
simpA-WS: An Agent-Oriented Computing
Technology forWS-based SOA Applications
Alessandro Ricci, Claudio Buda, Nicola Zaghini, Antonio Natali, Mirko Viroli, Andrea Omicini

DEIS, Universit̀a di Bologna Alma Mater Studiorum
Cesena (FC), 47023 Italy

Emails:{a.ricci, claudio.buda, nicola.zaghini, antonio.natali, mirko.viroli, andrea.omicini}@unibo.it

Abstract— This document briefly describessimpA-WS, a Java-
based agent-oriented computing technology to flexibly and ef-
fectively implement WS-I compliant SOA/WS applications—i.e.
Web-Service applications with a Service-Oriented Architecture—
both on the user side and the service side.

I. I NTRODUCTION

simpA-WS is a Java-based technology that makes it possi-
ble to build WS-I SOA/WS compliant applications adopting an
agent-oriented style in designing and developing the systems.
simpA-WS is based on ofsimpA model and technology
[1], an agent-orientedextension of the Java Object-Oriented
computational model providing high-level abstractions for
designing and developing complex software systems.

On the one side,simpA-WS provides a framework API to
build user applicationsin terms of sets of agents that flexibly
interact and use Web Services compliant with the WS-I Basic
Profile [12], represented asartifacts in agent workspaces. On
the other side,simpA-WS provides an API framework and
a middleware for building WS-I compliant Web Services in
terms of set of agents as providers of the services.

A. Human Cooperative Working Environments as Background
Metaphor

To tackle the complexity of modern and future software
systems,simpA introduces agents and artifacts as high-
level abstractions to design and build distributed / concurrent
software systems. This is theA&A (Agents andArtifact)
conceptual model [16], [15], [10], based on inter-disciplinary
studies involving Activity Theory and Distributed Cognition
as main conceptual background frameworks [9].

A&A metaphors are taken from human cooperative working
environments, where “systems” are composed by individual
autonomous entities which pro-actively carry on some kind of
activities or tasks, both individual and cooperative, typically
requiring forms of interaction and coordination with other
individuals. A fundamental aspect of such a picture is the
context —or theenvironment— that makes it possibile to such
activities to take place.Artifactsdesigned and built by humans
are an essential part of such a context, both as outcome of
the activities and as thetools exploited by humans to support
and realise them. Artifacts can be then resources and objects
constructed during the activities, but also whatever tools is
used to support humans communication, coordination, and—
more generally—cooperative working activities. The overall

picture is given byworkspaceswhere ensembles of individuals
work and interact in a coordinated manner, by communicating
and sharing / using the same artifacts, so as to achieve some
kind of objective.

A&A brings this metaphor down to software engineering,
conceiving a software system as one or multiple workspaces
where ensembles of autonomous entities—the agents—execute
their working activities and interact by co-constructing, shar-
ing and using artifacts, analogously to the human case.

simpA provides agents and artifacts as basic high-level
building blocks to decompose and structure complex systems,
in particular:

• agents are provided as first-class abstractions to model
and designpro-active entities, i.e. entites programmed
so as to autonomously execute some kind activity—
composed by one or moretasks—encapsulating the con-
trol of such activities;

• artifacts are provided as first-class abstractions to model
and design what is used or constructed by agents during
their activities, including resources, tools, devices: any
passiveentity encapsulating some kind of functionality,
exposed by a proper interface;

• workspacesare the logical place where agents and arti-
facts are immersed, used to give a topology to the overall
activities, and then partition the application environment.

Objects and classes are used as basic abstractions to define
data structures to build agents and artifacts.

B. A&A for Implementing SOA / Web Service Applications

simpA-WS makes it possible to exploit theA&A approach
and simpA for implementing SOA and Web-Service appli-
cations, following the basic architectured described in W3C
documentation [17](see Fig. 1).

UsingsimpA-WS both service users and providers are mod-
elled assimpA agents, as pro-active entities that respectively
(i) need to access and use services in their working activities,
encapsulating the business logic of user applications, and(ii)
process the requests and messages for services, encapsulating
the service business logic. In both cases, artifacts are used as
high-level mediating entities functioning as interfaces, encap-
sulating the technology needed to enable the interaction using
WS-* standards. In particular (refer to Fig. 2 and Fig. 3):

• on the user side, a specific kind of artifacts – calledWS-
Artifact — is provided to make it possible forsimpA

1

Fig. 1. Web Service Service Model according to W3C

agents to access and use what ever existing Web Service,
by simply creating and using instances of such an artifact;

• on the service side, artifacts calledService-Artifacts are
provided to make it possible forsimpA agents to get and
process the messages delivered to a specific Web Service,
again by simply creating and using instances of such an
artifact.

The adoption of the agent level of abstraction, and in particular
of agents and artifacts basic building blocks, makes it possible
to exploit a fully uncoupled approach for modelling and realis-
ing interaction with Web Services, as required by true service-
oriented architecture [6]. On the one side, agentsuse Web
Services by executing operations onWS-Artifact artifacts, by
means of fully asynchronousactions. On the other side, agents
perceivepossible information or result generated Web Services
by observing events — throughsimpA sensingprimitives —
generated by such artifacts.

II. SYSTEM REQUIREMENTS

CurrentlysimpA-WS can run on any Java-based platform,
version 5.0. Consequently, it can be seamlessly deployed
on machines with different kind of operating systems and
hardware configuration. A light-weight version is planned, in
order to port simpA-WS—the API for implementing user
application in particular—on J2ME, the Java platform for
mobile devices, so as to implement user applications on top
of J2ME-enabled smart phones / devices.

III. D ESIGN AND IMPLEMENTATION

Fig. 2 and Fig. 3 provide an overview of the architecture of
the simpA-WS technology, respectively on the user side and
the service side. Fig. 4 shows a mixed and articulated case,
where services are themselves users of other services.

simpA and simpA-WS are fully developed in Java, and
exploit apache Axis2 open-source libraries [7] for realising

Web Service
(WSDL Y)

WS-Artifact
con WSDL Y

WS-Artifact
con WSDL X

Agent

Agent

Agent

Web Service
(WSDL X)

Environment

WS-USER APPLICATION

simpA-WS

Java / JVM 5.0

AXIS2
tuProlog

simpA

Fig. 2. Abstract architecture ofsimpA-WS user applications

ServiceArtifact
with WSDL X

Agent

Environment

SERVICE APPLICATION

Web Servìce
Container +
the meta-ws
dynamically configured
with WSDL X

WS Msgs,
requests
responses

AXIS2 Web Service
Container

Tomcat 5.0.5

TuCSoN
Infrastructure

tuple centres

Java / JVM 5.0

simpa-WS meta-ws

Java / JVM 5.0
simpA-WS

TuCSoN
APItuProlog

simpA

Java / JVM 5.0

Fig. 3. Abstract architecture ofsimpA-WS service applications

low-level SOAP-based interaction with Web Services on the
user side and as Web Service container on the service side,
on top of Tomcat apache Java-based Web Server [8].

simpA and simpA-WS internally exploits tuProlog [5]
andTuCSoN [11] research technologies, respectively a light-
weight Java-based Prolog interpreter and a tuple-based agent
coordination infrastructure.

IV. A SAMPLE APPLICATION

Among the examples provided withsimpA-WS distribu-
tion, a supply-chain sample application is provided, following
the reference sample application defined by WS-I organisation,
available among the deliverables at WS-I Web Site [13]. The
supply-chain example is one among the illustrative scenarios
defined by the WS-I Sample Applications Working Group
to show the benefits of having interoperable Web services
applications, and to demonstrate the application of the WS-
I profiles to those scenarios.

2

ServiceArtifact
configured
with WSDL X

Agent

Environment

SERVICE APPLICATION

Agent

Agent

WS-Artifact

Agent

Fig. 4. Abstract architecture of mixedsimpA-WS applications

V. simpA-WS IN REAL-WORLD AND INDUSTRIAL

APPLICATIONS

simpA-WS is one of the technologies experimented for
implementing SOA-based applications in the context of STIL
(“Strumenti Telematici per l’Interoperabilità delle reti di imp-
rese: Logistica digitale integrata per l’Emilia-Romagna”).

STIL is a 2-years project funded by Emilia-Romagna, in the
context of the “Iniziativa 1.1 del Piano Telematico Regionale”
initiative [14]. The project has been funded to push and
improve the research activities in Emilia-Romagna targeted
to exploit innovative ICT technologies for the creation of a
global digital logistic district. Among the objectives, STIL
is dedicated to the creation of virtual organizations grouping
together different kind of actors directly or indirectly involved
in the logistic supply-chain, providing them effective ICT
supports for integrating and innovating their business.

For the purpose, a SOA-based infrastructure has been con-
ceived, designed and implemented to enable interoperability
among the different participants. The STIL infrastructure is
meant to provide an effective support for enabling commu-
nication, coordination and cooperation among the open and
heterogeneous kind of WS-based applications and services.
simpA-WS is currently experimented as one of the state-
of-the-art technologies for implementing the applications and
services, and first results are available on STIL web sites [14],
[3].

VI. I NDUSTRIAL SUPPORT ANDDISTRIBUTION

simpA andsimpA-WS are open-source projects, and can be
freely downloaded and used for research and non-commercial
purposes from related web sites [1], [2]. Besides the open-
source prototypes, an industrial-version of the technology will
be available as commercial product distributed byIRIS [4], a
start-up spin-off company hosted in Cesena.

REFERENCES

[1] The aliCE Research Group. simpA official web site.
http://www.alice.unibo.it/projects/simpa.

[2] The aliCE Research Group. simpA-WS official web site.
http://www.alice.unibo.it/projects/simpa-ws.

[3] aliCE-Unibo research unit. The STIL-UNIBO project web site.
http://www.alice.unibo.it/projects/stil.

[4] The IRIS Company.IRIS official web site. http://www.irislab.eu.
[5] Enrico Denti, Andrea Omicini, and Alessandro Ricci. Multi-paradigm

Java-Prolog integration intuProlog.Science of Computer Programming,
57(2):217–250, August 2005.

[6] Thomas Erl.Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2004.

[7] The Apache Software Foundation. Axis 2.0 — next generation web
services — official web site. http://ws.apache.org/axis2/.

[8] The Apache Software Foundation. Tomcat official web site.
http://tomcat.apache.org/.

[9] B. A. Nardi. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

[10] Andrea Omicini, Alessandro Ricci, and Mirko Viroli.Agens Faber:
Toward a theory of artefacts for MAS.Electronic Notes in Theoretical
Computer Sciences, 150(3):21–36, 29 May 2006. 1st International
Workshop “Coordination and Organization” (CoOrg 2005), COORDI-
NATION 2005, Namur, Belgium, 22 April 2005. Proceedings.

[11] Andrea Omicini and Franco Zambonelli. Coordination for Internet
application development.Autonomous Agents and Multi-Agent Systems,
2(3):251–269, September 1999. Special Issue: Coordination Mecha-
nisms for Web Agents.

[12] The WS-I Organization. WS-Basic Profile 1.0 document.
http://www.ws-i.org.

[13] The WS-I Organization. WS-I Official web site. http://www.ws-i.org.
[14] The STIL project. The STIL official web site. http://stil.pc.unicatt.it/.
[15] Alessandro Ricci, Mirko Viroli, and Andrea Omicini.Construenda est

CArtAgO: Toward an infrastructure for artifacts in MAS. In Robert
Trappl, editor,Cybernetics and Systems 2006, volume 2, pages 569–
574, Vienna, Austria, 18–21 April 2006. Austrian Society for Cybernetic
Studies. 18th European Meeting on Cybernetics and Systems Research
(EMCSR 2006), 5th International Symposium “From Agent Theory to
Theory Implementation” (AT2AI-5). Proceedings.

[16] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Programming
MAS with artifacts. In Rafael P. Bordini, Mehdi Dastani, Jürgen Dix,
and Amal El Fallah Seghrouchni, editors,Programming Multi-Agent
Systems, volume 3862 ofLNAI, pages 206–221. Springer, March 2006.
3rd International Workshop (PROMAS 2005), AAMAS 2005, Utrecht,
The Netherlands, 26 July 2005. Revised and Invited Papers.

[17] W3C WS Working Group. Web Services Architecture.
http://www.w3.org/TR/ws-arch/.

3

