

MetaMeth
A Tool For Process Definition And Execution

Roberto Caico (2), Massimo Cossentino (2,3), Luca Sabatucci (1), Valeria Seidita (1), Salvatore Gaglio (1,2)

(1) DINFO - Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo - Viale delle Scienze, 90128 Palermo, Italy

 (2) Istituto di Calcolo delle Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche;
(3) SET - Université de Technologie Belfort-Montbéliard - 90010 Belfort cedex, France

robertocaico@libero.it; sabatucci@csai.unipa.it; cossentino@pa.icar.cnr.it; gaglio@unipa.it

I. INTRODUCTION
Nowadays, several different tools are used in Software
Engineering; in this work we are mainly interested to those
supporting the design phases. These are usually classified in
three categories: CASE, CAME, CAPE tools. MetaMeth is a
CAME and a CAPE tool at the same time.

A CAME tool is a computerized tool that supports the method
engineer in the construction of its own methods that is
principally based on reuse so it aids in storing the reusable
part of existing methodologies (method fragments) and in
providing the interface for a useful and easy retrieval and
assembly of fragments. MetaMeth allows a method engineer
to interface with a repository of method fragment in order to
retrieve them for creating his own methodology.

A CASE tool as an automated tool devotes to help the
designer in the software development process by providing a
software support for a reliable development of activities,
lowering the risk of errors and enhancing the productivity; this
definition even implies activities like planning, and
management, administrative and technical aspects of a project.
MetaMeth allows to manage the process through the
workflow engine, the agents devoted to design activities and
the expert system.

II. METAMETH – SYSTEM REQUIREMENTS
 Our work started with the identification of the requirements
for the tool to be built. The first part of these requirements
refer to the CAME functionalities:
1. Fragment Repository: the tool supports a fragment

repository collecting methods coming from several design
processes; each fragment is an extension of an existing
repository we built according to the work done within
FIPA, extended with the proper set of expert system rules
and software components (agents) used to support the
specific GUIs required in the fragment; the repository of
fragments already exists and we are working for
integrating it in the tool. We also considered important to
plan an easy extensibility of our tool supporting several
different design processes, but at the moment only the
fragments used to implement our own methodologies
(classic and agile process) are already fully integrated in
the tool.

2. Process Definition. Starting from the repository of
method fragments the tool allows the composition of new
processes. We decided to adopt a standard by OMG, the
Software Process Engineering Metamodel (SPEM) for
modeling our methodologies. Once the process is
modelled in SPEM we use a graphical tool (JaWE) to
produce its XPDL translation (XPDL is the process
specification language adopted by WFMC for describing
workflow processes).

Figure 1 – Architecture of the MetaMeth application

21

3. Process Lifecycle. The tool should support iterative and
incremental design processes composed of several
activities (eventually organized in some kind of
hierarchy) with several different possible iteration paths.

4. Notation, Syntactic and Semantic Rules. In a
methodology almost all work products have to respect
three types of rules: notational, syntactic and semantic.
The CAME tool have to allow the introduction of
syntactic and semantic rules (expressed in a first order
logic language) and to assign a graphical notation among
available for working with fragments coming from
different methodologies (a set of editors, developed ad-
hoc for this scope, will be available).

5. Process Roles. During the composition of the method the
method engineer may assign activities to perform to
different human roles involved in the process.

The second list of requirements is related to the CASE
functionalities:
1. Process Execution. The first requirement of this section

is to instantiate a methodology built using the
MetaMeth/CAME (received as XPDL specifications and
a set of rules for notation, semantic and syntactic
verification) and to orchestrate all the CASE services in
order to design a system.

2. Team Work. Our tool support distributed design
processes (involving several designer working on
different phases at the same moment in different
locations)

3. Automatic Composition. The tool keep in consideration
dependencies among work products and include the
possibility of automatically compose all (or portion of)
diagrams that allow such an help.

4. Automatic Verification. Syntax check on notational
aspects of the project and the consistency check on some
design aspects like the correct instantiation of the most
important elements of the MAS meta-model

5. Reuse and Code Generation. The tool integrates a reuse
technique based on design patterns; these are collected in
a repository and may be used during design. The tool has
a code generator that uses an MDA approach to transform
the design view in a implementation view and finally in a
code view; using this approach different coding languages
or implementation frameworks could be adopted. The tool
supports also the production of an adequate

documentation that, starting from the work products, is
able of creating complex documents merging diagrams,
text, tables and so on.

Figure 2 - A screenshot of the JaWE tool used for design the PASSI methodology

III. SOFTWARE ARCHITECTURE AND TECNOLOGIES
The prototype we developed is based on several technologies,
standards and existing tools, that are independent software for
enacting the process definition and the process execution; this
is shown in Figure 1.
The most relevant open source components we reused in our
Metameth tool are:
1. JaWE (by Enhydra) adopted as a graphical workflow

editor to design the process (it exports the process using
the XPDL format);

2. Shark (again by Enhydra) adopted as a workflow
execution engine (it is able of reading XPDL files and
also to interact with our Java-based Activity Agents); this
tool ensures the design process instantiation and allows
the distributed and asynchronous execution of the
different activities.

3. Jade is the platform we used to develop our Activity
Agents; this is the most diffused FIPA-compliant agent
development platform.

4. Jess is Java-based rule engine we used to build our expert
system; such a system is the ‘intelligent’ part of the
Metameth tool; a relevant portion of its services are
required by the Activity Agents that need reasoning
capabilities in order to assist the designer in his duty.

5. The MAS meta-model required by the adopted
methodology is depicted in form of an ontology using the
tool Protégé by the Stanford University, California.

6. IBM Eclipse is the IDE we used to develop our UML
editors.

IV. EXAMPLE.
Now we are going to illustrate with an example the main steps
of the construction of a new methodology and its enactment
with the MetaMeth tool.
The scenario starts with JaWE session used to define the new
methodology; this tool offers a graphical interface to model
the process as a flow of sub-processes, and activities; each
activity may be atomic or be decomposed in sub-activities. In
Figure 2 we report a screenshot of the tool showing three
different boxes each one related to a piece of the methodology
at a different level of abstraction. The first box (the top one)

22

describes the main phases of our methodology (system
requirements, agent society, agent implementation and code
model). In the second box there is an exploitation of the
system requirement phase in its composing activities (domain
description, agent identification, role description, agent
structure exploration and task specification); finally, in the
third box (the lowest one), the domain description activity is
decomposed in two atomic operations (define use case and
refine use case).

The next step in the definition of the methodology is the
specification in terms of Jess rules of the semantic of the MAS
meta-model elements and the (work products) composition
rules of the process. This is done using Protégé to draw the
ontology and a Rule editor tool we built to describe Jess rules
starting from some templates.

When the methodology has been entirely described using the
XPDL language (process aspects) and Jess rules (semantics
and composition rules), the process administrator may

instantiate it using the process execution module. This has
been developed using a multi-agent system composed by:

Figure 3 - An example of activity tool for the Domain
Requirement Description phase of PASSI

1. A Controller agent (that is interfaced with the workflow

execution engine).
2. One or more Stakeholder agents (one for each designer

that uses it to accept, start, decline the activities assigned
to him from the process definition). After a log in session,
the user may verify his activity list and can start/ refuse or
delegate an activity.

3. An Expert System agent (used to wrap the Jess engine).
4. One or more Activity agents.

When the designer chooses of performing an activity, an agent
becomes responsible for coordinating all the operations
related to the specific activity (also in collaboration with the
Expert agent and the UML editors). Activity agents offer
several services to the designer: i) auto-composition used
when a work product can be automatically modified/created or
updated; ii) notation interpretation, used to map notational
elements (use cases, classes, activities, …) into elements of
the MAS meta model (requirements, agents, behaviours, …),
iii) semantic validation used to verify the semantic consistence
of the whole project.

Figure 3 shows the user interface of the Activity agent
associated to the domain requirement description phase of our
methodology; semantic interpretation and validation have
been already done with the result that use cases have been
mapped to requirements. In Figure 4 the first three work
products of the methodology are reported (domain
requirements description, agent identification and role
identification).

V. FUTURE WORKS

Figure 4 - Some screenshots of the UML editor developed as a plug-in for Eclipse

23

In the future we are going to complete this tool with more
features, specifically we are going to interface it with an
agent-oriented pattern reuse tool that also allows code
generation for one of the most diffused agent development
platforms (Jade). The production of an extensive and well-
formatted documentation from the design artifact is also
scheduled and will be obtained through a society of agents,
each one specialized for the composition of one specific kind
of document.
Another improvement, we are working on, is the population of
the fragment repository, extracting methods from the existing
agent-oriented methodologies.

24

	I. Introduction
	II. MetaMeth – System Requirements
	III. Software Architecture and Tecnologies
	IV. EXAMPLE.
	V. Future Works

