
Collective Sorting Tuple Spaces
Matteo Casadei, Luca Gardelli, Mirko Viroli

DEIS, Cesena
Alma Mater Studiorum – Università di Bologna

via Venezia 52, 47023 Cesena (FC), Italy
{m.casadei,luca.gardelli,mirko.viroli }@unibo.it

Abstract— Coordination of multiagent systems is recently
moving towards the application of techniques coming from
the research context of complex systems: adaptivity and self-
organisation are exploited in order to tackle openness, dynamism
and unpredictability of typical multiagent systems applications.
In this paper we focus on a coordination problem calledcollective
sorting, where autonomous agents are assigned the task of moving
tuples across different tuple spaces according to local criteria,
resulting in the emergence of the complete clustering property.
Using a library we developed for the MAUDE term rewriting
system, we simulate the behaviour of this system and evaluate
some solutions to this problem.

I. I NTRODUCTION

Systems that should self-organise to unpredictable changes
in their environment very often need to feature adaptivity
as an emergent property. As this observation was first made
in the context of natural systems, it was shortly recognised
as an inspiring metaphor for artificial systems as well [1].
However, a main problem with emergent properties is that,
by their very definition, they cannot be achieved through a
systematic design: their dynamics and outcomes cannot be
fully predicted. Nonetheless, providing some design support in
this context is still possible. The whole system of interest, that
is the application to design and the environment it is immersed
in, can be modelled as a stochastic system, namely, a system
whose dynamics and duration aspects are probabilistic. In this
scenario, simulations can be run and used as a fruitful tool to
predict certain aspects of the system behaviour, and to support
a correct design before actually implementing the application
at hand [2].

This scenario is particularly interesting for agent coordina-
tion. Some works like the TOTA middleware [3], SwarmLinda
[4], and stochastic KLAIM [5], though starting from different
perspectives, all develop on the idea of extending standard
coordination models with features related to adaptivity and
self-organization. They share the idea that tuples in a tuple
space eventually spread to other tuple spaces in a non-
deterministic way, depending on certain timing and probability
issues. Accordingly, in this paper we start analysing the
potential role that simulation tools can have in this context,
towards the identification of some methodological approach
to system design.

As a reference example, we consider an application to
a tuple space scenario of the so-calledcollective sorting
problem for swarm intelligence [1]. This application features
autonomous agents managing a set of distributed tuple spaces,

with the goal of moving tuples from one space to the other
until completely “sorting” them, that is, tuples of different
types reside in different tuple spaces. We show a solution
to this problem based on a fully-distributed algorithm, where
each agent moves tuples according to fully-local criteria, and
where complete sorting appear to emerge from initial chaotic
tuple configurations. To provide evidence of correctness and
appropriateness we rely on simulations.

Many simulation tools can be exploited to this end, though
they all necessarily force the designer to exploit a given
specification language, and therefore better apply to certain
scenarios and not to others—examples are SPIM [6], SWARM
[7] and REPAST [8]. Instead of relying on one of them,
in this paper we seek for a general-purpose approach. We
evaluate the applicability of the MAUDE specification tool as a
general-purpose engine for running simulations [9]. It is very
well known that MAUDE allows for modelling syntactic and
dynamic aspects of a system in a quite flexible way, supporting
e.g. process algebraic, automata, and net-like specifications—
all of which can be seen as instantiations of MAUDE’s term
rewriting framework. We developed a library for allowing a
system designer to specify in a custom way a system model in
terms of a stochastic transition system—a labelled transition
system where actions are associated with arate (of occurrence)
[10]. One such specification is then exploited by the tool to
perform simulations of the system behaviour, thus making
it possible to observe the emergence of certain (possibly
unexpected) properties.

The remainder of this paper is as follows: Section 2 provides
some background on coordination techniques featuring adap-
tivity, Section 3 describes the collective sorting problem, while
Section 4 presents the MAUDE model of the Collective Sorting
and its simulation results, and finally Section 5 concludes
providing perspectives on future works.

II. BACKGROUND

In the effort to improve the design process of software
systems—i.e. to bridge the gap between the design and the
actual implementation—it has become very common practice
to take into account not only functional and architectural
requirements, but also quantitative aspects like temporal and
probabilistic ones. When dealing with complex systems, it is
often the case that aleatory in system dynamics may cause
the emergence of interesting properties, that cannot therefore
be abstracted away when designing the system. Coordination

173

models and technologies for multiagent systems are witness-
ing the development of a number of works moving to this
direction, most of which are inspired by natural phenomena.

A first example is the TOTA (Tuples On The Air) mid-
dleware [3] for pervasive computing applications, inspired by
the concept of field in physics—like e.g. the gravitational
or magnetic fields. This middleware supports the concept of
“spatially distributed tuple”: that is, a tuple can be cloned and
spread to the tuple spaces in the neighborhood, creating a sort
of computational field, which grows when initially pumped
and then eventually fades. To this end, when injected in a
tuple space, each tuple can be equipped by some application-
dependent rules, defining how a tuple should spread across the
network, how the content of the tuple should be accordingly
affected, and so on. TOTA is mainly targeted to support
multiagent systems whose environment is open, dynamic and
unpredictable, like e.g. to let mobile agents meet each other
in a dynamic network.

Another example is the SwarmLinda coordination model
[4], which though similar to TOTA is more inspired by swarm
intelligence and stigmergy [1], [11], [12]. In SwarmLinda
tuples are moved from one tuple space to the other, and ant-
like algorithms are used to retrieve them. The use of self-
techniques in SwarmLinda derives from necessity of dealing
with openness and with the unpredictability of a tuple space’s
users, against the need of achieving adaptivity.

Finally, the “swarm robotics” field applies strategies in-
spired by social insects in order to coordinate the activities
of a multiplicity of robots systems. Typically, these systems
are built on top of ad-hoc software middlewares [1], and solve
problems with distributed-algorithms where, though each robot
brings about very simple goals, the whole system can be
used to solve quite complex problems—see e.g. the collective
sorting problem in Section III-A.

These are all examples witnessing the fact that coordination
in open, dynamic, and unpredictable systems have quantitative
aspects playing a very important role. This calls for analysis
and design tools that can support system development at
various levels, from formal specification up to simulations.

III. C OLLECTIVE SORTING

A. General Scenario

We consider a case of Swarm-like intelligence known as
collective sorting[1]. It features a multiagent system where
the environment is structured and populated with items of
different kinds: the goal of agents is to collect and move items
across the environment so as to order them according to an
arbitrary shared criterion. This problem basically amounts to
clustering: homogeneous items should be grouped together and
should be separated from others. Moving to a typical context
of coordination models and languages, we consider the case
of a fixed number of tuple spaces hosting tuples of a known
set of tuple types. The goal of agents is to move tuples from
one tuple space to the other until the tuples are clustered in
different tuple spaces according to their tuple type.

In several scenarios, sorting tuples may increase the overall
system efficiency. For instance, it can make it easier for an
agent to find an information of interest based on its previous
experience: the probability of finding an information where
a previous and related one was found is high. Moreover,
when tuple spaces contain tuples of one kind only, it is
possible to apply aggregation techniques to improve their
performance, and it is generally easier to manage and achieve
load-balancing.

Increasing system order however comes at a computational
price. Achieving ordering is a task that should be generally
performed online and in background, i.e. while the system
is running and without adding a significant overhead to the
main system functionalities. Indeed, it might be interesting to
look for suboptimum algorithms, which are able to guarantee
a certain degree of ordering in time.

Nature is a rich source of simple but robust strategies:
the behaviour we are looking for has already been explored
in the domain of social insects. Ants perform similar tasks
when organizing broods and larvae: this class of coordination
strategies are generally referred to ascollective sortingor
collective clustering[1]. Although the actual behaviour of
ants is still not fully understood, there are several models that
are able to mimic the dynamics of the system. Ants wander
randomly and their behaviour is modelled by two probabilities,
respectively, the probability to pick upPp and dropPd an item

Pp =
(

k1

k1 + f

)2

, Pd =
(

f

k2 + f

)2

, (1)

where k1 and k2 are constant parameters andf is the
number of items perceived by an ant in its neighborhood:
f may be evaluated with respect to the recently encountered
items. To evaluate the system dynamics, apart from visualising
it, it can be useful to provide a measure of the system order.
Such an estimation can be obtained by measuring the spatial
entropy, as done e.g. in [11]. Basically, the environment is
subdivided into nodes andPi is the fraction of items within
a node, hence the local entropy isHi = −Pi log Pi. The sum
of Hi having Pi > 0 gives an estimation of the order of the
entire system, which is supposed to decrease in time, hopefully
reaching zero (complete clustering).

B. An Architecture for Implementing Collective Sorting

We conceive a multiagent system as a collection of agents
interacting with/via tuple spaces: agents are allowed to read,
insert and remove tuples in the tuple spaces. Additionally, and
transparently to the agents, an infrastructure provides a sorting
service in order to maintain a certain degree of order of tuples
in tuple spaces. This service is realised by a class of agents
that will be responsible for the sorting task. Hence, each tuple
space is associated with a pool of agents, as shown in Figure
1, whose task is to compare the content of the local tuple space
against the content of another tuple space in the environment,
and possibly move some tuple. Since we want to perform this
task online and in background, and with a fully-distributed,
swarm-like algorithm, we cannot compute the probabilities in

174

Fig. 1. The basic architecture consists in a set of sorter agents dedicated to
a single tuple space.

Equation 1 to decide whether to move or not a tuple: the
approach would not be scalable since it requires to count all
the tuples for each tuple space, which might not be practical.

Hence, we devise a strategy based on tuple sampling, and
suppose that tuple spaces provide for a reading primitive we
call urd , uniform read. This is a variant of the standardrd
primitive that takes a tuple template and yields any tuple
matching the template: primitiveurd instead chooses the
tuple in a probabilistic way among all the tuples that could
be returned. For instance, if a tuple space has10 copies of
tuple t(1) and20 copies of tuplet(2) then the probability that
operationurd(t(X)) returnst(2) is twice as much ast(1)’s.
As standard Linda-like tuple spaces typically do not implement
this variant, it can e.g. be supported by some more expressive
model like ReSpecT tuple centres [13]. When deciding to
move a tuple, an agent working on the tuple spaceTSS follows
this agenda:

1) it draws a destination tuple spaceTSD different from
the source oneTSS ;

2) it draws a kindk of tuple;
3) it (uniformly) reads a tupleT1 from TSS ;
4) it (uniformly) reads a tupleT2 from TSD;
5) if the kind ofT2 is k and it differs from the kind ofT1,

then it moves a tuple of the kindk from TSS to TSD.

The point of last task is that if those conditions hold, then the
number of tuplesk in TSD is more likely higher than inTSS ,
therefore a tuple could/should be moved. It is important that
all choices are performed according to a uniform probability
distribution: while in the steps 1 and 2 it guarantees fairness,
in steps 3 and 4 it guarantees that the obtained ordering is
appropriate.

It is worth noting that the success of this distributed al-
gorithm is an emergent property, affected by both probability
and timing aspects. Will complete ordering be reached starting
from a completely chaotic situation? Will complete ordering
be reached starting from the case where all tuples occur in
just one tuple space? And if ordering is reached, how many
moving attempts are globally necessary? These are the sort of
questions that could be addressed at the early stages of design,
thanks to a simulation tool.

IV. THE COLLECTIVE SORTING IN MAUDE

In this section we briefly describe a MAUDE specification
of our solution to the collective sorting problem, and show
simulation results. Our model sticks to the case where 4 tuple

spaces exist (labelled with identifiers0, 1, 2 and3), and four
tuple kinds are subject to ordering (’a , ’b , ’c , and ’d).

A. A MAUDE library for simulation

MAUDE is a high-performance reflective language support-
ing both equational and rewriting logic specifications, for
specifying a wide range of applications [9]. The basic brick of
a MAUDE program is themodule, which is essentially a set of
definitions determining an algebra: the modules can be either
of the functional or systemkind. Functional modules contain
both (syntax-customed) type and operation declarations, along
with equationswhich are actuallyequational rewritingrules
defining abstract data types—this is hence useful to declare
algorithmic aspects of computing systems. System modules
can instead haverewriting lawsas well—i.e. transition rules—
that are typically used to implement a concurrentrewriting
semantics, and are then able to deal with aspects related to
interaction and system evolution. In the course of finding a
general simulation tool for stochastic systems, we find MAUDE

as a particularly appealing framework, for it allows to directly
model a system in terms of transition rules, or to prototype a
new domain-dependent language to have more expressiveness
and compact specifications.

Using MAUDE, we realized a general simulation framework
for stochastic systems: the idea of this tool is to model
a stochastic system by a labelled transition system where
transitions are of the kindS

r:a−−→ S′, meaning that the system
in stateS can move to stateS′ by actiona, wherer is the
(global) rateof actiona in stateS. The rate of an action in a
given state can be understood as the number of times action
a could occur in a time-unit (if the system would rest in state
S), namely, its occurrence frequency. This idea is inspired by
the activity mechanism of stochasticπ-Calculus [10], where
each channel is given a fixed local rate, and the global rate of
an interaction is computed as the channel rate multiplied by
the number of processes willing to send a message and the
number of processes willing to receive a message. Our model
is hence a generalisation of this approach, for the way the
global rate is computed is custom, and ultimately depends on
the application at hand—e.g. the global rate can be fixed, or
can depend on the number of system sub-processes willing to
execute an action. Given a transition system of this kind and an
initial state, a simulation is simply executed by:(i) checking
each time the available actions and their rate;(ii) picking
one of them probabilistically (the higher the rate, the more
likely the action should occur);(iii) accordingly changing
the system state; and finally(iv) advancing the time counter
according to an exponential distribution, so that the average
frequency is the sum of the action rates. This technique is again
a generalisation of the one adopted in the SPIM simulation
engine for stochasticπ-Calculus [6]. For a detailed description
of the simulation framework, refer to [14].

B. The Collective Sorting model

The MAUDE specification of the Collective Sorting
system is divided in three modules, respectively defining

175

mod CS is
pr CS . pr STANDARD-CARRIER .

op source : Nat -> Action . *** SYNTAX OF ACTIONS AND STATES
op chooseTarget : -> Action .
op chooseTupleType : -> Action .
op readSource : -> Action .
op readTarget : -> Action .
op move : -> Action .

subsort DataSpace < State .
*** A REFERNCE INITIAL STATE

op SS : -> State .
eq SS = (init | < 0 @ (’a[100])|(’b[100])|(’c[10])|(’d[10]) > |

< 1 @ (’a[0])|(’b[100])|(’c[10])|(’d[10]) > |
< 2 @ (’a[10])|(’b[50])|(’c[50])|(’d[10]) > |
< 3 @ (’a[50])|(’b[10])|(’c[10])|(’d[50]) > |
(’a , ’b , ’c , ’d)) .

*** IDENTIFYING SOURCE *** TRANSITION SYSTEM SEMANTICS
eq (init | DS)==> =

(source(0) # 0.25 -> [[0] | DS]);
(source(1) # 0.25 -> [[1] | DS]);
(source(2) # 0.25 -> [[2] | DS]);
(source(3) # 0.25 -> [[3] | DS]) .

*** CHOOSING TARGET
eq ([Ns] | DS) ==> = (chooseTarget # now -> [[Ns];[range(3)]| DS]) .
eq ([Ns];[Ns] | DS) ==> = (chooseTarget # now -> [[Ns];[3] | DS]) .

*** CHOOSING TUPLE TYPE QQ
ceq ([Ns];[Nt] | < Ns @ MT > | DS) ==> = (chooseTupleType # now -> [

([Ns];[Nt];[QQ] | < Ns @ MT > | DS)])
if QQ := choose(occurringTuples(MT)) .

*** READING FROM SOURCE
ceq ([Ns];[Nt];[Q] | < Ns @ MT > | QL | DS) ==> = (readSource # now -> [

([Ns];[Nt];[Q];[QQ] | < Ns @ MT > | QL | DS)])
if QQ := get(QL , sample(quantities(QL, MT))) .

*** READING FROM TARGET
ceq ([Ns];[Nt];[Q];[Q1] | < Nt @ MT > | QL | DS) ==> = (readTarget # now -> [

([Ns];[Nt];[Q];[Q1];[QQ] | < Nt @ MT > | QL | DS)])
if QQ := get(QL , sample (quantities(QL, MT))) .

*** MOVING OR DISCARDING
ceq ([Ns];[Nt];[Q];[Q1];[Q] |

< Ns @ (Q[s N]) | MT > |
< Nt @ (Q[N’]) | MT1 > | DS) ==> = (move # now -> [

(init |
< Ns @ (Q[N]) | MT > |
< Nt @ (Q[s N’]) | MT1 > | DS)])

if Q1 =/= Q .

eq ([Ns];[Nt];[Q];[Q1];[Q2] | DS) ==> = (move # now -> [
(init | DS)]) [owise] .

eq temp(init | DS) = false . *** TEMPORANEOUS STATES
eq temp(DS) = true [owise] .

endm

Fig. 2. The transition system semantics in moduleCS.

the structure of a system state (CS-TYPES), some utility
functions (CS-FUNCTIONS), and finally the stochastic
transition system operator==> (CS). Module CS-TYPES
and moduleCS-FUNCTIONS are not reported for brevity.
Module CS-TYPES specifies the necessary types to define
the structure of a system state. In particular, sortTuple is
used to model the occurrence of a tuple in a tuple space:
for instance, ’a[10] means10 tuples of tuple type’a
occur. Sort Space is used to represent a tuple space:
<0 @ (’a[10])|(’b[10])|(’c[10])|(’d[10])>
means the tuple space with identifier0 has10 copies of each
tuple type. ModuleCS-FUNCTIONSdefines three functions:

choose takes a list of tuple type identifiers and returns one
non-deterministically chosen;occurringTuples takes the
content of a tuple space and returns the list of tuple types
occurring in it; quantities takes the content of a tuple
space and a list of tuple types and returns the cardinality of
each of them.

The CS module, as depicted in Figure 2, can be viewed
as the core of the Collective Sorting model. First of all,
six kinds of action are defined: the former is of the kind
source(0) ,. . . ,source(3) and is used to start an agent
working on a certain tuple space; the others are constants
corresponding to the five steps of the agent agenda. The

176

constantSS is assigned to the initial state of the system we
want to simulate, where tuples are spread in different quantities
in the various tuple spaces.

The stochastic transition system semantics is divided in six
groups according to the actions to be executed. Initially, four
actions of the first kind are allowed, each with rate0.25 . The
rate of other actions is the constantnow, which is assigned
to a large float, meaning that these actions should happen
immediately. By this modelling choice, we will simulate a
system where one agent evaluates for moving a tuple at each
time unit, and such an evalution is immediate. The behaviour
of transitions is briefly described as follows.

a) source(i) : When taskinit occurs in the space
it is time to spawn a new agent task: any of the tuple spaces
can be chosen as source, with same probability. Task[i]
correspondingly replacesinit , wherei is the source chosen.
Note that DS is a variable overDataSpace , which here
matches with the rest of the system.

b) chooseTarget : To choose a target, any tuple space
in 0,1,2 is tried. If the result is equal to the current source,
tuple space3 is actually taken as target. This guarantees
the source and target tuple spaces to be distinct. The task
moves then to state[Ns];[Nt] —source and target identifier,
respectively.

c) chooseTupleType : A tuple type is chosen ran-
domly out of those currently occurring inNs. This is computed
with functionschoose andoccurringTuple , and is used
to avoid picking a tuple which is currently absent in the source
tuple space. The task moves then to[Ns];[Nt];[QQ] —
whereQQis the tuple type chosen.

d) readSource : In this step a tuple type is drawn
from the source tuple space using uniform read. Expression
get(QL,sample(quantities(QL, MT))) is used to
sample a tuple giving higher probability to those that occur
more.

e) readTarget : Similar sampling is done
on the target tuple space. The task moves now to
[Ns];[Nt];[Q];[Q1];[Q2] , where Q1 and Q2 are
the tuple types read.

f) move: If the task matches
[Ns];[Nt];[Q];[Q1];[Q] and Q1 is different fromQ,
then a tuple of kindQ is to be moved fromNs to Nt , which
is realised by properly updating the tuple counters. Otherwise
([owise]), the tuple spaces state is left unchanged. In both
cases, the task gets back toinit .
Finally, the temp function defines as temporary states those
that do not have taskinit , which will then cause the
simulation counter not to update.

C. Simulating the Collective Sorting

The simulation can be run by giving the MAUDE interpreter
a command like

rewrite < [5000 : (SS) @ 0.0] > .

which executes precisely5000 agent executions starting from
stateSS. Such a state is defined as a constant in the code

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000

N
um

be
r o

f T
up

le
s

Time

TS1-TT1
TS2-TT2
TS3-TT3
TS4-TT4

Fig. 4. Dynamics of the winning tuple in each tuple space: notice that each
tuple aggregates in a different tuples space.

of Figure 2, and represents a possible initial (disordered)
configuration of tuples. Figure 3 shows a piece of the output
produced by the execution of the simulation—where each
step includes simulation countdown counter, system state, and
elapsed time. After some steps, some tuple starts moving from
one space to the others. After2024 time units, for instance,
tuple kind ’c is already completely collected in tuple space
2. After 4600 time units, the system converged to complete
sorting, as we expected from our distributed algorithm. Chart
in Figure 4 reports the dynamics of the winning tuple in each
tuple space, showing e.g. that complete sorting is reached at
different times in each case. The chart in Figure 5 displays
instead the evolution of the tuple space0: notice that only the
tuple kind ’a aggregates here despite its initial concentration
was the same of tuple kind’b .

Although it would be possible to make some prediction, we
do not know in general which tuple space will host a specific
tuple kind at the end of sorting: this is an emergent property
of the system and is the very result of theinteraction of the
tuple spaces through the agents! Indeed, the final result is not
completely random and the concentration of tuples will evolve
in the same directionmost of the times. It is interesting to
analyse the trend of the entropy of each tuple space as a way
to estimate the degree of order in the system through a single
value: since the strategy we simulate is trying to increase the
inner order of the system we expect the entropy to decrease,
as actually shown in Figure 6.

D. Adding a Load-Balancing Case

The basic strategy based on constant rates (see Section IV-
B) is not very efficient, since agents are assigned to a certain
tuple space also if the tuple space is already ordered! We
may exploit this otherwise wasted computation by assigning
idle agents to disordered tuple spaces, or rather to change the
working rates of agents. This alternative therefore looks suited
to realize a strategy to quicker reach the complete order of
tuple spaces.

177

<
[5000 : init | < 0 @ (’a[100]) | (’b[100]) | (’c[10]) | (’d[10]) > |

< 1 @ (’a[0]) | (’b[100]) | (’c[10]) | (’d[10]) > |
< 2 @ (’a[10]) | (’b[50]) | (’c[50]) | (’d[10]) > |
< 3 @ (’a[50]) | (’b[10]) | (’c[10]) | (’d[50]) > | ’a,’b,’c,’d

@ 0.0],
...

[4000 : init | < 0 @ (’a[107]) | (’b[89]) | (’c[0]) | (’d[0]) > |
< 1 @ (’a[0]) | (’b[136]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[35]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[53]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 9.7664497212663287e+2],
...
[2000 : init | < 0 @ (’a[127]) | (’b[50]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[210]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[33]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 3.0679938546387184e+3],
...
[1000 : init | < 0 @ (’a[142]) | (’b[18]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[242]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[18]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 4.0271359303450395e+3],
...
[438 : init | < 0 @ (’a[160]) | (’b[0]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[260]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[0]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 4.6001450653146167e+3],
...
[0 : init | < 0 @ (’a[160]) | (’b[0]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[260]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[0]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 5.0313233386068514e+3]
>

Fig. 3. Result for the Collective Sorting simulation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000

N
um

be
r o

f T
up

le
s

Time

Tuple Template 1
Tuple Template 2

Tuple Template 3
Tuple Template 4

Fig. 5. Dynamic of tuple space0: notice that only one kind of tuple
aggregates here.

In order to adapt the agents rate we need a measure of
order: as already stated in Section III, spatial entropy may be
an effective measure for system order. If we denote withqij

the amount of tuples of the kindi within the tuple spacej,
nj the total number of tuples within the tuple spacej, andk
the number of tuple kinds, then, the entropy associated with
the tuple kindi within the tuple spacej is

Hij =
qij

nj
log2

nj

qij
(2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1000 2000 3000 4000 5000

E
nt

ro
py

Time

Tuple Space 1
Tuple Space 2
Tuple Space 3
Tuple Space 4

Fig. 6. Entropy of tuple spaces: they all eventually reach0, that is, complete
order.

and it is easy to notice that0 ≤ Hij ≤ 1
k log2 k. We want to

express now the entropy associated with a single tuple space

Hj =
∑k

i=1 Hij

log2 k
(3)

where the division bylog2 k is introduced in order to obtain
0 ≤ Hj ≤ 1. If we havet tuple spaces then the entropy of the

178

system is

H =
1
t

t∑
j=1

Hj (4)

where the division byt is used to normalizeH, so that
0 ≤ H ≤ 1. Being t the number of tuple spaces then it also
represents the number of agents: let each agent work at rate
Hjr, andtr be the maximum rate allocated to the sorting task.
If we want to adapt the working rates of agents we have to
scale their rate by the total system entropy, since

γ
t∑

j=1

rHj = tr ⇒ γ =
t∑t

j=1 Hj

=
1
H

(5)

hence each agent will work at raterHj

H whereHj andH are
computed periodically.

In order to modify the Collective Sorting model of Figure
2, we replaced the constant agents rate of the first four action
(refer to Section IV-B) with the Equation 3 : hence, the activity
rate of the tuple spacej becomesHj instead of0.25 . Using
load balancingwe introduceddynamismin our model: indeed
in each simulation step the activity rate associated with a tuple
space—i.e. the probability at a given step that an agent of the
tuple space is working—is no longer fixed, but it depends
on the entropy of the tuple space itself. Hence, as explained
above, agents belonging to completely ordered tuple spaces
can consider their goal as being achieved, and hence they
no longer execute tasks. Moreover, this strategy guarantees a
better efficiency in the load balancing of agents work: agents
working on tuple spaces with higher entropy, have a greater
activity rate than the others on more ordered tuple spaces.

Using the Collective Sorting specification with variable
rates, we ran the same simulation of the Section IV-C: the chart
of Figure 7 shows the trend of the entropy of each tuple space.
Comparing the chart with the one in Figure 6, we can observe
that the entropies reach0 faster than the case with constant
rates: indeed since step3000 every entropy within the chart
in Figure 7 is0, while with constant rates the same result is
reached only after4600 steps. The chart in Figure 8 compares
the tendency of the global entropy (see Equation 5) in the case
of constant and variable rates: the trend of the two entropies
represents a further proof that variable rates guarantee a faster
stabilization of the system, i.e. its complete order.

V. CONCLUSION AND FUTURE WORKS

In this article we argued about the necessity of consider-
ing stochastic aspects when designing emergent coordination
mechanisms: this issue is both emerging in few proposals
of new coordination models and in related research contexts.
We evaluated these ideas by using the MAUDE library we
developed, considering and simulating a typical scenario of
swarm-like coordination, the collective sorting problem, which
we believe is a very paradigmatic application of emergent
coordination because of its basic formulation.

Several interesting future works can be pursued:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1000 2000 3000 4000 5000

E
n
t
r
o
p
y

Time

Tuple Space 1
Tuple Space 2
Tuple Space 3
Tuple Space 4

Fig. 7. Entropy of tuple spaces in the variable rate case: the system reaches
the complete order since step3000 .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000

E
n
t
r
o
p
y

Time

Constant Rate
Variable Rate

Fig. 8. Comparison of global entropy in the case of constant and variable
rate: the latter reaches the complete order quicker.

• In the context of collective sorting, we plan to evaluate
other load-balancing approaches, optimising the conver-
gence to complete order, and working with different
combinations of the number of tuple spaces and tuple
kinds.

• The library itself is currently a very simple prototype,
but we believe it could be improved in several ways and
become a very practical simulation tool.

• Another interesting idea would be to apply our library to
some existing coordination models like SwarmLinda, and
provide the necessary tests for the proposed algorithms.

REFERENCES

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz,Swarm Intelligence: From
Natural to Artificial Systems, ser. Santa Fe Institute Studies in the
Sciences of Complexity. Oxford University Press, Inc., 1999.

179

[2] L. Gardelli, M. Viroli, and A. Omicini, “On the role of simulations
in engineering self-organising MAS: The case of an intrusion detection
system inTuCSoN,” in Engineering Self-Organising Systems, ser. LNAI,
S. A. Brueckner, G. Di Marzo Serugendo, D. Hales, and F. Zambonelli,
Eds. Springer, 2006, vol. 3910, pp. 153–168, 3rd International Work-
shop (ESOA 2005), Utrecht, The Netherlands, 26 July 2005. Revised
Selected Papers.

[3] M. Mamei and F. Zambonelli, “Programming pervasive and mobile com-
puting applications with the tota middleware,” inPervasive Computing
and Communications, 2004. PerCom 2004. Proceedings of the Second
IEEE Annual Conference on. IEEE, March 2004, pp. 263– 273.

[4] R. Menezes and R. Tolksdorf, “Adaptiveness in linda-based coordina-
tion models,” inEngineering Self-Organising Systems: Nature-Inspired
Approaches to Software Engineering, ser. LNAI, G. D. M. Serugendo,
A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds. Springer Berlin
/ Heidelberg, January 2004, vol. 2977, pp. 212–232.

[5] R. D. Nicola, D. Latella, and M. Massink, “Formal modeling and
quantitative analysis of KLAIM -based mobile systems,” inSAC ’05:
Proceedings of the 2005 ACM symposium on Applied computing. New
York, NY, USA: ACM Press, 2005, pp. 428–435.

[6] A. Phillips, “The Stochastic Pi Machine (SPiM),” 2006, version
0.042 available online at http://www.doc.ic.ac.uk/˜anp/spim/. [Online].
Available: http://www.doc.ic.ac.uk/ anp/spim/

[7] “Swarm,” 2006, available online at http://www.swarm.org/.
[8] “Recursive porous agent simulation toolkit (repast),” 2006, available

online at http://repast.sourceforge.net/.
[9] M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and

C. Talcott,Maude Manual, 2nd ed., Department of Computer Science
University of Illinois at Urbana-Champaign, December 2005, version
2.2 is available online at http://maude.cs.uiuc.edu.

[10] C. Priami, “Stochastic pi-calculus,”The Computer Journal, vol. 38,
no. 7, pp. 578–589, 1995.

[11] H. Gutowitz, “Complexity-seeking ants,” inProceedings of the Third
European Conference on Artificial Life, Deneubourg and Goss, Eds.,
1993.

[12] K. Hadeli, P. Valckenaers, C. B. Zamfirescu, H. V. Brussel, B. S.
Germain, T. Holvoet, and E. Steegmans, “Self-organising in multi-
agent coordination and control using stigmergy,” inEngineering Self-
Organising Systems: Nature-Inspired Approaches to Software Engineer-
ing, ser. LNAI, G. D. M. Serugendo, A. Karageorgos, O. F. Rana, and
F. Zambonelli, Eds. Springer Berlin / Heidelberg, January 2004, vol.
2977, pp. 105–123.

[13] A. Omicini and E. Denti, “From tuple spaces to tuple centres,”Science
of Computer Programming, vol. 41, no. 3, pp. 277–294, Nov. 2001.

[14] M. Casadei, L. Gardelli, and M. Viroli, “Simulating emergent properties
of coordination in maude: the collective sorting case,” in5th Interna-
tional Workshop on the Foundations of Coordination Languages and
Software Architectures, Bonn, Germany, August 2006, to appear into.

180

