
Maestro for Let’s Dance: An Environment for
Modeling Service Interactions

Gero Decker1, Margarit Kirov1, Johannes Maria Zaha2, Marlon Dumas2

1 SAP Research Centre, Brisbane, Australia
(g.decker,margarit.kirov)@sap.com

2 Queensland University of Technology, Brisbane, Australia
(j.zaha,m.dumas)@qut.edu.au

Abstract. In emerging web service development approaches, the de-
scription of interactions both from a global and from a local perspective
plays an increasingly important role. In earlier work we presented a vi-
sual language (namely Let’s Dance) for modeling service interactions at
different levels of abstraction. In this paper we present a modeling tool
for Let’s Dance. The tool supports the static analysis of global mod-
els, the generation of local models from global ones, and the interactive
simulation of both local and global models.

1 Introduction

As the first generation of web service technology based on XML, SOAP, and
WSDL gains maturity, a second generation targeting collaborative business pro-
cesses is gestating. Development methods associated to this second generation
of web services generally rely on the explicit representation of service interaction
behavior from two complementary perspectives: one where interactions are seen
from the perspective of each participating service, and the other where they
are seen from a global perspective. This leads to two types of models: In a
global model (also called a choreography) interactions and their dependencies are
captured from the viewpoint of an ideal observer who oversees all interactions
between a set of services. Meanwhile, a local model focuses on the perspective of
a given service, capturing only those interactions that directly involve it. Local
models are suitable for implementing individual services while choreographies
are instrumental during the early phases of analysis and design, when domain
analysts need a global picture of the system.

In previous work [4] we have identified requirements for a service interaction
modeling language and argued that existing languages, e.g. WS-CDL [2], fail to
fulfill these requirements. Indeed, existing languages are targeted at application
developers rather than at domain analysts who play a key role in the construc-
tion of these models. Accordingly, we have designed a language, namely Let’s
Dance, intended to support analysts in capturing both global and local service
interaction models. This paper introduces a tool that enables analysts to capture
and to analyze Let’s Dance choreographies. After analysis, the local models for



2 Gero Decker, Margarit Kirov, Johannes Maria Zaha, Marlon Dumas

the parties involved in the choreography can be generated and the execution of
both global and local models can be interactively simulated.

The paper is structured as follows. Section 2 gives an overview of the Let’s
Dance language. The architecture and the features of the tool are presented in
Section 3. Section 4 discusses future extensions.

2 Let’s Dance Choreographies

A choreography consists of a set of interrelated service interactions correspond-
ing to message exchanges. At the lowest level of abstraction, an interaction is
composed of a message sending action and a message receipt action (referred
to as communication actions). Communication actions are represented by non-
regular pentagons (symbol for send and for receive) that are juxtaposed
to form a rectangle denoting an elementary interaction. As illustrated in Fig-
ure 1, a communication action is performed by an actor playing a role, specified
at the top corner of a communication action. Roles are written in uppercase and
the actor playing this role (the “actor reference”) is written in lowercase between
brackets. The name of the message type for the receive actions can be omitted
(since the same type applies for both send and receive).

Fig. 1. Constructs of Let’s Dance

Interactions can be inter-related using the constructs depicted in Figure 1.
The relationship on the left-hand side is called “precedes” and is depicted by a
directed edge: the source interaction can only occur after the target interaction
has occurred. That is, after the receipt of a message “M1” by “B”, “B” is able to
send a message “M2” to “C”. The rectangle surrounding these two interactions
denotes a composite interaction, which can be related with other interactions
with any type of relationship. The relationship at the center of the figure is
called “inhibits”, depicted by a crossed directed edge. It denotes that after the
source interaction has occurred, the target interaction can no longer occur. That
is, after “B” has received a message “M1” from “A”, it may not send a message
“M2” to “C”. The latter interaction can be repeated until “x” messages have
been sent, which is indicated by the header on top of the interaction. The actor



Maestro for Let’s Dance: An Environment for Modeling Service Interactions 3

executing the repetition instruction is noted in brackets. Finally, the relation-
ship on the right-hand side of the figure, called “weak-precedes”, denotes that
“B” is not able to send a message “M2” until “A” has sent a message “M1”
or until this interaction has been inhibited. That is, the target interaction can
only occur after the source interaction has reached a final status, which may
be “completed” or “skipped” (i.e. “inhibited”). In the example, the upper in-
teraction has a guard assigned, which is denoted by the header on top of the
interaction. This interaction is only executed if the guard evaluates to true. The
actor who evaluates the guard is noted in brackets.

3 Tool Overview

Figure 2 shows a screen shot of Maestro for Let’s Dance. The palette on the left-
hand side contains the diagram elements. Below this palette, layout options are
accessible. The main drawing area in the middle. On the right, there is a pane for
editing the properties of the selected element as well as a navigator that provides
an overview over the diagram. The analysis and simulation functionality can be
accessed via the “Let’s Dance” menu item in the menu bar at the top. Analysis
results and simulation status are shown within the editing area.

Fig. 2. Screen shot of Maestro for Let’s Dance

Maestro for Let’s Dance is built on top of the Maestro visual language frame-
work developed at SAP. It is the foundation for various modeling environments
including: Maestro for BPMN, an editor for the Business Process Modeling No-
tation, Maestro for BPEL, a modeling environment for the Business Process
Execution Language, and Maestro for SAM (Status-and-Action Management),
a modeling and simulation environment for business object lifecycles.



4 Gero Decker, Margarit Kirov, Johannes Maria Zaha, Marlon Dumas

Fig. 3. Architecture overview

Figure 3 describes the main architecture of Maestro for Let’s Dance using the
Fundamental Modeling Concepts (FMC) block diagram notation [3]. A core com-
ponent of the Let’s Dance prototype is the Tensegrity framework3. It provides
basic functionality that is needed for graphical editors such as rendering func-
tionality, editing facilities (selection, creation, deletion, resizing, etc. of diagram
elements), event propagation mechanisms, a command stack and a persistency
service for diagrams. The Maestro framework extends Tensegrity and provides
utility functionality for attribute management and refined application skeletons.

Tensegrity and Maestro can be compared to eclipse GMF4 (Graphical Mod-
eling Framework). Shape descriptions define what diagrams consist of and how
they look like. Anchor points, resizing behavior, color schemes, line widths and
line decorations can be defined for diagram elements. Furthermore, the palette is
configured. A strong point about GMF is that it very clearly separates the data
model from its graphical representation. However, GMF was not chosen because
at the time of development releases were still in a pre-1.0 state and significant
changes in the API from release to release caused major refactorings. It would
have been an option to use eclipse GEF5 (Graphical Editing Framework), the
foundation of GMF, without using GMF itself. The fact that GEF does not in-
clude layouting functionality like it is the case for Tensegrity and the possibility
of integrating the tool with Maestro for BPMN and Maestro for BPEL in the
future were the final arguments for choosing Maestro.

Choreographies are described using two different data structures in the tool.
The diagram data structure is optimized for the usage within the editor. E.g.
entities in the data structure directly relate to edges and nodes in the diagram
and layout information is attached to the entities. The choreography model data

3 See http://www.tensegrity-software.com/
4 See http://www.eclipse.org/gmf/
5 See http://www.eclipse.org/gef/



Maestro for Let’s Dance: An Environment for Modeling Service Interactions 5

structure does not contain any layout information and follows the Let’s Dance
meta-model introduced in [4]. The choreography model is then used as input for
the analysis plugins and the simulation engine. A model transformation takes
place every time a check is triggered or a simulation is started. A reverse mapping
from entities in the choreography model to the entities in the diagram model is
later on used for displaying output of the checkers or the simulation engine.
Since EMF6 (Eclipse Modeling Framework) includes functionality to produce
XMI7(XML Metadata Interchange)-compliant files and since there is a good
integration of EMF with the UML modeling environment Rationale Rose8, EMF
was used for implementing the choreography data model.

A precondition for analyzing a choreography model is that it complies to
the well-formedness criteria defined in [5]. Therefore, a well-formedness check
precedes every analysis as well as the generation of local models. Examples for
ill-formedness could be e.g. an unspecified actor for a send or receive action or
a cycle of precedes and weak-precedes relationships.

Cardinality checker. Maestro for Let’s Dance provides a cardinality checker that
is able to identify how many times an interaction can occur, at least and at most,
within one execution of a choreography. The cardinality checker takes as input
a choreography and classifies its interactions into five groups: (0,0): interactions
that will never be executed (i.e. unreachable); (0,1): interactions that may be
executed once or skipped altogether (i.e. conditional); (1,1): interactions that will
be executed exactly once; (0,n): interactions that may be executed any number
of times; and (1,n): interactions that will be executed at least one.

The cardinality checker can help modelers to detect semantical errors, such
as unreachable interactions or interactions that may be skipped against the mod-
eler’s intent. It can also be used to determine characteristics required from the
communication channels. For example, if an interaction can be executed multiple
times, the corresponding channel may be required to guarantee orderly delivery.

Cardinality analysis is largely based on reachability analysis for which we
have presented two alternatives in previous work: In [1] the algorithm is based
on π-calculus bi-simulation whereas in [5] an ad-hoc algorithm is introduced.
It turned out that because of the computational complexity of bi-simulation
analysis only very small choreographies could be processed in a reasonable time.
The second algorithm has low polynomial complexity and scales up to real-world
choreographies. Therefore, it was chosen for the tool.

Enforceability checker. It has been shown that there might be relations between
interactions in a choreography model that cannot be enforced locally. I.e. It turns
out that not all global models can be mapped into local ones in such a way that
the resulting local models only contain interactions explicitly captured in the
choreography model and they collectively enforce all the constraints expressed in

6 See http://www.eclipse.org/emf/
7 See http://www.omg.org/technology/documents/formal/xmi.htm
8 See http://www.ibm.com/software/rational



6 Gero Decker, Margarit Kirov, Johannes Maria Zaha, Marlon Dumas

the global model. A counter-example is given in Figure 4. In this choreography it
is not possible to enforce the “precedes” constraint between the two interactions
without introducing additional interactions. Indeed, how can actors ’c’ and/or
’d’ know that the interaction between ’a’ and ’b’ has taken place in the absence
of any interaction between actors ’a’ and ’b’ on the one hand, and actors ’c
and ’d’ on the other? Thus, either the model needs to be enhanced with an
interaction between a/b and c/d, or the sequential execution constraint will
not be enforced (i.e. the interactions can occur in the opposite order from the
perspective of an ideal observer). Since domain analysts are supposed to sign off
on a choreography model it is undesirable to automatically introduce implicit
interactions to ensure the fulfilment of constraints. Instead, the modeler should
be warned of such issues, so that (s)he can refine the model as needed.

Fig. 4. Example of a non-locally enforceable choreography

Accordingly, Maestro for Let’s Dance incorporates an enforceability checker
that identifies non-enforceable constraints in a choreography model and reports
them to the modeler. The algorithm used for this purpose is described in [5].

Simulation In order to give choreography modelers a better idea of the semantics
of their models, the tool offers the possibility to simulate choreography instances.
The formalization of the execution semantics of Let’s Dance were presented in
[1]. It was used as a blueprint for the implementation of the simulation engine.

An interaction can be in one of the four states initialized (visualized as yel-
low), enabled (green), skipped (red) and completed (gray). Each instance starts
in the state initialized. The instance can now be skipped or it can be enabled.
Therefore, the transitions to the states skipped and enabled are possible. If an
instance is in state skipped nothing can happen to it any more. If an instance is in
state enabled the interaction can execute. During the execution the instance can
be skipped. Otherwise, it will eventually complete execution and move to state
completed. In the case of guarded interactions the user can decide whether the
interaction should be executed or if it should be skipped. In the case of repeated
interactions the user can decide whether the interaction should be executed once
more or if the repetition is terminated.

Local model generator. In [5] we have presented an algorithm for generating local
models. This algorithm is implemented in Maestro for Let’s Dance. A new dia-
gram containing all the interactions where a specific actor is involved is generated
and the layout functionality is applied to it.



Maestro for Let’s Dance: An Environment for Modeling Service Interactions 7

4 Outlook

The next step in the development of “Maestro for Let’s Dance” is the refinement
of the generation of local models. The generation of local models with imple-
mentation configurations will be an important step towards the generation of
executable models, where BPEL will be the first target language. Other analy-
sis functions will be added. Conformance checking between local models and
choreography models will be one of the focus areas.

References

1. G. Decker, J. M. Zaha, M. Dumas: Execution Semantics for Service Choreographies.
Preprint # 4329, Faculty of IT, Queensland University of Technology, May 2006.
http://eprints.qut.edu.au/archive/00004329

2. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation, November
2005. http://www.w3.org/TR/ws-cdl-10.

3. A. Knopfel, B. Grone, P. Tabeling: Fundamental Modeling Concepts: Effective
Communication of IT Systems. Wiley, May 2006.

4. J. M. Zaha, A. Barros, M. Dumas, A. ter Hofstede: Lets Dance: A Language for
Service Behavior Modeling. Preprint # 4468, Faculty of IT, Queensland University
of Technology, February 2006. http://eprints.qut.edu.au/archive/00004468

5. J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, G. Decker: Service Interaction
Modeling: Bridging Global and Local Views. In Proceedings of the 10th Interna-
tional EDOC Conference, Hong Kong, 2006.


