causes for the observed signs are:

• Periapical lesion (endodontic or periodontal source)

• Horizontal Fracture of the root and/or crown

• Vertical Fracture of the root and/or crown

Several additional examinations can be conducted to determine the exact cause, namely:

• X-Ray for determination of radiolucency or fracture traces

• X-Ray for determination of periapical lesion source

• Check for tooth mobility

• Measurement of gingival pockets

Aside from presenting multiple hypotheses for diagnosis, the knowledge exhibited
by the practitioner must necessarily evolve in time, as he or she performs relevant
examinations which will attempt to disqualify all but one of the possible explanations.
Current examinations depend on knowledge acquired in the past, which, in turn, will
end up influencing the observations and inferences which will be drawn in the future.
Developing a system that is capable of modelling the evolution of a program in order to
draw such inferences is a demanding but obviously useful challenge.

1.2 Prospective Logic Programming

This problem is already at hand, since there are working implementations of a logic
programming language which was specifically designed to model such program evolu-
tions. EVOLP [ABLP02] is a non-deterministic LP language, having a well-defined
semantics that accounts for self-updates, and we intend to use it to model autonomous
agents capable of evolving by making proactive commitments concerning their imagined
prospective futures. Such futures can also be prospections of actions, either from the
outside environment or originating in the agent itself. This implies the existence of
partial internal and external models, which can already be modelled and codified with
logic programming.

It is important to distinguish this mechanism of prospection from your average plan-
ning problem, in which we search a state space for the means to achieve a certain goal.
In planning, this search space is inherently fixed and implicit, by means of the set of
possible actions that we can use to search for the goal. In future preference, we are
precisely establishing that search space, defining our horizon of search, which isn’t a
priori known and can even change dynamically with the very process of searching. It

Empirically Successful Computerized Reasoning 141

intends to be a pre-selection prior to planning, but essentially distinct from planning
itself.

A full-blown theory of preferences[AP00] has also been developed in LP along with
EVOLP, as well as an abduction theory [APS04] and several different working seman-
tics for just such non-monotonic reasoning, such as the Stable Models [GL88] and Well-
Founded Semantics [vGRS91]. All of these have thoroughly tested working implementa-
tions. The problem is then how to effectively combine these diverse ingredients in order
to avail ourselves of the wherewithal to solve the problems described above. We are now
ready to begin addressing such general issues with the tools already at hand, unifying
several different research results into powerful implementations of systems exhibiting
promising new computational properties. This is the main objective of the ACORDA
system1.

First, we provide a brief description of the concepts and previous research results
supporting ACORDA, and their implementations2. Then we proceed to fully specify
the implemented system and how we have addressed each of the enounced challenges.
Next, we take on the real-life working example of differential medical diagnosis, showing
how it can be codified into the system, and describing the behaviour of ACORDA, as
we carefully detail the resulting steps. Finally, we elaborate upon several considerations
regarding the current limitations of the system and conclude examining possibilities for
future work.

2 Logic Programming Framework

2.1 XSB-XASP Interface

The Prolog language has been for quite some time one of the most accepted means to
codify and execute logic programs, and as such has become a useful tool for research
and application development in logic programming. Several stable implementations
have been developed and refined over the years, with plenty of working solutions to
pragmatic issues ranging from efficiency and portability to explorations of language
extensions. The XSB Prolog system is one of the most sophisticated, powerful, efficient
and versatile among these implementations, with a focus on execution efficiency and
interaction with external systems, implementing program evaluation following the Well-
Founded Semantics (WFS) for normal logic programs.

Two of its hallmark characteristics make it a particularly useful system on top of
which to implement ACORDA, and many of its supporting subsystems. First of all, the
tabling mechanism [Swi99], in which the results of particular queries are stored for later
reuse, can provide not only an enormous decrease in time complexity, but also allow for
solutions to well-known problems in the LP community, such as query loop detection.

Secondly, its aiming for external systems interaction eventually resulted in the devel-
opment of an interface to Smodels [NS97], one of the most successful implementations of
the Stable Models semantics over generalized logic programs, also known as the Answer

1ACORDA means literally “wake-up” in Portuguese. The ACORDA system project page is tem-
porarily set up at: http://articaserv.ath.cx/

2Working implementations of Dynamic Logic Programming, EVOLP and Updates plus Preferences
using DLP available online at: http://centria.di.fct.unl.pt/∼jja/updates

142 Empirically Successful Computerized Reasoning

Set semantics. The SM semantics has become the cornerstone for the definition of some
of the most important results in logic programming of the past decade, providing an in-
crease in logic program declarativity and a new paradigm for program evaluation. Many
of the ACORDA subsystems are defined on top of the Stable Models (SM) semantics,
and as such, this integration proves extremely useful, and even accounts for new and
desirable computational properties that neither of the systems could provide on its own.

The XASP interface [CSW] (standing for XSB Answer Set Programming) provides
two distinct methods of accessing Smodels3. The first one is for using Smodels to obtain
the stable models of the so-called residual program, the one that results from a query
evaluated in XSB using tabling. This residual program is represented by delay lists, that
is, the set of undefined literals for which the program could not find a complete proof,
due to mutual dependencies or loops over default negation for that set of literals, which
are detected by the XSB tabling mechanism. This method allows us to obtain any two-
valued semantics in completion to the three-valued semantics the XSB system provides.
The second method is to build up a clause store, adding rules and facts to compose
a generalized logic program that is then parsed and sent to Smodels for evaluation,
thereafter providing access to the computed stable models back to the XSB system.

This kind of integration allows one to maintain the relevance property for queries over
our programs, something that the Stable Models semantics does not originally enjoy.
In Stable Models, by the very definition of the semantics, it is necessary to compute
all the models for the whole program. In our system, we sidestep this issue, using
XASP to compute the relevant residual program on demand, usually after some degree
of transformation. Only the resulting program is then sent to Smodels for computation
of possible futures. We believe that such system integrations are crucial in order to
extend the applicability of the more refined and declarative semantics that have been
developed in the field of AI.

2.2 Evolving Logic Programs

Modelling the dynamics of knowledge changing over time has been an important chal-
lenge for LP. Accounting for the specification of a program’s own evolution is essential
for a wide variety of modern applications, and necessary if one is to model the dynamics
of real world knowledge. Several efforts were conducted in lieu of developing a unified
language that could be both expressive and simple, following the spirit of declarative
programming that is characteristic of LP. The language EVOLP [ABLP02] is one of the
most powerful results from this research area with working implementations.

EVOLP generalizes LP in order to provide a general formulation of logic program
updating, by permitting rules to indicate assertive conclusions having the form of pro-
gram rules. Such assertions, whenever they belong to a model of the program P, can be
employed to generate an updated version of P. This process can then be iterated on the
basis of the new program. When the program semantics affords several program models,
branching evolution will occur and several evolution sequences are possible. The ability
of EVOLP to nest rule assertions within assertions allows rule updates to be themselves
updated over time, conditional on each evolution strand. The ability to include assertive

3The XSB Logic Programming system and Smodels are freely available at:
http://xsb.sourceforge.net and http://www.tcs.hut.fi/Software/smodels

Empirically Successful Computerized Reasoning 143

literals in rule bodies allows for looking ahead on program changes and acting on that
knowledge before the changes actually take place.

2.2.1 Self-evolving Logic Programs

The approach used to define EVOLP aimed for minimality in regard to classic logic
programs. The objective was to identify the necessary conditions allowing the new
capabilities of evolution and updating, and then minimally adding constructs to LP
in order to account for them. Since we are envisaging updates to logic programs, it
is necessary to provide a means to state that, under some conditions, some rule is to
be added to the program. However, to allow for the non-monotonicity of rules, it is
also necessary to provide some sort of negation in rule heads, so as to let instances of
older rules be supervened by more recent rules updating them. Under these minimal
conditions it is possible to express any kind of logic program evolution and, as such,
EVOLP aimed to satisfy both.

The negation in rule heads is provided by the very definition of generalized LPs, while
the statement of updates can be specified by augmenting this language with the reserved
predicate assert/1, whether as the rule head or in its body. The sole argument of this
predicate is itself a full blown rule in order to account for the possibility of arbitrary
nesting. The formal inductive definition of the EVOLP language can be presented thus:

Definition 1[ABLP02]. Let L be any propositional language (not containing the pred-
icate assert/1). The extended language Lassert is defined inductively as follows:

1. All propositional atoms in L are propositional atoms in Lassert.

2. If each of L0, . . . , Ln is a literal in Lassert (i.e. a propositional atom A or its
default negation not A), then L0 ← L1, . . . , Ln is a generalized logic program rule
over Lassert.

3. If R is a rule over Lassert then assert(R) is a propositional atom of Lassert.

4. Nothing else is a propositional atom in Lassert.

An evolving logic program over a language L is a (possibly infinite) set of generalized
logic program rules over Lassert.

It should be noted that the basic syntax provides no explicit retract construct because
in fact it has no need of one. Retraction of rules can be encoded in EVOLP simply by
allowing for default negation to appear in rule heads.

The semantics of such self-evolving logic programs is provided by a set of evolution
stable models, each of which is a sequence of interpretations or states. Each evolu-
tion stable model describes some possible self-evolution of one initial program after a
given number n of evolution steps. Each self-evolution is represented by a sequence of
programs, each program corresponding to a state.

These sequences of programs are treated as in Dynamic Logic Programs [ALP+00],
where the most recent rules are put in force, and previous rule instances are valid by
inertia insofar as possible, as long as they do not conflict with more recent ones.

144 Empirically Successful Computerized Reasoning

2.3 Preferential Theory Revision

The application of preferential reasoning over logic programs in the form of prefer-
ences between rules has been successfully attempted, including combinations of such
rule preferences with program updates[AP00], and the updating of preferences them-
selves. However, a crucial ingredient had been missing, that of considering the possible
abductive extensions to a theory, as expressed by means of a logic program and the
integration in it of preferences over such extensions.

Abduction plays a crucial role in belief revision and diagnosis, and also in the de-
velopment of hypotheses to explain some set of observations, a common consequence
of working under the scientific method. Such abductive extensions to a theory can be
expressed by sets of abducibles, over which we should be able to express conditional pri-
ority relations. Abducibles may be thought of as the hypothetical solutions or possible
explanations that are available for conditional proof of a given query.

This ability of construing plausible extensions to one’s theory is also vital for logic
program evolution, so that the program is capable of self-revision and theorizing, pro-
viding new and powerful ways on which it can guide the evolution of its knowledge base,
by revising incorrect or incomplete behaviour.

Such preferential theory revision has been approached in [DP05, DP07] and will be
presented next as part of the logic programming framework of the ACORDA prospective
system.

2.3.1 Language

Let L be a first order language. A domain literal in L is a domain atom A or its default
negation not A, the latter expressing that the atom is false by default (CWA). A domain
rule in L is a rule of the form:

A← L1, . . . , Lt (t ≥ 0)

where A is a domain atom and L1, . . . , Lt are domain literals. The following convention is
used. Given a rule r of the form L0 ← L1, . . . , Lt, we write H(r) to indicate L0 and B(r)
to indicate the conjunction L1, . . . , Lt. We write B+(r) to indicate the conjunction of
all positive literals in B(r), and B−(r) to indicate the conjunction of all negated literals
in B(r). When t = 0 we write the rule r simply as L0. Let A ⊆ L be a set of domain
atoms, the abducibles.

2.3.2 Preferring Abducibles

To express preference criteria among abducibles, we introduce the language L∗. A
relevance atom is one of the form a / b, where a and b are abducibles. a / b means that
the abducible a is more relevant than the abducible b. A relevance rule is one of the
form:

a / b← L1, . . . , Lt (t ≥ 0)

where a/ b is a relevance atom and every Li(1 ≤ i ≤ t) is a domain literal or a relevance
literal. Let L∗ be a language consisting of domain rules and relevance rules.

Empirically Successful Computerized Reasoning 145

The original definition of abductive stable models given in [DP07] considered logic
programs already infused with preferences between rules. The framework considered in
this work does not assume this, and as such the transformation of programs over L∗ is
slightly different, as it considers only generalized LPs.

The following definition provides us with the syntactical transformation from the
language L∗ to normal logic programs, with the abducibles being codified as simultane-
ous even-loops that guarantee mutual exclusion, i.e. that only one abducible is present
in each model. Relevance rules are also codified so as to defeat the abducibles which
are less preferred when the body of the rule is satisfied.

Definition 2[DP05, DP07]. Let Q be a program over L∗ with set of abducibles AQ =
{a1, . . . , am}. The program P = Σ(Q) with abducibles AP = {abduce} is obtained as
follows:

1. P contains all the domain rules in Q

2. for every ai ∈ AQ, P contains the domain rule:
confirm(ai)← expect(ai), not expect not(ai)

3. for every ai ∈ AQ, P contains the domain rule:
ai ← abduce, not a1, . . . , not ai−1, not ai+1, . . . , not am,

confirm(ai), not neg ai

4. for every relevance rule r in Q, P contains a set of domain rules obtained from r
by replacing every relevance atom x / y in r with the following domain rule:

negy ← L0, . . . , Ln, B+
x , By, not negx

3 ACORDA Architecture and Implementation

The basis for the ACORDA architecture is a working implementation of EVOLP on
which we can evaluate for truth literals following both a three-valued or a two-valued
logic. Since we aim for autonomous abduction processes that are triggered by constraints
or observations, from within the knowledge state of an agent, we need a means to express
how this triggering is accomplished. In our system, we resort to the notion of observable
in order to model and specify this kind of behaviour.

An observable is a quaternary relation amongst the observer, i.e. that which is
performing the observation; the observed, that which is the target of the observation;
the result of the observation itself; and the truth value associated with the observation.
This relation is valid both to express program based self-triggering of internal queries,
as well as observations requested from an exterior oracle to the program, and from the
program directly to the environment. For example, the observable

observable(prog,prog,Query,true)

represents an observation in which the observer is the program, that which is observed
is also the program, the observation is the specified Query and the positive truth value
means the observation must be proven true. In this case, we expect that such an

146 Empirically Successful Computerized Reasoning

observable, by becoming active, triggers the self-evaluation of Query in the current
knowledge state, in the process resorting to any relevant and expected abducibles that
can account for the observation.

As a consequence of the fact that only one of the relevant abducibles can effectively
be chosen, corresponding to some possible world model, we may have several differ-
ent results for explaining such self-observations. These results represent the possible
knowledge futures that the program can infer from the current knowledge state towards
explaining a given hypothetical observation, and also the choices that the program can
make in order to evolve towards a new state where the observation holds. To make
the correct choice, we implement a priori and a posteriori prospective systems of pref-
erences. After this prospection takes place, the system is updated with the relevant
literals that explain the observation, and the transition to the next knowledge state is
then complete. This iterative process can be repeated for as long as we like, producing
autonomous evolution of the program, interleaved with external updates that can reach
the system independently, in between every such iteration. For simplicity, we presently
assume that external updates do not reach the system during each abductive process.
The steps in an ACORDA evolution loop are detailed below, and we proceed to explain
them in detail in the following sections.

1. Determine the active program-to-program generated observations for the current
state and their respective queries.

2. Determine the expected abducibles which are confirmed relevant to support the
active observations and which do not violate the integrity constraints.

3. Compute the abductive stable models generated by virtue of those confirmed ab-
ducibles, considering the currently active a priori preferences amongst them.

4. If necessary, activate a posteriori choice mechanisms to possibly defeat some of
the resulting abductive stable models.

5. Update the current knowledge state with the chosen abducible that can effectively
satisfy the activated observations and integrity constraints.

3.1 Active Program-to-Program Generated Observations

The active self-observations for a given state are obtained from a special kind of clause
which indicates that certain program-to-program observations should be made, in ex-
clusion of all others. These on observable/4 clauses follow the same structure of the
observable/4 clauses, but they do not represent the observations themselves. They
point rather to the self-observations that the ACORDA system should perform in the
next step of evolution. In order to ease codification in the ACORDA system, we consider
additional observable/3 and on observable/3 clauses, which default the truth value to
true.

Those on observable/4 clauses whose body holds true in the Well-Founded Model
(WFM), the three-valued logic model derived from the current knowledge state, will
trigger an internal observation expressed by their conclusion. The reason why we opt
for this skeptical semantics in this step is that we do not wish to allow just any kind of

Empirically Successful Computerized Reasoning 147

abduction to determine such activated observations. Since we codify abduction using
even-loops over default negation, we would risk having those even-loops generate several
possible models for active observations if we considered the Stable Models semantics.
With the Well-Founded Semantics, we guarantee that a single model of active observa-
tions exists, composed of those literals which can be proven true in the WFM, with any
literals supported by abductions being marked as undefined. A much more expensive
alternative, of course, would be to find those observations true in the intersection of all
abductive Stable Models.

Also, in a knowledge base of considerable dimension, the number of active program-
to-program observations for a given knowledge state can be huge. Typically, we want to
give attention to only a subset of the observations that are active. There are multiple
ways in which this subset could be determined, either by using utility functions, addi-
tional preference relations or priorities, or just any other means of determining the most
important observables. In our system, we leave this function to be determined by the
user, since it will hinge much on the kind of application being developed. By default,
the system attends to all the observations that are active.

3.2 Expected and Confirmed Abducibles

Each active program-to-program observation will be launched as part of a conjunctive
query, which the system will attempt to satisfy by relying on any expected abducibles
which become confirmed by not otherwise being defeated, along with enforcing satis-
faction of integrity constraints. Since only a single abducible can currently be derived
from the even loops expressing alternative abductions, it follows that this abducible
must be able to satisfy the conjunction of active observations and attending integrity
constraints in order for evolution to succeed. This notion can of course be extended to
support abducible sets, and in that case one may want to consider the minimal sets of
abducibles that satisfy the conjunction. One way to allow for sets is to attach a single
abducible to each desired alternative set. This is currently outside the scope and essence
of the project, but will be considered in future developments, as mentioned in section 5.

Each abducible needs first to be expected (i.e. made available) by a model of the
current knowledge state. Next it needs to be confirmed in that model before it can
be used to satisfy or explain any kind of prospective observation. This is achieved
via the expect/1 and expect not/1 clauses, which indicate conditions under which an
expectable abducible is indeed expected and confirmed for an observation given the
current knowledge state. A relevant expected and confirmed abducible must be present
in the current derivation tree for the conjunction of all observations, satisfy at least
one expect/1 clause and none of its expect not/1 clauses. It must also be coded over
an even-loop using the system’s general abduce/1 clause, detailed below along with the
general confirm/1 clause encoding the requisite properties of an expected and confirmed
abducible.

confirm(X) <- expect(X), not expect_not(X), abduce(X).
abduce(X) <- not abduce_not(X).

abduce_not(X) <- abduce(X).

The latter two clauses are defined for every abducible by instantiating its variable
to it, so as to produce an even-loop with the abduce not/1 clause, and guarantee that

148 Empirically Successful Computerized Reasoning

the confirmed abducibles come up undefined in the WFM of the program, and hence
in the residual program computed by the XSB Prolog-based EVOLP meta-interpreter
as explained in section 2.1. This residual program is a set of cyclic strongly connected
graphs of the interdependencies among the undefined atoms in the Well-Founded Model
of a program, without the presence of any true or false literals, for these have already
been partially evaluated[DMS].

3.3 Computation of the Abductive Stable Models

Determination of relevant abducibles can be performed by examination of the residual
program for ground literals which are arguments to confirm/1 clauses. Currently we
need to assume ground literals since we will be producing a program transformation
over the residual program based on the set of confirmed abducibles, which will be sent
directly to Smodels for computation of the hypothetical confirmed abducibles’ generated
scenarios. Smodels needs all literals to be instantiated, or have an associated domain
for instantiation. This limitation is present in many other state-of-the-art logic pro-
gramming systems and its solution is not the main point of this work. Nevertheless, it
is worth considering that XSB’s unification algorithm can ground some of the variables
automatically during the top-down derivation of observations hinging on abducibles.

Once the set of relevant confirmed abducibles is determined from the program’s
current knowledge state, all that remains before applying the preference transformation
described in section 2.3 is to determine the active a priori preferences that are relevant
for that set. This is merely a query for all preference literals whose heads indicate a
preference between two abducibles that belong to the set, and whose body is true in the
Well-Founded Model of the current knowledge state.

The XASP package[CSW] allows the programmer to collect rules in an XSB clause
store. When the programmer has determined that enough clauses have been added to
the store to form a semantically complete sub-program, the program is then committed.
This means that information in the clauses is copied to Smodels, codified using Smodels
data structures so that stable models of those clauses can be computed and examined.

When both the relevant abducibles and the active preferences are determined, the
transformation is applied, and every resulting clause is sent to the XASP store, which
is reset beforehand in preparation for the stable models computation. The transformed
residual program is then committed to Smodels and we make use of the XASP interface
to obtain back the literals corresponding to abducibles from all the resulting stable mod-
els of the transformed program. These models form the Abductive Stable Models of the
current knowledge state given the active observations and available relevant abducibles.

3.4 A Posteriori Choice Mechanisms

If everything goes well and only a single model emerges from computation of the ab-
ductive stable models, the ACORDA cycle terminates, and the resulting abducible is
updated into the next state of the knowledge base. In most cases, however, we cannot
guarantee the emergence of a single model, since the active preferences may not be suf-
ficient to defeat enough abducibles. In these situations, the ACORDA system has to
resort on additional information for making further choices, but supported on what?

Empirically Successful Computerized Reasoning 149

A given abducible can be defeated in any one of two cases: either by satisfaction of an
expect not/1 clause for that abducible, or by satisfaction of a preference rule that prefers
another abducible instead. However, the current knowledge state may be insufficient
to satisfy any of these cases for all abducibles except one, or else a single model would
have already been abduced. It is then necessary that the system obtain the answers
it needs from somewhere else, namely from making experiments on the environment or
from querying an outside entity.

An agent or program that is completely isolated from its environment is limited in
the kinds of reasoning it can produce. If we are to model agents which can face up
proactively to the problems of the real world, they need to have the ability to probe
the outside environment in order to make experiments which permit it to enact a more
informed choice. We next consider the mechanism by means of which the program can
pose questions to external systems, be they other agents, actuators, sensors or other
procedures. Each of these serves the purpose of an oracle, which the program can probe
with observations of its own. These observations are of the form

observable(prog,Oracle,Query,Value)

representing that the program is performing the observation Query on the specified
Oracle. These clauses can normally only be satisfied if the system has activated oracle
probing, and if the conditions are met for using the prescribed oracle. In some situations,
not all oracles may be available for the agent to query.

ACORDA consequently activates its a posteriori choice mechanisms, which consist
in attempting to satisfy additional self-observations of the top-down conjunctive query
taking into account the possible satisfaction of more expect not/1 clauses or preference
rules. Each such observation is an ACORDA cycle in its own right, counting on enabled
oracles’ activation to perform external queries if necessary. Any such observation can
spawn even more observations, as long as there are clauses to inspect and oracles to
interrogate. Information gleaned from the oracles can produce numerous side-effects,
besides the possible defeat of previous abducibles, namely: supporting new abductions;
activating preference relations previously unaccounted for; or even lending support by
themselves to the satisfaction of the original query.

The results from performed experiments are currently tabled, to allow for reuse of the
retrieved information for the current knowledge state. We assume the environment does
not change while the ACORDA system is performing its abductive reasoning. There are
many situations in which this assumption would be unacceptable but, once again, these
fall outside the immediate scope of the project. They are discussed as current system
limitations in section 5.

Eventually, the ACORDA system will have defeated enough models that it can
guarantee a single one will emerge with the additional information gathered, or that
it has exhausted every means to make the choice. In any case, it will commit to the
literals gathered from the observations, querying the user for the final choice, if indeed
it fails to produce a single course of evolution by itself.

The finalizing committing update can, of course, trigger additional observations and
turn the attention of the system to other matters, but always in a well-founded manner,
so that the agent is capable of autonomous reasoning justified by its initial program

150 Empirically Successful Computerized Reasoning

and self-guided evolution. We believe that the ACORDA system is an interesting ex-
periment on new forms of combined reasoning that deal with new emerging problems
already beginning to present themselves. Moreover, even though an experimental sys-
tem, it’s already able to solve empirically concrete real-world problems of some degree
of complexity with classical LP declarative programming style, as the next section will
demonstrate.

4 Modelling Prospective Logic Programs

We will now resume the issue of codifying the example of differential diagnosis in den-
tistry presented in section 1.1.1 using the ACORDA system. The results obtained
during an interactive diagnosis section are then detailed, along with annotations on the
workings of the system.

The scenario can be intuitively modelled using the provided syntax for prospective
logic programs on the ACORDA system, resulting in the initial program exhibited
below. It should be noted that, as a matter of coding syntax, the relevance operator /
is represented by the atom <|.

==== Initial Signs ====

on_observable(prog,prog,percussion_pain_cause) <- percussion_pain. (A)

==== First Phase of Differential Diagnosis ====

percussion_pain_cause <- periapical_lesion.
percussion_pain_cause <- vertical_fracture.
percussion_pain_cause <- horizontal_fracture.

periapical_lesion <- confirm(periapical_lesion).
expect(periapical_lesion) <- profound_caries.
expect(periapical_lesion) <- % expected in the context of an observation:

on_observable(prog,prog,percussion_pain_cause). (B)
expect_not(periapical_lesion) <- fracture_traces, not radiolucency.

vertical_fracture <- confirm(vertical_fracture).
expect(vertical_fracture) <- on_observable(prog,prog,percussion_pain_cause).
expect_not(vertical_fracture) <- radiolucency, not fracture_traces.

horizontal_fracture <- confirm(horizontal_fracture).
expect(horizontal_fracture) <- on_observable(prog,prog,percussion_pain_cause).
expect_not(horizontal_fracture) <- radiolucency, not fracture_traces.

periapical_lesion <| horizontal_fracture <-
profound_caries, not percussion_pain.

periapical_lesion <| vertical_fracture <-
profound_caries, not percussion_pain.

horizontal_fracture <| vertical_fracture <- low_mobility.
vertical_fracture <| horizontal_fracture <- high_mobility.

Empirically Successful Computerized Reasoning 151

==== Second Phase of Differential Diagnosis ====

on_observable(prog,prog,periapical_lesion_source) <- (C)
periapical_lesion.

periapical_lesion_source <- endodontic_lesion.
periapical_lesion_source <- periodontal_lesion.

endodontic_lesion <- confirm(endodontic_lesion).
expect(endodontic_lesion) <-

on_observable(prog,prog,periapical_lesion_source).
expect(endodontic_lesion) <- devitalization.
expect(endodontic_lesion) <- not gingival_pockets.
expect_not(endodontic_lesion) <- (D)

gingival_pockets, not devitalization.

periodontal_lesion <- confirm(periodontal_lesion).
expect(periodontal_lesion) <-

on_observable(prog,prog,periapical_lesion_source).
expect(periodontal_lesion) <- devitalization.
expect(periodontal_lesion) <- gingival_pockets.
expect_not(periodontal_lesion) <- neg_gingival_pockets.

periodontal_lesion <| endodontic_lesion <- gingival_pockets.

==== Available Experiments ====

radiolucency <- observable(prog,xray,radiolucency).
fracture_traces <- observable(prog,xray,fracture_traces). (E)
high_mobility <- observable(prog,mobility_check,high_mobility).
low_mobility <- observable(prog,mobility_check,low_mobility).
gingival_pockets <- observable(prog,pockets_check,gingival_pockets).
neg_gingival_pockets <-

observable(prog,pockets_check,gingival_pockets,false).
devitalization <- observable(prog,periapical_xray,devitalization).

==== Available Oracles ====

observable(prog,xray,Q,S) <- oracle,prolog((oracleQuery(xray(Q),T),S = T)).
observable(prog,mobility_check,Q,S) <-

oracle,prolog((oracleQuery(mobility_check(Q),T),S = T)).
observable(prog,pockets_check,Q,S) <-

oracle,prolog((oracleQuery(pockets_check(Q),T),S = T)).
observable(prog,periapical_xray,Q,S) <-

oracle,prolog((oracleQuery(periapical_xray(Q),T),S = T)).

4.1 Interactive Session Results with ACORDA

After the initial program is loaded into the ACORDA evolving knowledge base, we
provide the patient’s signs (i.e. percussion_pain) as an external update to the system.

152 Empirically Successful Computerized Reasoning

Running a cycle of introspection over the ACORDA system produces the reasoning steps
detailed below. The question marks are used to indicate queries to an external oracle,
followed by the answer instances given by it.

1. About to launch new introspection on selected active observables:
[on_observable(prog,prog,percussion_pain_cause)]

2. Relevant abducibles for current introspection:
[horizontal_fracture,periapical_lesion,vertical_fracture]

3. Partial models remaining after a priori preferences:
[[horizontal_fracture],[periapical_lesion],[vertical_fracture]]

4. About to launch new introspection on selected active observables:
[on_observable(prog,prog,percussion_pain_cause)]

5. Confirm observation: xray(fracture_traces)
(true, false or unknown)? false.

6. Confirm observation: xray(radiolucency)
(true, false or unknown)? true.

7. Relevant abducibles for current introspection:
[periapical_lesion]

8. Partial models remaining after a priori preferences:
[[periapical_lesion]]

The event percussion_pain triggers the active observable percussion_pain_cause
(cf. rule A) which is a program-to-program generated observation, that is, it will cause
a top-down query to be launched to attempt satisfaction of the observable. The system
goes down the derivation tree for percussion_pain_cause, encountering even-loops
over default negation for each relevant abducible in the query, i.e. the literals that are
output in 2. In this case, the expectations are triggered only in the context of the
currently active observation (cf. rule B).

Afterwards, ACORDA launches queries for the a priori preferences which concern
the relevant abducibles, which can themselves be dependent on abductive or observable
loops. These abducibles and preferences determine the transformation specified in sec-
tion 2.3. For the computed residual program and the set of abducibles in 2, we show
part of the performed transformation, which is then placed in the XASP clause store:

percussion_pain_cause <- horizontal_fracture.
percussion_pain_cause <- periapical_lesion.
percussion_pain_cause <- vertical_fracture.
confirm(horizontal_fracture) <- not expect_not(horizontal_fracture).
confirm(periapical_lesion) <- not expect_not(periapical_lesion).
confirm(vertical_fracture) <- not expect_not(vertical_fracture).
expect_not(horizontal_fracture) <- radiolucency,not fracture_traces.
expect_not(periapical_lesion) <- fracture_traces,not radiolucency.
expect_not(vertical_fracture) <- radiolucency,not fracture_traces.

horizontal_fracture <-
abduce, confirm(horizontal_fracture), not periapical_lesion,
not vertical_fracture, not neg_horizontal_fracture.

Empirically Successful Computerized Reasoning 153

false <- abduce, horizontal_fracture, neg_horizontal_fracture.

periapical_lesion <-
abduce, confirm(periapical_lesion), not horizontal_fracture,
not vertical_fracture, not neg_periapical_lesion.

false <- abduce, periapical_lesion, neg_periapical_lesion.

vertical_fracture <-
abduce, confirm(vertical_fracture), not horizontal_fracture,
not periapical_lesion, not neg_vertical_fracture.

false <- abduce,vertical_fracture,neg_vertical_fracture.

The ’false’ literal is equivalently used here to model integrity constraints in our program,
instead of the usual empty head that is adopted in Smodels’ implementation. The
potential observations which can satisfy some of the literals in the residual programs,
namely the expect not/1 clauses are codified over even-loops, but are ommitted for
clarity, since in the first phase of the system no external observations are allowed.

After the clauses are stored, the stable models of the processed residual program are
computed, resulting in at least a model for each abducible that could not be defeated
by contextual preference rules. In this case no active preferences hold and no obser-
vations are allowed, so the resulting stable models correspond to all the confirmed ab-
ducibles: periapical_lesion, horizontal_fracture and vertical_fracture. Since
the system was not able to abduce just one model from a priori preferences, the choice
mechanisms are activated and a new prospective search is launched for ways to defeat
some of the models, as described in section 3.

However, the current knowledge state is insufficient to enact any kind of choice,
so the system is forced to probe the external environment for additional information.
This means that the oracle mechanisms are activated, and for the new observations
the system decrees that experiments can now be performed. A new top-down query is
launched, and as the derivation tree is traversed for new confirmation of relevant ab-
ducibles, opportunities to perform experiments are encountered. This is the case for the
satisfaction of expect_not(periapical_lesion) which depends on fracture_traces
and not radiolucency.

In an attempt to satisfy fracture_traces, ACORDA encounters an observable
clause (cf. rule E). This clause depends on fracture traces being found on X-Ray imag-
ing, so it probes the environment for just such an exam. No fracture traces are found,
so periapical lesion can be confirmed under support from the oracle experiment. How-
ever, the subsequent experiment for radiolucency reveals positive results which can
guarantee defeat of the other two abducibles, meaning that periapical_lesion is now
the only expected and confirmed abducible. ACORDA can now successfully commit to
a single diagnosis.

As mentioned above, in the cases where the system cannot guarantee a single abduc-
tive stable model after exhausting all the introspections, it queries the user to perform
the final choice over the list of surviving abducibles. This behaviour could be refined,
however, by launching separate simulations assuming each of the remaining solutions,
and performing extra levels of prospective lookahead for additional ways to defeat fur-
ther models. This addition is considered in the future work mentioned in section 5.

154 Empirically Successful Computerized Reasoning

After the abduction of periapical lesion as the most likely cause for the sign of
percussion pain on the patient’s tooth, the attention of the system turns to satisfy a
new observation for the source of such lesion. As such, a new cycle of introspection on
top of these results can produce a more detailed diagnosis, as depicted below:

1. About to launch new introspection on selected active observables:
[on_observable(prog,prog,periapical_lesion_source)]

2. Relevant abducibles for current introspection:
[endodontic_lesion,periodontal_lesion]

3. Partial models remaining after a priori preferences:
[[endodontic_lesion],[periodontal_lesion]]

4. About to launch new introspection on selected active observables:
[on_observable(prog,prog,periapical_lesion_source)]

5. Confirm observation: pockets_check(gingival_pockets)
(true, false or unknown)? true.

6. Confirm observation: periapical_xray(devitalization)
(true, false or unknown)? true.

7. Relevant abducibles for current introspection:
[endodontic_lesion,periodontal_lesion]

8. Partial models remaining after a priori preferences:
[[periodontal_lesion]]

This time, the commitment to the abduction of periapical_lesion triggers the
activation of program-to-program observable periapical_lesion_source (cf. rule C).
The relevant expected abducibles that satisfy this observation are endodontic_lesion
and periodontal_lesion, both being confirmed under the current knowledge state.
Again, no active preferences hold a priori, that is, there are no preference rules relevant
to the current abducibles which do not depend on any external observations. As a result,
the Stable Models of the transformed partial residual program correspond once again
to all relevant abducibles.

The choice mechanisms are activated and the top goal is relaunched in an attempt to
acquire additional information, activating the oracles for external environment probing.
The attempt to defeat endodontic_lesion calls for a gingival pockets measurement (cf.
rule D), which reveals the existence of pockets in the vicinity of the patient’s tooth. On
the other hand, a periapical X-Ray is needed to confirm that no endodontic therapy was
performed on that tooth. This experiment, however, reveals just that, and so ACORDA
is unable to defeat the endodontic_lesion abducible using this expect not/1 clause.

Attempting to defeat periodontal_lesion by means of expect not/1 clauses proves
impossible as well, due once again to the ambiguous results from the experiments. Both
abducibles are again confirmed. However, a preference for periodontal_lesion is in
place, given the existence of gingival pockets, so a unique Stable Model emerges, yielding
the final diagnosis of periodontal_lesion.

The system could now be extended to handle different treatment hypotheses accord-
ing to the result of the diagnosis. It would just be a matter of adding new triggers
for additional observations that would represent the adequate treatment. Abducibles in
this case would be the expected treatments and the preference model could be extended
to include the patient’s own preferences.

Empirically Successful Computerized Reasoning 155

5 Conclusions and Future Work

The ACORDA project is still in its early beginnings, but even now it addresses several
new pragmatic problems involving self-modifying logic programs by combining some of
the best results from research and development of logic-based systems in the last decade.
Preferential reasoning techniques are applied and the stable models semantics is used
in an effective way by means of the XASP package. The relevance property enjoyed
by top-down querying in XSB Prolog is crucial in preparation for our use of Smodels,
and so we can expect to handle problems with a large rule-base, as we do not need to
compute whole models, and none of those with irrelevant abducibles, in order to derive
the relevant abductive stable models specific to the problem at hand.

This is one of the main problems which abduction over stable models has been
facing, in that it always has to consider all the abducibles in a program and then
progressively defeat all those that are irrelevant for the problem at hand. This is not
so in the ACORDA system, since we begin by a top-down derivation that immediately
constrains the set of abducibles that are relevant to the agent’s observations and meta-
goals. However, the encoding of abducibles as even-loops over default negation provides
a declarative way in which to describe the abductive process, and the computation of
stable models of the residual program is a natural way to obtain all the possible 2-valued
models, considering also the a priori preferences, themselves coded as even loops over
default negation.

Since virtually every element that is necessary to the process of abduction is encoded
in the system’s knowledge base, it automatically becomes a possible target of revision,
meaning that the agent can update itself in order to change its preferences, and even the
abductive rules, supervening old rules and adding new ones at will. Only the process
of simulation in itself needs to remain separate, but that is just a practical consequence
of the well-known self-reference problem. A program that simulates another program’s
future cannot be inside that very program. The process must be executed by an external
system that is not included in the model that it is trying to simulate.

There are currently several avenues of improvement of the ACORDA system, or-
thogonal to several fields of active research in logic programming. To begin with, the
stable models semantics may not be sufficient to model program evolution, since it does
not guarantee the existence of models. Once we consider non-deterministic evolution of
an agent, especially if it is expected to retrieve new rules from the environment or to
compose old rules to form new ones or learn them, we cannot guarantee that odd-loops
over default negation will not be part of the program somewhere in the future. If that
happens, evolution is immediately halted, as stable models does not provide any model
in that case.

It can be argued that inserting an odd-loop over default negation is simply a case
of bad programming, and as such, it should never appear at all. However, if our agent
makes a mistake, we want at least to give it an opportunity to revise that mistake,
and not kill its evolution altogether. Fortunately, recent research on logic programming
semantics has produced the Revised Stable Models [PP05] semantics, which elegantly
solves this problem and brings a whole new host of desirable properties to the original
SM semantics. Working implementations have already been developed and they will
soon be integrated into the ACORDA system.

156 Empirically Successful Computerized Reasoning

The abductive process and the system of a priori preferences can be improved as
well, in order to allow for the abduction of a set of abducibles. It will be necessary
to specify new ways in which we can express preferences over these sets, but work is
already well underway in this regard. Abduction of multiple literals is, however, already
possible in the current system, by making single abducibles themselves stand for sets of
“abducible” literals. One just needs to carefully model all the relevant combinations of
literals that one would be inclined to expect.

The integration of action prospections is also a must to tackle even more complex
problems and applications, in order to deal with pre- and post-conditions. Namely, the
pre-conditions of an action must be evaluated before the update for the action actually
takes place, but the post-conditions must also be taken in consideration during the
simulation and before the real action is executed. Also, we would like to extend the
mechanism to an arbitrarily long sequence of actions, which would require an extensible
amount of lookahead into the future.

In fact, there is a wide variety of problems for which we would like to be able to
arbitrarily extend the future lookahead that is possible within the ACORDA system.
One of the most important challenges in future developments is devising a way to do
this that will also allow the specification of the degree of self-control over the amount
of lookahead that the agent performs.

The need for a finer time stamping of events is also growing, since it would permit
generalization of the validity of experiments. Instead of using tabling to hold the results
of experiments, we would like to specify a time interval during which those results are
assumed valid. This would be the first step in which the system could be extended
to handle environment changes during simulation, and could even be used to model
reactions of the system to such changes, or to introduce timeouts on the abductive
process, if it proves to be taking too long.

Preferences over observables will also be desirable, since not every observation costs
the same for the agent. Performing an X-Ray costs more than checking for tooth mobility
or gingival pockets, and these differences should be modelled directly in the system. It
would also be interesting to study more general ways of selecting the most interesting
internal observations for ACORDA to pay attention to at each evolution step.

We have just started exploration of a territory that is vast in possibilities and, as
such, we come out bearing more questions than answers. Even if we have a working sys-
tem for such autonomous preferential reasoning and self-updating, the more interesting
possibilities are still farther ahead, as we attempt to broach more and more of the goal
of completely automated artificial reasoning, adumbrating its combinations.

6 Acknowledgments

We would like to thank Joana Nogueira for preparing and supplying scientific infor-
mation for the case study on differential medical diagnosis, Pierangelo Dell’Acqua for
constructive criticism on the definition of several specification and operational issues
regarding the ACORDA system, and a number of colleagues at DEIS, U. Bologna, for
prior stimulating discussions.

Empirically Successful Computerized Reasoning 157

References

[ABLP02] J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic pro-
grams. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Procs. of the
8th European Conf. on Logics in Artificial Intelligence (JELIA’02), LNCS
2424, pages 50–61, Cosenza, Italy, September 2002. Springer.

[ALP+00] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przy-
musinski. Dynamic updates of non-monotonic knowledge bases. J. Logic
Programming, 45(1-3):43–70, September/October 2000.

[AP00] J. J. Alferes and L. M. Pereira. Updates plus preferences. In M. O. Aciego,
I. P. de Guzmán, G. Brewka, and L. M. Pereira, editors, Procs. of JELIA’00,
LNAI 1919, pages 345–360, Málaga, Spain, 2000. Springer.

[APS04] J. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded se-
mantics and generalized stable models via tabled dual programs. Theory and
Practice of Logic Programming, 4(4):383–428, July 2004.

[CSW] L. Castro, T. Swift, and D. S. Warren. XASP: Answer Set Programming with
XSB and Smodels. http://xsb.sourceforge.net/packages/xasp.pdf.

[DMS] N. Drakos, R. Moore, and H. Singh. The XSB System Programmer’s Manual.
http://xsb.sourceforge.net/manual1/.

[DP05] P. Dell’Acqua and L. M. Pereira. Preferential theory revision. In L. M.
Pereira and G. Wheeler, editors, Procs. Computational Models of Scientific
Reasoning and Applications, pages 69–84, Universidade Nova de Lisboa, Lis-
bon, Portugal, September 2005.

[DP07] P. Dell’Acqua and L. M. Pereira. Preferential theory revision (extended
version). J. Applied Logic, 2007. Forthcoming.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. A. Bowen, editors, 5th Intl. Logic Programming
Conf., pages 1070–1080. MIT Press, 1988.

[NS97] I. Niemelä and P. Simons. Smodels: An implementation of the stable model
and well-founded semantics for normal logic programs. In J. Dix, U. Furbach,
and A. Nerode, editors, 4th Intl. Conf. on Logic Programming and Nonmono-
tonic Reasoning, LNAI 1265, pages 420–429, Berlin, 1997. Springer.

[PP05] L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for
logic programs. In 12th Portuguese Intl. Conf. on Artificial Intelligence
(EPIA’05), LNAI 3808, pages 29–42, Covilhã, December 2005. Springer.

[Swi99] T. Swift. Tabling for non-monotonic programming. Annals of Mathematics
and Artificial Intelligence, 25(3-4):201–240, 1999.

[vGRS91] A. van Gelder, K. Ross, and J. Schlipf. Unfounded sets and well-founded
semantics for general logic programs. JACM, 38(3):620–650, 1991.

158 Empirically Successful Computerized Reasoning

System Description:

The Cut-Elimination System CERES ∗

Matthias Baaz1, Stefan Hetzl2, Alexander Leitsch2,
Clemens Richter2, Hendrik Spohr2

1Institute of Discrete Mathematics and Geometry (E104),
Vienna University of Technology, Wiedner Hauptstraße 8-10,

1040 Vienna, Austria
baaz@logic.at

2Institute of Computer Languages (E185),
Vienna University of Technology, Favoritenstraße 9,

1040 Vienna, Austria
{hetzl|leitsch|richter|spohr}@logic.at

Abstract

Cut-elimination is the most prominent form of proof transformation in logic.
The elimination of cuts in formal proofs corresponds to the removal of intermediate
statements (lemmas) in mathematical proofs. The cut-elimination method CERES
(cut-elimination by resolution) works by constructing a set of clauses from a proof
with cuts. Any resolution refutation of this set then serves as a skeleton of an
LK-proof with only atomic cuts.

The use of resolution and the enormous size of (formalized) mathematically rele-
vant proofs suggest an implementation able to handle rather complex cut-elimination
problems. In this paper we present an implementation of CERES: the system CERES.
It already implements an improvement based on an extension of LK to the calcu-
lus LKDe containing equality rules and rules for introduction of definitions which
makes it easier to formalize and interpret mathematical proofs in LK. Furthermore
it increases the efficiency of the cut-elimination method. The system CERES already
performs well in handling quite large proofs.

1 Introduction

Proof analysis is a central mathematical activity which proves crucial to the development
of mathematics. Indeed many mathematical concepts such as the notion of group or the
notion of probability were introduced by analyzing existing arguments. In some sense
the analysis and synthesis of proofs form the very core of mathematical progress [12, 13].

Cut-elimination introduced by Gentzen [8] is the most prominent form of proof
transformation in logic and plays an important role in automating the analysis of math-
ematical proofs. The removal of cuts corresponds to the elimination of intermediate

∗supported by the Austrian Science Fund (project no. P17995-N12)

Empirically Successful Computerized Reasoning 159

statements (lemmas) from proofs resulting in a proof which is analytic in the sense,
that all statements in the proof are subformulas of the result. Therefore, the proof of a
combinatorial statement is converted into a purely combinatorial proof. Cut elimination
is therefore an essential tool for the analysis of mathematical proofs, especially to make
implicit parameters explicit. Cut free derivations allow for

• the extraction of Herbrand disjunctions, which can be used to establish bounds
on existential quantifiers (e.g. Luckhardt’s analysis of the Theorem of Roth [11]).

• the construction of interpolants, which allow for the replacement of implicit defi-
nitions by explicit definitions according to Beth’s Theorem.

• the calculation of generalized variants of the end formula.

In a formal sense Girard’s analysis of van der Waerden’s theorem [9] is the application
of cut-elimination to the proof of Fürstenberg/Weiss with the “perspective” of obtaining
van der Waerden’s proof. Indeed an application of a complex proof transformation like
cut-elimination by humans requires a goal oriented strategy.

Note that cut-elimination is non-unique, i.e. there is no single cut-free proof which
represents the analytic version of a proof with lemmas. Therefore the application of
purely computational methods on existing proofs may even produce new interesting
proofs. Indeed, it is non-uniqueness which makes computational experiments with cut-
elimination interesting [3]. The experiments can be considered as a source for a base
of proofs in formal format which provide different mathematical and computational
information.

CERES [5, 6] is a cut-elimination method that is based on resolution. The method
roughly works as follows: The structure of the proof containing cuts is mapped to an
unsatisfiable set of clauses C (the characteristic clause set). A resolution refutation of
C, which is obtained using a first-order theorem prover, serves as a skeleton for the new
proof which contains only atomic cuts. In a final step also these atomic cuts can be
eliminated, provided the (atomic) axioms are valid sequents; but this step is of minor
mathematical interest and of low complexity. In the system CERES1 this method of cut-
elimination has been implemented. The system is capable of dealing with formal proofs
in an extended version of LK, among them also very large ones (i.e. proofs with more
than 1500 nodes and cut-elimination has been done within 14 seconds).

The extension of CERES to LKDe a calculus containing definition introductions and
equality rules [10] moves the system closer to real mathematical proofs. In particular,
introduction of definitions and concepts is perhaps the most significant activity of a
mathematician in structuring proofs and theories. By its high efficiency (the core of the
method is first-order theorem proving by resolution and paramodulation) CERES might
become a strong tool in automated proof mining and contribute to an experimental
culture of computer-aided proof analysis in mathematics.

1available at http://www.logic.at/ceres/

160 Empirically Successful Computerized Reasoning

2 The System CERES

The cut-elimination system CERES is written in ANSI-C++. There are two main tasks.
One is to compute an unsatisfiable set of clauses characterizing the cut formulas. This
is done by automatically extracting the so-called characteristic clause set CL(ϕ). The
other is to generate a resolution refutation of CL(ϕ) by an external theorem prover2,
and to compute the necessary projections of ϕ w.r.t. the clauses in CL(ϕ) actually used
for the refutation. A projection of ϕ modulo a clause C ∈ CL(ϕ) is gained by applying
all inference rules of ϕ not operating on cut ancestors to the initial sequents of C. The
properly instantiated projections are concatenated, using the refutation obtained by the
theorem prover as a skeleton of a proof with only atomic cuts.

The extraction of the characteristic clause set CL(ϕ) from an LKDe-proof ϕ is
defined inductively. For every node ν of ϕ either:

• If ν is an occurrence of an axiom S and S′ is the subsequent of S containing only
ancestors of cut formulas then Cν = {S′ }.

• Let ν1, ν2 be the predecessors of ν in a binary inference then we distinguish:

– The auxiliary formulas of ν1, ν2 are ancestors of cut formulas then Cν =
Cν1 ∪ Cν2 .

– Otherwise Cν = Cν1 ×Cν2 , where C ×D = {C ◦D |C ∈ C, D ∈ D } and C ◦D
is the merge of the clauses C and D.

• Let ν ′ be the predecessor of ν in a unary inference then Cν = Cν′ .

The characteristic clause set CL(ϕ) is defined as Cν where ν is the root node of ϕ.
The definition rules of LKDe directly correspond to the extension principle (see [7])

in predicate logic. It simply consists in introducing new predicate- and function sym-
bols as abbreviations for formulas and terms. Mathematically this corresponds to the
introduction of new concepts in theories. Let A be a first-order formula with the free
variables x1, . . . , xk (denoted by A(x1, . . . , xk) and P be a new k-ary predicate symbol
(corresponding to the formula A). Then the rules are:

A(t1, . . . , tk),Γ ` ∆
P (t1, . . . , tk),Γ ` ∆

defP : l
Γ ` ∆, A(t1, . . . , tk)
Γ ` ∆, P (t1, . . . , tk)

defP : r

for arbitrary sequences of terms t1, . . . , tk. There are also definition introduction rules
for new function symbols which are of similar type. The equality rules are:

Γ1 ` ∆1, s = t A[s]Λ,Γ2 ` ∆2

A[t]Λ,Γ1,Γ2 ` ∆1,∆2
=: l1

Γ1 ` ∆1, t = s A[s]Λ,Γ2 ` ∆2

A[t]Λ,Γ1,Γ2 ` ∆1,∆2
=: l2

for inference on the left and

Γ1 ` ∆1, s = t Γ2 ` ∆2, A[s]Λ
Γ1,Γ2 ` ∆1,∆2, A[t]Λ

=: r1
Γ1 ` ∆1, t = s Γ2 ` ∆2, A[s]Λ

Γ1,Γ2 ` ∆1,∆2, A[t]Λ
=: r2

2The current version of CERES uses the automated theorem prover Otter (see http://www-unix.mcs.

anl.gov/AR/otter/), but any refutational theorem prover based on resolution and paramodulation may
be used.

Empirically Successful Computerized Reasoning 161

on the right, where Λ denotes a set of positions of subterms where replacement of s by
t has to be performed. We call s = t the active equation of the rules. Note that, on
atomic sequents, the rules coincide with paramodulation – under previous application of
the most general unifier.

Concerning the extension of the CERES-method from LK to LKDe, equality rules
appearing within the input proof are propagated to the projections like any other binary
rules. During theorem proving equality is treated by paramodulation; its application
within the final clausal refutation is then transformed to the appropriate equality rules in
LKDe. The definition introductions do not require any other special treatment within
CERES than all other unary rules; in particular, they have no influence on the theorem
proving part.

Since the restriction to skolemized proofs is crucial to the CERES-method, the sys-
tem also performs skolemization (according to Andrew’s method [2]) on the input proof.

The system CERES expects an LKDe proof of a sequent S and a set of axioms as
input, and, after validation of the input proof, computes a proof of S containing at most
atomic-cuts. Input and output are formatted using the well known data representation
language XML. This allows the use of arbitrary and well known utilities for editing,
transformation and presentation and standardized programming libraries. To increase
the performance and avoid redundancy, most parts of the proofs are internally repre-
sented as directed acyclic graphs. This representation turns out to be very handy, also
for the internal unification algorithms.

The formal analysis of mathematical proofs (especially by a mathematician as a pre-
and post-“processor”) relies on a suitable format for the input and output of proofs,
and on an appropriate aid in dealing with them. We developed an intermediary proof
language connecting the language of mathematical proofs with LKDe and the compiler
HLK3 transforming proofs written in this higher-level language to LKDe. Furthermore
we implemented a proof tool4 with a graphical user interface, allowing a convenient input
and analysis of the output of CERES. Thereby the integration of definition- and equality-
rules into the underlying calculus plays an essential role in overlooking, understanding
and analyzing complex mathematical proofs by humans.

3 Example

The example proof below is taken from [14]; it was formalized in LK and analyzed by
a former version of CERES in the paper [3]. Here we use the extensions by equality
rules and definition-introduction in LKDe to give a simpler formalization and analysis
of the proof. The end-sequent formalizes the statement: on a tape with infinitely many
cells which are all labelled by 0 or by 1 there are at least two cells labelled by the same
number. f(x) = 0 expresses that the cell number x is labelled by 0. Indexing of cells
is done by number terms defined over 0, 1 and +. The proof ϕ below uses two lemmas:
(1) there are infinitely many cells labelled by 0 and (2) there are infinitely many cells
labelled by 1. The proof shows the statement by a case distinction: If there are infinitely
many cells labelled by 0 then choose two of them, otherwise there are infinitely many

3available at http://www.logic.at/hlk/
4available at http://www.logic.at/prooftool/

162 Empirically Successful Computerized Reasoning

cells labelled by 1 and we can then choose two of them. In each case there are two
cells with the same value. These lemmas are eliminated by CERES and a more direct
argument is obtained in the resulting proof ϕ′. Ancestors of the cuts in ϕ are indicated
in boldface.

Let ϕ be the proof
(τ)

A ` I0, I1
(ε0)

I0 ` ∃p∃q(p 6= q ∧ f(p) = f(q))
A ` ∃p∃q(p 6= q ∧ f(p) = f(q)), I1

cut (ε1)
I1 ` ∃p∃q(p 6= q ∧ f(p) = f(q))

A ` ∃p∃q(p 6= q ∧ f(p) = f(q))
cut

where τ =
(τ ′)

A ` f(n0 + n1) = 0, f(n1 + n0) = 1
A ` f(n0 + n1) = 0,∃k.f(n1 + k) = 1 ∃r

A ` ∃k.f(n0 + k) = 0,∃k.f(n1 + k) = 1 ∃r

A ` ∃k.f(n0 + k) = 0,∀n∃k.f(n + k) = 1 ∀: r

A ` ∀n∃k.f(n + k) = 0,∀n∃k.f(n + k) = 1 ∀: r

A ` I0,∀n∃k.f(n + k) = 1
defI0 : r

A ` I0, I1
defI1 : r

For τ ′ =

f(n0 + n1) = 0 ` f(n0 + n1) = 0

(Axiom)
` n1 + n0 = n0 + n1 f(n1 + n0) = 1 ` f(n1 + n0) = 1

f(n0 + n1) = 1 ` f(n1 + n0) = 1
=: l1

f(n0 + n1) = 0 ∨ f(n0 + n1) = 1 ` f(n0 + n1) = 0, f(n1 + n0) = 1
∨: l

∀x(f(x) = 0 ∨ f(x) = 1) ` f(n0 + n1) = 0, f(n1 + n0) = 1
∀: l

A ` f(n0 + n1) = 0, f(n1 + n0) = 1
defA: l

And for i = 1, 2 we define the proofs εi =
ψ ηi

f(s) = i, f(t) = i ` s 6= t ∧ f(s) = f(t)
∧: r

f(s) = i, f(t) = i ` ∃q(s 6= q ∧ f(s) = f(q)) ∃: r

f(s) = i, f(t) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∃: r

f(n0 + k0) = i,∃k.f(((n0 + k0) + 1) + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∃: l

f(n0 + k0) = i,∀n∃k.f(n + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∀: l

∃k.f(n0 + k) = i,∀n∃k.f(n + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∃: l

∀n∃k.f(n + k) = i,∀n∃k.f(n + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∀: l

∀n∃k.f(n + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) c: l

Ii ` ∃p∃q(p 6= q ∧ f(p) = f(q))
defIi : l

for s = n0 + k0, t = ((n0 + k0) + 1) + k1, and the proofs
ψ =

(axiom)
` (n0 + k0) + (1 + k1) = ((n0 + k0) + 1) + k1

(axiom)
n0 + k0 = (n0 + k0) + (1 + k1) `

n0 + k0 = ((n0 + k0) + 1) + k1 `
=: l1

` n0 + k0 6= ((n0 + k0) + 1) + k1
¬: r

Empirically Successful Computerized Reasoning 163

and ηi =

f(s) = i ` f(s) = i

f(t) = i ` f(t) = i
(axiom)
` i = i

f(t) = i ` i = f(t)
=: r2

f(s) = i, f(t) = i ` f(s) = f(t)
=: r2

The characteristic clause set is (after variable renaming)

CL(ϕ) = {` f(x+ y) = 0, f(y + x) = 1; (C1)

f(x+ y) = 0, f(((x+ y) + 1) + z) = 0 `; (C2)

f(x+ y) = 1, f(((x+ y) + 1) + z) = 1 `} (C3).

The axioms used for the proof are the standard axioms of type A ` A and instances of
` x = x, of commutativity ` x+ y = y + x, of associativity ` (x+ y) + z = x+ (y + z),
and of the axiom

x = x+ (1 + y) `,

expressing that x+ (1 + y) 6= x for all natural numbers x, y.
The comparison with the analysis of Urban’s proof formulated in LK (without equal-

ity) [3] shows that the proof based on equality is much more transparent. In fact the
set of characteristic clauses contains only 3 elements (instead of 5), which are also sim-
pler. This also facilitates the refutation of the clause set and makes the output proof
simpler and more transparent. On the other hand, the analysis below shows that the
mathematical argument obtained by cut-elimination is the same as in [3].

The program Otter found the following refutation of CL(ϕ) (based on hyperresolu-
tion only — without equality inference):

The first hyperesolvent, based on the clash sequence (C2;C1, C1), is

C4 = ` f(y + x) = 1, f(z + ((x+ y) + 1)) = 1, with the intermediary clause
D1 = f(((x+ y) + 1) + z) = 0 ` f(y + x) = 1.

The next clash is sequence is (C3;C4, C4) which gives C5 with intermediary clause D2,
where:

C5 = ` f(v′ + u′) = 1, f(v + u) = 1,
D2 = f(x+ y) = 1 ` f(v + u) = 1.

Factoring C5 gives C6:` f(v+u) = 1 (which roughly expresses that all fields are labelled
by 1). The final clash sequence (C3;C6, C6) obviously results in the empty clause ` with
intermediary clause D3: f(((x+y)+1)+z) = 1 `. The hyperresolution proof ψ3 in form
of a tree can be obtained from the following resolution trees, where C ′ and ψ′ stand for
renamed variants of C and of ψ, respectively:

ψ1: =
C1 C2

D1
res

C ′
1

C4
res

164 Empirically Successful Computerized Reasoning

ψ2: =
C ′

3 ψ1

D2
res

ψ′
1

C5
res

C6
factor

ψ3: =
ψ2 C ′′

3

D3
res

ψ′
2

` res

Instantiation of ψ3 by the uniform most general unifier σ of all resolutions gives a
deduction tree ψ3σ in LKDe; indeed, after application of σ, resolution becomes cut
and factoring becomes contraction. The proof ψ3σ is the skeleton of an LKDe-proof
of the end-sequent with only atomic cuts. Then the leaves of the tree ψ3σ have to be
replaced by the proof projections. E.g., the clause C1 is replaced by the proof ϕ[C1],
where s = n0 + n1 and t = n1 + n0:

f(s) = 0 ` f(s) = 0

(Axiom)
` t = s f(t) = 1 ` f(t) = 1

f(s) = 1 ` f(t) = 1 =: l

f(s) = 0 ∨ f(s) = 1 ` f(s) = 0, f(t) = 1 ∨: l

∀x(f(x) = 0 ∨ f(x) = 1) ` f(s) = 0, f(t) = 1 ∀: l

A ` f(s) = 0, f(t) = 1
defA: l

A ` ∃p∃q(p 6= q ∧ f(p) = f(q)), f(s) = 0, f(t) = 1
w: r

Furthermore C2 is replaced by the projection ϕ[C2] and C3 by ϕ[C3], where (for
i = 0, 1) ϕ[C2+i] =

ψ ηi

f(s) = i, f(t) = i ` s 6= t ∧ f(s) = f(t)
∧: r

f(s) = i, f(t) = i ` ∃q(s 6= q ∧ f(s) = f(q)) ∃: r

f(s) = i, f(t) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∃: r

f(s) = i, f(t) = i, A ` ∃p∃q(p 6= q ∧ f(p) = f(q)) w: l

Note that ψ, η0, η1 are the same as in the definition of ε0, ε1 above.
By inserting the σ-instances of the projections into the resolution proof ψ3σ and

performing some additional contractions, we eventually obtain the desired proof ϕ′ of
the end-sequent

A ` ∃p∃q(p 6= q ∧ f(p) = f(q))

with only atomic cuts. ϕ′ no longer uses the lemmas that infinitely many cells are
labelled by 0 and by 1, respectively.

4 Intended Extensions of CERES And Future Work

We plan to develop the following extensions of CERES:

Empirically Successful Computerized Reasoning 165

• As the cut-free proofs are often very large and difficult to interpret, we intend
to provide the possibility to analyze certain characteristics of the cut-free proof
(which are simpler than the proof itself). An important example are Herbrand
sequents which may serve to extract bounds from proofs (see e.g. [11]). We plan
to develop algorithms for extracting Herbrand sequents (also from proofs of non-
prenex sequents as indicated in [4]) and for computing interpolants, which allow
for the replacement of implicit definitions by explicit ones according to Beth’s
Theorem.

• In the present version CERES eliminates all cuts at once. But - for the application
to real mathematical proofs human user interaction is required — in particular
only interesting cuts (i.e. lemmas of mathematical importance) deserve to be
eliminated, others should be integrated as additional axioms.

• As CERES requires the skolemization of the end-sequent the original proof must be
transformed to Skolem form. We plan to develop an efficient reversed-skolemization-
algorithm, which transforms the theorem to be proved into its original form.

• A great challenge in the formal analysis of mathematical proofs lies in provid-
ing a suitable format for the input and output of proofs. We plan to improve
our intermediary proof language and to move closer to the “natural” language of
mathematical proofs.

To demonstrate the abilities of CERES and the feasibility of formalizing and analyzing
complex proofs of mathematical relevance, we currently investigate a well known proof of
the infinity of primes using topology (which may be found in [1]). Our aim is to eliminate
the topological concepts from the proof by means of CERES, breaking it down to a proof
solely based on elementary number arithmetic. This way one can obtain new insights
into the construction of prime numbers contained in the topological proof.

References

[1] M. Aigner, G. M. Ziegler: Proofs from THE BOOK. Springer, 1998.

[2] P. B. Andrews: Resolution in Type Theory, Journal of Symbolic Logic, 36, pp. 414–
432, 1971.

[3] M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: Cut-Elimination: Experiments
with CERES, Proc. LPAR 2004, pp. 481–495, Springer, 2004.

[4] M. Baaz, A. Leitsch: On Skolemization and Proof Complexity, Fundamenta Infor-
maticae, 20(4), pp. 353–379, 1994.

[5] M. Baaz, A. Leitsch: Cut-Elimination and Redundancy-Elimination by Resolution,
Journal of Symbolic Computation, 29, pp. 149–176, 2000.

[6] M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-Elimination, Journal of
Symbolic Computation, 41, pp. 381–410, 2006.

166 Empirically Successful Computerized Reasoning

[7] E. Eder: Relative complexities of first-order calculi, Vieweg, 1992.

[8] G. Gentzen: Untersuchungen über das logische Schließen, Mathematische
Zeitschrift, 39, pp. 405–431, 1934–1935.

[9] J. Y. Girard: Proof Theory and Logical Complexity, in Studies in Proof Theory,
Bibliopolis, Napoli, 1987.

[10] A. Leitsch, C. Richter: Equational Theories in CERES, unpublished (available
at http://www.logic.at/ceres/), 2005.

[11] H. Luckhardt: Herbrand-Analysen zweier Beweise des Satzes von Roth: polynomi-
ale Anzahlschranken, The Journal of Symbolic Logic, 54, pp. 234–263, 1989.

[12] G. Polya: Mathematics and plausible reasoning, Volume I: Induction and Analogy
in Mathematics, Princeton University Press, Princeton, New Jersey, 1954.

[13] G. Polya: Mathematics and plausible reasoning, Volume II: Patterns of Plausible
Inference, Princeton University Press, Princeton, New Jersey, 1954.

[14] C. Urban: Classical Logic and Computation Ph.D. Thesis, University of Cambridge
Computer Laboratory, 2000.

Empirically Successful Computerized Reasoning 167

CEL—A Short System Demonstration∗

Boontawee Suntisrivaraporn, Franz Baader, Carsten Lutz
Theoretical Computer Science, TU Dresden, Germany

{meng,baader,clu}@tcs.inf.tu-dresden.de

Introduction to the CEL system.

Description logics (DLs) are an important family of formalisms for reasoning about on-
tologies. CEL (Classifier for EL) is a free (for non-commercial use) LISP-based reasoner
for the description logic EL+ [2], supporting as its main reasoning task the computation
of the subsumption hierarchy induced by EL+ ontologies. The most distinguishing fea-
ture of CEL is that, unlike other modern DL reasoners, it implements a polynomial-time
algorithm, which allows it to process very large ontologies in reasonable time. The un-
derlying description logic EL+ is a practically useful sub-language of EL++ introduced
in [1]. Despite being less expressive than other description logics such as SHIQ and
OWL, it offers a selected set of expressive means that are tailored towards the formu-
lation of biological and medical ontologies, some of the most prominent of which are
the Gene Ontology (Go) [7], the Galen Medical Knowledge Base (Galen) [5], and the
Systematized Nomenclature of Medicine (Snomed) [3, 6].

The purpose of the present short paper is to demonstrate the functionalities of CEL

and their use in applications. The implemented algorithm is described in detail in [2].
In the following section, a quick guide to system usage will be given, including the
system requirements. In the last section, performance evaluation of CEL on real-world
life science ontologies will be discussed.

CEL at work.

The CEL system is available as a binary executable which can run on most Linux plat-
forms. The latest version is CEL v0.9b which includes all features illustrated in this
system demonstration. The distribution bundle can be obtained from:

http://lat.inf.tu-dresden.de/systems/cel/

The package consists of the CEL executable, the user manual, and some example EL+

ontologies. After extracting the bundle, the executable cel under bin can be invoked
without installation. However, the following system requirements are assumed:

• Linux operating system;1

∗This work was partially supported by the EU funded IST-2005-7603 FET Project Thinking Ontolo-
gies (TONES).

1It has been tested successfully on RedHat, Debian, and SuSE.

168 Empirically Successful Computerized Reasoning

Concept DL Syntax CEL Syntax

the top concept > top
the bottom concept ⊥ bottom
conjunction C1 u · · · u Cn (and C1 · · · Cn)
existential restriction ∃r.C (some r C)

Table 1: Syntax of EL+ concepts.

Ontology axioms DL Syntax CEL Syntax

primitive concept definition A v D (define-primitive-concept A D)

concept definition A ≡ D (define-concept A D)

general concept inclusion C v D (implies C D)

concept equivalence axiom C ≡ D (equivalent C D)

concept disjointness axiom C1 u · · · u Cn v ⊥ (disjoint C1 · · · Cn)

role domain axiom ∃r.> v C (define-primitive-role r :domain C)

role hierarchy axiom r v s (define-primitive-role r :parent s)
transitive role axiom r ◦ r v r (define-primitive-role r :transitive t)
right-identity axiom r ◦ s v r (define-primitive-role r :right-identity s)
left-identity axiom s ◦ r v r (define-primitive-role r :left-identity s)
complex role inclusion r1 ◦ r2 v s (role-inclusion (compose r1 r2) s)

Table 2: Syntax EL+ ontology axioms.

• Physical memory at least 128MB;2

• At least 8MB of available hard-disk space.

CEL as a stand-alone reasoner. In order to use CEL to classify an ontology, the user
must already have the ontology formulated in EL+ in a small extension of the KRSS
syntax [4], henceforth called CEL syntax. With this LISP-like syntax, it is easy to port
existing ontologies that have been used with well-known DL reasoners like FaCT and
RACER. Table 1 shows the concept constructors available in EL+ that can be used to
form concept descriptions. For building up ontologies, the expressive means shown in
Table 2 can be used, where conventionally A, B denotes a named concept, C, D concept
descriptions, and r, s named roles. Though only implies and role-inclusion axioms can
sufficiently model any EL+ ontology, it is often very useful and also makes the ontology
more comprehensible to provide auxiliary axioms. An EL+ ontology is effectively a
text file containing axioms of the forms shown in the right column of Table 1.

For example, Figure 1 shows a medical ontology about the concept Endocarditis (an
inflammation of a heart valve) formulated in CEL syntax. The user can either load this
ontology into the system by calling (load-ontology "med.tbox") or enter interactively
at the prompt each axiom of the ontology. The preprocess is carried out while the
ontology is being loaded, and once this is finished, (classify-ontology) can be invoked

2Considerably more memory may be needed for larger ontologies.

Empirically Successful Computerized Reasoning 169

(define-primitive-role contained-in)
(define-primitive-role part-of :parent contained-in :transitive t)
(define-primitive-role has-location :right-identity contained-in)

(define-primitive-concept Endocardium
(and Tissue

(some contained-in HeartWall)
(some contained-in HeartValve)))

(define-primitive-concept HeartWall
(and BodyWall

(some part-of Heart)))
(define-primitive-concept HeartValve

(and BodyValve
(some part-of Heart)))

(define-primitive-concept Endocarditis
(and Inflammation

(some has-location Endocardium)))
(define-primitive-concept Inflammation

(and Disease
(some acts-on Tissue)))

(define-concept Heartdisease
(and Disease

(some has-location Heart)))

(implies (and Heartdisease
(some has-location HeartValve))

CriticalHeartDisease)

Figure 1: An EL+ ontology from file med.tbox.

to classify all concept names occurring in the ontology (eager subsumption approach).
Subsumption query between two concept names can be queried using (subsumes? B

A). If this is called after classification, it simply looks up in the computed subsumption
hierarchy. Otherwise, it runs a single subsumption test and answers without needing to
classify the whole ontology first (lazy subsumption approach). After having classified
the whole ontology, CEL allows the user to output the classification results in different
formats: (output-supers) to output the subsumer sets for all concept names occurring
in the ontology; (output-taxonomy) to output the Hasse diagram of the subsumption
hierarchy, i.e., just the direct parent-child relationships; and (output-hierarchy) to
output the hierarchy as a graphical indented tree. As an example, Figure 2 depicts screen
shots of the results of (output-hierarchy) and (output-taxonomy) after classifying
the ontology med.tbox.

Through its command-line options, CEL can also work as a stand-alone reasoner
without interaction from users. For instance, the command line:

$cel -l filename -c -outputHierarchy -q

can be entered to load and classify an ontology from filename , and then output the
hierarchy. For a more detailed description of the CEL interface, we refer to the CEL user

170 Empirically Successful Computerized Reasoning

Figure 2: CEL with its innate interactive interface

manual (available on the CEL homepage).

CEL as a backend reasoner. Alternatively, the user can also exploit CEL reasoning
capabilities through the DIG interface3 and a graphical ontology editor. To do this, CEL

has to be started as a DIG reasoning server by the following command line:

$cel -digServer [port]

where port is defaulted to 8080 but can be overridden.
Once started in this mode, ontology editors can be connected to CEL and exploit

its reasoning power either locally or remotely via the Internet. The upper floating
dialog in Figure 3, “Reasoner Inspector,” displays the expressive means that can be
handled by CEL in terms of DIG language. The DIG interface for CEL has been tested
successfully with Protégé OWL editor.4 The main window in Figure 3 illustrates the
asserted subsumption hierarchy (input) and the inferred subsumption hierarchy (output)
within the editor, whereas the small floating dialog, “Connected to CEL 0.9,” displays
the interactions between the DIG client and the DIG server.

3The DIG (DL Implementation Group) interface is an XML-based standard that defines an interfacing
language for seamless communication between a DL service provider (DIG server) and a DL application
(DIG client). See http://dl.kr.org/dig/

4See http://protege.stanford.edu/plugins/owl/

Empirically Successful Computerized Reasoning 171

Figure 3: CEL as a DIG reasoner and Protégé OWL editor

Empirical Success of CEL.

We have compared the performance of CEL with three of the most advanced DL systems:
FaCT++ (v1.1.0), RacerMaster (v1.9.0), and Pellet (v1.3b). These systems implement
tableau-based decision procedures for expressive DLs in which subsumption is ExpTime-
complete. All experiments have been performed on a PC with 2.8GHz Intel Pentium
4 processor and 512MB memory running Linux v2.6.14. For Pellet, we used JVM v1.5
and set the Java heap space to 256MB (as recommended by the implementers).

Our experiments are based on three important bio-medical ontologies: Go, Galen,
and Snomed. Since Galen uses some expressivity that CEL cannot handle, we have
simplified it by removing inverse role axioms and treating functional roles as ordinary
ones, and obtained an EL+ ontology OGalen. (Of course, also the other reasoners,

which could have handled inverse and functional roles, were applied to OGalen rather
than full Galen.) We have obtained two other benchmarks, OGo and OSnomed, from
the other two ontologies. However, Snomed has two right-identity rules similar to the
third role axiom in our example (see Fig. 1). These axioms are passed to CEL, but
not to the other reasoners, as the latter do not support right identities. Additionally,
to get a smaller version of Snomed that can be dealt with by standard DL reasoners,

172 Empirically Successful Computerized Reasoning

OGo OGalen OSnomed
core OSnomed

concept axioms 20,465/0/0 2,041/699/1,214 0/38,719/0 340,972/38,719/0

role axioms 1 438 0 11 + 2

concept names 20,465 2,740 53,234 379,691
role names 1 413 52 52

CEL 5.8 14 95 1,782

FaCT++ 6.9 50 740 3,859

RacerMaster 19 14 34,709 unattainable

Pellet 1,357 75 unattainable unattainable

Table 3: Benchmarks and Evaluation Results

we also consider a fragment obtained by keeping only concept definitions, and call it
OSnomed

core . Some information on the size and structure of these benchmarks is given in
the upper part of Table 3, where the first row shows the numbers of primitive concept
definitions, concept definitions, and general concept inclusions, respectively. The results
of our experiments are summarized in the lower part of Table 3, where all classification
times are shown in seconds and unattainable means that the reasoner failed due to
memory exhaustion. Notable, CEL outperforms all the reasoners in all benchmarks
except OGalen, where RacerMaster is as fast. CEL and FaCT++ are the only reasoners
that can classify OSnomed, whereas RacerMaster and Pellet fail. Pellet and the original
version of FaCT (not shown in the table) even fail to classify OSnomed

core .

The empirical results for the performance of CEL described above show that it can
compete with, and often outperforms, the fastest tableau-based DL systems. The ro-
bustness and scalability of tractable reasoning is visible, especially in the case of Snomed

with almost four hundred thousand concepts. We view these results as evidence of em-
pirical success of the CEL system, and also as a strong argument for the use of tractable
DLs based on extensions of EL provided that the expresivity is sufficient in the domain
of interest.

References

[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the

19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, 2005.
Morgan-Kaufmann Publishers.

[2] F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning in EL+. In Proceed-

ings of the 2006 International Workshop on Description Logics (DL2006), CEUR-
WS, 2006.

[3] R. Cote, D. Rothwell, J Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED In-
ternational, Northfield, IL: College of American Pathologists, 1993.

Empirically Successful Computerized Reasoning 173

[4] P. Patel-Schneider and B. Swartout. Description-logic knowledge representation sys-
tem specification from the krss group of the arpa knowledge sharing effort. Technical
report, DARPA Knowledge Representation System Specification (KRSS) Group of
the Knowledge Sharing Initiative, 1993.

[5] A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings

of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97),
Stanford, CA, 1997. AAAI Press.

[6] K.A. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. Journal of the American

Medical Informatics Association (JAMIA), 2000. Fall Symposium Special Issue.

[7] The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

174 Empirically Successful Computerized Reasoning

	000_Cover.pdf
	001_Kaufmann.pdf
	018_Prevosto_Waldmann.pdf
	034_Pudlak.pdf
	053_Meng_Paulson.pdf
	070_Meng_Paulson.pdf
	081_Bos.pdf
	092_Wessel_Moeller.pdf
	112_Beuster_Henrich_Wagner.pdf
	126_Rabe.pdf
	139_Lopes_Pereira.pdf
	159_Baaz_Hetzl_Leitsch_Richter_Spohr.pdf
	168_Suntisrivaraporn_Baader_Lutz.pdf

