

Abstract— This paper outlines the problems the authors
came across when, after the realization of ReMuNaICCD, an
ontology supposed to allow a more articulate use of the present
cultural heritage information system, they approached the task
of populating it with instances.

To permit immediate use of the ontology, it was necessary to
develop ICCD2OWL, a data compiler able to translate the data
recorded in the available ICCD cards into class instances and
property instances for the ontology. The first task was to design
formal codifications for both the ICCD attribute-value data
model and the ReMuNaICCD ontological data model. Then a
program for converting each of them into the other was
required.

Actually, the issue faced in this paper comes under the wider
topic of the mappings between simple attribute-value data
structures and ontological representations of the knowledge or,
in more general terms, between not-object oriented models and
object oriented models.

The most remarkable conclusion is that part of the effort
required is due to the semantic inadequacies of the ontology
languages currently available. Such inadequacies make any
attempt at accomplishing semantic interoperability based on
those languages alone unproductive. Therefore, it is evident
that the methodologies and results presented here could
profitably be used in a more general framework like the
Semantic Web.

I. INTRODUCTION

In designing ReMuNaICCD, a formal ontology for the
Cultural Heritage domain [1], we had as fundamental reference
the recommendations issued by the Central Institute for the
Catalogue and Documentation (ICCD). The research was
supported by the Virtual Museum of Naples project ReMuNa1

(which stands for Network of Neapolitan Museums) and
SIABeC2 (Information System Applied to the Cultural
Heritage).

This project was motivated by the necessity of having an
ontology model compatible with the information system
currently deployed inside the institutions that are in charge of
the safekeeping, maintenance and valorisation of the cultural
assets.

To this end, the ICCD cards that describe the material

1 The ReMuNa project is financed by the MIUR with the Law n.488
initiative of Cluster

2 The project SIABeC is financed with the projectCentro regionale di
Competenza per lo sviluppo ed il trasferimento della innovazione
tecnologica (INNOVA) P.O.R. Campania misura 3.16.

assets and those that describe the immaterial assets, and not
least those related to the authority files and to the multimedia
documentation, have been investigated. Moreover, considering
their importance in achieving a comprehensive description of
the excavations, recognitions and archaeological essays, the
cards that were structured by the ICCD in order to document
the stratigraphic units have also been studied and transferred
into the ontology.

It was necessary to make a careful study of the ICCD cards.
First of all, in order to distinguish two macro-groups of
fields: those giving information about the object the card is
devoted to, and those giving information on the card itself.
Inside these two macro-groups, we have characterized the
fields designed to supply identifications and characterizations,
the fields designed to report events, and the fields that
determine relations with other elements (documents, other
assets, other cards etc).

In order to establish which classes had to be created, we
have distinguished on one hand, fields that appear without
variations in all ICCD cards, from those designed for taking
into account of specific typologies of assets. On the other
hand, we have determined, for every field, whether it was
directly or indirectly related to the subject catalogued by the
card.

ReMuNaICCD is not in any sense a simple ICCD fields
transposition into an object oriented model. In order to
represent all the aspects of the cultural assets and the events
that happened to them, it has proved to be a new data model,
built from scratch.

To summarise, starting from the ICCD cards, which
include 27 fields of the Bibliography card, to the nearly 300
fields of the Architectural card, with an average of 200 fields
per card, we elaborated ReMuNaICCD.v2.0, an ontology of
381 classes (199 are Appellation subclasses), 473
objectProperties, 458 dataTypeProperties and about 750
instances (nearly all of them were taken from the ICCD
vocabulary).

ReMuNaICCD has been written using the subset of OWL
called OWL Lite [2]. OWL is the acronym of Web Ontology
Language [3], a standardized language for the specification of
formal ontologies, recommended by the W3C. The main
factor in choosing OWL Lite was the ascertainment that not
only it offers a sufficient expressivity, but also guarantees a
priori computational tractability of the final product [4].

The works [5] [6] and [7] of Guarino et al. on the formal
ontologies foundations, those of Gangemi et al. on the
ontology patterns [8], the guide lines proposed by Alan Rector

ICCD2OWL: an ICCD to OWL data compiler
1A. Aiello, 1S. Brandi, 1M. Mango Furnari and 2F. Proto

1Istituto di Cibernetica “E. Caianiello”- CNR
E-mail: {a.aiello, mf }@cib.na.cnr.it s.brandi@remuna.org

2Dipartimento di Discipline Storiche “E. Lepore” Università Federico II di Napoli
E-mail: fiona.proto@virgilio.it

et al. [9] and the newest experiences reported online by the
OEP [10], have strongly influenced the development of our
ontology.

Since the start of our activities in this field, we have used
Protégé as the only tool for editing our ontologies. Protégé is
a free, open source ontology editor and knowledge base
framework [11] [12]. Furthermore, we directly linked Protégé
and the system Sesame [13] [14] for the exchange of
ontologies through the Internet, by means of a plug-in [15]
produced inside the project ReMuNa [16].

In section II, we introduce the main features of the
ontological model: the uppermost components of the class
hierarchy and the fundamental ontology pattern. Section III
gives the basis for the development of the compiler. In the
first subsection, the input and the output data models are
compared; in the second subsection, it is explained how to use
the Historicism Pattern in order to get “Conceptual
Translations”. Section IV, in five subsections, describes the
formalisms adopted in order to a) serialize the ontology
patterns, b) identify the instances, c) codify the classes, d) use
global variables, and e) define a configuration file. Section V
outlines the processes that the compiler performs when
translating ICCD to ReMuNaICCD and viceversa. In Section
VI, some conclusions are summarized and a question is asked:
aren’t the current ontologies' formalizations absolutely
inadequate for solving the problem of semantic
interoperability?

II. THE ONTOLOGICAL MODEL

The ontology ReMuNaICCD has been built taking account
of the most common top-level ontologies, in particular
DOLCE [17] and ICOM/CIDOC-CRM [18]. Here, we
introduce only a small part of the ReMuNaICCD classes and
properties, just those that are involved in the topic dealt with
in this paper.

The root of the classes’ hierarchy is the class Entity. It is
the class that represents the universe we are interested in and is
articulated in two radically different subclasses (Fig. 1):
Concrete: the more general class that comprises all the
concepts that model the domain that we have to analyze and to
formally represent.

Fig. 1. The ReMuNaICCD’s top-level ontology

Appellation: the root of the dictionaries that were created
and are controlled by third parties, whose semantics remains
alien to ReMuNaICCD.Concrete is divided into three disjoint

subclasses:
The E n d u r a n t , i.e. the class of the subjects/objects

represented by abstracting them from all possible contingent
considerations, namely, attributes and relations that are
understandable if and only if they make reference to certain
specific space-time contexts.

The Perdurant, the class of the observations in which the
subjects/objects emerge in a given space-time context, and
exhibit a set of attributes and relations that are specific to that
context.

The Space-Time Region, the class that models the space
and time where the observations are detected.

Besides the subsumption relation, that determines the
classes’ hierarchy, in an ontology, classes are interlinked
through a network of specific relations that formalizes not
only the individual meaning of each class but also, and more
interestingly, the meaning of their staying together.

It has been discovered by Gangemi et al. [8], that some not
trivial “conceptual structures” of the domain prove to be
represented by “semantically autonomous” clusters inside the
ontological network, each involving many classes and many
properties, and sometimes even meta-properties (properties of
properties). Those “conceptual structures” are totally lost when
the ontology is coded using the currently available languages
for ontology, namely RDF/RDFS and OWL. Indeed, those
languages do not offer any syntactical constructs that permit
the representation of ontological substructures, and even less
the essential accompanying instructions for their use.
Currently, ontologies are represented as oriented graphs in
which the nodes represent the classes and the arcs represent the
properties. Therefore, any “conceptual structure” relevant to
the domain will be represented by some pattern of connected
node-arc-node triples abstracted from the whole graph.
Actually, ontology patterns, made of classes and correlating
properties, constitute an optimal instrument for highlighting
common features and for generalizing complex relationships or
decomposing them in their constitutive elements.

The Historicism Pattern illustrated in Fig. 2 gives the most
important conceptual structure in the ontology ReMuNaICCD.
It shows how the various kinds of historical reports are
represented in terms of the fundamental classes, i.e.
Endurant, Perdurant, and Space-Time Region and some
sub properties of comprises, the most general objectProperty
that formalizes the specific tools for performing the analysis of
Concrete.

In this ontology pattern, Participation, a subclass of
Perdurant, plays the role of the basic atomic module by
means of which all the classes representing the various kinds
of historical reports can be built. The constructors are some
(non-transitive) sub properties of comprises. Participation
formalizes the observation of a single object (has_present =
Endurant) while it plays a certain role (has_role = Role), in
participating in an elementary interaction (participates_in =
H i s t o r y _ F r a g m e n t), at a certain place and time
(has_space-time_location = Space-Time_Region).

Entity

Concrete Appellation

Endurant Perdurant Time-Space Region

subclass_of

subclass_of

Fig. 2. The Historicism Pattern

Participation has a particular role because, through the
primitive relation has_present, it embeds the Endurant into
the space-time context (“Endurant present_in Perdurant”).
Indeed, Participation is the class that binds the single
Endurant to the attribute and the relation (i.e. the properties
h a s _ r o l e and p a r t i c i p a t e s _ i n) that describe its
manifestation in the specific space-time context indicated by
has_space-time_location.

The class History_Fragment, a subclass of Perdurant,
models the interactions. Namely, two or more instances of
P a r t i c i p a t i o n are connected by the property
p a r t i c i p a t e s _ i n to the same instance of
History_Fragment: the Endurants that are present_in
those Participations are intended to interact with each other
playing the roles indicated inside their respective
Participations.

The class Historical_Event models observations which
are more complex than the single History_Fragment; many
History_Fragments can be composed in a single
Historical_Event through the property is_report_of and
its inverse has_report.

Finally, every entity comprising whatever number of
Historical_Events is defined as Historical_Period.

The Historicism Pattern, through the property role of the
class Participation and the property type, defined for any
Concrete, can describe the conceptual structure of any kind
of historical report, even reports which are much more
complex than those codified by the ICCD schema.

III. FROM ICCD TO REMUNAICCD

A. Comparing the two data models
As already mentioned, the ICCD format3 consists of a

3 The technical specif icat ions c a n b e found at
http://www.iccd.beniculturali.it/standard/

sequence of attribute-value pairs concerning the Cultural
Heritage. The admissible values of the attributes depend on
the cultural asset in question. In any case, the assignment of
values to attribute is not always compulsory, just as repeated
assignments of single independent values or groups of values
can be permitted.

Actually, the technical specifications of the ICCD, i.e. the
sequential file format, and its intrinsic characteristics, i.e. the
arbitrariness of the number of the fields and the presence of
functional dependences among the fields, mean that the results
already reported in the literature, like many concerning
relational databases, are irrelevant, making it necessary to start
again from scratch.

The ontological structure described in the previous
paragraph constitutes the basic skeleton of ReMuNaICCD.
That structure was enriched with classes, properties and
instances deduced by the various segments (paragraphs, fields
and subfields) of which the ICCD cards are made up.

It must be remarked that, the modalities for determining the
relations in the ICCD schema are radically different from those
used in the ontological model. An example of this can be
given by comparing the modalities that the two models adopt
in order to deal with the relationship between the
subjects/objects and the events to which they participate.

Let us consider a subject “X” that carries out one of the
following two functions:

(a), the function of a scientific director in a survey which
enabled the finding of a good “α”

(b), the function of a collaborator responsible for compiling
an ICCD card of the good “α”
then, according to the ICCD data model:

in the case (a), the name of the subject “X” has to be
reported in the simple fields of the ICCD card of the good
“α”, which refer to the Scientific Director of the Survey,
which have enabled the finding of the good “α”;

in the case (b), the name of “X” has to be reported in the
fields that refer to the Collaborator responsible for the
compilation of the ICCD card.
In ReMuNaICCD, instead,

in the case (a), the subject “X” is an instance of Person,
present_in , an instance of Participation, with the
attribute role set to Scientific_Director; that instance of
Participation participates_in an instance of
History_Fragment that is report_of an instance of
Survey (subclass of Historical_Event);

in the case b), the subject “X” is an instance of Person
that, present_in a Participation with the role of
C o l l a b o r a t o r , p a r t i c i p a t e s _ i n an instance of
History_Fragment of the type Compilation_of_ICCD_
card

B. The Conceptual Translations
After the foregoing analysis, which showed the basic

conceptual elements of the ICCD recommendations, a
complex re-composition process becomes necessary. Firstly,

has_
present

participates
_in

Concrete

Endurant Perdurant

Participation
 role
 type

History_Fragment
type

Historical_Event

Historical_Period

comprises

report_of

characterizes

has_space-time_
location Space-Time

Region

subclass_of

subclass_of

we must find the correspondences between every ICCD field
and the elements that constitute our ontology. Then, every
segment of the ICCD cards must be associated with some
ontology pattern that connects “semantically” its ontological
representative to the class describing the card’s main subject.

Therefore, we need to design some formal languages (XML
documents) that enable us to express: a) the correspondences
‘ICCD field – ontology element’, b) the ontology patterns,
and c) how the compiler must use the previous data so that the
mechanical translation of an ICCD card into classes, properties
and instances, does in fact lead to the expected codifications.

To give an example of this process, let us consider the card
for the archaeological find (RA) and its structured field
reserved to the restoration data. An archaeological find,
reported in the card RA is dealt with by ReMuNaICCD as an
instance of the class Archaeological_Find (subclass of
Endurant), while a report about a restoration is dealt with as
an instance of R e s t o r a t i o n , a subclass of
History_Fragment . The ontology pattern instance
shown in Fig.3 describes how Archaeological_Find
instances are related to the ontological correspondents of the
ICCD fields devoted to restorations: RSTD (date), RSTS
(situation), RSTE (responsible agency), RSTN (operator) and
RSTR (financing agency).

Fig. 3. Example of Historicism Pattern instance

Of course, in the graph, the boxes represent instances: the
upper part of each box contains the name of the instance’s
class and the lower part contains the name of the instance (in
the case of Restoration , the value SituationY of the
property situation is also reported).

To transfer the contents of the fields RSTD, RSTS, RSTE,

RSTN and RSTR, the data compiler has to build the instances
represented by the red boxes and, at the same time, implement
the mapping given in Table 1: the contents of the fields in the
first column become the values indicated in the second
column (references are made using the same symbols as Fig.
3); the third column gives the classes of the instances related
to the values referenced in the second column. The other boxes
in the pattern represent either built-in instances (in yellow) or
instances (in black) that transpire from the translation of other
ICCD fields.

ICCD
field

Instance name
or property value

Instance Class
or property

RSTD TR Time_Region
RSTS situation(of v2) Situation

(of Restoration)
RSTE v4 Juridical Person
RSTN v5 Physical Person

Table 1. Mapping ICCD fields vs ontological elements

IV. AN OUTLINE OF THE ICCD2OWL FORMALISM.

A. The pattern’s serialization
To make a codification which is machine-understandable,

we serialized all the patterns and all the rules concerning the
matchings into XML documents.

In order to optimize the reuse, patterns and fields are defined
separately.

Binding
ICCD field/

Pattern

Binding
Parameter/

value

Start Class
Condition:

TSK=”RA”

<iccd>
 <bind>
 <field>RSTE</field>
 <pattern> Arch_Find-Jur_Pers-name
 </pattern></bind>
 <bind>
 <param>v1</param>

<value>”Restored_object”</value>
 </bind>
 <bind>
 <param>v2</param>
 <value>”Restoration”</value>
 </bind>
 <bind>
 <param>v3</param>
 <value>”Financial_Support”</value>
 </bind>
 <bind>
 <param>v4</param>
 <value>@@RSTE@@</value>
 </bind>
 <class>Archaeological_Find</class>
 <condition>
 <contains>

<field>TSK</field>
<value>”RA”</value>

 </contains>
 </condition>
</iccd>

Table 2. Example of ICCD field/Pattern binding

The patterns are referable by unique assigned identifiers so
that each ICCD field can be bound to one or more precise

has_participant
 _in

Restoration
History_Fragment

V2, SITUATIONY

(2)
Y

SituationY

has_time_
location

Role
v1

Participation

P1
role

has_present

Role
v3

Participation

P2
role

has_present Jur_Pers
v4

Role
v3

Participation

P3
role

has_present

Role
v5

Participation

P4
role

has_present

Time-Region
TR

Jur_Pers
v4

Phy_Pers
v4

Arch_Find
AFX

patterns. Moreover, since the same ICCD field can be bound
to different patterns, depending on the context, our formalism
also considers even the possibility of declaring parameters as
well as conditions on the choice of the bindings.

For example, inside the ICCD, there is the field Card
Type (TSK) that specifies the subject of the card, namely the
“starting class”. It can be an Archaeological Find or an
Archaeological Site or whatever other cultural good or asset. It
is clear, that on the basis of this piece of information, the
choice of the bindings proves to be restricted and the
parameters that must be passed are determined. The code that
formalizes this choice, for the previous example, is sketched
in Table 2.

The patterns are serialized as lists of triples whose
elements contain parameters that assume values according to
the fields of the ICCD cards. The lists may contain names of
other patterns that can be considered as sub patterns of those
codified by the lists. For example, the codification of the
pattern Arch_Find-Jur_Pers-name quoted in Table 2 is
sketched in Table 3.

Pattern Id
In param.

subpattern

Out param.

evaluating
variables

<pattern>
 <id>Arch_Find-Jur_Pers</id>
 <input>v1,v2,v3,v4</input>
 <branch>
 <pattern>Arch_Find-@@v2@@
 </pattern>
 <receive>v1,v2</receive>
 </branc>
 <branch>
 <pattern>Juridical_Person-@@v2@@
 </pattern>
 <receive>v3,v4</receive>
 </branc>
 <branch>
 <triple>

<instance_of>Juridical_Person
</instance_of>
<property>name</property>
<value>@@v4@@</value>

 </triple>
 </branch>

 </pattern>

Table 3. Example of pattern serialization

B. The identity of the instances
Every time one proceeds to an object oriented representation,

it is necessary to choose a means of recognizing and
distinguishing the various instances of a certain class.

The simplest possible approach is that of assigning unique
progressive identifiers to the instances as they are created. But
this requires introducing some rules for detecting, identifiers
apart, if two or more instances are equivalent, i.e. they refer to
the same entity. For example, before introducing whatever
new instance, it would be necessary to verify whether no
instance representing the same entity is already recorded.

In designing ICCD2OWL, a different policy was preferred.
Each instance whose scope is wider then one single card is
endowed with an identifier both unique and significant for the
entity that it represents. Every time two or more cards refer to
the same entity, it is ossible to create several instances all
having the same identifier: subsequently, the system is able to
detect the duplications and to delete them.

The foregoing policy is implemented by coding, in the
configuration document of ICCD2OWL, the properties that
mostly carry identity criteria and the rules according to which
starting from their values, the instances’ identifiers must be
composed.

C. Class use case specifications
As we have already seen, the same class can be instantiated

for representing entities that receive the values of the same
property from different ICCD fields. For example, an instance
of the class Physical_Person receives the value of name
from the field RCGA (scientific advisory) if the ICCD card
reports that entity as a Scientific Director. Differently, in
the case the entity is reported in the ICCD card as an
Authority, then the instance of the class Physical_Person
must receive the value of name from the field FUR (the
collaborator responsible).

Class name inside
the config file
Pattern to
the instance’s ID
(referred by v1)

Class name
inside ReMuNaICCD

<class>

 <id>Physical_Person</id>

 <iccd_pattern>
 @@PREFIX@@Phy_Pers_@@v1@@
 </iccd_pattern>

 <name>
 @@PREFIX@@Physical_Person
 </name>
</class>

Table 4. Example of the use case specification of a class

For the correct interpretation of the ICCD cards,
ICCD2OWL receives the information it needs in cases like the
example above by means of pieces of code like the one shown
in Table 4.

D. The global variables
The fact that each ontological pattern involves more than

one ICCD field, implies serious difficulties when it comes to
translating one by one the fields of the same card.
ICCD2OWL has to create a single pattern of instances that
translate all of the fields involved, and cannot repeat the same
pattern for each field involved. Moreover, more cards may
refer to the same entities involved in the same kind of
ontological pattern: what are the instances that can be reused
and what are those that cannot?

Returning to our first example on the restoration data, we
can notice that the five ICCD fields RSTD, RSTS, RSTE,
RSTN and RSTR all refer to the same ontology pattern
represented in Fig. 3. This means, for example, that exactly
the same instance of the pattern Arch_Find-Restoration,
implemented for translating the first field RSTD, must be
reused in the translation of all four of the other fields.

 Of course, there can be more than one ICCD card,
reporting different restorations of the same archaeological find
in which the participants remain the same. In this case, the
translations of the various restoration data will be made by
means of patterns that share the instance of the endurants
(Physical_Person, Juridical_Person, Archaeological
_Find_Person, etc.) but, for each restoration, each with its
own time location at least, different sets of perdurants

(R e s t o r a t i o n and Participation) and different
Time_Region must be instantiated.

 In other words, if in translating RSTD the compiler
creates two instances Participation_X1 and Participation_X2,
then in translating the RSTS field the same instances
Participation_X1 and Participation_X2 must be reused.
Viceversa, to record further restorations of the same good, it
will be necessary to implement new pairs of instances of
Participation.

In order to manage this distinction, the configuration file of
ICCD2OWL is provided with global variables that are created
when certain precise fields are translated, and that remain
visible in all the subsequent processes, until the end of the
translation of all the correlated fields.

Trigger field

Pattern

Name

<global_variables>
 <field>RSTD</field>
 <variable_pattern>
 Restoration_@@RSTN@@
 </variable_pattern>
 <variable_name>
 RX
 </variable_name>
 <condition>
 <contains>
 <field>TSK</field>
 <value>”RA”</value>
 </contains>
 </condition>
</global_variables>

Table 5. Example of global variable declaration.

When the compiler processes the first field concerning a
restoration, let us say RSTD, it creates also an instance of the
global variable RX, that contains the id of the instance of the
class Restoration. In this way, the information relevant to the
status of the translation remains available to the processes that
translate the subsequent fields RSTS, RSTE, etc.

An example of global variables codification is given in
Table 5.

E. The configuration file
Summarizing, the configuration file of ICCD2OWL is

an XML document that contains the codifications of the
following items:
- a set of ontological patterns each of which, taken as a

whole, represents a not reducible conceptual structure;
- a set of mappings that represents conditional binding of

ICCD fields to variables inside the ontological
patterns;

- a set of mappings that bind the names used for the
classes inside ReMuNaICCD, the symbolic names that
represent them inside ICCD2OWL and the rule to
create a new instance;

- a set of global variables and the corresponding
instructions for use.

V. AN OUTLINE OF THE COMPILER PROCESSES

The formalism introduced above codifies the complete
specifications that the compiler must apply in order to

translate either ICCD cards into ReMuNaICCD instances or,
viceversa, ReMuNaICCD instances into ICCD cards.

A. Compiling ICCD
Until now we have spoken about translating from ICCD to

ReMuNaICCD. The following steps are performed as the
ICCD file is sequentially read:

1. an ICCD field is read;
2. the appropriate variables are instantiated;
3. the ontological pattern is found that matches the field;
4. the elements of the pattern are processed sequentially;

at each step one of the following cases may occur:
a. the element is a subpattern that contains parameters,

then the parameters must be replaced by the actual
values;

b. the element is a triple, then its elements must be
instantiated using the current values of the
variables;

c. the element is a class, then the suitable instance of
the class is instantiated.

Of course, all the steps of the above process must be
performed according to the rules coded in the configuration
file previously introduced.

B. Compiling ReMuNaICCD
After the translation, the ontology is transferred into

OWLIM [19] a high-performance semantic repository, where
the reasoner computes the ontological inferred closure. In order
to get both the original and the inferred data in a presentation
format familiar to the customer, an OWL to ICCD compiler
can be of use.

The process that converts the ontological information to
the original ICCD format can be described in the following
steps.

For each instance of the ontology, and for each of its
properties:

1. the ontological pattern is found that concerns the class
of the instance and the property under consideration;

2. the appropriate variables are instantiated;
3. the elements of the pattern are processed sequentially;

at each step one of the following cases may occur:
a. the element is the triple that evaluate variables,

then the value of the corresponding property must
be passed;

b. the element is a subpattern that makes references
to variables, then the corresponding value must be
passed, and the process restart from point 2;

4 . the created pattern generates a query, that will be
performed on the ontology to retrieve the information
about the property.

VI. CONCLUSIONS

Formal ontologies offer a promising approach to facilitate
semantic information retrieval from heterogeneous document
repositories.

The objective of our ontology was to restore a minimal
logical structure to the numerous data that are found in the
ICCD cards and whose relation with the original context
seems definitively lost.

ReMuNaICCD models a “natural” infrastructure for the
accommodation of the data. A first arrangement is determined
by the taxonomy of the classes and the taxonomy of the

properties, but the true logic of the model is contained in the
patterns of classes and properties that express the group games
that the different entities play all together.

Eventually, in trying to populate our ontology with data
coming from the available sources, we realized that sensible
translations of the traditional data models to ontology models
were not at all trivial for two main reasons.

First, translations need pieces of information that could be
acquired by the ontology patterns, but these patterns are not
explicitly represented inside the RDF/RDFS or OWL
ontology codifications.

Second, the translations can be context dependent but none
of the current ontology languages is able to express
contextual dependence.

Do these reasons mean that the current ontology languages
are too poor for solving, without essential auxiliary tools, the
problem of semantic interoperability?

In this paper, we investigated the possibility of introducing
supplementary formalizations that could be sufficient for the
accomplishment of our specific task.

Certainly, the technical details may be improved and the
whole formalization may be better situated in the ambits of
the most popular standards.

REFERENCES

[1] Pierobon Benoit R., Proto F., Aiello A., Brandi S., Mango Furnari M.
2005, Concettualizzazione e contestualizzazione dei beni culturali
archeologici, «Archeologia e Calcolatori», 16, 321-339.

[2] de Bruijn J., Polleres A., Lara R., and Fensel D. 2004, OWL Lite¯, in J.
de Bruijn (ed.), Final draft d20.1v0.2, WSML Deliverble

[3] McGuinness D. L. and van Harmelen F. 2004, (eds.), OWLWeb
Ontology Language Overview, W3C Recommendation, 10 February
2004, http://www.w3.org/TR/2004/REC-owlfeatures-20040210/.

[4] Volz L. 2000, Web Ontology Reasoning with Logic Databases. PhD
thesis, AIFB, Karlsruhe.

[5] Guarino N. and Welty C. 2000, Ontological analysis of taxonomic
relationships. In Proceedings of ER-2000: The Conference on
Conceptual Modeling.

[6] Guarino N. 1998, Formal Ontology and Information Systems. In N.
Guarino (ed.), Formal Ontology and Information Systems, Amsterdam,
Nederlands, 3-15

[7] Guarino N. 1995, Formal Ontology, Conceptual Analysis and
Knowledge Representation. «International Journal of Human and
Computer Studies», 43(5/6), 625-640.

[8] Gangemi A. 2005 Ontology Design Patterns for Semantic Web Content,
in E. Motta and Y. Gil (eds.), Proceedings of the Fourth International
Semantic Web Conference, LNCS 3729, 262 – 276.

[9] Rector A.L., Rogers J. 2004, Patterns, Properties and Minimizing
Commitment: Reconstruction of the GALEN Upper Ontology in OWL,
in Core Ontologies Workshop (CORONT), Northampton, UK.

[10] OEP 2004-5, Semantic Web Best Practices and Deployment Working
Group, Task Force on Ontology Engineering Patterns. Description of
work, archives, W3C Notes and recommendations available from
http://www.w3.org/2001/sw/BestPractices/OEP/ (2004-5).

[11] Gennari J., Musen M., Fergerson R., Grosso W., Crubézy M., Eriksson
H., Noy N., and Tu S.2003, The evolution of Protégé-2000: An
environment for knowledge-based systems development. «International
Journal of Human-Computer Studies», 58(1), 89-123.

[12] Knublauch H., Musen M. A., Rector A. L. 2004, Editing Description
Logic Ontologies with Protégé OWL Plugin, Proceedings of the 2004
International Workshop on Description Logics, Whistler, British
Columbia, Canada.

[13] Broekstra J., Kampman A., van Harmelen F. 2002, Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema, in Proc.
1st ISWC.

[14] Giordano M. and Mango Furnari M. 2006 Experimental Ontology Web
Services. American Association for Artificial Intelligence.

[15] Aiello A., Mango Furnari M., Massarotti A., Brandi S., Caputo V., and
Barone V. 2006, An experimental ontology server for an information
grid environment. «International Journal on Parallel Programming».

[16] Patel-Schneider P. F., Hayes P., and Horrocks I. 2004, OWL web
ontology language semantics and abstract syntax. W3C
Recommendation, 10 Feb. 2004. http://www.w3.org/TR/owl-semantics.

[17] Masolo C., Borgo S., Gangemi A., Guarino N., Oltramari A. and
Schneider L. 2003. The WonderWeb Library of Foundational
Ontologies and the DOLCE ontology. WonderWeb Deliverable D18,
Final Report (vr. 1.0, 31-12-2003)

[18] CIDOC Conceptual Reference Model http://cidoc.ics.forth.gr/
[19] Kiryakov A., Ognyanov D., Manov D. 2005, OWLIM – a Pragmatic

Semantic Repository for OWL, in Proc. of International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS 2005),
Galway, Ireland, November 6-10, 2005, LNCS 3729, pp. 668-684.

