
A Flexible DL-based Architecture

for Deductive Information Systems

Michael Wessel, Ralf Möller
Hamburg University of Technology (TUHH), Germany

{mi.wessel, r.f.moeller}@tuhh.de

1 Introduction

Description Logics (DLs) are nowadays an accepted standard for decidable knowledge
representation. DLs also provide the theoretical foundation for representing and reason-
ing with ontologies as well as for the Semantic Web. Thus, DL systems (e.g., Fact++,
Pellet, RacerPro) and DL-based technology in general will play an increasingly important
role for building the next generation of deductive, ontology-based information systems.

The RacerPro description logic system [HM01a] implements the very expressive DL
ALCQHIR+(D−), also known as SHIQ(D−) [HST99, HM01b]. RacerPro’s most promi-
nent feature is the support for so-called ABoxes which allow for the representation of a
“concrete state of the world” in terms of individuals and relationships. In the following,
we assume familiarity with DLs as well as DL systems.

In order to provide the information technology backbone for next generation infor-
mation systems (IS), current DL systems still have a long way to go. Nowadays, building
ontology-based IS with a DL system is still a non-trivial task: One the one hand, DLs
somehow live in their own “realm” and are thus not really interoperable with the rest
of “more conventional” IS infrastructure (e.g., existing relational databases). One the
other hand, only recently issues such as persistency and powerful query languages (QLs)
have been considered and incorporated into DL systems. DLs itself have their deficien-
cies as well and are thus not a panacea for arbitrary information representation and
(ontology-based) retrieval tasks: Due to the complexity of the inference problems, scal-
ability (in the average case) is not easy to achieve and nowadays only achievable for
knowledge bases (KBs) which use simple DLs. Standard DLs are well suited for the rep-
resentation of (and reasoning about) semi-structured (or even unknown/indeterminate)
information, but things become more complicated if, say, n-ary relationships or special
“non abstract” domains such as space are considered. Then, either non-standard DLs
or complicated logical encodings are needed. For non-standard DLs, no working sys-
tems exist, and complicated logical encodings are likely to decrease the performance and
complicate the information handling and maintenance.

To get working systems on time today, we must thus agree upon pragmatic solutions.
This also implies that existing technology (i.e., existing DL system such as RacerPro)
must be exploited and possibly extended for the task of IS building. Due to the intel-
lectual inherent complexity of the field, application and system studies on how to use
DL system in real-world IS scenarios are thus of utmost importance in order to provide
guidance.

92 Empirically Successful Computerized Reasoning

In this paper, we consider the IS domain of deductive geographic information sys-
tems (GIS), which can be called a “non-standard domain”. We describe the problems
encountered and pragmatic solutions found during the endeavor of building an ontology-
based query answering system for digital city maps, the DLMAPS system [Wes03a]. We
use RacerPro as a DL system, which can be called an empirically successful system, since
it is widely used.1 In this IS domain of digital city maps, we must

1. pragmatically solve the map representation problem, especially regarding the spa-
tial and thematic aspects,

2. provide an expressive spatio-thematic query language (QL) which supports ontology-
based query answering (w.r.t a “city map background ontology”). This QL must
be able to address spatial as well as thematic aspects of the map objects.

The paper provides the following contributions:
We describe how an existing DL system such as RacerPro can be used for building

an ontology-based IS in such a “non-standard” IS domain for which a standard DL such
as ALCQHIR+(D−) is not very well suited. This mainly concerns the representation
of the spatial aspects of the maps, which we call the “spatial representation problem”
in the following. We will demonstrate which representation options are available in this
setting.

We demonstrate what can be done with nowadays available state-of-the art DL
(and Semantic Web) technology such as RacerPro, and identify and motivate and design
pragmatic extensions to tackle the spatial representation problem. Making this explicit
by means of this paper will help other users to build their own IS with enabling DL
technology by exploiting similar “design patterns” as we did.

Spatial representations are, in principle, possible with expressive spatial concrete
domains (CDs) [HLM99, LM05] or specialized DLs [Wes03b] or spatial modal logics
[LW04]. However, no optimized mature DL system supporting these non-standard DLs
exist, and building a DL system which supports them is a non-trivial task.

Even if the spatial representation is achieved, then additionally an expressive spatio-
thematic QL is needed for the IS. Designing and implementing such a QL is again a
non-trivial task. We will demonstrate (from a pragmatic perspective) how such a QL
can be designed. Moreover, the QL is also implemented and available for other users.

RacerPro has been extended in 2003 by an expressive QL called nRQL [WM05, KG06].
Given that we have solved the spatial representation problem, we can use and extend
nRQL by “spatial atoms” to get the desired spatio-thematic query language. The nRQL

query answering engine (which is an integral part of RacerPro) can be called an empir-
ically successful system, since it is used by many RacerPro users. At the time of this
writing, this engine is (to the best of our knowledge) the only optimized ABox query
answering engine which provides complex ABox queries and also addresses issues such
as life cycle management of queries (queries are managed as objects which have a state),
concurrent and incremental query answering, version control of query answers, defined
queries, etc.

Another contribution of this paper is the identification and description of (software)
abstractions which we claim can be useful for other developers of ontology-based IS with

1And is commercially distributed by the start-up company Racer Systems.

Empirically Successful Computerized Reasoning 93

DL system components as well: We have based the DLMAPS system on the so-called
substrate data model. This data model serves as a layer of indirection and abstraction,
shielding the IS from the details of the used DL system (a kind of “semantic middle
ware”). But more importantly, the substrate data model enables us to attach or asso-
ciate additional information on or with ABox individuals, for which no encoding in an
ABox is possible or appropriate. We will show how the substrate data model can be used
to solve the spatial representation problem of the map. The resulting representations
will by hybrid; thus, a hybrid QL will be needed to combine the information distributed
on the different substrate layers.

The paper is structured as follows. We first describe the IS domain of digital
city maps, the concrete map data we use, and the idea of ontology-based queries to
such city maps. We then present various options how to represent the maps. Next we
describe the nRQL ABox QL which plays a crucial role here, since nRQL is the QL which
is extended to become a hybrid spatio-thematic QL in this paper. Finally, the resulting
QL is presented. Then comes the conclusion.

2 The Scenario - Ontology-Based Queries To a City Map

For what follows, we call the TBox or ontology of the DLMAPS IS the intensional com-
ponent, whereas the actual map data is kept in the extensional component. Ontology-
based query answering then means that the (defined) vocabulary from the intensional
component can be used in queries to retrieve the desired information (by means of
query answers) from the extensional component. The query answering component is
responsible for computing these answers.

The data in the DLMAPS IS are digital vector maps from the city of Hamburg
provided by the land surveying office (“Amt für Geoinformation und Vermessungswesen
Hamburg”); these maps are called the DISK (“Digitale Stadtkarte”). Part of the DISK is
visualized by the Map Viewer component of our system in Fig. 1. Each map object (also
called geographic feature) is thematically annotated. The basic thematic annotation (TA)
has been established by the land surveying office itself. The TA says something about
the “theme” or semantics of the map object. Simple symbols/names such as “green
area”, “meadow”, “public park”, “lake” are used. A few hundred TAs are used and
documented in a so-called thematic dictionary (TD), which is GIS-typically organized
in thematic layers (e.g., one layer for infrastructure, one for vegetation, etc.).

Sometimes, only highly specific TAs are available, such as “cemetery for non Chris-
tians”, and generalizing “common sense” vocabulary such ‘as “cemetery” is often miss-
ing. This is unfortunate, since it prevents the usage of common sense vocabulary for
query formulation. We can repair this defect by adding a background ontology (in the
form of a TBox) providing generalizing TAs by means of taxonomic relationships. On
the other hand, defined concepts (“if and only if”) can be added and exploited to au-
tomatically enrich the given basic annotations. Thus, we might define our own needed
TA “public park containing a lake” as a “park which is public which contains a lake”
with a TBox axioms such as

public park containing a lake≡̇park ⊓ public ⊓ ∃contains.lake

or
bird sanctuary park≡̇park ⊓ ∀contains.¬building

94 Empirically Successful Computerized Reasoning

Figure 1: The Map Viewer of the DLMAPS System

and we might want to retrieve all instances of these concepts. This is what ontology
based query answering is all about. Inference is required to obtain these instances,
since there are no known instances of public park containing a lake (this is not among
the basic TAs provided by the land surveying office). For simple queries, instance
retrieval queries might be sufficient as a QL. However, in our scenario one must retrieve
constellations2 of map objects which satisfy a complex query expression; thus, a QL with
variables is needed.

A definition such as public park containing a lake refers to thematic as well as to
spatial aspects of the map objects:
• Thematic aspects: the name of the park, that the park is public, the amount of

water contained in the lake, etc.
• Spatial aspects: the spatial attributes such as the area of the park (or lake), the

concrete shape, qualitative spatial relationship such as “contain”, quantitative (metric)
spatial relationships such as the distance between two objects, etc.

We use the following terminology: a thematic concept refers only to thematic aspects,
similarly a spatial concept solely to spatial aspects, whereas a spatio-thematic concept
refers to both. We also talk of thematic, spatial and spatio-thematic queries. A strict
separation might be difficult sometimes.

Thus, there are different thematic and spatial aspects one would like to represent
and address with the spatial QL. Since the concrete geometry is given by the map,
the spatial aspects of the map objects are in principle intrinsically represented and
available. This mainly concerns the spatial relationships which are depicted in the
map. However, also attributes like the area etc. can in principle be computed from
the geometry (although this will not be very accurate). A function that exploits the
geometry to dynamically check the requested spatial aspect (i.e., spatial property or

2We use the term “constellation” to stress that a certain spatial arrangement of map objects is

requested with a query.

Empirically Successful Computerized Reasoning 95

AAA

A
A

B B BBBA,B

EQ DC EC PO TPP NTPP
Figure 2: RCC8 base relations: EQ = Equal, DC = D isconnected , EC = Externally
Connected, PO = Partial Overlap, TPP = Tangential Proper Part, NTPP = N on-
Tangential Proper Part. All relations with the exception of TPP and NTPP are
symmetric; the inverse relations of TPP and NTPP are called TPPI and NTPPI .

relation) is called an inspection method in the following.
It is obvious that qualitative spatial descriptions are of great importance. On the

one hand, they are needed in order to be able to define concepts in the TBox such as
“public park containing a lake”. On the other hand, they are needed in the spatial
QL (“retrieve all public parks containing a lake”). A popular and well-known set of
qualitative spatial relationships is given by the RCC8 relations, see Fig. 2.

One the other hand, since the concrete geometry is given by means of the map, in
principle, no qualitative representation is needed in the extensional component. How-
ever, if we want to use a RacerPro ABox for the extensional component, then the
spatial representation options are limited, and we must necessarily make use qualitative
descriptions for the map representation, see below.

The DLMAPS system will support ontology-based spatio-thematic conjunctive queries
to the DISK. To give a first impression of what will be possible, suppose we want to
identify the chemical plants in the DISK which might be responsible for a chemically
contaminated lake:

ans(?lake, ?park, ?creek, ?industrial area, ?chemical plant)←
lake(?lake), chemically contaminated(?lake),
park(?park), public(?park), contains(?park, ?lake),
creek(?creek), f lows in(?creek, ?lake),
crosses(?creek, ?industrial area),
contains(?industrial area, ?chemical plant), unreliable(?chemical plant).

We assume that the reader has an intuitive understanding of such a query. The different
conjuncts of such a query are called query atoms in the following. A ground query atom
is an atom in which the free variables have been substituted with (satisfying) individuals
resp. “constants”. We formalize these notions subsequently. An atom with one variable
is equivalent to a simple instance retrieval query.

3 Representing and Querying the DISK

It is clear that the kind of representation we will devise for the DISK in the extensional
component will also determine what we can query, and how we can query (i.e., which
techniques to be used for computing the query answers). Without doubt, the thematic
aspects of the DISK map objects can be represented satisfactory with a standard DL.

To solve the spatial representation problem of the DISK in the extensional compo-
nent, we consider three representation options and analyze their impacts:
• Representation Option 1 – Use a Single ABox: We can represent “as

much spatial aspects as possible” in a ALCQHIR+(D−) ABox. Regarding the spatial

96 Empirically Successful Computerized Reasoning

a a

b

b
c

c

EQ

EQEQ

PO

TPPI NTPP

ABox

Geometry (SBox)

?*x

?x

Figure 3(a): Concrete geometric scene Figure 3(b): Hybrid map substrate:
and corresponding RCC8 network variables are bound in parallel

(inverse edges omitted)

relationships, we can only represent qualitative relationships. From the concrete map
geometry, we can compute a so-called RCC network and represent this by means of
RCC role assertions in the ABox, e.g. (i, j) : TPPI etc. In Abb. 3(a) a “scene” and its
corresponding RCC8 network is depicted. Such a network will always take the form of
a an edge labeled complete graph, a so-called Kn (see graph theory), due to the JEPD
property of the RCC base relations: The base relations are jointly exhaustive, pairwise
d isjoint). Moreover, an RCC network derived from a geometric scene will always be
RCC consistent (see below).

Moreover, selected spatial attributes such as area and length can be represented in
the CD of the ABox; we then use concept assertions such as i : ∃(has area). =12.345.

Moreover, since the represented spatial aspects are accessible to RacerPro, this sup-
ports richer spatio-thematic concept definitions in the TBox, for example

public park containing a lake≡̇park ⊓ public ⊓ ∃contains.lake

(we are using ∃contains.lake instead of (∃TPPI .lake)⊔(∃NTPPI .lake)). Obviously,
an individual i in the ABox can only be recognized as an instance of that concept if
RCC role assertions are present in that ABox.

In principle, the specific properties of qualitative spatial relationships resp. roles can-
not be captured completely within ALCQHIR+(D−) (we will elaborate this point below
when we discuss qualitative spatial reasoning with the RCC substrate). This means that
the computed taxonomy of the TBox will not correctly reflect the “real” subsumption
relationships, and that the TBox might be incoherent without being noticed. We believe
that careful modeling can avoid this. Another option is to compute the taxonomy of
the TBox “offline” with a specialized (non-optimized, prototypically) DL system with
space semantics such as an ALCIRCC8 prover (see [Wes03b]), even though this DL is
undecidable, [LW04].3 The deduced implied subsumption relationships can be made
syntactically explicit by means of additional TBox axioms, and the augmented TBox
can replace the original one.

Much more importantly in our setting is the observation that ontology-based query
answering can still be achieved in a way that correctly reflects the semantics of the spa-
tial relationships with RacerPro. Consider the instance retrieval query
(?x, public park containing a lake) on the ABox

3One could at least try to compute the taxonomy.

Empirically Successful Computerized Reasoning 97

A = {i : park ⊓ public, k : lake, j : meadow, (i, j) : TPPI , (j, k) : NTPPI}.
If this ABox has been computed from the concrete geometry of the map, then it must
also contains (i, k) : NTPPI , since each RCC network which has been computed from
a spatial constellation which shows (i, j) : TPPI and (j, k) : NTPPI must also show
(i, k) : NTPPI . In order to retrieve the instances of public park containing a lake, we
check each individual separately. Let us consider i. Checking that i is an instance of
public park containing a lake is reduced to checking the unsatisfiability of the ABox

A ∪ {(i, k) : NTPPI } ∪
{i : (¬park ⊔ ¬public ⊔ ((∀NTPPI .¬lake) ⊓ (∀TPPI .¬lake)))}

This ABox is obviously unsatisfiable and thus, i is a public park containing a lake.
Regarding concepts that “contain or imply” universal role or number restrictions,

we can answer queries completely only if we turn on a “closed domain reasoning mode”,
we must close the ABox w.r.t. the RCC role assertions and enable the unique name
assumption (UNA) in order to keep the semantics of the RCC roles.

To close the ABox A w.r.t. the RCC role assertion, we count for each individual i ∈
individuals(A) and each RCC role R the number of R-successors, n = |{ j | (i, j) : R ∈ A}|,
and add so-called number restrictions i : (≤ R n) ⊓ (≥ R n) to A. This assertion is
satisfied in an interpretation I iff n = { j | (iI , j) ∈ RI }; thus, i must have exactly n

R successors in every model.
In combination with the UNA, this enables a closed domain reasoning on the indi-

viduals which are mentioned in the RCC role assertions and thus prevents the reasoner
from generating “new anonymous RCC role successors” in order to satisfy an existential
restriction such as ∃NTPPI .lake. In order to satisfy ∃NTPPI .lake, it must then nec-
essarily reuse one of the existing individuals in the ABox, thus the domain is “closed”
[Wes03a]. Let us demonstrate this using the concept

bird sanctuary park≡̇park ⊓ ∀contains.¬building.

Assuming that both lake and meadow imply ¬building, we can show that i is an instance
of a bird sanctuary, since the ABox

A ∪ {(i, k) : NTPPI } ∪
{i :≤1 TPPI⊓ ≥1 TPPI , i :≤1 NTPPI⊓ ≥1 NTPPI , . . .} ∪
{i : (¬park ⊔ ((∃TPPI .building) ⊓ (∃NTPPI .building)))}

is again unsatisfiable, because the alternative i : ¬park immediately produces an incon-
sistency. Thus, the alternative {i : (∃TPPI .building) ⊓ (∃NTPPI .building)} is consid-
ered. Due to i :≤1 TPPI⊓ ≥1 TPPI , only j can be used to satisfy ∃TPPI .building, and
only k to satisfy ∃NTPPI .building. Since j : meadow and thus j : ¬building, k : lake

and thus k : ¬building, the ABox must be unsatisfiable.
Thus, we have argued that spatio-thematic ontology-based query answering can be

done on such an ABox representation of the DISK.
Moreover, we must not resort to simple instance retrieval queries, but can use a

powerful ABox QL such as nRQL. With nRQL we can pose queries (here in mathematical
syntax) such as

ans(?living area, ?park, ?lake)←
living area(?living area), park(?park),
contains(?park, ?lake), adjacent(?living area, ?park),
(∀adjacent.¬industrial area)(?living area)

Note that ∀adjacent.¬industrial area is a complex query concept; we could have put

98 Empirically Successful Computerized Reasoning

a concept definition such as healthy living area≡̇∀adjacent.¬industrial area into the
TBox and used the atom healty living area(?living area) instead. The concrete nRQL

syntax will be shown and used below.
However, the discussed ABox representation has the following drawbacks:
• 1. The size of the generated ABoxes is huge. Since the RCC network is explictly

encoded in the ABox, the number of required role assertions is quadratic in the number
of map objects (resp. individuals).
• 2. Most spatial aspects cannot be handled that way. For example, distance

relations are very important for map queries. It is thus not possible to retrieve all
subway stations within a distance of 100 meters from a certain point.
• 3. Query processing will not be efficient. More efficient query processing can be

done if spatial index structures are added.
• 4. In the DLMAPS system, the geometric representation of the map is needed

anyway, at least for presentation purposes. Thus, from a non-logical point of view, the
ABox cannot be the only representation used by the extensional component of such a
system. Thus, it seems plausible to exploit the representation for query answering as
well.
• 5. Most importantly, we have demonstrated that this kind of ontology-based query

answering only works if the domain is closed. However, DL systems and thus RacerPro

are not really good at closed domain reasoning, since the open domain assumption
is made in DLs. In contrast, since the geometry of the map is completely specified,
there is neither unknown nor underspecified spatial information. This motivates the
classification of the map as “spatial data”, in contrast to “spatial information”. Thus,
regarding the spatial aspects, deduction or logical inference is not needed. Instead,
model checking would be sufficient regarding the spatial aspects. All these points thus
motivate
• Representation Option 2 – Use a Map Substrate: Due to the problems with

spatio-thematic concepts and since closed domain reasoning is anyway all that we can
achieve here, it seems more appropriate to represent the spatial aspects primarily in a
different representation layer which we can associate with an ABox, a kind of “spatial
database”, that contains instances of spatial datatypes (polygons etc.). We already men-
tioned that the geometry of the map must be represented in the extensional component
anyway (at least for presentation purposes). This also reflects appropriately that there
is neither unknown nor underspecified information regarding the spatial aspects of the
map. Everything is explictly given (the “logical theory” of the map is thus complete).
This is a reasonable assumption in this scenario.

In the following, this spatial medium is called an SBox. If we say that spatial
aspects are primarily represented in the SBox, then this does not necessarily exclude
the (additional) representation possibilities of dedicated spatial aspects in the ABox
as just discussed. The resulting hybrid (SBox,ABox) representation is illustrated in
Fig. 3(b), we call it a map substrate. It is shown that some ABox individuals have
corresponding instances in the SBox, and vice versa, since the mapping function is
partial and injective. This association / mapping function is called the ∗-function in the
following.

If spatial information about the map is now primarily kept in the SBox, then it is no
longer available for ABox reasoning. Thus, nRQL (or instance retrieval) queries are no

Empirically Successful Computerized Reasoning 99

longer sufficient to address the spatial aspects – we will thus extend nRQL to become a
hybrid spatio-thematic QL, offering also spatial query atoms to query the SBox: SnRQL.
The SnRQL query answering engine will combine the retrieved results from the SBox
and ABox part of the hybrid map substrate representation. The purely thematic part
of the query will be a plain nRQL query which will be answered on the ABox, and the
spatial part of the query will contain spatial atoms which are evaluated on the SBox.

Since the SBox represents the geometry of the map, it can evaluate the requested
spatial aspects on the SBox “on the fly” during query evaluation by means of inspection
methods (see Page 5). The SBox provides a spatial index, supporting the efficient com-
putation of spatial relationships by means of spatial selection operations. Computed
spatial aspects can also be made explicit and “materialized” in order to avoid repeated
re-computation (e.g., computed RCC relations can be materialized as edges).

By means of query rewriting and expansion, the hybridness of SnRQL can be made
transparent for the users. Ideally, a user can abstract from the details of the DISK

representation in the extensional component of the DLMAPS system. He/she must not
known how and where a special aspect of the DISK is physically represented (in the ABox
or SBox) in order to be able to formulate queries which return the intended results. The
exploited query expansion and rewriting procedures are currently hard-coded, though.

In order to provide these flexible representation options, to “break out” of the strict
DL ABox framework, but nevertheless keep a clear mathematical semantics, we base
the DLMAPS IS on a semi-structured graph-based substrate data model which provides
this flexibility. As explained, it serves both as a mediator and software abstraction
(“semantic middle ware”), but also enables us to formally describe and combine different
representation layers to build hybrid representations such as a map substrate. Since
ABoxes play a role here as well, the data model must also generalize the notion of an
ABox:

Definition 1 A substrate is an edge- and node-labeled directed graph (V,E,LV , LE),
with V being the set of substrate nodes, and E being a set of substrate edges. The node
labeling function LV : V → LV maps vertices to descriptions in an appropriate node
description language LV , and likewise for LE : E → LE , where LE is an edge description
language. �

The languages LV and LE are not fixed and can be seen as subsets of first-order predicate
logic (in appropriate syntax). For example, we can consider an ABox as a substrate if
we identify V with the ABox individuals, E with the pairs of individuals mentioned as
arguments in role assertions in that ABox, LV with the set of ALC concepts, and LE with
the set of ALC role names closed under conjunction. Using the first-order perspective,
V is a set of constant symbols, and LV and LE are indexing functions. Obviously, an
encoding of LE and LV into first-order logic is possible. Moreover, an associated TBox
manifests itself in additional first-order sentences which are assumed to be “intrinsically
encoded” into the substrate as well.

We do not claim that this data model is interesting from a theoretical perspective;
its “generic definition” is of course also its weakness. Thus, it must be specifically in-
stantiated. However, the given definition enables a formal specification of the semantics
of our substrate representation and query answering framework on which we have based
the DLMAPS system.

100 Empirically Successful Computerized Reasoning

The data model is somehow inspired by the work on E-Connections [KLWZ04] or
the tableaux data structure [HST99], as well as by RDF. However, we feel that we need
more flexibility than, e.g., E-Connections or RDF can provide; e.g., RDF does not allow
us to describe the geometry of map object. Moreover, a substrate is not simply a “graph
database”, since DL ABoxes are considered part of the framework and thus, inference
is required in order to answer queries. We have the feeling that first-order logic is all we
need here in order to formally describe the data model, it semantics and its inference
services as well as the generic substrate query language (see below).

As just explained, an ABox can be seen as a specialized substrate. The substrate
establishes a graph perspective on the ABox (by means of the indexing functions).
Moreover, an SBox can be seen as a specialized substrate as well. Here, the nodes are
instances of spatial datatypes. We need not leave the framework of first-order logic if we
agree that the geometry of such nodes can be described using an appropriate geometry
description language. We do not want to go into the details (of logical encoding of
instances of spatial data types) here.

In order to make use of the substrate representation, a substrate QL is needed. The
substrate QL framework enables the creation of specialized substrate QLs which can
be tailored for special kinds of substrates (e.g., ABox, SBoxes). This QL framework is
based on the general notion of ground query atom entailment. All that matters is that
a notion of logical entailment (|=) between a substrate S and a ground query atom for
S is defined and decidable. Thus, give the (unary and binary) ground query atoms P (i)
and Q(i, j) for i, j ∈ V , S |= P (i) and S |= Q(i, j) must be defined and decidable.

The |= relation is, in principle, the standard first-order one. The |= relation defined
for a substrate can intrinsically encode a rich background theory, for example, the addi-
tional axioms of a background TBox, or domain closure axioms, or even the full set of
Clark completion axioms. These additional axioms are thus not explicitly represented
in the substrate as sentences, but are assumed to be part of the inherent structure of
the substrate. The models relation is thus further constrained. For example, in the case
of an SBox, deciding the |= relation boils down to simple model checking. We will give
an example for such a background theory when we discuss the RCC substrate.

The substrate QL framework provides a great flexibility, extensibility and adapt-
ability, since specialized query atoms can be tailored for specific instantiations of the
substrate data model. If only a notion of entailment is defined and decidable for these
specialized atoms, then the substrate query answering engine immediately supports the
evaluation of these atoms. In fact, it suffices to overload a single Clos multimethod
entails-p. Moreover, decidability of the QL is automatically guaranteed by the frame-
work. Complex substrate queries are combined from query atoms by means of body
constructors. The substrate QL framework provides the following constructors: nega-
tion as failure (NAF, “\”), conjunction (“,” and “∧”), union (“∨”), as well as a pro-
jection operator (“π”). The semantics (and decidability) of these generic QL operators
will become clear if we consider nRQL, which is a specialized substrate QL tailored for
RacerPro ABoxes; it thus shares the same semantics for the body constructors as all
substrate QLs.

Definition 2 A hybrid substrate is a triple (S1, S2, ∗), with Si, i ∈ {1, 2} being sub-
strates (Vi, Ei, LVi

, LEi
) using LV i and LE i, ∗ being a partial and injective function

Empirically Successful Computerized Reasoning 101

∗ : V1 7→ V2. �

The DLMAPS system is designed in such a way to work on ABoxes, SBoxes, or map
substrates:

Definition 3 A map substrate is a hybrid substrate (S1, S2, ∗), where S1 is an SBox,
and S2 is an ABox (substrate). �

Given the hybrid representation, a hybrid query now contains two kinds of query atoms:
Those for S1, and those for S2. In order to distinguish atoms meant for S1 from atoms
meant for S2 easily, we simply prefix variables in query atoms which for S2 with a “?∗”
instead of “?”; the same applies to constants / individuals. Intuitively, the bindings
which will be established for variables must reflect the ∗-function: If ?x is bound to
i ∈ V1, then ? ∗ x will automatically be bound to ∗(i) ∈ V2, and vice versa (w.r.t. ∗−1).
Such a binding is called ∗-consistent. We will only consider ∗-consistent bindings. The
notion of ∗-consistent bindings is also depicted in Fig. 3(b).

Assume we use a map substrate for the DISK representation now. Then, the nRQL

example query given above will become a hybrid SnRQL query; nRQL atoms now use
∗-prefixed variables (since the ABox is S2, and the SBox is S1):

ans(?living area, ?park, ?lake)←
living area(? ∗ living area), park(? ∗ park),
contains(?park, ?lake), adjacent(?living area, ?park),
\ (π(?living area) (adjacent(?living area, ?industrial area),

industrial area(? ∗ industrial area)))

Please note that the last conjunct in the query is the “equivalent” of the nRQL atom
(∀adjacent.¬industrial area)(?living area).

By means of the definition of the semantics of the QL (see below) it will become
clear that π(? ∗ living area) (adjacent(? ∗ living area, ? ∗ industrial area), . . .) is in
fact equivalent to (resp. has the same extension as) ans(? ∗ living area)← adjacent(? ∗
living area, ? ∗ industrial area), This subquery therefore retrieves all map objects
which are adjacent to an industrial area. The NAF operator complements this subquery
result (see next Section on nRQL semantics). Thus, the binding to ?living area must
be an instance of living area which does not have a (known) adjacent industrial area.
This implies that that all known adjacent areas are not industrial areas.
• Representation Option 3 – Use an ABox + RCC Substrate: We have

argued that in general we cannot completely capture the inherent properties of the
RCC relations in an ALCQHIR+(D−) ABox, since ALCQHIR+(D−) lacks the required
expressivity. However, we have argued that (see Option 1) at least for ontology-based
spatio-thematic query answering a ALCQHIR+(D−) ABox can still be used, given that
the RCC network in the ABox was computed from a concrete map. The RCC network
is thus complete (lacks no edges) and automatically RCC consistent. Moreover, we must
enable closed domain reasoning for the RCC roles.

In order to make a comparable query answering functionality available to other users
of the RacerPro system without having to add the whole SBox functionality to RacerPro

(spatial datatypes and spatial indexes, etc.), we devise yet another kind of substrate,
the RCC substrate, which captures the semantics of the RCC relations by exploiting

102 Empirically Successful Computerized Reasoning

techniques from qualitative spatial reasoning. Users of RacerPro can associate an ABox
A with an RCC substrate RCC by means of a hybrid substrate (A,RCC, ∗) and query
this hybrid substrate with nRQL + RCC query atoms (see below). Note that, unlike a
map substrate, there the ABox is S1 and thus the “primary” substrate.

The RCC substrate is basically an RCC network consistency checker which can
decide (relational) consistency of RCC networks and entailment of RCC relations resp.
RCC ground query atoms:

Definition 4 An RCC substrate RCC is a substrate such that V is a set of RCC nodes
with LV = ∅, and LE = 2{EQ,DC,EC,PO,TPP,TPPI,NTPP,NTPPI}. �

An edge label represents a disjunction of RCC base relations, representing coarser or
even unknown knowledge regarding the spatial relation. Disjunctions of base relations
are thus RCC relations as well. The properties of the RCC relations are captured by the
so-called JEPD property (see Page 6) as well as the so-called RCC composition table.
This table is used for solving the following basic inference problem: Given: RCC
relations R(a, b) and S(b, c). Question: Which relation T holds between a and
c? The table thus lists, at column for base relation R and row for base relation S, the
possible values for T . In general, T will not be a base relation, but a set: {T1, . . . Tn}.
The RCC table is given as a setRCCT of sentences of the form {R◦S = {T1, . . . , Tn}, . . .}.

An RCC network RCC (viewed as set of first-order ground atoms) containing only
base relations is said to be consistent iff it satisfies a number of first-order sentences:

RCC′ = RCC ∪
{ ∀x, y, z.R(x, y) ∧ S(y, z)→ T1(x, z) ∨ · · · ∨ Tn(x, z) |

R ◦ S = {T1, . . . , Tn} ∈ RCCT } ∪
{∀x, y.

∨
R∈RCC

R(x, y)} ∪
{∀x, y.

∨
R,S∈RCC,R6=S R(x, y) ∧ ¬S(x, y)} ∪

{∀x.EQ(x, x)}

For example, the network RCC = {NTPP(a, b),DC (b, c),PO(a, c)} is inconsistent, be-
cause if a is contained in b (atom NTPPI (a, b)), and b is disconnected from c (atom
DC (b, c)), then a must be disconnected from c as well. The RCC8 composition ta-
ble contains the axiom NTPP ◦ DC = DC. Thus, RCC ′ |= DC(a, c), which con-
tradicts PO(a, c), due to the JEPD property. Entailment of RCC relations or RCC
ground query atoms can be reduced to inconsistency checking: RCC ′ |= R(a, b) iff
S ∪ ({EQ,DC,EC,PO, TPP,TPPI ,NTPP,NTPPI } \ R) is not consistent. An
RCC network is consistent iff at least one of its configurations is consistent. A con-
figuration of an RCC network is obtained by choosing (and adding) one disjunct from
every non-base relation in that network. Thus, a configuration contains only base rela-
tions. Consider now RCC = {NTPP(a, b),DC (b, c)}. We have RCC ′ |= DC (a, c), since
RCC′∪{(EQ∨EC∨PO∨TPP∨TPPI ∨NTPP∨NTPPI)(a, c)} is inconsistent, because
its configurations RCC ′ ∪ {EQ(a, c)} . . .RCC ′ ∪ {NTPPI (a, c)} are all inconsistent.

Since the RCC substrate defines a notion of logical entailment, the semantics of
the RCC relations will be correctly captured for query answering: Consider the hybrid
substrate (A,RCC, ∗)
A = {hamburg : german city, paris : french city, france : country, germany : country}

with
RCC = {NTPP(∗hamburg , ∗germany),EC (∗germany , ∗france),NTPP(∗paris , ∗france)}

Empirically Successful Computerized Reasoning 103

and with the obvious (trivial) mapping ∗
∗ = {(hamburg, ∗hamburg), (paris , ∗paris), (france, ∗france), (germany , ∗germany)}.

Then, the query
ans(?city1, ?city2)← city(?city1), city(?city2),DC (? ∗ city1, ? ∗ city2)

will correctly return
?city1 = hamburg , ?city2 = paris , and vice versa, even though DC (∗paris , ∗hamburg)

is not explicitly present in RCC. Thus, unlike the |= relation for the SBox which only
requires model checking, “spatial inference” is required for query answering on the RCC
substrate.

4 The nRQL ABox Query Language

The nRQL ABox QL is now described in some detail here, since this is the QL which is
used and extended to a spatial QL in this paper.

At a first glance, it will seem that nRQL is in a line of QLs which is closely related
to Horn logic (query) languages such as Datalog: After all, nRQL provides some form
of conjunctive queries. As such, one might criticize nRQL for not being “state of the
art in logic programming techniques”. However, considering nRQL as some-kind of non-
recursive Datalog with Negation is inappropriate and pragmatically misleading, since the
language has been designed under a different perspective. nRQL is an instantiation of a
more general QL framework, the substrate QL framework. We claim that this framework
provides more flexibility and options for extensions than, for example, Datalog, and
demonstrate this in this paper. In order to support this claim, it is thus crucial that
we formally define syntax and semantics of nRQL resp. of the generic substrate QL
framework.

In the following we will use the concrete syntax of nRQL. A nRQL query consists of
a query head and a query body :

(retrieve (?x ?y) (and (?x woman) (?x ?y has-child)))

has the head (?x ?y) and the body (and (?x woman) (?x ?y has-child)). The
query returns all mother-child pairs from the ABox which is queried. In a nutshell,
nRQL can be characterized as follows:
• Variables and individuals can be used in queries. The variables range over

the individuals of an ABox (this is called active domain semantics), and are bound to
those ABox individuals which satisfy the query. The notion of satisfiability of a query
used in nRQL is defined in terms of logical entailment. A variable is bound to an ABox
individual iff it can be proven that this binding holds in all models of the knowledge
base. Returning to our example query body (and (?x woman) (?x ?y has-child)),
?x is only bound to those individuals which are instances of the concept woman having
a known child ?y in all models of the KB.

nRQL distinguishes variables which must be bound to differently named individuals
(prefix ?, e.g., ?x, ?y cannot be bound to the same ABox individual) from variables
for which this does not hold (prefix $?, e.g., $?x, $?y). Individuals from an ABox are
identified by using them directly in the query, e.g. betty.
• Different types of query atoms are available: these include concept query

atoms, role query atoms, constraint query atoms, and same-as query atoms. To give
some examples, the atom (?x (and woman (some has-child female))) is a concept

104 Empirically Successful Computerized Reasoning

query atom, (?x ?y has-child) is a role query atom, (?x ?x (constraint

(has-father age) (has-mother age) =)) is a constraint query atom (asking for the
persons ?x whose parents have equal age), and (same-as ?x betty) is a same-as query
atom, enforcing the binding of ?x to betty.

As the given example concept query atom demonstrates, it is possible to use com-
plex concept expressions within concept query atoms. Regarding role query atoms,
the set of role expressions is more limited. However, it is possible to use inverted
roles (e.g., role expressions such as (inv R)) as well as negated roles within role query
atoms. Note that negated roles are not supported in the concept expression language
of ALCQHIR+(D−); thus, they are only available in nRQL. For example, the atom (?x

?y (not has-father)) will return those bindings for ?x, ?y for which RacerPro can
prove that the individual bound to ?x cannot have the individual bound to ?y as a
father. If the role has-father was defined as having the concept male as a range, then
at least all pairs of individuals in which ?y is bound to a female person are returned,
given male and female can be proven to be disjoint.
• Complex queries are built from query atoms using the boolean constructors and,

union, neg, project-to. This holds for all substrate QLs. We have already seen an
example: (and (?x woman) (?x ?y has-child)) is a simple conjunctive query body.
These constructors can be combined in an arbitrary (orthogonal) way to create complex
queries. This is why we call nRQL an orthogonal language.

The neg operator implements a negation as failure semantics (NAF): (neg (?x

woman)) returns all ABox individuals for which RacerPro cannot prove that they are in-
stances of woman. Thus, (neg (?x woman)) returns the complement set of (?x woman)

w.r.t. the set of all ABox individuals. If used in front of a role query atom, e.g. (neg (?x

?y has-child)), then this returns the complement of (?x ?y has-child) (w.r.t. to all
pairs of ABox individuals), i.e. all pairs of individuals which are not in the extension of
has-child in all models. The semantics of nRQL ensures that DeMorgan’s Laws hold:
(neg (and a1 . . . an)) is equivalent to (union (neg a1) . . . (neg an)).

Note that (?x (not woman)) has a different semantics from (neg (?x woman)),
since the former returns the individuals for which RacerPro can prove that they are not
instances of woman, whereas the latter returns all instances for which RacerPro cannot
prove that they are instances of woman.
• Support for retrieving told values from the CD: Suppose that age is a

so-called concrete domain attribute of type integer. Thus, the age attribute fillers of a
certain individual must be concrete domain values of type integer. We can use the
following query to retrieve all adults as well as their ages: (retrieve (?x (told-value

(age ?x)) (?x (min age 18)))), and a possible answer might be (((?x michael)

((told-value (age michael)) 34))). Please refer to [WM05, KG06] for more details
and the design rationale.
• Support for CD constraint checking : The so-called constraint query atoms

allow one to “compare” concrete domain attribute fillers of different individuals. Con-
sider the query

(retrieve (?x (told-value (age ?x)))

(and (?x (and woman (an age))) (?x ?y has-child)

(?y ?y (constraint (has-father age) (has-mother age)

(<= (+ age-2 8) age-1)))))

Empirically Successful Computerized Reasoning 105

which returns the list of women and their ages. The women are required to have children
whose fathers are at least 8 years older than their mothers. Note that (has-father age)

denotes a “path expression”: starting from the individual bound to ?y we retrieve the
value of the concrete domain attribute age of the individual which is the filler of the
has-father role (feature) of this individual. In a similar way, the age of the mother
of ?y is retrieved. These concrete domain values are then used as actual arguments
to evaluate the compound concrete domain predicate (<= (+ age-2 8) age-1). Here,
age-2 refers to (has-mother age), and age-1 refers to (has-father age). Note that
the suffixes -1, -2 have been added to the age attribute in order to differentiate the
two values. Obviously, this mechanism is not needed if the two chains are ended by
different attributes.
• Special support for querying OWL documents, e.g., retrieving told datatype

value fillers of OWL datatype and OWL annotation properties. Retrieval of these
datatype values is supported in a similar style as in the concrete domain case, by means
of concept query atoms and head projection operators. We do not go into detail here,
please refer to [KG06].
• The body projection operator (project-to): Sometimes this operator is

required in order to reduce the “dimensionality” of a tuple set, for example, before
computing its complement with neg.

Let us motivate the necessity for such an operator: Consider (retrieve (?x) (and

(?x mother) (?x ?y has-child))). This query returns all mothers having a known
child in the ABox. Now, how can we query for mothers which do not have a known child?
Our first attempt will be the query (retrieve (?x) (and (?x mother) (neg (?x

?y has-child)))). A bit of thought and recalling that (neg (?x ?y has-child))

returns the complement set of (?x ?y has-child) w.r.t. the Cartesian product of
all ABox individuals will reveal that this query doesn’t solve the task. In a sec-
ond attempt, we will probably try (retrieve (?x) (neg (and (?x mother) (?x ?y

has-child)))). However, due to DeMorgan’s Law and nRQL’s semantics, this query
is equivalent to (retrieve (?x) (union (and (neg (?x mother)) (?y top)) (neg

(?x ?y has-child)))) – first the union of two two-dimensional tuple sets is con-
structed, and then only the projection to the first element of these pairs (?x) is re-
turned. Obviously, this set contains also the instances which are not known to be
mothers, which is wrong as well. Thus, the need for the projection operator be-
comes apparent: (retrieve (?x) (and (?x mother) (neg (project-to (?x) (?x

?y has-child))))) solves the task. This body projection operator was not present
in earlier versions of nRQL, special syntax was introduced to address these problems,
namely the special unary atoms (?x (has-known-successor has-child)), (?x NIL

has-child) and (NIL ?X child-of). These atoms (which still work) can now be
seen as “syntactic sugar” for the bodies (project-to (?x) (?x ?y has-child)), (neg
(project-to (?x) (?x ?y has-child))) and (neg (project-to (?x)

(?y ?x has-child))). The project-to operator can be used at any position in a
query body.

We can now define syntax and semantics of nRQL. Please note that all substrate
QLs share in principle the same syntax and semantics, only atom (and possibly also
head projection operator) are redefined appropriately, as already mentioned:

106 Empirically Successful Computerized Reasoning

Definition 5 (Syntax of nRQL) A nRQL query has a head and a body .
A head can contain the following (note that {a|b} represents a or b):

head := (head entry∗)

object := variable | individual
variable := a symbol beginning with “?”

individual := a symbol
head entry := object | head projection operator

head projection operator := (cd attribute object) |
(told-value (cd attribute object)) |
(told-value (datatype property object)) |
(annotations (annotation property object))

The body is defined as follows:

body := atom | ({and | union} body ∗) | (neg body) |
(project-to (object∗) body)

atom := (object concept expr) | (object object role expr) |
(object object (constraint chain chain constraint expr)) |

(same-as object object)
chain := (role expr ∗ cd attribute)

The “bridge” to the RacerPro syntax is given by the following rules:

concept expr := a RacerPro concept, with some extensions for OWL
role expr := a RacerPro role or the special role equal |

(inv role expr) | (not role expr)
constraint expr := a (possibly compound) RacerPro concrete domain

predicate, e.g. (< (+ age-1 20) age-2)

cd attribute := a RacerPro concrete domain attribute
datatype property := a RacerPro role used as OWL datatype property

�

Note that nRQL permits the use of negated roles in role atoms, as well as the special
role equal. The equal role can only be used in nRQL, not in ALCQHIR+(D−) concept
expressions. The semantics of equal is fixed: equalI =def ID2,∆I = { 〈i, i〉 | i ∈ ∆I }.

Definition 6 (Semantics of nRQL) Let A be a RacerPro ABox, and TA denote its
associated TBox. Denote the set of individuals used in A with IndsA.

Let q be a nRQL query body. The function vars(q) is defined inductively:
vars((x concept expr)) =def {x}, vars((x1 x2 role expr)) =def {x1, x2},
vars((x1 x2 (constraint ...))) =def {x1, x2},
vars(({ and | union | neg } q1 . . . qm)) =def

⋃

1≤i≤m vars(qi), BUT
vars((project-to (x1 . . . xm) . . .)) =def {x1 . . . xm}. Thus, vars “stops at projections”.

Assume that 〈x1,q, . . . , xn,q〉 is a lexicographic enumeration of vars(q). Denote the
ith element in this vector with xi,q, indicating its position in the vector.

Let T be a set of n-ary tuples 〈t1, . . . , tn〉 and 〈i1, . . . , im〉 be an index vector
with 1 ≤ ij ≤ n for all 1 ≤ j ≤ m. Then we denote the set T ′ of m-ary tuples

Empirically Successful Computerized Reasoning 107

with T ′ =def { 〈ti1, . . . , tim〉 | 〈t1, . . . , tn〉 ∈ T } = π〈i1,...,im〉(T), called the projection
of T to the components mentioned in the index vector 〈i1, . . . , im〉. For example,
π〈1,3〉{〈1, 2, 3〉 , 〈2, 3, 4〉} = {〈1, 3〉 , 〈2, 4〉}.

Let ~b = 〈b1, . . . , bn〉 be a bit vector of length n, bi ∈ {0, 1}. Let m ≤ n. If ~b is a bit
vector which contains exactly m ones, and B is a set, T is a set of m-ary tuples, then
the n-dimensional cylindrical extension T ′ of T w.r.t. B and ~b is defined as
T ′ =def { 〈i1, . . . , in〉 | 〈j1, . . . , jm〉 ∈ T , 1 ≤ l ≤ m, 1 ≤ k ≤ n

with ik = jl if bk = 1,

and bk is the lth one (1) in ~b,
otherwise, ik ∈ B }

and denoted by χB,〈b1,...,bn〉(T). For example,
χ{a,b},〈0,1,0,1〉({〈x, y〉}) = {〈a, x, a, y〉 , 〈a, x, b, y〉 , 〈b, x, a, y〉 , 〈b, x, b, y〉}.
We denote an n-dimensional bit vector having ones at positions specified by the index

set I ⊆ 1 . . . n as ~1n,I . For example, ~14,{1,3} = 〈1, 0, 1, 0〉. Moreover, with IDn,B we de-

note the n-dimensional identity relation over the set B: IDn,B =def { 〈x, . . . , x〉
︸ ︷︷ ︸

n

| x ∈ B }.

The semantics of a nRQL query is given by the set of tuples it returns if posed to an
ABox A. This set of answer tuples is called the extension of q and denoted by qE .

In order to simplify the specification of the semantics, the query body q first un-
dergoes some syntactical transformations. In a first step, q is rewritten by consistently
replacing all its individuals with representative (fresh) variables throughout the body:
If the individual i has been replaced with the variable xi, then we also add the conjunct
(same-as xi i) to q, yielding a body of the form (and q (same-as xi i) . . .). In a
second step, the role chains (see syntax rule chain) possibly present in constraint query
atoms are decomposed. This means they are replaced by conjunctions of role query
atoms such that only concrete domain attributes remain in chains of constraint query
atoms. Fresh variables are used for this purpose.

We can now define the semantics of the different query atoms, being part of q ′. Keep
in mind that

〈
x1,q′ , . . . , xn,q′

〉
is the variable vector of q′ and that n is the total number

of variables returned by vars(q ′). The semantics for the different nRQL query atoms is
given as:

(q ′
xi

concept expr)E =def χ
IndsA,~1n,{i}

(concept instances(A, concept expr))

(q ′
xi

q ′
xj

rolen expr)E =def χ
IndsA,~1n,{i,j}

(role pairs(A, role expr)), if i 6= j

(q ′
xi

q ′
xi

role expr)E =def χ
IndsA,~1n,{i}

(role pairs(A, role expr) ∩ ID2,IndsA
)

(same-as q ′
xi

ind)E =def χ
IndsA,~1n,{i}

({ind})

(same-as ind q ′
xi
)E =def χ

IndsA,~1n,{i}
({ind})

(same-as q ′
xi

q ′
xj
)E =def χ

IndsA,~1n,{i,j}
(ID2,IndsA

), if i 6= j

(same-as q ′
xi

q ′
xi
)E =def χ

IndsA,~1n,{i}
(ID2,IndsA

)

(q ′
xi

q ′
xj

(constraint attrib1 attrib2 P))E =def

χ
IndsA,~1n,{i,j}

(predicate pairs(A, attrib1, attrib2, P)), if i 6= j

(q ′
xi

q ′
xi
(constraint attrib1 attrib2 P))E =def

χ
IndsA,~1n,{i}

(predicate pairs(A, attrib1, attrib2, P) ∩ ID2,IndsA
)

108 Empirically Successful Computerized Reasoning

This definition uses some auxiliary functions, providing the bridge to the classical ABox
retrieval functions offered by RacerPro. These functions have the standard DL semantics
in terms of logical entailment:

concept instances(A, concept expr) =def

{ i | i ∈ IndsA, (A,TA) |= concept expr(i) }
role pairs(A, role expr) =def

{ 〈i, j〉 | i, j ∈ IndsA, (A,TA) |= role expr(i, j) }
predicate pairs(A, attrib1, attrib2, P) =def

{ 〈i, j〉 | i, j ∈ IndsA, (A,TA) |=
∃x, y : attrib1(i, x) ∧ attrib2(j, y) ∧ P (x, y) }

Moreover, a nRQL role expression (role expr) can also be a negated (or inverse) role.
In the case of role expr = equal we have (A,TA) |= equal(i, j) iff iI = jI in all models
(∆I , ·I) of (A,TA), and in the case of role expr = ¬equal we must have iI 6= jI in
all models. The predicates P are made from the vocabulary offered by RacerPro for
building CD predicates (e.g., < (+(age2, 8), age1) is a CD predicate with free variables
age1, age2, and + is a functor with the standard semantics).

The semantics of complex nRQL bodies can be defined easily now:

(and q1 . . . qi)
E =def

⋂

1≤j≤i q
E
j

(union q1 . . . qi)
E =def

⋃

1≤j≤i q
E
j

(neg q)E =def (IndsA)n \ qE

(project-to (xi1,q . . . xik,q) q)E =def π〈i1,...,ik〉(q
E)

So far we have specified the semantics of a query body. To get the answer of a query, the
head has to be considered. This can be seen as a further projection of qE to the variables
mentioned in the head. If the head contained an individual, then this individual has also
been replaced by the representative variable in the head. If a head projection operator is
encountered, the functional operator is applied to the binding of the argument variable.
The value is included in the query answer (producing nested binding lists); a more
formal definition of this function application is omitted here. �

5 Hybrid Spatio-Thematic Queries

According to the discussion in Section 3, we are either using a single ABox A (option 1),
a (hybrid) map substrate (SBox,A, ∗) (option 2), or or a hybrid substrate (A,RCC, ∗)
(option 3) for DISK representation in the DLMAPS system. nRQL is used in all settings.
We already explained how we make a substrate QL such as nRQL hybrid: A hybrid query
uses now two kinds of query atoms, those for S1, and those for S2. Variables / individuals
in atoms for S2 are simply prefixed with *. Then, in a query body, any combination
of atoms for S1 and S2 is permitted, and variables are bound in a ∗-consistent way, see
Page 11.

Basically, all substrate QLs share the same body syntax (Def. 5). The atoms are
substrate specific, as explained. Also the head projection operators can be specific. The

Empirically Successful Computerized Reasoning 109

semantics of complex query bodies in Def. 6 is shared by all substrate QLs. However,
each specialized atom must define its own extension by means of the dedicated |= rela-
tion; e.g., for an arbitrary atom, its extension atomE must be defined (w.r.t. substrate
S). That’s all. For a hybrid query language, we additionally require that the computed
binding tuples respect the ∗-function, that is, computed bindings must ∗-consistent. We
do not go into formal details here.

Which spatio-thematic QL is now applicable for the different representation options
in the DLMAPS system?
• For option 1: We can only use plain nRQL, as explained.
• For option 2: The resulting hybrid QL is called SnRQL. It provides the following
spatial atoms in addition to nRQL:
• RCC atoms: Atoms such as (?x ?y (:tppi :ntppi)) etc. Spatial prepositions

such as :contains, :adjacent, :crosses, :overlaps, :flows-in are available.
• Distance Atoms: (?x ?y (:inside-distance <min> <max>)), where <min>,

<max specifies an interval [min;max]; NIL can be used for 0 resp. ∞ (this applies to
the subsequent interval specifications as well). For example, the extension of (i ?x

(:instance-distance nil 100)) consists of all SBox objects which are not further
away than 100 meters from i. Either the shortest distance or the distance of the centroids
of these objects can be used for distance computation.
• Epsilon Atoms: (?x ?y (:inside-epsilon <min> <max>)). With that atom,

all objects ?y are retrieved, such that ?y is contained within the buffer zone of size
[min;max] around ?x. This buffer zone consists of all points (x, y) whose shortest
distance to the fringe of ?x is contained within [min;max].
•Geometric Attribute Atoms: Atoms regarding geometric attributes, e.g. length

and area: The extension of (?x (:area 100 1000)) consists of all polygons whose area
is in [100; 1000]. Also :length is understood.

Moreover, simple type checking atoms such as (?x :is-polygon), (?x :is-line)

etc. are available.
To give a final example, consider this SnRQL query in concrete syntax which selects

an appropriate home for a millionaire:

(retrieve (?villa ?living-area ?golf-club ?church)

(and (?*living-area (and living-area

(or (all classification first-class-area)

(string= name "Beverley Hills"))))

(?living-area ?villa :contains)

(?*villa (and villa (all status for-sale) (> has-price 10000000)

(some has-comfort swimming-pool)))

(?church ?living-area (:inside-epsilon nil 200))

(?living-area ?golf-club :adjacent)

(?*golf-club (and golf-club (all members millionaire)))))

The extensions of the atoms are computed on the fly from the geometry with spatial
inspections methods (see Page 5). As argued, this can be understood as a kind of
(spatial) model checking.
• For option 3, the resulting hybrid QL is called nRQL + RCC atoms. This language
can only offer RCC atoms, since the geometry of the map is not represented. The syntax
of the SnRQL RCC atoms is identical to the RCC atoms just discussed.

110 Empirically Successful Computerized Reasoning

6 Conclusion

Building ontology-based IS with enabling DL technology is a non-trivial task, especially
for IS in non-standard domains such as the one considered here. The space of design
decisions is very large. Since decidability is not always easy to achieve it is thus of even
more importance to identify pragmatic and practical solutions which, even though if
they do not exploit or advance the latest theoretical state-of-the-art techniques in DL
research, can nevertheless be considered an advance w.r.t. the current state-of-the-art of
IS technology and provide guidance and “road maps” for similar designs. We claim that
our framework for building pragmatic combinations of specialized representation layers
(including DL ABoxes) for which orthogonal specialized substrate QLs can be defined
provides a great deal of flexibility for building similar ontology-based IS. Moreover, the
implemented functionality is available for other users and system designers. Thus, we
believe that these pragmatic solutions can be called empirically successful. DLMAPS can
be found under http://www.sts.tu-harburg.de/~mi.wessel/dlmaps/dlmaps.html.

References

[HLM99] V. Haarslev, C. Lutz, and R. Möller. A description logic with concrete domains and
a role-forming predicate operator. Journal of Logic and Computation, 9(3):351–384,
1999.

[HM01a] V. Haarslev and R. Möller. RACER System Description. In Int. Joint Conference

on Automated Reasoning, 2001.

[HM01b] V. Haarslev and R. Möller. The Description Logic ALCNHR+ Extended with Con-
crete Domains: A Practically Motivated Approach. In International Joint Conference

on Automated Reasoning, 2001.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive
description logics. In Proc. International Conference on Logic for Programming and

Automated Reasoning, 1999.

[KG06] Racer Systems GmbH & Co. KG. RacerPro User’s Guide
1.9.0. Technical report, Racer Systems GmbH & Co. KG,
http://www.racer-systems.com/products/racerpro/users-guide-1-9.pdf,
2006.

[KLWZ04] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-Connections of Abstract
Description Systems. Artificial Intelligence, 156(1):1–73, 2004.

[LM05] C. Lutz and M. Milicic. A Tableau Algorithm for DLs with Concrete Domains and
GCIs. In Proc. of the International Workshop on Description Logics, 2005.

[LW04] C. Lutz and F. Wolter. Modal logics of topological relations. In Proc. of Advances

in Modal Logics, 2004.

[Wes03a] M. Wessel. Some Practical Issues in Building a Hybrid Deductive Geographic In-
formation System with a DL Component. In Proc. of the 10th Int. Workshop on

Knowledge Representation meets Databases, 2003.

[Wes03b] M. Wessel. Qualitative Spatial Reasoning with the ALCIRCC-family – First Re-
sults and Unanswered Questions. Technical report, May 2003. Available at
http://www.sts.tu-harburg.de/~mi.wessel/papers/report7.pdf.

[WM05] M. Wessel and R. Möller. A High Performance Semantic Web Query Answering
Engine. In Proc. International Workshop on Description Logics, 2005.

Empirically Successful Computerized Reasoning 111

