
 

� 
Abstract—This paper  describes the design and the 

implementation of  an Agent-based Work flow Enactment 
Framework (AWEF) which can be instantiated on the basis of a 
work flow schema for  obtaining a specific workflow  enactment 
engine. A work flow engine therefore is a MAS capable of 
managing instances of the workflow  schema used for  the 
instantiation of AWEF. Each MAS adopts a hierarchical  
organizational structure  composed by an EnacterAgent, which is 
responsible of the activation and monitorin g of the workflow , one 
or more ManagerAgents, which are responsible of the execution 
and control of the workflow /subworkflow s according to a 
parent/child model, and one or more TaskAgents, which are 
responsible of the execution of internal tasks and/or of the 
wrapping of external tasks or services. The hierarchical 
distribut ion of the workflow  execution control between the 
ManagerAgents and the distr ibution of the computation among 
the TaskAgents allow for more flexible, efficient, and robust 
enactment services.  
 
Index Terms—Mul ti-Agent Systems, Distribut ed Workf low 
Enactment, Workfl ow Patterns, Agent-based Appli cations. 

I. INTRODUCTION 

ORKFLOW Management Systems (WFMS) are 
systems designed to automate complex activities 

consisting of many dependent tasks [26]. In the last decades 
WFMS have been developed to provide support to the 
modeling, improvement and automation of business 
management, industrial engineering, and data-intensive 
scientific processes [25,10]. Since each business area can 
benefit from workflow management it is possible to 
distinguish different kind of workflows and related workflow 
management techniques specifically conceived for meeting the 
requirements of a specific business area and fully  supporting 
the associated business processes. A main distinction that can 
be done is between Collaborative and Production-oriented 
workflows. The former are information centric: human 
interactions drive the execution of workflows in a loosely 
structured manner. In this case WFMS are Computer 
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Supported Cooperative Work (CSCW) systems that offer 
groupware applications and other shared workspace tools for 
supporting human interactions [4]. Instead, Production 
workflows are process-driven due to their highly repetitive 
nature [7]. In this case the processes are highly structured and 
the adopted WFMS are based on workflow enactment services 
able to offer an efficient and accurate control about the flow 
of the processes. Moreover, in a Production workflow, most 
of the tasks are executed automatically by software programs 
and applications without interacting with human users. Such a 
kind of workflows can be modeled as a set of interrelated 
services (Service Workflow) [29]. In the context of Internet-
based workflows [19], such services are distributed and 
owned by different organizations so that they could become 
unavailable due to the lack of network service guarantees. To 
deal with this important issue, a dynamic service allocation of 
services is often required as well as the negotiation of service 
level agreements (SLA). Due to these reasons the enactment 
of Internet-based workflows requires more flexible enactment 
engines based on more adequate coordination mechanisms.  

To effectively fulfill  such requirements the Agents 
paradigm and technology are being used since Agents are 
widely considered very suitable for the modeling and 
implementation of complex software systems in open 
distributed environments [18]. In particular, in the context of 
workflow management, the use of the Agents paradigm allows 
for transforming a workflow from a sequence of activities, 
that are often modeled and consist of (Web) services 
invocation, in a society of proactive, autonomous and 
coordinable entities (or multi-agent system) whose 
coordinated interactions drive the workflow execution 
[20,17].  

This paper proposes an agent-based approach for the 
distributed enactment of workflows. The workflow enactment 
is enabled by an Agent-based Workflow Enactment 
Framework (AWEF) which is instantiated on the basis of the 
schemas of the workflows to be enacted so obtaining specific 
workflow engines. A workflow schema can be defined by 
using the Workflow Patterns identified and proposed by van 
der Aalst [25] and can be represented using YAWL (Yet 
Another Workflow Language) [24]. A workflow engine 
therefore consists of a MAS capable of managing instances of 
the workflow schema used for the instantiation of the 
workflow engine. The framework provides the base agents for 
workflow enactment (EnacterAgent, which is responsible of 
the activation and monitoring of the workflow, 
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ManagerAgent, which is responsible of the execution and 
control of the workflow, and TaskAgent, which is responsible 
of the execution of internal tasks and/or of the wrapping of 
external tasks or services), their interaction protocols and a set 
of control-flow classes which are associated to the behavior of 
the ManagerAgent and implement the Workflow Patterns. The 
framework is implemented by using JADE [3,16], a FIPA-
compliant [13] Java-based agent development environment 
which basically offers a distributed agent platform and an API 
for agent programming. 

The remainder of the paper is organized as follows. Section 
2 introduces some background concepts about workflow 
enactment, presents our agent-based approach enabled by 
AWEF and reports some related works. Section 3 and Section 
4 describe the design and the JADE-based implementation of 
AWEF respectively. Finally  conclusions are drawn and 
directions of further work delineated.  

 

II . DISTRIBUTED WORKFLOW ENACTMENT   

The Workflow Reference Model, proposed by the 
Workflow Management Coalition (WfMC) [28], describes a 
generic architecture for workflow management consisting of 
several functional components interfaced with a Workflow 
Enactment Service (see Figure 1). The Process Definition 
Tools allow a process designer to define business processes 
often adopting a diagrammatic representation. The diagrams 
(or workflow schemas), represented in a Process Description 
Language (PDL), are received by the Workflow Enactment 
Service via Interface 1. The Workflow Client Application is 
usually  the application which requests the enactment of a 
workflow to the Workflow Enactment Service by specifying 
the workflow schema to be enacted and passing the 
parameters (Case Activation Record) needed for the activation 
and execution of a specific workflow instance. During its 
enactment a workflow can be administered and monitored 
(Interface 5) and it may interact with other automated business 
processes (Interface 4), with human participants (Interface 2) 
and with other applications without human intervention 
(Interface 3). 

 

 
Fig. 1. The reference model for WFMS proposed by the WfMC. 

 

 
 

TABLE I 
THE WORKFLOW PATTERNS  

PATTERN  

TYPE 
PATTERN NAME  

(SYNONYMS) 
DEFINI TION  

Sequence  
(Sequential routing, serial 
routing) 

An activity is enabled after the 
completion of another activity . 

Parallel Split  
(AND-split, parallel routing, 
fork) 

A point in the workflow where a single 
thread of control splits into multiple 
threads of control which can be executed 
in parallel, thus allowing activities to be 
executed simultaneously or in any order. 

Synchronization  
(AND-join, rendezvous, 
synchronizer) 

A point in the workflow where multiple 
parallel subprocesses/activities converge 
into one single thread of control, thus 
synchronizing multiple threads. 

Exclusive Choice  
(XOR-split, conditional 
routing, switch, decision) 

A point in the workflow where, based on 
a condition, one of several branches is 
chosen. 
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Simple Merge  
(XOR-join, asynchronous 
join, merge) 

A point in the workflow where two or 
more alternative branches merge without 
synchronization. 

Multi-choice  
(Conditional routing, 
selection, OR-split) 

A point in the workflow where, based on 
a condition, a number of branches are 
chosen. 

Synchronizing Merge 
(Synchronizing join, OR-join) 

A point in the workflow where multiple 
paths converge into one single thread. 

Multi-merge 

A point in a workflow where two or 
more branches reconverge without 
synchronization. If  more than one branch 
gets activated the activity following the 
merge is started for every activation of 
every incoming branch. 
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Discriminator  
(N/M or partial join) 

A point in a workflow that waits for a 
number of the incoming branches to 
complete before activating the 
subsequent activity; then it waits for the 
remaining branches to complete and 
“ ignores” them. Then it resets itself. 

Arbitrary Cycles 
 (Loop, iteration, cycle) 

A point in a workflow where one or 
more activiti es can be done repeatedly. 
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Implicit Termination 
A given sub-workflow should be 
terminated when there is nothing else to 
be done. 

Multiple Instances 
without synchronization  
(Multi-threading without 
synchronization, spawn off 
facility) 

Multiple instances of an activity can be 
created with no need to synchronize 
them. 

Multiple Instances with a 
priori design time 
knowledge 

An activity is enabled a number of times 
known at design time. Once all instances 
are completed some other activity  needs 
to be started. 

Multiple Instances with a 
priori run-time knowledge 

An activity is enabled a number of times 
known at run time. Once all instances are 
completed some other activity  needs to 
be started. 
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Multiple Instances 
without a priori run-time 
knowledge 

An activity is enabled a number of times 
known neither at design time nor at run-
time. Once all instances are completed 
some other activity needs to be started. 

Deferred Choice  
(External choice, implicit 
choice, deferred XOR-split) 

It is similar to the exclusive choice but 
the choice is not made explicitl y and the 
run-time environment decides what 
branch to take. 

Interleaved Parallel 
Routing  
(Unordered sequence) 

A set of activities is executed in an 
arbitrary order decided at run-time; no 
two activities are active at the same time. 
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Milestone  
(Test arc, deadline, state 
condition, withdraw 
message) 

The enabling of an activity  depends on 
the workflow being in a given state, i.e. 
the activity  is only enabled if a certain 
milestone has been reached which did 
not expire yet. 

Cancel Activity  
(Withdraw activity)  

An enabled activity  is disabled, i.e. a 
thread waiting for the execution of an 
activity is removed. 
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Cancel Case  
(Withdraw case) 

A workflow instance is removed 
completely. 
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As described above, the Process Definition component 
provides the process designer with a workflow language able 
to specify a workflow schema which can be successively 
instantiated by means of the Enactment Service based on a 
workflow API and on one or more workflow engines. The 
workflow definition language is to be expressive and powerful 
to specify complex workflows from several perspectives: 
control-flow, data-flow, resource and operational [25]. 

The control-f low perspective describes activities and their 
execution ordering through different constructors, which 
permit to control the flow of execution, and provides an 
essential insight into the effectiveness of a workflow 
specification. The data flow perspective rests on control-flow 
perspective, while the resource and operational perspectives 
are ancillary. 

An expressive and powerful set of control-flow constructs 
for the specification of workflow schemas (WF Schemas) is 
the set of the Workflow Patterns proposed by van der Aalst 
[25]. In Table I the Workflow Patterns, identified by 
examining the most known contemporary workflow 
management systems, are enumerated along with their 
synonyms and a brief definition. 

An example WF Schema based on the WF Patterns and 
drawn by using YAWL [24] is given in Figure 2. After the 
task A is carried out (sequence pattern), the tasks B, C, and D 
are executed in parallel (parallel split pattern). When B or C 
complete (synchronizing merge pattern), the task E is 
executed an arbitrary number of times (arbitrary cycles 
pattern). When D completes (sequence pattern), either the task 
F or the task G (exclusive choice pattern) is executed. When 
either F or G complete (simple merge pattern), depending on 
the precedent choice, the task H is executed (sequence 
pattern). When the iterative execution of E completes and also 
H terminates (synchronization pattern), the task I is executed 
and, after its completion (sequence pattern), the workflow 
terminates. 
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Fig. 2. An example WF Schema based on the WF Patterns. 

 
A generic Workflow Enactment Service (WFES) receives 

from the user the indication about which workflow is to be 
enacted (WF Type param) and the Case Activation Record 
(CAR) for the specific workflow instance; then, on the basis 
of the WF Schema corresponding to the selected WF Type, 
the WFES enacts the workflow by means of a specific WF 
Engine. If the WF Engine is of the distributed type the user 
indicates also a set of params for specifying some 
requirements related to the distribution of control, 

computation and/or data during the workflow enactment 
(Figure 3). 
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Fig. 3. An A Workflow Enactment Service. 

  
More in details, in order to enact a workflow the WFES 

selects a suitable WF Engine, from the WF Engines 
repository, on the basis of the schema of the workflow to be 
enacted. If  the required WF Engine is not available the WFES 
creates it. The creation is driven by the WF Schema which is 
used to properly instantiate a Workflow Enactment 
Framework so building a WF Engine able to enact that 
specific WF Schema. In building the specific WF Engine the 
distribution params specified by the user are also considered. 
Finally, the WF Engine will enact the workflow on the basis 
of the given CAR and the possible distribution params (Figure 
4). The created WF Engine is stored in the WF Engines 
repository so that it can be reused for enacting future 
workflows of the same type.  
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Fig. 4. The construction of a WF Engine. 

 

A. The proposed agent-based approach 

In our approach for the distributed workflow enactment a 
WF Engine is a MAS built by properly instantiating the 
Agent-based Workflow Enactment Framework (AWEF) on 
the basis of a WF Schema defined by using the WF Patterns. 
In particular, a WF Engine consists of  tree different agent 
types:  
- EnacterAgent, which represents the interface between the 

MAS constituting the WF Engine and the Workflow 
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Enactment Service and is responsible for the activation and 
monitoring of the workflow. 

- ManagerAgent, which is responsible of the execution and 
control of the workflow. A single ManagerAgent allows for 
flat workflow management whereas a hierarchical structure 
of ManagerAgents, formed according to the parent/child 
model, allows for a hierarchical workflow management. 
The behavior of a ManagerAgent is defined on the basis of 
the WF Schema it has to enact. 

- TaskAgent, which is responsible for the execution of 
internal tasks and/or for the wrapping of external tasks or 
services. The behavior of a TaskAgent is defined on the 
basis of the activities composing the task it has to carry out. 
A WF Engine is, therefore, a MAS with a hierarchical 

organizational structure in which the control  of the workflow 
execution is hierarchically distributed between the 
ManagerAgents and the computation is distributed among the 
TaskAgents.  

A WF Schema can be specified  by using YAWL [24] 
which is based on the WF Patterns and offers also an XML 
based representation of the WF Schema 

The design and the implementation of the AWEF, on which 
the WF Engines are based,  are presented in details in sections 
3 and 4. 

B. Other related approaches 

In the literature it is possible to find different proposals of 
distributed workflow enactment mechanisms based on the 
Agent paradigm and technologies which aim to support more 
flexible, dynamic and adaptive workflow from the process, 
resource and activity perspective [8]. 

Such approaches differ from each other in the supported 
dimensions of distribution (computation, control and data), in 
the adopted coordination model (control-driven, data-driven) 
and in the exploited MAS organizational structure 
(hierarchical, peer-to-peer). 

In [10,23,21] the authors present an agent-based workflow 
engine centered on a hierarchical organizational structure in 
which a ProcessAgent executes a workflow instance by 
requesting the execution of the tasks composing the workflow 
to a set of ResourceAgents. ResourceAgents  can be seen as 
representing web services and can be dynamically discovered 
and allocated to a ProcessAgent by a ResourceBrokerAgent. 
In this control-driven approach the control about the state of 
the workflow execution is hierarchically distributed between 
the ProcessAgents and the computation whereas data are 
distributed among the ResourceAgents which are responsible 
of the task execution.   

In [1] the authors propose a software environment to 
dynamically generate agent-based workflow engines. A 
workflow engine is generated by a compiler that translates an 
XPDL workflow definition to a MAS ready to be executed in 
the Hermes middleware. The translation process is a two step 
procedure. In the first step the user-level workflow definition 
is mapped to an Agent Level Workflow (ALW) specification. 
In the second step, the compiler concretely generates agents, 

called Workflow Executors, from the ALW specification by 
plugging the implementation of the required workflow 
activities, that are available in a repository, into “empty” 
agents (skeletons). A workflow engine is, therefore, a MAS 
having a peer-to-peer organizational structure in which the 
workflow execution is driven by the interactions among the 
Workflow Executors.  

A similar approach can be found in  [22] which presents a 
methodology for translating a workflow specification into a 
MAS architecture specifying formalized rules for modeling 
agents’ behaviors. The MAS is not generated automatically by 
a compiler like in [1] but by the developer adopting a tool 
called Agent Developer Studio (ADS). 

In [7,8,9] the authors present an agent-based approach for 
enacting BPEL4WS (Business Process Execution Language 
for Web Services) [6] workflow specifications. BPEL4WS is 
an XML-based language that allows for the specification of 
workflows where the activities are defined by Web service 
invocations. The proposed distributed enactment mechanisms 
combine data-centered and control-centered coordination 
mechanisms. Data  are managed via a shared XML repository 
while the control of the workflow activities is driven by 
asynchronous messages exchanged between the agents that 
enact the workflow. The message exchange pattern for the 
control messages is derived from a Colored Petri Net model of 
the workflow. The agents’ behaviors are configured and 
instantiated at run time on the basis of the BPEL4WS 
specification of the specific workflow to be enacted. The 
organizational MAS structure is based on  a RequestorAgent 
that orchestrates a set of Distributed Workflow Agents 
according to the workflow specification. The system has been 
implemented in JADE.  

Another agent-based approach for enacting workflows 
specified in BPEL4WS is proposed in [14]. The novelty of the 
approach is that the enactment of the workflows is carried out 
by peer agents that can be associated with web services. The 
control flow is coded in an interaction protocol that is not 
defined at the development time like in [1,22] but which is 
passed at run time between the agents together with the 
messages so informing each agent what to do next to keep the 
workflow executing. 

Another peer-to-peer agent-based enactment approach is 
presented in [29]. In this approach the workflow to be enacted 
is decomposed into a set of interrelated task partitions. Each 
task partition represents a service and its position, i.e., the 
interaction and dependency with the other services in the 
process. Then, each task partition is distributed to an agent 
which represents a service provider offering a service required 
by the specific workflow instance. Each agent autonomously 
manages the enactment of the represented service and the 
interactions between this service and the others only on the 
basis of the assigned task partition; agents are not conscious of 
the whole process in which they are involved. Such adopted 
coordination model is known as a choreography coordination 
model.    
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II I. THE DESIGN OF AWEF 

The design of AWEF was carried out by exploiting an 
agent-oriented development process [11] in which the 
requirements capture phase is supported by the Tropos 
methodology [5], the analysis and design phases are supported 
by the Gaia methodology [27] and the detailed design phase is 
supported by the Agent-UML [2] and the Distilled StateCharts 
(DSC) [12].  

The requirements, captured using the Tropos goal-oriented 
approach, were reported in a Requirements Statements 
document. On the basis of the requirements  the following key 
roles were identified: 
� Enacter, which manages the activation and monitoring of 

workflows and represents the interface between the WF 
Engine and the Workflow Enactment Service; 

� Manager, which manages the execution and control of 
workflows; 

� Executor, which executes the internal workflow tasks; 
� Wrapper, which interacts with the external tasks or 

services. 
Each of these roles was fully  described by using a Role 

Schema according to the Gaia methodology. The protocols 
associated with each role were identified and documented by 
an Interactions Model. Then, the identified Roles were 
aggregated into Agent Types also specifying the agent types 
hierarchy (Agent Model);  the main services required to 
realize each role were specified (Services Model) and the 
relationships of communication between the Agent Types 
documented (Acquaintance Model).   

The identified Agent Types are: 
� EnacterAgent, which derives from the Enacter role. 
� ManagerAgent, which derives from the Manager role. A 

single ManagerAgent allows for flat workflow management 
whereas a hierarchical structure of ManagerAgents, formed 
according to the parent/child model, allows for a 
hierarchical workflow management. 

� TaskAgent, which derives from both the Executor and 
Wrapper role. 
The detailed design phase allowed for obtaining a detailed 

specification of the behaviors of the Agent Types which have 
been defined in the Agent Model. The work products of this 
phase were the Agent Interactions Model and the Agent 
Behaviors Model. The former consists of a set of Agent-UML 
interaction diagrams [2] which thoroughly specify the patterns 
of interaction between the Agent Types; the Agent Behaviors 
Model specifies the dynamic behavior of each Agent Type by 
means of the Distilled StateCharts (DSC) formalism [12].  

The main interaction patterns documented by the Agent 
Interactions Model are: 
� EnacterAgent/ManagerAgent, which is enabled by the 

Enacter/Manager Interaction Protocol (EMIP); 
� ManagerAgent/ManagerAgent, which is enabled by the 

Manager(parent)/Manager(child) Interaction Protocol 
(MMIP); 

� ManagerAgent/TaskAgent, which is enabled by the 

Manager/Task Interaction Protocol (MTIP). 
In the Agent Behaviors Model the basic behaviors of the 

EnacterAgent, ManagerAgent and TaskAgent are defined. In 
particular, the defined ManagerAgent behavior (or 
ManagerBehavior) is composed of: 
� An InitialPseudoActivity, which represents the starting 

point of the workflow execution in the WF Schema. 
� One or more FinalPseudoActivity, which represent points in 

the WF Schema at which the workflow or a part of it ends. 
A FinalPseudoActivity uses a parent ManagerAgent for 
notification purposes. 

� One or more WFPattern, which represent the control-f low 
activities. A WFPattern, which can be any of the available 
WF Patterns [25] (sequence, and-spli t, and-join, xor-spli t, 
xor-join, or-split, multi-merge, discriminator, loop, multiple 
instances, deferred choice, milestone, etc) uses one or more 
TaskAgents and one or more child ManagerAgents for 
activation purposes and a parent ManagerAgent for 
notification purposes. 
In order to model a WF Schema, InitialPseudoActivity, 

FinalPseudoActivity, and WFPattern are linked through 
source/target control-flow associations. 

Figure 5 shows a Statecharts-based representation [15] of 
the ManagerBehavior.  
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Fig. 5. The generic behavior of a ManagerAgent. 

 
According to the WF Schema to enact, the ManagerAgent 

enters the ControlFlow superstate executing the 
executeFirstControlAction() method. In this superstate, every 
times that an ExecuteNextControlEvent is received the 
ManagerAgent executes the next control-flow action by 
invoking the executeNextControlAction() method which 
fetches the next WFPattern and executes it. Upon completion 
of a WFPattern execution, two events are generated: (i) 
ExecuteNextControlAction which allows the 
ManagerBehavior to invoke the executeNextControlAction() 
method; (ii) StateChangeNotification which allows notifying 
the upper-level ManagerAgent or the EnacterAgent about the 
control-flow state change of the workflow. If there are no 
more WFPatterns to execute, the TerminateControl event is 
generated which drives the termination of the 
ManagerBehavior and the transmission of the related 
EndNotification to the upper-level ManagerAgent or to the 
EnacterAgent. A WFPattern execution can involve: (i) the 
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detection of the completion of a task through the reception of 
a FIPA ACL message which can also carry the data produced 
by the completed task; (ii) the creation and/or activation of 
TaskAgents or ManagerAgents. 

The interaction diagrams composing the Agent Interactions 
Model and the behavioral specifications of the Agent 
Behaviors Model are to be intended as basic schemas that will 
be coded into the basic classes of AWEF.  A WF Engine wil l 
be obtained by instantiating such basic classes according to 
the schema of the workflow to be enacted and using the 
concrete implementations of the tasks required for the 
workflow execution.  

 

 
Fig. 6. Class diagram of  the AWEF Framework. 

 
In Figure 6 the classes which compose AWEF are reported. 

In particular, AWEF provides the base agents for workflow 
enactment (EnacterAgent, ManagerAgent and TaskAgent), 
their interaction protocols and a set of control-f low classes 
which are associated to the behavior of the ManagerAgent and 
implement the WF Patterns. 

IV. THE JADE-BASED IMPLEMENTATION OF AWEF   

The JADE-based classes of AWEF were straightforwardly 
derived from the class diagram reported in Figure 6. In 
particular:  
� EnacterAgent, ManagerAgent and TaskAgent extend the 

Agent class of JADE [16];  
� EnacterBehavior, TaskBehavior and WFPattern extend 

Behaviour class of JADE which represents a generic 
behavior terminating when the end-of-activity condition is 
met; 

� ManagerBehavior extends FSMBehaviour class of JADE 

which models a complex task whose sub-tasks correspond 
to the activities performed in the states of a finite state 
machine. In particular, the states of ManagerBehavior 
correspond to the control-flow states of the workflow (or 
sub-workflow) that the ManagerAgent is controlling; each 
state is associated to a WFPattern which is activated when 
the state becomes active. EMIP, MMIP, and MTIP are 
appositely defined through sequences of ACL messages 
instances of the ACLMessage class of JADE. 

In the following subsection a hierarchical WF Engine based 
on AWEF and capable of enacting the WF Schema reported in 
Figure 2 is presented. 

A.  A hierarchical WF Engine based on AWEF 

The hierarchical workflow management is enabled by a set 
of ManagerAgents each of which embodies a sub-schema of a 
WF Schema according to a hierarchical model. With reference 
to the WF Schema of Figure 2, the WF Engine able to enact 
such a WF Schema is obtained through: 

1. The partitioning of the WF Schema into a set of 
hierarchically arranged workflow schemas: WF Schema 1,  
WF Schema 1.1, WF Schema 1.2 (see Figure 7); 

2. The instantiation of AWEF with respect to the obtained 
workflow schemas (see Figure 8 for the resulting class 
diagram). 
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Fig. 7. Partitioned WF Schema. 

With reference to Figure 8a the EnacterAgent is linked to 
the top-level ManagerAgent which is, in turn, linked to the 
TaskAgents related to the WF Schema 1, and to the 
SubManagerAgents1and SubManagerAgents2 which control 
the WF Schemas 1.1 and 1.2 respectively. Each 
SubManagerAgent is, in turn, linked to the TaskAgents 
associated to its schema. 

With reference to Figures 8b-d each ManagerBehavior is 
obtained by translating its associated WF Schema in a set of 
classes consisting of one InitialPseudoActivity, one or more 
FinalPseudoActivity, and one or more WFPattern which are 
appositely interconnected. 

 

115



 

 

 

 
(a) (b) 

  

(c) (d) 
Fig. 8. WF Engine class diagram: (a) MAS structure; (b-d) behaviors of the ManagerAgents (b-d)  

 

V. CONCLUSIONS 

This paper has described an Agent-based Workflow 
Enactment Framework (AWEF) which can be instantiated on 
the basis of a WF Schema for obtaining a specific WF Engine 
which mainly consists  of a hierarchy of ManagerAgents. 
Each ManagerAgent has in charge the enactment of a sub-
schema of the WF Schema used for the instantiation of AWEF 
and exploits a set of TaskAgents for the execution of the 
specific workflow tasks associated to its sub-schema. This 
MAS organization allows for the hierarchical distribution of 
the workflow execution control between the ManagerAgents 
and for the distribution of the computation among the 
TaskAgents. Due to these features AWEF constitutes a basic 
component for the construction of more flexible, efficient, and 
robust  Workflow Enactment Services.  

The JADE-based implementation of AWEF has been 
applied to the development of a workflow system for the 
monitoring of distributed agro-industrial productive processes. 
The developed workflow system is a component of a larger 
system which was buil t in the context of the M.ENTE 
(Management of integrated ENTErprise) project which aims at 
developing a pervasive system for the control and 
management of productive, organizational, and business 
processes of companies working in the agro-alimentary 
industry of Calabria. The current experimentation of the 
system provides support to a consortium of agro-industrial 
greenhouses. 

Efforts are currently underway to develop an enactment 
service which is able to automatically instantiate AWEF on 

the basis of WF Schemas defined in YAWL.  
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