
Expressing preferences declaratively
in logic-based agent languages

Stefania Costantini
Università degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito,
I-67010 L’Aquila - Italy

Email: stefcost@di.univaq.it

Pierangelo Dell’Acqua
Department of Science and

Technology - ITN
Linköping University

60174 Norrköping, Sweden
Email: pier@itn.liu.se

Arianna Tocchio
Università degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito,
I-67010 L’Aquila - Italy

Email: tocchio@di.univaq.it

Abstract— In this paper we present an approach to intro-
ducing preferences among actions in logic-based agent-or iented
languages. These preferences are expressed in the body of rules
(i.e., they are local to the rule where they are defined). To the
best of our knowledge, no similar approach has been proposed
before, and cannot be easily simulated by means of preferences
expressed in the head of rules, which are global. The approach
is applied to choosing which action an agent should per form in
reaction to an event, among the feasible ones.

I . INTRODUCTION

Intelligent agents perform advanced activities such as ne-
gotiation, bargaining, etc. where they have to choose among
alternatives. The choice will be based on some kind of
preference or priorities related for instance to:

• the agent’s objectives;
• the context (cooperative vs. competitive);
• available resources;
• the strategies that the agent intends to follow.

Agents will in general include specialized modules and/or
meta-level axioms for applying priorities and preferences, like
for instance those proposed in [9] for prioritized defeasible
reasoning. However, it can be useful in logical agents to be
able to express preferences at a more basic linguistic level.
These basic preferences can then be employed in building
more advanced high-level strategies. At the language level,
preferences have already been expressed in various way in
Answer Set Programming [8] [12]. In that context, the basic
mechanism is that of computing the Answer Sets and then
chose “preferred” ones. We will shortly review below the
work of Brewka on LPODS (Logic Programs with Ordered
Disjunction) [2] and the work of Sakama and Inue on PLP
(Prioritized Logic Programming) [13]. The reader may refer
to the latter paper and to [6] for a discussion of relevant
existing approaches. Some of them are based on establish-
ing priorities/preferences among atoms (facts), and typically
introduce some form of disjunction in the head of rules. Other
approaches express instead priorities among rules.

Our proposal is aimed at allowing an agent to express pref-
erences concerning either which action they would perform in
a given situation, or, in perspective, which goal they would

pursue in a certain stage. Since actions are often performed in
reaction to events and goals are set in accordance to some
internal conclusion that has been reached, we propose to
introduce disjunction in the body of rules. If the body of a
rule contains a disjunction among two or more actions, the
preferred one will be chosen according to preference rules,
that may have a body in that (following [13]) priorities may
be conditional. If agents evolve with time and enlarge their
knowledge and experience, priorities may dynamically change
according to the agent evolution.

In agent languages that are not based on Answer Set
Programming, one cannot select the preferred model(s) by
means of a filter on possible models. Then, other techniques
are needed in order to provide a semantic account to this
proposal. Recently, an approach to declarative semantics of
logical agent-oriented languages that considers evolution of
agents has appeared in the literature [5]: changes that occur
either externally (i.e., reception of exogenous events) or in-
ternally (i.e., courses of actions undertaken based on internal
conditions) are considered as making a change in the agent
program, which is a logical theory, and in its semantics
(however defined). For such a change to be represented, it
is understood as the application of a program-transformation
function. Thus, agent evolution is seen as program evolution,
with a corresponding semantic evolution.

This semantic approach can be applied to the present setting
by adapting the proposal of the split programs introduced in
[2]. A split program is a version of the given program obtained
by replacing each disjunction by one of its options. Then, at
each step we would have a set of possible evolutions, each
corresponding to a split program. Among them, the preferred
one (according to the present conditions) is taken, while all
the others are pruned. As mentioned before, given similar
situations in different stages of the agent life, different options
can be taken, according to the present assessment of the agent
knowledge.

Though simple, this mechanism is to the best of our
knowledge new, as no similar approach has been proposed
before, and it cannot be easily simulated by existing ones.

138

In Section II we review some features that intelligent
logical agents should in our opinion possess, and the related
usefulness of introducing preferences. In Section III we briefly
review previous related work on preferences. In Section V
we introduce the approach, and in Section VI its semantics.
Finally, we conclude in Section VII.

I I . ENHANCING CAPABILITIES OF LOGICAL AGENTS BY

INTRODUCING PREFERENCES

A great deal can besaid about features that agents in general
and logical agents in particular should possess(for a review the
reader may refer for instance to [14], for a discussion to [11]).
It is widely recognized however that agents, whatever the
language and the approach on which they are based, should be
able to copewith achanging and partially known environment.
In this environment, agents should be able to interact, when
they deem it appropriate, with other agents or with the user
in order to complete their own problem solving and to help
others with their activities.

Interacting agents may act according to suitable strategies,
which include expressing preferences and establishing prior-
ities, possibly with the aid of past experiences. In our view,
complex strategies can take profit of basic linguistic constructs
reminiscent of those introduced in Answer Set Programming.

Our proposal is aimed at allowing an agent to express pref-
erences/priorities (in the following, we will often interchange
the two terms) concerning either which action they would
perform in agiven situation, or also, in perspective, which goal
they would pursue in a certain stage. Since actions are often
performed in reaction to events and goals are set in accordance
to some internal conclusion that has been reached, we propose
to introduce disjunction in the body of rules. If the body of
a rule contains a disjunction among two or more actions, the
preferred one ischosen according to preference rules, that may
have a body. I.e., following [13], priorities may be conditional.
Also, preference rules may contain references to the agent past
experience, and then the preferred choice may change over
time. More precisely, whenever the body of a rule contains a
disjunction among two or more actions, the intended meaning
is the following:

• preference rules establish which action is preferred;
• precondition of the action state whether it can be actually

performed, i.e., if it is feasible;
• the agent should perform the best preferred feasible

action.

I I I . PREVIOUS RELATED WORK

The reader may refer to [6] for a discussion of many
existing approaches to preferences. The main distinction is
among those that define priorities/preferences among atoms
(facts), and typically introduce some form of disjunction in
the head of rules, and those that express instead priorities
among rules. Among the latter ones, we mention [10] that
applies preferences among rules in negotiating agents based

on argumentation, so as to tune argumentations according to
changing contexts.

The approach of [13] considers general extended disjunctive
programs where a rule has the syntax:

L1| . . . |Lk|notLk+1| . . . |notLk+h ← Body

where “ |” represents disjunction and not is negation as
failure under the Answer Set semantics. A preference, or
priority, between two ground literals e1, e2 is expressed in
the form e1 ≺ e2. An answer set S2 of a given program is
preferable onto another answer set S1 iff S2 \ S1 contains
an element e2 whose priority is higher than some element e1

in S1 \ S2, and the latter does not contain another element
e3 whose priority is strictly higher that e2. Then, preferred
answer sets (or p-answer sets) are a subset of the traditional
ones, that can beseen asaspecial casecorresponding to empty
priorities.

Basic PLP is exploited in [13] so as to express priorities
not only between plain facts, but also between more general
forms of knowledge. The approach allows many forms of
commonsense reasoning to be modeled.

An interesting application is that of priority with precon-
ditions. For instance, borrowing the example from [13], the
situation where a person drinks tea or coffee but she prefers
coffee to tea when sleepy can be represented as follows (in a
prolog-like syntax):

tea | coffee.

tea ≺ coffee :- sleepy .

This program can be translated in a standard way in plain
PLP and, assuming that sleepy holds, has the p-answer set
{sleepy , coffee}.

In LPODS [2], one can write expressions such as A × B

in the head of rules, where the new connective × stands for
ordered disjunction. The expression intuitively stands for: if
possible A, but if A is impossible then (at least) B. If there
are several disjuncts, the first one represents the best preferred
option, the second one represents the second best option, etc.
The following is an example where a person who wishes to
spend the evening out and has money prefers to go to theatre,
or else (if impossible) to go to the cinema, or else (if both
previous options cannot be taken) to go to dine at a restaurant.

theatre × cinema × restaurant :-
want to go out , have money .

For selecting the preferred answer set(s) of a program P ,
one obtains the possible split programs of P , where a split
program P ′ is obtained from P by replacing each disjunctive
rule by one of its options. Then, the answer sets of P are taken
to be theanswer setsof thesplit programs. To choosepreferred
ones given that there may be several disjunctions, a notion of
degree of satisfaction of disjunctive rules must be defined, that

2
139

inducesapartial ordering on answer sets. Preferred answer sets
are those that satisfy all rules of P to the better degree.

IV. COMPARISON

To the best of our knowledge, the approach of introducing
preferences in the body of logical rules is novel, and has never
appeared in the literature. It cannot be easily simulated by
using preferences in the head: in fact, preferences expressed
in the body are local to the rule where they occur, while
preferences defined in the head are global. The application to
agents performing actions is also new. As an agent evolves in
time and its knowledge changes, preferred choices will change
as well. Then, according to the same preference structure an
agent will in general prefer differently in different stages of
its life.

V. THE APPROACH IN MORE DETAIL

We will now introduce a simple though in our opinion
effective construct that can be employed in agent-oriented
logic languages based on logic (horn-clause) programming.
Similarly to [13], we assume the following:

• preferences are expressed between two ground facts;
• preferences are expressed explicitly by means of special

rules, that may have conditions;
• preference is transitive, irreflexive and anti-symmetric.

In our approach, preferences can be defined between actions
that agents may perform. We make some preliminary assump-
tion about the agent languages we are considering. We do
not commit to any particular syntax, though we will propose
a sample one in order to introduce and illustrate examples.
We will discuss the semantics of the class of languages that
we consider in Section VI. By saying “an agent” we mean
a program written in the language at hand, that behaves as
an agent when it is put at work. We assume in particular the
following syntactic and operational features.

• The agent is able to perceive external events coming from
theenvironment where theagent issituated. In our sample
syntax an external event isan atom which isdistinguished
by postfix E. E.g., rainE indicates an external event.

• The agent is able to react to external events, i.e., the lan-
guage provides some kind of condition-action construct.
In our sample syntax ee indicate reaction by means of the
connective :> . Then, a reactive rule will be indicated
with pE :> Body meaning that whenever the external
event pE isperceived, theagent will executeBody. There
are languages (like, e.g., the one presented in [3]) where
an agent can react to its own internal conclusions, that
are interpreted as events (thus modeling proactivity). We
assume that the syntax for reaction is the same in both
cases. However, an internally generated event is indicated
with postifix I, i.e., in the form pI.

• The agent is able to perform actions. Actions will occur
in the agent program as special atoms. In our sample
syntax we assume them to be in the form qA, i.e.,

they are distinguished by suffix A. E.g., open umbrellaA

indicates an action. Actions may have preconditions: In
our sample syntax we assume them to be expressed by
rules. The connective :< indicates that the rule defines
the precondition of an action. I.e., a precondition rule will
be indicated as qA :< Body, meaning that the action qA

can be performed only if Body is true. We do not cope
here with the effective execution of actions, that is left to
the language run-time support.

In the proposed approach, a disjunction (indicated with
“ |”) of actions may occur in the body of a reactive rule.
Preferences among actions are defined in preference rules,
that are indicated by the new connective << . Then, a rule
pE :> q1A | q2A means that in reaction to pE the agent
may perform either action q1A or action q2A. A rule
q1A <<q2A :- Body means that action q2A is preferred over
action q1A provided that Body is true. I.e., if Body is not true
the preference is not applicable, and then any of the actions
can be indifferently executed. A set of preference rules define
in general a partial order among actions, where preferences
are transitively applied and actions that are unordered can be
indifferently executed. In our approach preferences are applied
on feasible actions. I.e., the partial order among actions must
be re-evaluated at each step of the agent life where a choice
is possible, according to the preconditions of the actions. The
preferred actions at each stage are those that can actually be
performed and that are selected by the preference partial order.

Example 5.1: Consider a person who receives an invitation
to go out. She would prefer accepting the invitation rather
than refusing, provided that the invitation comes from nice
people. She is able to accept if she has money and time. The
invitation is an external event that reaches the agent from her
external environment. Accepting or refusing constitutes the
reaction to the event, and both are actions. One of the actions
(namely, accepting) has preconditions. In our sample syntax,
an agent program fragment formalizing this situation may look
as follows.

invitationE :> acceptA | rejectA.

acceptA :< have money , have time.

refuseA<< acceptA :- nice people inviting .

When the external event invitationE is perceived by the
agent, it can react by alternatively performing one of two
actions. The action acceptA will be performed if its precondi-
tions are verified. As preferences are among feasible actions,
acceptA ispreferred provided that nice people inviting holds.
Notice that this is not known in advance, as the agent evolves
in time: the invitation may arrive at a stage of the agent
operation when time and money are available, and then the
preferred action is chosen. If instead the invitation (or, another
future invitation) arrives when there are no resources for
accepting, the agent will refuse the invitation.

Another example will introduce further aspects.

Example 5.2: Let us now rephrase the example of the
person preferring coffee over tea if sleepy. Let us put it in

3
140

a proactive perspective, where the person wonders whether it
is time to take a break from working, e.g., at mid-afternoon.
If so, she will consider whether to drink tea or coffee. The
corresponding program fragment might look as follows, where
take break is an internal conclusion that triggers a proactive
behavior: the first rule reaches the conclusion that taking a
break is in order; the second rule states what to do then, i.e.,
specifies a reaction to the internal conclusion itself (indicated
in the second rule with postfix I for “ internal”). For the
mechanism to beeffective, take break must beattempted from
time to time, so as to trigger the consequent behavior as soon
as it becomes true.

take break :- five oclock .

take breakI :> drink teaA | drink coffeeA.

drink coffeeA :< espresso.

drink teaA<< drink coffeeA :- sleepy .

Again, what the agent will do depends upon the present
conditions, i.e., upon whether the agent feels sleepy or not.
Moreover, in this variation the agent drinks coffee only if she
can have an espresso.

Assume now that there is also the option of drinking juice,
though the agent will only drink orange juice, and that the
agent prefers juice to tea. Then the program becomes:

take break :- five oclock .

take breakI :> drink teaA | drink coffeeA

| drink juiceA.

drink coffeeA :< espresso.

drink juiceA :< orange.

drink teaA<< drink coffeeA :- sleepy .

drink teaA<< drink juiceA.

The expected behavior is the following:

• If sleepy holds and espresso holds as well, the agent
can drink coffee (the action drink coffeeA is allowed)
and will not drink tea, which is less preferred. If orange

does not hold, the agent will definitely drink coffee.
• If sleepy holds and espresso holds as well, the agent

can drink coffee (the action drink coffeeA is allowed)
and will not drink tea, which is less preferred. If orange

holds, also the action drink juiceA is allowed, and pre-
ferred over drink teaA. The agent can indifferently drink
either coffee or juice, as they are unrelated.

• If espresso does not hold, the agent cannot drink cof-
fee (the action drink coffeeA is not allowed). Then, if
orange holds then the agent will drink juice (the action
drink juiceA will be performed), otherwise it will drink
tea (as the action drink teaA is always allowed, not
having preconditions).

• If sleepy doesnot hold, there isno preferencebetween tea
and coffee. If orange does not hold and espresso holds,
one of the two actions drink teaA or drink coffeeA can
be indifferently executed. If orange holds and espresso

holdsaswell, drink juiceA ispreferred over drink teaA,

but as no other priority is specified, one of the actions
drink coffeeA or drink juiceA can be indifferently exe-
cuted.

VI . DECLARATIVE SEMANTICS OF EVOLVING AGENTS

WITH PREFERENCES

The evolutionary semantics that has been proposed in [5]
has the objective of providing a unifying framework for
various languages and semantics for reactive and proactive
logical agents.

This semantic approach is based upon declaratively mod-
eling the changes inside an agent which are determined both
by changes in the environment and by the agent’s own self-
modifications. The key idea is to understand these changes
as the result of the application of program-transformation
functions. In this view, a program-transformation function is
applied for instance upon reception of either an external or an
internal event, the latter having a possibly different meaning
in different formalisms. That is, perception of an event can be
understood as having an effect on the program which defines
the agent: for instance, the event can be stored as a new fact
in the program. Similarly, actions which are performed can be
recorded as new facts. All the “past” events and actions will
constitute the “experience” of the agent.

Recording each event or action or any other change that
occurs inside an agent can be semantically interpreted as
transforming the agent program into a new program, that
may procedurally behave differently than before: e.g., by
possibly reacting to the event, or drawing conclusions from
past experience. Or also, the internal event corresponding to
the decision of the agent to undertake an activity triggers a
more complex program transformation, resulting in version of
the program where the corresponding intention is somewhat
“ loaded” so as to become executable.

Then, in general one will have an initial program P0 which,
according to these program-transformation steps (each one
transforming Pi into Pi+1), gives rise to a Program Evo-
lution Sequence PE = [P0, ..., Pn]. The program evolution
sequence will have a corresponding Semantic Evolution Se-
quenceME = [M0, ...,Mn] whereMi is thesemantic account
of Pi according to the specific language and the chosen
semantics. The couple 〈PE; ME〉 is called the Evolutionary
Semantics of the agent program PAg, corresponding to the
particular sequence of changes that has happened, and to the
order in which they have been considered. The evolutionary
semantics of an agent represents the history of an agent
without introducing a concept of a “state” .

The different languages and different formalisms will influ-
ence the following key points:

1) When a transition from Pi to Pi+1 takes place, i.e.,
which are the external and/or internal factors that de-
termine a change in the agent.

2) Which kind of transformations are performed.
3) Which semantic approach is adopted, i.e., how Mi is

obtained from Pi. Mi might be for instance a model,

4
141

or an initial algebra, or a set of Answer Sets if the
given language is based on Answer Set Programming
(that comes from the stable model semantics of [8]). In
general, given a semantics S we will have Mi = S(Pi).

A transition from Pi to Pi+1 can reasonably take place, for
instance:

• When an event happens.
• When an action is performed.
• When a new goal is set.
• Upon reception of new knowledge from other agents.
• In consequence to the decision to accept/reject the new

knowledge.
• In consequence to the agent decision to revise its own

knowledge.

We say that at stage Pi+1 of the evolution the agent has
perceived event ev (whatever its class) meaning that the
transition from Pi to Pi+1 has taken place in consequence
of reception of ev. It is reasonable to assume that in the stage
Pi+1 the agent will cope with ev, e.g., by reacting to it if it
is an external event.

Example 6.1: It is useful to discuss how the program trans-
formation step related to actions might be formalized. Intu-
itively, an action atom (like e.g. drink coffeeA in a previous
example) should become true given its preconditions, if any
(espresso in the example) whenever the action is actually
performed in some rule. For the sake of simplicity assume
that (like in the examples presented above) actions can occur
only in the body of reactive rules.

Declaratively, this means that the action occurs in the body
of an applicable reactive rule. Practically, whenever that rule
will be processed by the interpreter because the corresponding
(external or internal) event has happened, the action will be
actually performed (by means of any kind of mechanism
that connects the agent to its environment). To account for
this behavior, in the initialization step each rule defining
preconditions for actions, say of the form

actA :<C1, . . . , Cs

is transformed into a set of rules of the form:

actA :- D1, . . . , Dh, C1, . . . , Cs

where D1, . . . , Dh, h ≥ 0 are the conditions (except for other
actions) of each reactive rule where actA occurs in the body.
The Ci’s are omitted if actA has no preconditions.

Whenever at some stage Pi of the program evolution actA

will be attempted and feasible as its preconditions are true, we
will have actA ∈ Mi.

It can be useful in general to perform an Initialization
step, where the program PAg, written by the programmer, is
transformed into a corresponding initial program P0 by means
of some sort of knowledge compilation. This initialization
step can be understood as a rewriting of the program in
an intermediate language and/or as the loading of a “virtual
machine” that supports language features. This stage can on
one extreme do nothing, on the other extreme it can perform

complex transformations by producing “code” that implements
language features in the underlying logical formalism. P0 can
be simply a program (logical theory) or can have additional
information associated to it.

This semantic approach can be extended so as to encompass
the present proposal. As a first point, in the initialization step
preferences must be collected and preference rules removed.
Then, P0 will not contain preference rules, but will be associ-
ated to a structure Pref where preferences between couples of
(ground) actionsaremadeexplicit, by performing thetransitive
closure of preference rules. The conditions of a preference rule
(if any) are added as preconditions of the preferred action.

Weadapt the ideaof split program from [2]. A split program
is a version of the given program obtained by replacing a dis-
junction by one of its options. In our case, whenever an agent
at stage Pi of its evolution has perceived an (either external
or internal) event, say pE, it will react to it. However, if there
is a disjunction of actions in the body of the corresponding
reactive rule, then the agent may react in more that one way.
Thedifferent waysof reacting are represented by different split
programs, each one representing an alternative. Precisely,

Definition 1: Let PAg be an agent program that has been
transformed into a program P0 by the initialization step. Let
Pi be the program obtained from the evolution of P0 at the
i-th step, corresponding to the perception of event pE. Let
pE :> Body be the corresponding reactive rule in Pi, where a
disjunction of actions occurs in Body. A split program P ′

i is
obtained by replacing the disjunction with one of its options.

Referring to theprogram of Example5.1, at the initialization
step it is transformed into:

invitationE :> acceptA | rejectA.

acceptA :< have money , have time,

nice people inviting .

where the preference refuseA<< acceptA is recorded in the
structure Pref . Then, whenever the event invitationE will
be perceived will be two split programs: a first one, say φ1,
where the body of the reactive rule contains only acceptA,
and a second one, say φ2, where the body of the reactive rule
contains only refuseA.

We will have a set {P 1
i , . . . , P k

i } of split programs cor-
responding to the number k of actions occurring in the
disjunction. Assuming that events are considered one at a time
(i.e., an evolution step copes with a single event), at each stage
split programswill be relative to asingle reactive rule, and will
correspond to a set {M1

i , . . . ,Mk
i } whereM

j
i is the semantics

of P
j
i . We say that we a split occurs at stage Pi of program

evolution whenever at that stage the incoming event is related
to a reactive rule with a disjunction of actions in its body.

The preferred split programs are those whose semantics
contain the preferred actions. Precisely:

Definition 2: Let PAg be an agent program that has been
transformed into a program P0 by the initialization step, and
let Pref be the preference structure that has been associated

5
142

to the program. Let Pi correspond to a step of the evolution of
P0, where a split occurs. Given two split programs P r

i and P s
i

obtained from Pi by splitting a disjunction act1A | . . . | actkA,
then P r

i is preferred over P s
i if the following conditions hold:

• the semantics Mr
i of P r

i contains actrAi;
• actrAi is preferred over actsAi according to Pref .

Notice that both Mr
i and Ms

i may not contain the corre-
sponding action (actrAi and actsAi respectively), in case its
preconditionsare false. Then, asplit program ispreferred upon
another one if (i) its semantics entails the related action and
(ii) either the semantics of the other one does not entail the
related action, or the former action is preferred.

Then, at each step where a split occurs we have a set of
possible evolutions, each corresponding to a split program.
Among them, the preferred one (according to the present
conditions) is taken, while all the others are pruned. As
mentioned before, given similar situationsat different stagesof
the agent life, different options can be taken, according to the
present assessment of the agent knowledge. In the example, φ1

will be preferred to Φ2 whenever it actually entails acceptA.

We can have a unique best preferred split program P b
i if

Pref is a total order with respect to the actions over which
we split, or we may have more than one equally preferred split
programs. Any of them can be indifferently selected.

Definition 3: Let Pi be a stage of the program evolution
sequence, where a split occurs. We let Pi+1 be any of the best
preferred split programs.

VI I . CONCLUDING REMARKS

In this paper we have presented an approach to express-
ing preferences among actions and in logical agents. The
approach builds on previous relevant work related to answer
set programming, but is rephrased for reactive and proactive
agents that evolve in time. In fact, the semantics of the
approach is given in evolutionary terms, where an agent
program is considered to be modified by events that happen
and actions that are performed, while its semantic account
evolve correspondingly.

There are others approaches in computational logic that are
related to the present one, and to which we are indebted,
namely [1] and [7], where preferences and updating pref-
erences are coped with in the context of a more general
approach to updating logic programs. We may notice that the
examples that we have presented basically refer to the syntax
and procedural semantics of the DALI language [3], [4], [14].
Actually they correspond to working DALI programs, though
the implementation is prototypical and is being experimented.

Our next research objective is to extend the possibility of
expressing preferences to all kinds of subgoals occurring in
the body of logical rules, instead of coping with actions only.

Another important objective is to extend the approach so as
to beable to expresspreferencesamong agent goals (objectives
to reach). In fact, the reasoning can besimilar. Actually, setting
an objective is related to building a plan for achieving it. A

plan however can be seen as divided into:

1) a preliminary check stage, where feasibility of subse-
quent actions is checked (are the tickets available? Do I
have the money? Do my friends accept to join me? May
I rent a car?);

2) an operative stage, where actions that influence the
environment (and in general cannot be retracted, or at
least not so easily) are performed.

The first stage can be seen as a feasibility stage for setting
an objective. Then, if there is a disjunction of objectives in the
body of a rule, we mean that the agent should set the most
preferred feasible one.

REFERENCES

[1] J. J. Alferes, P. Dell’Acqua and L. M. Pereira, A compilation of updates
pluspreferences. Logics in Artificial Intelligence, Proc. of the8th Europ.
Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002, pp. 62-74.

[2] G. Brewka, Logic programming with ordered disjunction, In Proc. of
AAAI-02, Edmonton, Canada, 2002.

[3] S. Costantini and A. Tocchio, A logic programming language for multi-
agent systems. Logics in Artificial Intelligence, Proc. of the 8th Europ.
Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002.

[4] S. Costantini, A. Tocchio, The DALI logic programming agent-oriented
language. Logics in Artificial Intelligence, Proc. of the 9th European
Conference, Jelia 2004, Lisbon, September 2004. LNAI 3229, Springer-
Verlag, Germany, 2004.

[5] S. Costantini, A. Tocchio, About declarative semantics of logic-based
agent languages. In M. Baldoni and P. Torroni (eds.), Declarative Agent
Languages and Technologies, Post-Proc. of DALT 2005. LNAI 3229,
Springer-Verlag, Germany, 2006.

[6] J. Delgrande, T. Schaub, H. Tompits and K. Wang, A classification and
survey of preference handling approaches in nonmonotonic reasoning.
Computational Intelligence, 2004.

[7] P. Dell’Acqua and L. M. Pereira, Preferring and updating in logic-
based agents. In: Web-Knowledge Management and Decision Support.
Selected Papers from the 14th Int. Conf. on Applications of Prolog
(INAP), LNAI 2543, Springer-Verlag, Berlin, 2003, pp. 70-85.

[8] M. Gelfond and V. Lifschitz, The stable model semantics for logic
programming. Proc. of 5th ILPS conference, 1988, pp. 1070-1080.

[9] M. Gelfond and T. C. Son, Reasoning with prioritized defaults. In
Proc. of the 3rd Int. Works. on Logic Programming and Knowledge
Representation, LNAI 1471, Springer-Verlag, Berlin, 1998, pp. 164-
223.

[10] A. Kakas and P. Moraitis, Adaptive agent negotiation via argumentation.
In Proc. of the 5th International Joint Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS’06), Hakodate, Japan, 2006.

[11] R. A. Kowalski, The logical way to be artificially intelligent, Compu-
tational Logic in Multi-Agent Systems (CLIMA VI Post-Proceedings),
LNAI 3900, Springer-Verlag, Berlin, 2005, pp. 1-22.

[12] V. Lifschitz, Answer set planning. Invited talk. Proc. of ICLP ’99 Conf.,
pp. 23–37. The MIT Press, 1999.

[13] C. Sakama and K. Inoue, Prioritized logic programming and its
application to commonsense reasoning. Artif. Int. 123(1-2), Elsevier,
2000, pp. 185-222.

[14] A. Tocchio, Multi-Agent systems in computational logic, Ph.D. Thesis,
Dipartimento di Informatica, Universitá degli Studi di L’Aquila, 2005.

6
143

