

Abstract—In this work we introduce Semantic Turkey, a

Semantic Extension for the popular web browser Mozilla Firefox.
Semantic Turkey can be used to annotate information from
visited web sites and organize this information according to a
personally defined ontology. Clear separation between knowledge
data (the WHAT) and web links (the WHERE) is established into
the knowledge model of the system, which allows for innovative
navigation of the acquired information and of the pages where it
has been collected. This paper describes the architecture of the
Semantic Turkey extension for Firefox, discusses its development
in the context of the FILAS technophore project, shows its most
interesting features and presents our plans for future
improvements of the tool.

Index Terms—Semantic Annotation, Semantic Desktop, Web
Navigation, Human Computer Interface

I. INTRODUCTION
HILE new solutions for Semantic Desktops and
Innovative Browsing of file systems ([13], [22]) are

arising in these days, one of the instruments which is mostly
correlated to WWW – the Web Browser – and which should
be more prone to the wind of innovation which is blowing
from the Semantic Web, remains confined to its old fashioned
interaction modalities. Despite a few initiatives to extend their
standard functionalities, like Google Notebook [9], web
browsers offer now no more than the classical services – for
collecting and organizing bookmarks and for retrieving the
history of past navigation activity – which we have been used
to in almost a decade. The web is however not the same of ten
years ago: today almost every information can be accessed
even (if not solely) from the WWW so that every web user is
exposed to a huge amount of information which is difficult to
manage and retrieve. New paradigms are thus necessary to
support web browsing and to aid in collecting and retrieving
the data which is observed during navigation.

In this work we introduce Semantic Turkey, a Semantic
Extension for the popular web browser Mozilla Firefox [6],
which can be used to annotate information from visited web
sites and organize this information according to a personally
defined ontology. Semantic Turkey should not be addressed as
a “Semantic Web Browser” (whatever the nature of this term,
which will probably take shape in the next future), but it is
instead intended as a personal desktop solution for organizing
and managing the knowledge acquired during web navigation,
an advanced replacement for the traditional “Favorites” menu,

offering clear separation between knowledge data (the WHAT)
and web links (the WHERE), allowing for innovative
navigation of the acquired information as well as of the pages
where it has been collected.

II. RELATED WORKS
As an evidence of the great interest for the matter, several
actions have been undertaken in the last years towards the
realization of so called Semantic Browsing solutions for the
Web. In this section we will briefly recall a few of them.

Haystack [14], developed inside the laboratories of the
MIT, was conceived as an application that could be used to
browse arbitrary Semantic Web information in much the same
fashion as a Web browser can be used to navigate the Web.
Standard point-and-click semantics let the user navigate over
aggregation of RDF repositories from different arbitrary
locations. The application is built as an extension for the
popular Integrated Development Environment Eclipse [5]; this
choice facilitates extension of the tool thanks to Eclipse
flexible plug-in mechanism, but requires the user to adopt
Eclipse as a platform for browsing the web and collecting data
from it: a strong demand to the average user, who would just
prefer to rely on his trusted personal web browser and try out
other features which are not too invasive for his usual way of
working.

The opposite approach is being followed by Magpie [3],
which is deployed as a plug-in for the Microsoft Internet
Explorer Web Browser. In its first incarnation, Magpie
allowed for semantic browsing, intended as the parallel
navigation of purely “exposed” web content and of its
associated semantic layer (an ontology associated to the web
resource, which semantically describes its content). Magpie
also allows for collaborative semantic web browsing, in that
different persons may gather information from the same web
resource and exchange it on the basis of a common ontology.
Recent work on Magpie [4] extended the platform more and
more towards the vision of the Semantic Web as “an open web
of interoperable applications” [1], by allowing bi-directional
exchange of information among users and services, which can
be opportunistically located and composed, either manually
(web services) or automatically (semantic web services).

From (part of) the same authors of Haystack, comes Piggy-
Bank [10], an extension for the Firefox web browser [6] that
lets Web users extract individual information items from
within web pages and save them in RDF, replete with

Gobbleing over the Web with Semantic Turkey
Donato Griesi, Maria Teresa Pazienza, Armando Stellato

DISP, Università di Roma “Tor Vergata”
{griesi, pazienza, stellato }@info.uniroma2.it

W

metadata. Piggy Bank then lets users make use of these items
right inside the same web browser. These items, collected from
different sites, can then be browsed, searched, sorted, and
organized together, regardless of their origins and types.
Piggy-Bank users may also rely on Semantic Bank, a web
server application that lets them share the Semantic Web
information they have collected, enabling, as for Magpie,
collaborative efforts to build sophisticated Semantic Web
information repositories from daily navigation through their
enhanced web browser.

III. MOTIVATIONS
Our research work, funded by the FILAS (Finanziaria Laziale
di Sviluppo) agency under contract C5748-2005, has been
focused on innovative solutions for browsing the web and for
organizing the information which is observed during
navigation. The interest of the FILAS agency in this project
has been motivated by their necessity of developing useful
tools for assisting the work of the technophore, a particular
figure which has the role of identifying and suggesting
innovative technological solutions for industries. The
technophore’s effort is devoted to improve the business
processes of companies involved in a technology innovation
phase, as well as to suggest or promote new market directions
for their activity. These suggestions walk through the
discovery of proper technological solutions and possibly of the
identification of the right contacts (academic institutions,
research centers or even other companies) which reveal to be
of interest for the objectives of the company.

The technophore has generally an high level education and a
wide expertise in a given knowledge domain, though
originality of mind, creativity and attitude to research are key
aspects of his profile, as he is often exposed to strongly
underspecified demands, where the problem must be identified
even before solutions, and where interesting clues may emerge
from unexpected information sources.

In our interviews with one of the technophores working for
the FILAS agency, unexpected aspects emerged putting
serious doubts on the kind of contribution we could make to
aid their work: the interviewed technophore told us that she
often got ideas by listening to the radio, or by watching a given
spot on the TV (which were often unrelated to her original
investigation), or simply by reading web sites and mailing lists.
In many cases, good ideas were also accompanied by rapid
flashbacks over things seen “somewhere” and “somewhen” in
the past, but which were difficult to recall. No intelligent
system could be able to behave in such a fashion, suggesting
new ideas or interacting with such a wide variety of media (the
scenario is very similar to the Semantic Web vision described
by Tim Berners-Lee et al. in [1]), but, limiting to the Internet
media, we could surely support technophores over the
“where/when have I seen it?” aspect which is also fundamental
for their work, and which often involves a lot of time required
to retrieve the desired information.

Our experience is aligned with the outcomes of the

empirical observations of Tauscher and Greenberg [19] (also
cited in [3]) which reported the following statistics on the
types of actions carried out by the typical web user:

- 58% of pages visited are revisits
- 90% of all user actions are related to navigation
- 30% of navigation actions are through the ‘Back’

button
- less than 1% of navigation actions use a history

mechanism
- ~ 5% of navigation actions use bookmarks lists (also

known as “hotlists”, “favorites” etc...)

What emerges is a great need for efficient recovery of
already visited pages (and, more in general, of already
accessed knowledge), which is not matched by an adequate use
of the available instruments (back buttons are only useful if the
visited page is among the last visited pages in the same
session, which can occur quite often, while the instruments to
recover past knowledge, like history and bookmarks, are
scarcely adopted).

IV. APPROACH: REQUIREMENTS AND DESIGN GOALS
We thus focused on finding innovative solutions for collecting,
managing and retrieving data observed during web navigation.
Our key goal was to overcome the limited usability of
bookmarks lists, which:

- see weblinks as first class citizens. They can be
categorized by implicitly adding them to a bookmarks
folder, but they are no way separated from the
knowledge they represent. More links could be related
to the same subject, but there is no way to represent
this, except considering the subject as a folder itself,
thus betraying the intended equation:
folder = category. Also, in some cases, it could be
important to identify the portion of a page which
contains the relevant information which caused it to be
bookmarked (e.g., “John Doe” is cited in a long web
document which is very generic and not directly related
to John Doe; we would like to take note of the page, but
still maintain the focus on the real subject of our
interest and immediately recognize where it has been
identified).

- do not foresee any kind of multiple categorization. Any
folder cannot belong to two or more different folders (a
kind of multiple inheritance between categories), nor
can any single weblink belong to more than one folder
(multiple instantiation).

- as a consequence of the two above, single knowledge
resources cannot assume any kind of structure. It is not
possible to further characterize a weblink, or to relate it
with other ones (except putting them in the same
folder/category).

Our project headed towards the development of a sort of

“semantic notepad”1 offering basic functionalities for:

1. capturing information from web pages, both by
considering the page as a whole, as well as by
annotating portions of their text

2. editing a personal ontology for categorizing the
annotated information and, possibly, to exchange
information with other people. This ontology may also
be used in different contexts: for example, a personally
populated FOAF ontology [7] could be used as a
contact list, possibly exporting it to the personal mail
browser

3. navigating the structured information as an underlying
semantic net which, populated with the many
relationships which bind the annotated objects
between them, eases the process of retrieving the
knowledge which was buried by the past of time. For
example, a user could discover that two persons which
he has kept track of in separate sessions (by annotating
their presence and some aspects of their profiles
appearing in visited web pages), work in the same
place, or have any kind of connection he would not
recall with any kind of traditional
bookmarking/annotation service. This feature is
described in detail in section VI on User Interaction.

4. Clearly separates the business model from the user
interface, by adopting a “knowledge service”
architecture. This way, the same architecture could be
exploited for an enhanced personal web browser as
well as for a shared environment for collaborative
semantic tagging of web pages.

In this sense, Semantic Turkey differentiates from similar,
previously described, tools, as it offers a lightweight structure,
which completely exploits the interface of the hosting web
browser (with respect to, for example, the complex HTML
interface of Piggy-Bank) and which grants the user maximum
(and easy) control over its personal knowledge model (while
Magpie adopts ontologies which have been defined
elsewhere). Our experience with and feedback received by the
FILAS technophores have been completely successful, in that
they felt Semantic Turkey as a really ease-to-use add-on to
their traditional web browser, with an intuitive interface and
immediate response.

V. ARCHITECTURE
The architecture of Semantic Turkey consists in a web
application, designed using a three layer approach.

The first layer, the presentation layer, has been developed as
an extension for the web browser Firefox. Everything
regarding user interaction is directly managed by the Firefox
extension, thanks to a solution directly integrated in the
browser. This approach has two main advantages: total reuse

1 “Taccuino” is the italian translation of the term “Notepad”. In our lab, we
hate so much the silly Italian expression “Taccuino Semantico” (Semantic
Notepad) that we started to use any kind of misspelling of its name, the
funniest (and most used) of which was “Tacchino Semantico” (Semantic
Turkey). The rest is history…

of the functionalities of a well assessed, stable and complete
software for web browsing, and a non invasive offer for the
user, who can still use his web browser he has been acquainted
with.

The second layer, the service layer, is realized through a
collection of Java Web Services, published through the Web
Server “Jetty” [11]. Jetty is implemented entirely in Java, and
the architecture foresees its use as an embedded component.
This means that the Web Server and the Web Application run
in the same process, without interconnection overheads and
other sort of complications. This solution also allows for a
flexible use of the tool, since it can both be adopted as a
completely autonomous web browser extension, as well as a
personal access point for collaborative web exploration and
annotation: in the latter case, a centralized solution is being
adopted, in which every clients communicate with the same
Jetty server.

The third layer, the persistence layer, is constituted by the
component for managing the ontology, which is written in the
OWL language [15]. It has been realized by using Sesame [2]
and the OWLIM plugin [12]. Sesame is an open source RDF
database with support for RDF Schema inference and
querying. Since the Knowledge Model of Semantic Turkey is
expressed in the OWL Lite [16] dialect of the Web Ontology
Language, the OWLIM plugin has been employed to provide
OWL Lite reasoning to the Sesame component.

A. The three layers
The following sections describe more in detail the three

layers which constitute the architecture of Semantic Turkey
1) Presentation Layer: As previously mentioned, the

presentation layer has been realized as an extension to the web
browser Firefox. The User Interface has been created through
a combined use of the XML User Interface Language XUL
[25], XBL [23] and Javascript language.

The User Interface extension physically appears as a
sidebar, containing the ontology tree, which may be shown on
the left side of the window by selecting dedicated “ontology”
item added in “Tools” menu. The icons that represent the
nodes of the tree distinguish between classes and instances that
belong to the ontology.

The ontology is loaded/updated through calls to the server,
carried out using the Ajax [8] technique: the data – in XML
format – is thus mainly exchanged between the two layers in
an asynchronous way, to preserve good performance and to
not penalize the activity of the browser.

The extension has also an other prerogative, which is not an
ordinary feature of the presentation layer: it has to assure that
the web server is being loaded as an embedded component, at
the start of the browser process. To do that XPCOM [24]
components, written in JavaScript, have been developed for
linking the chrome part and the Java part.

In order to load the Java component, the Simile Java Firefox
Extension [18] has been used. This component permits to load
java classes or jar packages, instantiate objects and to invoke
static methods or methods of the object previously instantiated.

At the start of the browser process, after loading the java
components (the java server code and the required libraries), a
static method is being invoked with the role of instantiating the
web server. This solution makes it possible to install all the
application simply as a Firefox extension, without configuring
other software.

2) Service / Persistence layer: This layer offers services
which may be invoked through http requests submitted
according to the Ajax paradigm, thus enabling communication
between the client (Firefox extension) and the server. The
server receives the requests coming from the client by GET or
POST http calls, carries out the operations associated to these
calls, and in case replies with an XML response. If a call
implies the return of a XHTML page, a XSLT transformation

is being performed, in order to decouple the data model with
its manifestation in the presentation layer.

The majority of invocations to the server are being
completed in an asynchronous way, so that, independently
from the workload that is subjected the server, the browser can
continue to respond to the user. This is a crucial issue for the
usability of the application: expensive computations blocking
normal behavior of the browser would otherwise not be
tolerated by the user.

Besides supporting the communication with the client, the
service layer provides the functionalities for definition,
management and treatment of the data. Several objects are
described through an ontological model (see next section), to
represent both pure conceptual knowledge as well as

Figure 1: Semantic Turkey Architecture

application required information.
Finally, the service layer also provides another important

functionality linked with the presentation layer. It allows for
the capability of visiting the ontology through a graph view,
using the TouchGraph library [21]. TouchGraph is an open
source tool for visualizing networks of interrelated
information. It renders networks of information concepts as
interactive graphs that lend themselves to a variety of
transformations. By engaging with the visual image, a user is
able to navigate through large networks of information and to
explore different ways of arranging the network's components
on the screen.

In order to access TouchGraph from presentation layer, it
has been used an apposite java applet, present in the library.
Since the applet must be loaded on the server side, a specific
Java servlet has been written. The servlet works like a proxy,
redirecting the applet loaded, with the correct parameters, to
the client side.

3) Persistence Layer: Sesame provides the abstraction layer
over ontological data. The foundation of the component is the
Storage And Inference Layer (SAIL). This SAIL is an API that

abstracts from the storage device used (in-memory storage,
disk-based storage, RDBMS) and takes care of inference.

From the architecture perspective the Access APIs are the
most important component. These APIs provide high-level
access functionality to client applications, either locally or
remotely (over HTTP or RMI).

Sesame can thus be deployed as an RDF database, with
persistence in an RDBMS, or as a Java library for embedded
use in applications. This last modality has been employed for
the definition of the architecture. In our case, the ontology data
is, by default, handled in memory and stored in the (local) File
System, but it is possible to easily switch to the database
storage backend for managing very large ontologies. Also, the
ontology repository may be located in a different site, thus
offering different possibilities for decentralizing the
application.

B. The Knowledge Model
The knowledge model of Semantic Turkey is based on four

different layers of ontological knowledge.

Figure 2: Annotating concepts from a web page and establishing relationships between them

1. The Application ontology: This ontology contains
resources needed by Semantic Turkey to organize,
retrieve and present information to the user.

2. The Top Ontology (which owl:import the Application
Ontology): this ontology has originally been conceived
inside our project for FILAS, and is thought for
representing a minimal knowledge which should be
shared across the different technophores. This
ontology can simply be seen as a guideline for driving
the personal annotations of each of the technophores,
and could be used as well as a shared ontology for
exchanging information between them.

3. The Personal/Domain Ontology (which owl:import
the Top Ontology): The third ontological layer allows
for a personalized organization of the knowledge
which is extracted and collected from the web.

4. The Knowledge Base (which owl:import the Top
Ontology), i.e. the set of instances which populate the
personal ontology of the user.

The Application ontology is composed of resources useful
for managing the annotation functionalities. These, among the
others, include the classes:

- Annotable identifying the part of the ontology which
can be annotated by the user

- URI which offers links to the visited pages
- SemanticAnnotation containing the annotations

performed by the user, described by their URL, related
concept etc…

and the properties:

- has_location linking URLs with Annotable concepts
- observed_lexicalization describing the form with

which a given object appeared in a specific annotation;
this property has been preferred to a more precise
information, like reporting the byte offset of the
annotation inside the page, to make retrieval of the
annotated object more robust with respect to minor
changes that occurred to the page over time.

The Application ontology is invisible to the user and is only
exploited by the application to get the proper logic for
administering the upper ontological layers. Resources
originated from the Top ontology are read-only, and cannot be
deleted as a consequence of any edit operation by the user. In a
really general perspective, the Top Ontology could even be left
empty (i.e. if there is no supposed shared conceptualization
which must be adopted by users working on a common
annotation framework; in this case, each user has to build from
scratch its own conceptualization, which will be thus
constituted by the sole Personal Ontology), or contain general
purpose resources, like the already cited FOAF ontology,
which could be adopted to maintain a list of contacts, possibly
exchanging information with other applications (like a mail
browser or a client for instant messaging).

VI. USER INTERACTION
The user may interact with the tree in the ontology panel to
modify the ontology, by performing the following operations:

1. Drag and drop of a selection of a text from an html
document displayed in the browser, on the icon that
represents a class, in order to create an individual of
that class. The selection will become the ID of the new
individual and a new icon will be shown below the
selected class.

2. Drag and drop of a selection of text from an html
document, on the icon that represents an individual, in
order to characterize a property which that individual
owns. A specific window will open, prompting the
user to choose the fitting property. The selection will
become the ID of a new individual that represents the
instance of the range of the property chosen. If the
selected property is an object property, a new icon will
be created relatively to the range class.

3. Drag and drop of a selection of text from an html
document, on the icon that represents an individual, in
order to define a further lexicalization for that
individual. The user can choose, from the same panel
described before, if the selection characterizes a range
of a property or a lexicalization.

4. Direct editing of the ontology. In particular it is
possible to modify the names or delete the created
classes/individuals The last operation may be
performed for the concepts only if they belong to the
domain ontology (as described before). Furthermore a
user may create a subclass of a preexisting class,
defining new properties besides the ones that are
inherited. Lastly, it is possible to directly create new
individuals in the ontology, instead of generating them
through annotations from the web. All the operations
are being carried out through specific panels that may
be selected by a dedicated menu which can be
activated by right clicking on the nodes of the tree, in a
way much similar to traditional ontology editing tools,
like Protégé [17] or TopBraid Composer [20]. By
offering complete interaction with the ontology via the
XUL interface (instead of an HTML interface, like in
Piggy-Bank), the user is not diverted from his current
navigation (i.e. the main browser panel is still focused
on the visited web page, which would otherwise be
replaced by the HTML UI) and may maintain its
attention over the observed web page.

5. Add synonyms for the concepts. By the apposite menu,
which can be activated by right click on the tree
elements that represent concepts, it is possible to
define other lexicalizations (in different languages) for
the ontology concepts.

As an additional feature, the user may graphically explore
the ontology (see

Figure 3), thanks to the SemanticNavigation component. A
Java applet will be loaded on a new tab of the browser,
displaying the graph view of the ontology, allowing the user to
navigate its content. The nodes of the graph will be displayed

in different manners, according to the nature of the ontological
entity: nodes represent classes and individuals while properties
are represented by the links between the nodes. For clarity of
view, instances are displayed in a different manner compared
to the classes. Dragging the mouse pointer on a node that
represents an instance, it is possible to open a popup window,
which contains the URLs of the pages where that instance has
been annotated.

Finally, Semantic Turkey reports to the user, through a
dedicated status bar, the pages which have been previously
annotated. When the user visits an already annotated page, an
icon with the shape of a pencil is being shown in the lower part
of the browser. If the icon is being clicked, the html text
entries that represent the past annotations will be emphasized
(providing the page still contains those entries) with a light
background color.

VII. CONCLUSIONS
In this paper Semantic Turkey, a special environment for
supporting end users in annotating information caught from
visited web sites, has been described.

The main objectives have been to allow users to extend and

assist their “usual” web navigation with the possibility of
annotating observed information, inside an ontological
framework, to define a multilayered architecture in which
platform independent software components have been merged
(for portability purposes) and to realize and exploit a
structured knowledge representation model in which different
ontologies coexist, still maintaining their independence, while
appearing as a personal unique ontological world description
to the end user

The first developed system, based on our prototype of
Semantic Turkey, received an enthusiastic feedback from its
users (FILAS technophores), which mostly appreciated its
robustness, easiness of use and non-invasive integration inside
their usual way of searching over the web.

We are now in the direction of refining the overall
architecture to support further needs of sharing different parts
of represented knowledge among different users. This will
require managing concurrent accesses to update different
levels of the ontology. The next short-term objective, which
we plan to reach in the next few months, is to make Semantic
Turkey pass from its first release, specifically tailored over
FILAS needs, to a publicly available browser extension, which

Figure 3: Semantic Navigation: recalling ontology and web links for the object “Armando Stellato”

will be usable by anyone to semantically annotate web pages.
This will require a mechanisms for creating and managing new
ontologies and/or importing existing ones, and possibly adding
further functionalities for ontology editing.

ACKNOWLEDGMENT
We would like to thank the FILAS agency for supporting

our research in the development of the first prototype of
Semantic Turkey.

Special thanks to the reviewers which gave valuable
feedback for the final drawing of this paper and useful
suggestions for improving our work.

REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web: A new

form of Web content that is meaningful to computers will unleash a
revolution of new possibilities”. Scientific American, 279(5): p.34-43.
May 2001

[2] J. Broekstra, A. Kampman & F.v. Harmelen I. Horrocks & J. Hendler
(ed.) Sesame: “A Generic Architecture for Storing and Querying RDF
and RDF Schema”. Springer Verlag, Proceedings of the First
International Semantic Web Conference, Sardinia, Italy, pages 54-68,
July 2002

[3] M. Dzbor,, J. Domingue and E. Motta. “Magpie: Towards a Semantic
Web Browser”. In proc. of the 2nd International Semantic Web
Conference (ISWC03), Florida, USA.

[4] M. Dzbor, E. Motta and J. B. Domingue. “Opening Up Magpie via
Semantic Services”. In Proc. of the 3rd Intl. Semantic Web Conference
(ISWC04), November 2004, Japan

[5] Eclipse Platform Technical Overview:
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-
platform-whitepaper.html

[6] Firefox home page: http://www.mozilla.com/en-US/firefox/
[7] Friend Of A Friend Ontology (FOAF): http://xmlns.com/foaf/0.1/
[8] J.J. Garrett. “Ajax: A New Approach to Web Applications”. Feb. 18,

2005
http://www.adaptivepath.com/publications/essays/archives/000385.php

[9] Google Notebook: http://www.google.com/notebook
[10] D. Huynh, S. Mazzocchi & D.R. Karger “Piggy Bank: Experience the

Semantic Web Inside Your Web Browser”. In proc. of the Fourth
International Semantic Web Conference (ISWC05), pages 413-430,
Galway, Ireland, November, 2005

[11] Jetty Java HTTP Servlet Server. http://jetty.mortbay.org/jetty/.
[12] A. Kiryakov, D. Ognyanov & D. Manov OWLIM – a Pragmatic

Semantic Repository for OWL. In Proc. of Int. Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2005), WISE 2005,
New York City, USA, 20 November 2005

[13] Leaftag project: http://www.chipx86.com/wiki/Leaftag
[14] D. Quan and D. Karger. How to Make a Semantic Web Browser. In

Proc. Of the Thirteenth International World Wide Web Conference
(WWW2004), New York City, USA, May, 2004

[15] Web Ontology Language: http://www.w3.org/TR/owl-features/
[16] OWL Lite Description:

http://www.w3.org/TR/2004/REC-owl-features-20040210/#s3
[17] J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H.

Eriksson, N. Noy, and S. Tu. The evolution of Protégé-2000: An
environment for knowledge-based systems development. International
Journal of Human-Computer Studies, 58(1):89–123, 2003

[18] Simile Java Firefox Extension:
http://simile.mit.edu/java-firefox-extension/

[19] L. Tauscher, and S.Greenberg. “How People Revisit Web Pages:
Empirical Findings and Implications for the Design of History
Systems”. International Journal of Human Computer Studies, 2001.
47(1): p. 97-138.

[20] TopBraid Composer: http://topbraidcomposer.info/
[21] Touchgraph Development Page: http://touchgraph.sourceforge.net/
[22] S. Wheeler. “Tenor: A Contextual Linkage Framework for KDE”

downloadable from:
http://websvn.kde.org/*checkout*/trunk/playground/base/tenor/docs/ten
or-architecture.pdf?rev=475778
April 6, 2005

[23] Extensible Binding Language:
http://www.mozilla.org/projects/xbl/xbl.html

[24] XPCOM. http://www.mozilla.org/projects/xpcom/
[25] XML User Interface Language (XUL) Project.

http://www.mozilla.org/projects/xul/

