
A multidimensional flocking algorithm for
clustering spatial data

Antonio Augimeri, Gianluigi Folino, Agostino Forestiero and Giandomenico Spezzano

Institute for High Performance Computing and Networking (ICAR-CNR)

augimeriantonio@email.it, (folino, forestiero, spezzano)@icar.cnr.it

Abstract—In this paper, we describe the efficient imple-

mentation of M-Sparrow, an adaptive flocking algorithm

based on the biology-inspired paradigm of a flock of birds.

We extended the classical flock model of Reynolds with two

new characteristics: the movement in a multi-dimensional

space and different kinds of birds. The birds, in this con-

text, are used to discovery point having some desired char-

acteristics in a multidimensional space. A critical point of

the algorithm is the efficient search of the k-neighbors in a

multidimensional space. This search was efficiently imple-

mented using the ANN libraries.

I. Introduction

Ants’colonies, flocks of birds, termites, swarms of bees
etc. are agent-based insect models that exhibit a collective
intelligent behavior (swarm intelligence) [2] that may be
used to define new distributed clustering algorithms.
In these models, the emergent collective behavior is the
outcome of a process of self-organization, in which insects
are engaged through their repeated actions and interac-
tion with their evolving environment. Intelligent behavior
frequently arises through indirect communication between
the agents using the principle of stigmergy [6]. This
mechanism is a powerful principle of cooperation in insect
societies. According to this principle an agent deposits
something in the environment that makes no direct contri-
bution to the task being undertaken but it is used to influ-
ence the subsequent behavior that is task related. Swarm
intelligence (SI) models have many features in common
with Evolutionary Algorithms (EA). Like EA, SI models
are population-based. The system is initialized with a pop-
ulation of individuals (i.e., potential solutions). These in-
dividuals are then manipulated over many iteration steps
by mimicking the social behavior of insects or animals, in
an effort to find the optima in the problem space. Unlike
EAs, SI models do not explicitly use evolutionary opera-
tors such as crossover and mutation. A potential solution
simply ’flies’ through the search space by modifying itself
according to its past experience and its relationship with
other individuals in the population and the environment.

These algorithms show a high level of robustness to
change by allowing the solution to dynamically adapt it-
self to global changes by letting the agents self-adapt to
the associated local changes.

In this paper, we present a prototype using a new algo-
rithm based on the concepts of a flock of birds that move
together in a complex manner with simple local rules, to
explore multidimensional spaces for searching interesting
objects. The algorithm is an extension of the classical flock

model of Reynolds with two new characteristics: the move-
ment in a multi-dimensional space and different kinds of
birds. The birds, in this context, are used to discovery
point having some desired characteristics in a multidimen-
sional space. The implementation is based on SWARM [7],
a software package for multi-agent simulation of complex
systems, developed at the Santa Fe Institute.

From an efficiency point of view the most critical point of
the algorithm is the efficient search of the k-neighbors (i.e.
the cardinality of the neighborhood) in a multidimensional
space. This search was efficiently implemented using the
ANN (Approximate Nearest Neighbor) libraries.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the adaptive flocking algorithm, section 3
shows how the approach was applied to multidimensional
spaces. Section 4 shows some interesting experimental re-
sults about the efficiency of the algorithm and its efficacy in
finding interesting patterns. Finally section 5 draws some
conclusions.

II. The adaptive flocking algorithm

The classical flocking model, introduced by Reynolds [8],
moves in a two dimensional space and all the birds have
the same characteristics. In the next subsections, we de-
scribe the two extensions introduced in M-Sparrow, the
use of birds having different characteristics (represented by
different colors) and the movement in a multidimensional
space.

A. Reynolds’ original flock model

The flocking algorithm was originally proposed by
Reynolds as a method for mimicking the flocking behav-
ior of birds on a computer both for animation and as a
way to study emergent behavior. Flocking is an example
of emergent collective behavior: there is no leader, i.e., no
global control. Flocking behavior emerges from the local
interactions. Each agent has direct access to the geomet-
ric description of the whole scene, but reacts only to flock
mates within a certain small radius. The basic flocking
model consists of three simple steering behaviors: separa-
tion, cohesion and alignment.

Separation gives an agent the ability to maintain a cer-
tain distance from others nearby. This prevents agents
from crowding too closely together, allowing them to scan
a wider area. Cohesion gives an agent the ability to cohere
(approach and form a group) with other nearby agents.
Steering for cohesion can be computed by finding all agents

16



in the local neighborhood and computing the average po-
sition of the nearby agents. The steering force is then ap-
plied in the direction of that average position. Alignment
gives an agent the ability to align with other nearby char-
acters. Steering for alignment can be computed by finding
all agents in the local neighborhood and averaging together
the ’heading’ vectors of the nearby agents.

Fig. 1. Computing the direction of a green agent.

B. An adaptive colored flocking algorithm

M-SPARROW extends the Reynolds’ flocking algorithm,
described in the previous subsection, considering four dif-
ferent kinds of agents, classified on the basis of some prop-
erties of data in their neighborhood. These different kinds
are characterized by a different color: red, revealing inter-
esting patterns in the data, green, a medium one, yellow, a
low one, and white, indicating a total absence of patterns.
In practise, the flock follows an exploring behavior in which
individual members (agents) to first explore the environ-
ment searching for goals whose positions are not known a

priori, and then, after the goals are located, all the flock
members should move towards these goals. Agents search
the goals in parallel and signal the presence or the lack of
significant patterns into the data to other flock members,
by changing color. The main idea behind our approach is
to take advantage of the colored agent in order to explore
more accurately the most interesting regions (signaled by
the red agents) and avoid the ones without clusters (sig-
naled by the white agents). Red and white agents stop
moving in order to signal this type of regions to the oth-
ers, while green and yellow ones fly to find more dense
clusters. Indeed, each flying agent computes its heading by
taking the weighted average of alignment, separation and
cohesion (as illustrated in figure 1). The entire flock then
moves towards the agents (attractors) that have discovered
interesting regions to help them, avoiding the uninterest-
ing areas that are instead marked as obstacles. The color
is assigned to the agents by a function associated with the
data analyzed. In practice, the agent computes the prop-
erty of the explored point and then it chooses the color
(and the speed) in accordance to the simple rules showed
in table I.

So red, reveals a high density of interesting patterns in
the data, green, a medium one, yellow, a low one, and
white, indicates a total absence of patterns. The color is
used as a communication mechanism among flock members
to indicate them the roadmap to follow. The roadmap is

property > threshold ⇒ mycolor = red (speed = 0)
threshold

4
< property ≤ threshold ⇒ mycolor = green (speed = 1)

0 < property ≤ threshold
4

⇒ mycolor = yellow (speed = 2)

property = 0 ⇒ mycolor = white (speed = 0)

TABLE I

Assigning speed and color to the agents

adaptively adjusted as the agents change their color mov-
ing to explore data until they reach the goal.

Green and yellow agents compute their movement ob-
serving the positions of all other agents that are at most
at some fixed distance (dist max ) from them and applying
the rules of Reynolds’ [8] with the following modifications:

• Alignment and cohesion do not consider yellow agents,
since they move in a not very attractive zone.

• Cohesion is the resultant of the heading towards the
average position of the green flockmates (centroid), of
the attraction towards red agents, and of the repulsion
by white agents.

• A separation distance is maintained from all the
agents, whatever their color is.

Agents will move towards the computed destination with a
speed depending from their color: green agents will move
more slowly than yellow agents since they will explore
denser zones of clusters. An agent will speed up to leave
an empty or uninteresting region whereas it will slow down
to investigate an interesting region more carefully. The
variable speed introduces an adaptive behavior in the al-
gorithm. In fact, agents adapt their movement and change
their behavior (speed) on the basis of their previous expe-
rience represented from the red and white agents.

for i=1 . . . MaxIterations

foreach agent (yellow, green)

age=age+1;

if (age > Max Life)

generate new agent();die();

endif

if (not visited (current point))

property = compute property(current point);

mycolor= color agent(property);

endif

end foreach

foreach agent (yellow, green)

dir= compute dir();

end foreach

foreach agent (all)

switch (mycolor){

case yellow, green: move(dir, speed(mycolor)); break;

case white: stop(); generate new agent(); break;

case red: stop(); generate new close agent(); break; }

end foreach

end for

Fig. 2. The pseudo-code of M-SPARROW.

During simulations a cage effect, was observed; in fact,
some agents could remain trapped inside regions sur-

17



A MULTIDIMENSIONAL FLOCKING ALGORITHM FOR CLUSTERING SPATIAL DATA

rounded by red or white agents and would have no way
to go out, wasting useful resources for the exploration. So,
a limit on their life was imposed to avoid this effect; hence,
when their age exceeded a determined value (maxLife) they
were killed and were regenerated in a new randomly chosen
position of the space.

C. Exploring multidimensional spaces

We wanted use our adaptive flocking algorithm in or-
der to explore multidimensional space for searching point
having desired properties. A continuous data point can be
represented in a multidimensional Euclidean space, simply
normalizing its attributes. Our algorithm can search for
any kind of properties. In particular, we describe a useful
property for the task of clustering. Given a radius (Eps)
and a minimum number (MinPts) of points. A core point
is a point with at least MinPts number of points in an Eps-
neighborhood of the itself. Searching points having these
characteristic could be useful for different task (i.e. db-
scan [3] use these points to perform the task of clustering
databases). In the experimental section, we will show the
evaluation of our algorithm in effectively cope with this
task.

In the following, we give a more formal description of the
extension of the flocking algorithm to the multidimensional
space. Consider a multidimensional space with dimension
d. Each bird k can be represented as a point in this space,
having coordinates xk1, xk2, . . . , xkd and having direction
θk1,θk2, . . . ,θkd, where θki represent the angle between the
new direction of the bird k (computed using the rules of
the previous subsection) and the axis i. Each bird moves
following the the rules of the previous subsection having
speed vk. Then, for each iteration t, the new position of
the bird k can be computed as:

∀i = 1 . . . d xki(t + 1) = xki(t) + vk × cki (1)

where cki represents the projection along the i axis
of the direction of the boid k. Note that each compo-
nents is obtained summing the respective three compo-
nents of alignment, separation and cohesion (i.e. cki =
c alignmentki + c separationki + c cohesionki). In a mul-
tidimensional space, we can compute the components as:

ck1 =
d−1∏

j=1

cos(θkj)

cki = sin(θki−1)
d−1∏

j=i

cos(θkj) i = 2 . . .d

(2)

these formulas can be computed as a generalization of
the three-dimensional case illustrated in figure 3.

From a computational point of view, a critical point of
our algorithm is the efficient search of the k-neighbors
in a multidimensional space. Computing exact nearest
neighbors can be very expensive when dimension increases.

Fig. 3. Computing the components of the boid in a three-dimensional
space.

ANN (Approximate Nearest Neighbor) [1] is a library writ-
ten in C++, which supports data structures and algo-
rithms for both exact and approximate nearest neighbor
searching in high dimensional spaces. As showed in figure
4, we integrated ANN libraries using Java Native Inter-
face with M-Sparrow in order to efficiently compute the
neighbors necessary to our algorithm.

Fig. 4. Integrating M-Sparrow and ANN libraries.

III. Experimental results

In two previous papers, we demonstrated the goodness
of our algorithm in discovering clusters with different sizes,
shapes in noise data [5] and also with different densities [4]
in a two dimensional space.

Now, we want to show how the algorithm works in a
multidimensional space. We have built two dataset, each
one constituted by two gaussian distributions with different
densities of 1500 points. The first was three dimensional
and the latter four dimensional. We run our algorithm us-
ing 200 birds for 600 iterations with k = 50 and radius =
20. It succeeds in separating almost perfectly the two gaus-
sian distributions in both the cases. The three dimensional
case is illustrated in figure 5.

Furthermore, we want to verify the efficiency of the ANN
based implementation and then we run our algorithm com-
paring execution times of the latter ANN-based version
with the previous that used brute force computation for
searching the k-neighbors. The results of this comparison
for a three dimensional case are reported in figures 6 a and
b. Experiments show that the ANN libraries outperforms
the brute force approach in all the cases and the differ-

18



ence is really considerable when the number of neighbors
to search is greater than 50. If we consider datasets with
dimension larger than 3, ANN outperforms the brute force
approach by at least two order of magnitude, also for small
values of k.

IV. Conclusions

We have presented an efficient implementation of an
adaptive flocking algorithm that efficiently search multi-
dimensional spaces. The implementation is based on the
ANN libraries performing an efficient search of the k neigh-
bors. Experiments showed that the algorithm is able to
separate clusters in multidimensional spaces and it out-
performs the previous brute force approach in terms of
execution time.

References

[1] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silver-
man, and Angela Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of ACM,
45(6):891–923, 1998.

[2] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intel-
ligence: From natural to artificial systems. J. Artificial Societies
and Social Simulation, 4(1), 2001.

[3] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining, pages 226–231, 1996.

[4] Gianluigi Folino, Agostino Forestiero, and Giandomenico Spez-
zano. Swarming agents for discovering clusters in spatial data.
ispdc, 2003.

[5] Gianluigi Folino and Giandomenico Spezzano. An adaptive flock-
ing algorithm for spatial clustering. In PPSN, pages 924–933,
2002.

[6] P.P. Grass. La Reconstruction du nid et les Coordinations Inter-
Individuelles chez Beellicositermes Natalensis et Cubitermes sp.
La Thorie de la Stigmergie : Essai d’interprtation du Comporte-
ment des Termites Constructeurs in Insect. Soc. 6. Morgan Kauf-
mann, 1959.

[7] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm
simulation system, a toolkit for building multi-agent simulations,
1996.

[8] Craig W. Reynolds. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, pages 25–34, New York, NY, USA, 1987. ACM Press.

19



A MULTIDIMENSIONAL FLOCKING ALGORITHM FOR CLUSTERING SPATIAL DATA

(a)

(b) (c)

Fig. 5. Gaussian dataset. a) Original Gaussian dataset used in the experiments; b) First cluster extracted by the algorithm; c) Second
cluster extracted by the algorithm.

(a) (b)

Fig. 6. Execution time of the searching phase for the ANN-based version vs the Brute-force approach: a)Radius = 20; b) radius = 50.

20


