
CEL—A Short System Demonstration∗

Boontawee Suntisrivaraporn, Franz Baader, Carsten Lutz

Theoretical Computer Science, TU Dresden, Germany

{meng,baader,clu}@tcs.inf.tu-dresden.de

Introduction to the CEL system.

Description logics (DLs) are an important family of formalisms for reasoning about on-
tologies. CEL (Classifier for EL) is a free (for non-commercial use) LISP-based reasoner
for the description logic EL+ [2], supporting as its main reasoning task the computation
of the subsumption hierarchy induced by EL+ ontologies. The most distinguishing fea-
ture of CEL is that, unlike other modern DL reasoners, it implements a polynomial-time
algorithm, which allows it to process very large ontologies in reasonable time. The un-
derlying description logic EL+ is a practically useful sub-language of EL++ introduced
in [1]. Despite being less expressive than other description logics such as SHIQ and
OWL, it offers a selected set of expressive means that are tailored towards the formu-
lation of biological and medical ontologies, some of the most prominent of which are
the Gene Ontology (Go) [7], the Galen Medical Knowledge Base (Galen) [5], and the
Systematized Nomenclature of Medicine (Snomed) [3, 6].

The purpose of the present short paper is to demonstrate the functionalities of CEL

and their use in applications. The implemented algorithm is described in detail in [2].
In the following section, a quick guide to system usage will be given, including the
system requirements. In the last section, performance evaluation of CEL on real-world
life science ontologies will be discussed.

CEL at work.

The CEL system is available as a binary executable which can run on most Linux plat-
forms. The latest version is CEL v0.9b which includes all features illustrated in this
system demonstration. The distribution bundle can be obtained from:

http://lat.inf.tu-dresden.de/systems/cel/

The package consists of the CEL executable, the user manual, and some example EL+

ontologies. After extracting the bundle, the executable cel under bin can be invoked
without installation. However, the following system requirements are assumed:

• Linux operating system;1

∗This work was partially supported by the EU funded IST-2005-7603 FET Project Thinking Ontolo-
gies (TONES).

1It has been tested successfully on RedHat, Debian, and SuSE.

168 Empirically Successful Computerized Reasoning

Concept DL Syntax CEL Syntax

the top concept ⊤ top
the bottom concept ⊥ bottom
conjunction C1 ⊓ · · · ⊓ Cn (and C1 · · · Cn)
existential restriction ∃r.C (some r C)

Table 1: Syntax of EL+ concepts.

Ontology axioms DL Syntax CEL Syntax

primitive concept definition A ⊑ D (define-primitive-concept A D)

concept definition A ≡ D (define-concept A D)

general concept inclusion C ⊑ D (implies C D)

concept equivalence axiom C ≡ D (equivalent C D)

concept disjointness axiom C1 ⊓ · · · ⊓ Cn ⊑ ⊥ (disjoint C1 · · · Cn)

role domain axiom ∃r.⊤ ⊑ C (define-primitive-role r :domain C)

role hierarchy axiom r ⊑ s (define-primitive-role r :parent s)
transitive role axiom r ◦ r ⊑ r (define-primitive-role r :transitive t)
right-identity axiom r ◦ s ⊑ r (define-primitive-role r :right-identity s)
left-identity axiom s ◦ r ⊑ r (define-primitive-role r :left-identity s)
complex role inclusion r1 ◦ r2 ⊑ s (role-inclusion (compose r1 r2) s)

Table 2: Syntax EL+ ontology axioms.

• Physical memory at least 128MB;2

• At least 8MB of available hard-disk space.

CEL as a stand-alone reasoner. In order to use CEL to classify an ontology, the user
must already have the ontology formulated in EL+ in a small extension of the KRSS
syntax [4], henceforth called CEL syntax. With this LISP-like syntax, it is easy to port
existing ontologies that have been used with well-known DL reasoners like FaCT and
RACER. Table 1 shows the concept constructors available in EL+ that can be used to
form concept descriptions. For building up ontologies, the expressive means shown in
Table 2 can be used, where conventionally A, B denotes a named concept, C, D concept
descriptions, and r, s named roles. Though only implies and role-inclusion axioms can
sufficiently model any EL+ ontology, it is often very useful and also makes the ontology
more comprehensible to provide auxiliary axioms. An EL+ ontology is effectively a
text file containing axioms of the forms shown in the right column of Table 1.

For example, Figure 1 shows a medical ontology about the concept Endocarditis (an
inflammation of a heart valve) formulated in CEL syntax. The user can either load this
ontology into the system by calling (load-ontology "med.tbox") or enter interactively
at the prompt each axiom of the ontology. The preprocess is carried out while the
ontology is being loaded, and once this is finished, (classify-ontology) can be invoked

2Considerably more memory may be needed for larger ontologies.

Empirically Successful Computerized Reasoning 169

(define-primitive-role contained-in)
(define-primitive-role part-of :parent contained-in :transitive t)
(define-primitive-role has-location :right-identity contained-in)

(define-primitive-concept Endocardium
(and Tissue

(some contained-in HeartWall)
(some contained-in HeartValve)))

(define-primitive-concept HeartWall
(and BodyWall

(some part-of Heart)))
(define-primitive-concept HeartValve

(and BodyValve
(some part-of Heart)))

(define-primitive-concept Endocarditis
(and Inflammation

(some has-location Endocardium)))
(define-primitive-concept Inflammation

(and Disease
(some acts-on Tissue)))

(define-concept Heartdisease
(and Disease

(some has-location Heart)))

(implies (and Heartdisease
(some has-location HeartValve))

CriticalHeartDisease)

Figure 1: An EL+ ontology from file med.tbox.

to classify all concept names occurring in the ontology (eager subsumption approach).
Subsumption query between two concept names can be queried using (subsumes? B

A). If this is called after classification, it simply looks up in the computed subsumption
hierarchy. Otherwise, it runs a single subsumption test and answers without needing to
classify the whole ontology first (lazy subsumption approach). After having classified
the whole ontology, CEL allows the user to output the classification results in different
formats: (output-supers) to output the subsumer sets for all concept names occurring
in the ontology; (output-taxonomy) to output the Hasse diagram of the subsumption
hierarchy, i.e., just the direct parent-child relationships; and (output-hierarchy) to
output the hierarchy as a graphical indented tree. As an example, Figure 2 depicts screen
shots of the results of (output-hierarchy) and (output-taxonomy) after classifying
the ontology med.tbox.

Through its command-line options, CEL can also work as a stand-alone reasoner
without interaction from users. For instance, the command line:

$cel -l filename -c -outputHierarchy -q

can be entered to load and classify an ontology from filename , and then output the
hierarchy. For a more detailed description of the CEL interface, we refer to the CEL user

170 Empirically Successful Computerized Reasoning

Figure 2: CEL with its innate interactive interface

manual (available on the CEL homepage).

CEL as a backend reasoner. Alternatively, the user can also exploit CEL reasoning
capabilities through the DIG interface3 and a graphical ontology editor. To do this, CEL

has to be started as a DIG reasoning server by the following command line:

$cel -digServer [port]

where port is defaulted to 8080 but can be overridden.
Once started in this mode, ontology editors can be connected to CEL and exploit

its reasoning power either locally or remotely via the Internet. The upper floating
dialog in Figure 3, “Reasoner Inspector,” displays the expressive means that can be
handled by CEL in terms of DIG language. The DIG interface for CEL has been tested
successfully with Protégé OWL editor.4 The main window in Figure 3 illustrates the
asserted subsumption hierarchy (input) and the inferred subsumption hierarchy (output)
within the editor, whereas the small floating dialog, “Connected to CEL 0.9,” displays
the interactions between the DIG client and the DIG server.

3The DIG (DL Implementation Group) interface is an XML-based standard that defines an interfacing
language for seamless communication between a DL service provider (DIG server) and a DL application
(DIG client). See http://dl.kr.org/dig/

4See http://protege.stanford.edu/plugins/owl/

Empirically Successful Computerized Reasoning 171

Figure 3: CEL as a DIG reasoner and Protégé OWL editor

Empirical Success of CEL.

We have compared the performance of CEL with three of the most advanced DL systems:
FaCT++ (v1.1.0), RacerMaster (v1.9.0), and Pellet (v1.3b). These systems implement
tableau-based decision procedures for expressive DLs in which subsumption is ExpTime-
complete. All experiments have been performed on a PC with 2.8GHz Intel Pentium
4 processor and 512MB memory running Linux v2.6.14. For Pellet, we used JVM v1.5
and set the Java heap space to 256MB (as recommended by the implementers).

Our experiments are based on three important bio-medical ontologies: Go, Galen,
and Snomed. Since Galen uses some expressivity that CEL cannot handle, we have
simplified it by removing inverse role axioms and treating functional roles as ordinary
ones, and obtained an EL+ ontology OGalen. (Of course, also the other reasoners,

which could have handled inverse and functional roles, were applied to OGalen rather
than full Galen.) We have obtained two other benchmarks, OGo and OSnomed, from
the other two ontologies. However, Snomed has two right-identity rules similar to the
third role axiom in our example (see Fig. 1). These axioms are passed to CEL, but
not to the other reasoners, as the latter do not support right identities. Additionally,
to get a smaller version of Snomed that can be dealt with by standard DL reasoners,

172 Empirically Successful Computerized Reasoning

OGo OGalen OSnomed
core OSnomed

concept axioms 20,465/0/0 2,041/699/1,214 0/38,719/0 340,972/38,719/0

role axioms 1 438 0 11 + 2

concept names 20,465 2,740 53,234 379,691
role names 1 413 52 52

CEL 5.8 14 95 1,782

FaCT++ 6.9 50 740 3,859

RacerMaster 19 14 34,709 unattainable

Pellet 1,357 75 unattainable unattainable

Table 3: Benchmarks and Evaluation Results

we also consider a fragment obtained by keeping only concept definitions, and call it
OSnomed

core . Some information on the size and structure of these benchmarks is given in
the upper part of Table 3, where the first row shows the numbers of primitive concept
definitions, concept definitions, and general concept inclusions, respectively. The results
of our experiments are summarized in the lower part of Table 3, where all classification
times are shown in seconds and unattainable means that the reasoner failed due to
memory exhaustion. Notable, CEL outperforms all the reasoners in all benchmarks
except OGalen, where RacerMaster is as fast. CEL and FaCT++ are the only reasoners
that can classify OSnomed, whereas RacerMaster and Pellet fail. Pellet and the original
version of FaCT (not shown in the table) even fail to classify OSnomed

core .

The empirical results for the performance of CEL described above show that it can
compete with, and often outperforms, the fastest tableau-based DL systems. The ro-
bustness and scalability of tractable reasoning is visible, especially in the case of Snomed

with almost four hundred thousand concepts. We view these results as evidence of em-
pirical success of the CEL system, and also as a strong argument for the use of tractable
DLs based on extensions of EL provided that the expresivity is sufficient in the domain
of interest.

References

[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, 2005.
Morgan-Kaufmann Publishers.

[2] F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning in EL+. In Proceed-
ings of the 2006 International Workshop on Description Logics (DL2006), CEUR-
WS, 2006.

[3] R. Cote, D. Rothwell, J Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED In-
ternational, Northfield, IL: College of American Pathologists, 1993.

Empirically Successful Computerized Reasoning 173

[4] P. Patel-Schneider and B. Swartout. Description-logic knowledge representation sys-
tem specification from the krss group of the arpa knowledge sharing effort. Technical
report, DARPA Knowledge Representation System Specification (KRSS) Group of
the Knowledge Sharing Initiative, 1993.

[5] A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97),
Stanford, CA, 1997. AAAI Press.

[6] K.A. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. Journal of the American
Medical Informatics Association (JAMIA), 2000. Fall Symposium Special Issue.

[7] The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

174 Empirically Successful Computerized Reasoning

