
Model driven design and implementation of

activity-based applications in Hermes

Ezio Bartocci∗, Flavio Corradini∗, Emanuela Merelli∗, Leonardo Vito∗

∗ Dipartimento di Matematica e Informatica,

Università di Camerino,

Via Madonna delle Carceri, 62032 Camerino, Italy

{name.surname}@unicam.it

Abstract— Hermes is an agent-based middleware struc-
tured as a component-based and 3-layered software architec-
ture. Hermes provides an integrated, flexible programming
environment for design and execution of activity-based
applications in distributed environments. By using workflow
technology, it supports even a non expert user programmer
in the model driven design and implementation of a domain
specific application. In this paper, after a description of
Hermes software architecture, we provide a simple demo
in biological domain and we show some real case studies in
which Hermes has been validated.

I. INTRODUCTION

Hermes [9] is an agent-based middleware, for design

and execution of activity-based applications in distrib-

uted environments. It supports mobile computation as an

application implementation strategy. While middleware

for mobile computing has typically been developed to

support physical and logical mobility, Hermes provides an

integrated environment where application domain experts

can focus on designing activity workflow and ignore

the topological structure of the distributed environment.

Generating mobile agents from a workflow specification is

the responsibility of a context-aware compiler. Agents can

also developed directly by an expert user using directly

the Application Programming Interface (API) provided

by Hermes middleware. The Hermes middleware layer,

compilers, libraries, services and other developed tools to-

gether result in a very general programming environment,

which has been validated in two quite disparate applica-

tion domains, one in industrial control [6] and the other

in bioinformatics [13]. In the industrial control domain,

embedded systems with scarce computational resources

control product lines. Mobile agents are used to trace

products and support self-healing. In the bionformatics

domain, mobile agents are used to support data collection

and service discovery, and to simulate biological system

through autonomous components interactions. This paper

is organized as follows. Section II describes the Hermes

Software Architecture. Section III provides a simple demo

in biological domain. In Section IV, we present several

projects in which Hermes middleware has been adopted.

We conclude in Section V.

II. HERMES SOFTWARE ARCHITECTURE

Hermes is structured as a component-based, agent-

oriented system with a 3-layer software architecture

shown in Figure 1: user layer, system layer and run-time

B1

C1B2

User-Level Workflow

U
s
e
r L

a
y
e
r

WE -A-

Pool of Workflow Executors (WEs)

S
y
s
te

m
 L

a
y
e
r

Agent-Level Workflow

R
u
n
-T

im
e
 L

a
y
e
r

WE -A- WE -B- WE -C-

AIXO SOAPLAB WSIF Java Mail
API

SAXON Tool ...

ServiceAgents (SAs)

Hermes Core

Discovery Mobility Genesis Communication Security

Legend

Activity

Agent

Tool

Start Stop

Transition

fork

join

Component

SoapL
SA

Interaction
Protocol

Thinlet

WE -B-WE -C-

WSIF
SA

Email
SA

XQuery

SA
.....
SA

XUL
SA

SAWE -A-

WE -B-WE -A-

Agent
communication

Request

Response

Error

W
F
C

o
m

p
il
e
r

UserAgents

AIXO
SA

Fig. 1. Hermes Software Architecture

layer. At the user layer, it allows designers to specify

their application as a workflow of activities using the

graphical notation. At the system layer, it provides a

context-aware compiler to generate a pool of user mobile

agents from the workflow specification. At the run-time

layer, it supports the activation of a set of specialized

service agents, and it provides all necessary components

to support agent mobility and communication. The main

difference between the run-time layer and the system

layer is how agents function in each. ServiceAgents in the

run-time layer are localized to one platform to interface

with the local execution environment. UserAgents in the

system layer are workflow executors, created for a specific

goal that, in theory, can be reached in a finite time by

interacting with other agents. Afterwards that agent dies.

25

Fig. 2. Specification of Complex/Primitive activities in JaWE

Furthermore, for security UserAgents can access a local

resource only by interacting with ServiceAgent that is the

“guard” of the resource. It follows a detailed description

of the main components and functionalities of each layer.

A. User Layer

The user layer is based on workflow technology and

provides to users a set of programs for interacting with

the worklow management system. There are two main

families of programs: programs for specifying, managing

and reusing existing workflow specifications, and pro-

grams enabling administration and direct interaction with

the workflow management system. The workflow editor is

the program that supports the workflows specification by

composing activities in a graphical environment. Hermes

provides two editors, one is a plugin of the stand-alone

JaWE [10] editor and the other is WebWFlow, a web-

based editor. Both editors enable the specification of

workflows by using XML Process Definition Language

(XPDL) [14] a standard provided by the WfMC [12].

Activities used in a workflow are configured by speci-

fying input parameters and their effects are recognizable

as modification of state variables or modification on

the environment’s status. Workflow editors enable the

composition of both primitive and complex activities.

A primitive activity is an activity that can be directly

executed. Users can specify primitive activity without

knowing the real implementation. A complex activity is

an activity that must be specified before it can be used;

as Figure 2 shows the specification of a complex activity

could be a workflow of complex and/or simple activities.

By using complex activities the specification of workflows

is simplified because they enhance both hierarchical speci-

fication and reuse: we can use an already existing complex

Fig. 3. Outline of workflow compilation process in Hermes

activity without caring of its specification. Users can

use complex activities and stored workflows to increase

productivity when specifying new workflows. Moreover,

large libraries of both domain specific primitives and

complex activities can be loaded to specialize the editor

for a specific application domain.

B. System Layer

System Layer, on the middle architecture, provides

the needed environment to map a user-level workflow

into a set of primitive activities. The execution of these

latter is coordinated by suitable model, they implement

the activities at user level and embed implementation

details abstracted from the execution environment. These

primitive activities are implemented by autonomous soft-

ware entities UserAgent able to react to the environment

changes where they are executed. A compiler generates

a pool of user mobile agents from the workflow speci-

fication. Due to the lack of space, workflow compilation

process shown in Figure 3 will not discussed here and we

refer to [4] for further details.

C. Run-time Layer

Run-time Layer, at the bottom of the architecture,

provides primitives and services essential for agent mo-

bility and resources access. The kernel is the plat-

form for mobile computing which provides primitives

for discovery, mobility, communication, and security. As

already described, the overall structure of the system

is very complex, it supports abstract specifications that

are mapped into a complex distributed and coordinated

26

Fig. 4. 3-Layered Architecture of Hermes Mobile Computing Platform.

flows of activities over a large-scale distributed system.

In order to master this complexity and to support the

reusability of existing artefact during the development of

a middleware system for a specific application domain, we

designed Hermes kernel following a component-based [7]

approach. Figure 4 shows the main components placed in

the 3-Layered Architecture of Hermes Mobile Computing

Platform. It follows a detailed description of components

belonged to each layer.

1) Core Layer: It is the lowest layer of the architec-

ture and contains base functions of the system, such as

the implementation of the inter-platform communication

protocols and agent management functions. This layer is

composed of four components: ID, SendReceive, Starter

and Security. The ID component, implements general

identity management functions by managing a repository

containing information about locally generated agents.

This repository is accessed whenever we want to know

the current position of an agent. The ID component is

also responsible for the creation of the identifiers to

be associated to new agents. These identifiers contain

information about birthplace, date and time of the agent’s

creation. Agent localization is simplified by information

contained directly in the ID, such as birth place. In fact,

the birth place of an agent hosts information about agent’s

current location. A second important feature of the Core is

the SendReceive component. This component implements

low level inter-platform communication by sending and

receiving messages and agents. By using traceability

services offered by the ID component, SendReceive can

easily update or retrieve the exact position of a specific

user agent. The Starter component processes any request

for agent creation. This particular component, in fact, take

an inactive agent (just created or migrated), and checks it

for the absence of malicious or manipulated code. These

agents, before activation, are dynamically linked to all

basic services of the platform. During execution the agent

is isolated from the Core Layer by the BasicService layer.

The Security component, as mentioned above, checks for

the presence of malicious code or manipulations within

agent code.

2) BasicService Layer: This layer has five main com-

ponents: Discovery, Mobility, Genesis, Communication

and Security Politics. The Discovery component searches

and detects service agents. When a user agents wants to

communicate with a service, it will ask the Discovery

for the right identifier to use as the messages’s receiver.

The service detection strategy can be implemented in

several ways; for example by a fixed taxonomy or by an

UDDI [5], commonly used in WebServices application

domain. The mobility component enables the movement

of code across platforms [11], it implements the interface

used by the Agent component and it accesses to compo-

nents of the Core layer to send, receive and load agents.

It is important to note that real communication between

different locations can be achieved only through Core’s

SendReceive component, and then migration is indepen-

dent of the type of used transport. Mobility consists on

copy the agent i.e. its code and its current state and send

it to the destination platform where it will re-started in

a specific point (weak mobility). The local agent is de-

stroyed. The Communication component makes possible

to send and receive agent-directed messages both in an

intra- and inter-platform context. Intra-platform messages

are messages sent between agents and services residing in

the same platform. Inter-platform messages are messages

sent to agents residing in different platforms (our system

does not allow for remote communication between user

agents and service agents). The agent requesting the

dispatch of a message does not need to know, effectively,

where the target agent is; in fact, the ID is sufficient to

post correctly a message. The Communication component

uses one of the Security Policy’s interfaces to ascertain

whether the specific UserAgent or ServiceAgent has the

right privileges for communication. If an Agent is not

authorized to use a service, the message is destroyed.

Before accessing resources and services, an agent must

authenticate itself. The identification is performed by

sending a login message to a specific ServiceAgent, as

consequence the SecurityPolitics component jointly with

the Communication component intercept the message and

unlock the communication. The SecurityPolitics compo-

nent centralizes control of permissions, protects services

and resources from the user agents, and provides the

administrator with an easy way to manage all permissions.

The last component of the service layer is the Genesis

component that enables agent creation. A special case

of agent creation is cloning that is performed when it

is necessary to create a copy of an existing agent. The

two copies differ only for the agent identifier.

3) Agent Layer: The Agent Layer is the upper layer of

the mobile platform, the Agent Layer, contains all service

and user agents. This component has not any interface, but

it has only several dependencies upon the BasicService

Layer. The Agent component provides a general abstract

Agent class. UserAgent and UserAgent classes extend this

abstract class. ServiceAgent consists of agents enabling

access to local resources such data and tools. User agents

execute complex tasks and implement part of the logic

of the application. Java programmers can also develop

27

Fig. 5. Final result produced by McDuckAgent.java

UserAgents by using the API provided by Hermes Mobile

Computing Library. Listing 1 shows a simple demo. A

MkDuckAgent called “Della Duck” creates three sons

Qui, Quo and Qua -lines 24 to 40- by cloning itself.

After clonation each new agent start its behaviour calling

“afterCloning” as initial method.

1 package samples ;

2 import hermesV2 .∗ ;

3 import hermesV2 . a g e n t .∗ ;

4

5 p u b l i c c l a s s McDuckAgent ex tends UserAgent {
6

7 p u b l i c McDuckAgent (S t r i n g agentName) {
8 super (” D e l l a Duck”) ;

9 }
10

11 p u b l i c vo id i n i t () {
12 r e c e p t i o n () ; / / I e n a b l e t h e r e c e p t i o n

13 / / o f messages f o r t h e f a t h e r

14

15 System . o u t . p r i n t l n (” H e l l o World ! ! ”) ;

16 System . o u t . p r i n t l n (” I ’m D e l l a Duck ! ! ! ”) ;

17

18 I d e n t i f i c a t o r temp= nul l , son1= nul l ,

19 son2= nul l , son3= n u l l ;

20

21 /∗ a f t e r C l o n i n g i s t h e f i r s t method

22 c a l l e d a f t e r t h e c l o n a t i o n ∗ /

23

24 t r y {
25 son1 = c l o n e (” a f t e r C l o n i n g ” , ” Qui ”) ;

26 System . o u t . p r i n t l n (new Date (

27 System . c u r r e n t T i m e M i l l i s ()) +

28 ” : Qui was born ! ! ”) ;

29 son2 = c l o n e (” a f t e r C l o n i n g ” , ”Quo”) ;

30 System . o u t . p r i n t l n (new Date (

31 System . c u r r e n t T i m e M i l l i s ()) +

32 ” : Quo was born ! ! ”) ;

33 son3 = c l o n e (” a f t e r C l o n i n g ” , ”Qua”) ;

34 System . o u t . p r i n t l n (new Date (

35 System . c u r r e n t T i m e M i l l i s ()) +

36 ” : Qua was born ! ! ”) ;

37 } catch (C l o n e E x c e p t i o n ce) {
38 System . o u t . p r i n t l n (ce) ;

39 }
40 Message m0= nul l , m1= nul l , m2= nul l , m3= n u l l ;

41 whi le (! (m1!= n u l l && m2!= n u l l &&

42 m3!= n u l l)){
43 m0 = getMessageSynch () ;

44 temp = m0 . g e t S e n d e r A g e n t I d () ;

45 i f (son1 . e q u a l s (temp)) m1 = m0 ;

46 i f (son2 . e q u a l s (temp)) m2 = m0 ;

47 i f (son3 . e q u a l s (temp)) m3 = m0 ;

48 System . o u t . p r i n t l n ((S t r i n g)m0 . g e t O b j e c t ()) ;

49 }

50 /∗The mother r e p l i e s t o sons ∗ /

51 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;

52 m1 = new Message (myId , son1 ,

53 ”Mom: Ok Qui ! ! \n ”+

54 ” I ’ ve r e c e i v e your message . ”) ;

55 m2 = new Message (myId , son2 ,

56 ”Mom: Ok Quo ! ! \n ”+

57 ” I ’ ve r e c e i v e your message . ”) ;

58 m3 = new Message (myId , son3 ,

59 ”Mom: Ok Qua ! ! \n ”+

60 ” I ’ ve r e c e i v e your message . ”) ;

61 t r y {
62 sendMessageToUserAgent (m1) ;

63 sendMessageToUserAgent (m2) ;

64 sendMessageToUserAgent (m3) ;

65 } ca tch (Communica t ionExcep t ion ce) {
66 System . o u t . p r i n t l n (ce . ge tMessage ()) ;

67 }
68 }
69

70 p u b l i c vo id a f t e r C l o n i n g () {
71 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;

72 P l a c e A d d r e s s myBPA = myId . g e t B o r n P l a c e A d d r e s s () ;

73 i n t myBPAPort = myBPA . g e t P o r t () ;

74 t r y {
75 i n t p o r t = (myBPAPort == 9100) ? 9000 : 9100 ;

76

77 P l a c e A d d r e s s myMPA =

78 new P l a c e A d d r e s s (myBPA . g e t I p () , p o r t) ;

79 t h i s . move (myMPA, ” a f t e r M o v i n g ”) ;

80 } ca tch (M i g r a t i o n E x c e p t i o n me) {
81 System . o u t . p r i n t l n (” M i g r a t i o n E x c e p t i o n ” + me) ;

82 }
83 }
84

85 p u b l i c vo id a f t e r M o v i n g () {
86 r e c e p t i o n () ; / / I e n a b l e t h e r e c e p t i o n

87 / / o f messages f o r t h e son

88

89 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;

90 I d e n t i f i c a t o r mother = g e t F a t h e r I d e n t i f i c a t o r () ;

91 Message m = n u l l ;

92

93 t r y {
94 m = new Message (myId , mother ,

95 getAgentName () +

96 ” : I have moved t o a n o t h e r P l a c e ”) ;

97 sendMessageToUserAgent (m) ;

98 } ca tch (Communica t ionExcep t ion ce) {
99 System . o u t . p r i n t l n (ce . ge tMessage ()) ;

100 }
101 m = getMessageSynch (mother) ;

102 System . o u t . p r i n t l n ((S t r i n g)m. g e t O b j e c t ()) ;

103 }
104 }

Listing 1. McDuckAgent.java

28

Fig. 6. Multiple blast workflow

By using “move” method -line 79- Qui, Quo amd Qua

migrate to a Place different from where they were born.

When they arrive in the new Place each one call the

“afterMoving” -line 85- method. Then they notify to their

mom their moving by using “sendMessageToUserAgent”

-line 97- and “getMessageSynch” -line 101- methods.

Figure 5 shows the final results.

D. Software requirements

One of the main features of Hermes middleware is

its scalability. The present version, HermesV2, is a pure

Java application whose kernel requires about 120KB of

memory and interoperates across a systems ranging from

microprocessors to very power workstations. The Hermes

Mobile Computing Platform is available under LGPL on

Sourgeforge 1 Web Site.

III. MODEL DRIVEN DESIGN AND IMPLEMENTATION

OF ACTIVITY-BASED APPLICATIONS: A DEMO

In the present post-genomic era, biological informa-

tion sources are crammed with information gathered

1http://sourceforge.net/projects/hermes-project

from results of experiments performed in laboratories

around the world, i.e., sequence alignments, hybridization

data analysis or proteins interrelations. The amount of

available information is constantly increasing, its wide

distribution and the heterogeneity of the sources make

difficult for bioscientists to manually collect and integrate

information. In this section we present a demo of Hermes

in the biological domain. In our example we want to find

similar DNA sequences to a given one in several databases

using Basic Local Alignment Search Tool 2 (BLAST).

In particular, in this demo we want to compare, using

BLAST, the nucleotide sequence in FASTA format of a

given entry identificator with the sequences contained in

the following databases:

• Protein Data Bank (PDB) 3

• SWISS-PROT 4

• DDBJ 5

2http://www.ncbi.nlm.nih.gov/BLAST/
3http://www.rcsb.org/pdb/
4http://www.ebi.ac.uk/swissprot/
5http://www.ddbj.nig.ac.jp/

29

Fig. 7. Multiple blast compilation and execution

The access to these databases is guaranteed by a set of

Web Services. By using workflow editors a bioscientist

can specify the logic order, as Figure 6 shows, of a set

of domain-specific activities without knowing the related

implementation details. Each rectangle is an activity and

each swimlane represents a UserAgent. As Figure 7-b

shows, user can exploit a set of previous defined domain-

specific activities by importing the proper library.

BlastnDDBJ Agent, BlastXSWISS Agent and BlastX-

PDB Agent receive the nucleotide sequence from the

BlastDemo Agent and throught an interation with WSIF

ServiceAgent, they compare the received sequence with

sequences in each database using BLAST. If no excep-

tions occur, BlastDemo Agent join partial results and

send the final document to user by email throught an

interaction with the Email ServiceAgent. After saving

this specification, you can reload -Figure 7-a-, compile

-Figure 7-d- and execute -Figure 7-c and 7-e - the

workflow previous defined.

IV. SOME CASE STUDIES

The Hermes middleware has been validated in several

projects. It follows a brief case study description of

Hermes application in some of them.

A. SI.CO.M project

In the SI.CO.M 6 project we have developed a proto-

type based on Hermes middleware for the traceability of

ichthyic products. Generally the product is traced throught

the updating of databases distributed along the main sites

of the weaving factory. This approach is not efficient

because trace a faulty batch of products requires to query

all databases, usually with an heterogeneous schema, of

all sites interested in the production process. The proposed

6http://sicom.cs.unicam.it/

30

solution with the prototype named “TraceFish”, exploiting

the agent-based technology, allows to move automatically

the information about a single batch from a site to another

of the weaving factory overcoming the limits of the

classical client/server approach.

B. O2I Project

The Oncology over Internet (O2I) 7 project is aimed to

develop a framework to support searching, retrieving and

filtering information from Internet for oncology research

and clinics. Hermes in the context of O2I project is called

Bioagent 8, it supports the the design and execution of

user workflows involving access to literature, mutation

and cell lines databases.

C. LITBIO Project

The main objective of the Laboratory of Interdiscipli-

nary Technologies in Bioinformatics (LITBIO) 9 is to

create infrastructure capable of supporting challenging

international research and to develop new bioinformatics

analysis strategies apply to biomedical and biotechno-

logical data. To satisfy the most bioinformaticians needs

we have proposed a multilayer architecture [2] based on

Hermes middleware. At the user layer, it is intended to

support in-silico experiments, resource discovery and bi-

ological systems simulation. The pivot of the architecture

is a component called Resourceome [8], which keeps an

alive index of resources in the bioinformatics domain

using a specific ontology of resource information. A

Workflow Management System, called BioWMS [3], pro-

vides a web-based interface to define in-silico experiments

as workflows of complex and primitives activities. High

level concepts concerning activities and data could be

indexed in the Resourceome, that also dynamically sup-

ports workflow enactment, providing the related resources

available at runtime. ORION [1], a multiagent system,

is a proposed framework for modelling and engineering

complex systems. The agent-oriented approach allows

to describe the behavior of the individual components

and the rules governing their interactions. The agents

also provide, as middleware, the necessary flexibility

to support data and distributed applications. A GRID

infrastructure allows a transparent access to the high

performance computing resources required, for example

in the biological systems simulation.

ACKNOWLEDGMENT

This work is supported by the Investment Funds for

Basic Research (MIUR-FIRB) project Laboratory of In-

terdisciplinary Technologies in Bioinformatics (LITBIO).

V. CONCLUSION

As the demo presented shows, Hermes middleware pro-

vides an integrated, flexible programming environment,

7http://www.o2i.it/
8http://www.bioagent.net/
9http://www.litbio.org/

whose user can easily configure for its application do-

main. Hermes is structured as a component-based, agent-

oriented, 3-layered software architecture. It can config-

ured for specific application domains by adding domain-

specific component libraries. The user can specify, modify

and execute his workflow in a very simple way. Workflow

is specified abstractly in a graphical notation and mapped

to a set of autonomous computational units (UserAgents)

interacting through a communication medium. The map-

ping is achieved by compiler that is aware not only of

contents of a library of implemented user activities but

also the software and hardware environment to executing

them. By using workflow as suitable technology to hide

distribution and on mobile agents as flexible implemen-

tation strategy of workflow in a distributed environment,

Hermes allows even to a not expert programmer a model

driven design and implementation of a domain specific

activity-based application.

REFERENCES

[1] M. Angeletti, A. Baldoncini, N. Cannata, F. Corradini, R. Cul-
mone, C. Forcato, M. Mattioni, E. Merelli, and R. Piergallini.
Orion: A spatial multi agent system framework for computational
cellular dynamics of metabolic pathways. In Proceedings of Bioin-

formatics ITalian Society (BITS) Meeting, Bolgna, Italy, 2006.
[2] E. Bartocci, D. Cacciagrano, N. Cannata, F. Corradini, E. Merelli,

and L. Milanesi. A GRID-based multilayer architecture for
bioinformatics. In Proceedings of NETTAB’06 Network Tools and

Applications in Biology, Santa Margherita di Pula, Cagliari, Italy,
2006.

[3] E. Bartocci, F. Corradini, and E. Merelli. BioWMS: A web based
workflow management system for bioinformatics. In Proceedings

of Bioinformatics ITalian Society (BITS) Meeting, Bologna, Italy,
2006.

[4] E. Bartocci, F. Corradini, and E. Merelli. Building a multiagent
system from a user workflow specification. In Proceedings of

Workshop From Objects to Agents - WOA, 2006.
[5] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo,

Y. L. Husband, K. Januszewski, S. Lee, B. McKee, J. Munter, and
C. von Riegen. UDDI version 3.0. Published specification, Oasis,
2002.

[6] D. Bonura, F. Corradini, E. Merelli, and G. Romiti. Farmas: a
MAS for extended quality workflow. In 2nd IEEE International

Workshop on Theory and Practice of Open Computational Systems.
IEEE Computer Society Press, 2004.

[7] D. Bonura, L. Mariani, and E. Merelli. Designing modular agent
systems. In Proceedings of NET.Object DAYS, Erfurt, pages 245–
263, September 2003.

[8] N. Cannata, E. Merelli, and R. B. Altman. Time to organize the
bioinformatics resourceome. PLoS Comput Biol., 1(7):e76, 2005.

[9] F. Corradini and E. Merelli. Hermes: agent-based middleware for
mobile computing. In Mobile Computing, volume 3465, pages
234–270. LNCS, 2005.

[10] Enhydra. Jawe. http://jawe.enhydra.org/, 2003.
[11] A. Fuggetta, G. Picco, and G. Vigna. Understanding code mobility.

IEEE Transaction of Software Engineering, 24(5):352–361, May
1998.

[12] D. Hollingsworth. The Workflow Reference Model, January 1995.
[13] E. Merelli, R. Culmone, and L. Mariani. Bioagent: a mobile agent

system for bioscientists. In NETTAB Workshop on Agents Nd

Bioinformatics, Bologna, July 2002.
[14] WfMC. Xml process definition language (xpdl). WfMC standard,

W3C, October 2005.

31

