
Conformance and Interoperability
in Open Enviroments

Matteo Baldoni, Cristina Baroglio,
Alberto Martelli, and Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

Email: {baldoni,baroglio,mrt,patti}@di.unito.it

Abstract— An important issue, in open environments like the
web, is guaranteeing the interoperability of a set of services.
When the interaction scheme that the services should follow is
given (e.g. as a choreography or as an interaction protocol), it
becomes possible to verify, before the interaction takes place,
if the interactive behavior of a service (e.g. a BPEL process
specification) respects it. This verification is known as “confor-
mance test”. Recently some attempts have been done for defining
conformance tests w.r.t. a protocol but these approaches fail
in capturing the very nature of interoperability, turning out
to be too restrictive. In this work we give a representation of
protocol, based on message exchange and on finite state automata,
and we focus on those properties that are essential to the
verification the interoperability of a set of services. In particular,
we define a conformance test that can guarantee, a priori, the
interoperability of a set of services by verifying properties of the
single service against the protocol. This is particularly relevant in
open environments, where services are identified and composed
on demand and dynamically, and the system as a whole cannot
be analyzed.

I. INTRODUCTION

In this work we face the problem of verifying the in-
teroperability of a set of peers by exploiting an abstract
description of the desired interaction. On the one hand, we
will have an interaction protocol (possibly expressed by a
choreography), capturing the global interaction of a desired
system of services; on the other, we will have a set of service
implementations which should be used to assemble the system.
The protocol is a specification of the desired interaction,
as thus, it might be used for defining several systems of
services [3]. In particular, it contains a characterization of
the various roles played by the services [6]. In our view, a
role specification is not the exact specification of a process
of interest, rather it identifies a set of possible processes, all
those whose evolutions respect the dictates given by the role.
In an open environment, the introduction of a new peer in an
execution context will be determined provided that it satisfies
the protocol that characterizes such an execution context; as
long as the new entity satisfies the rules, the interoperability
with the other components of the system is guaranteed.

The computational model to which web services are inspired
is that of distributed objects [10]. An object cannot refuse to
execute a method which is invoked on it and that is contained
in its public interface, in the very same way as a service cannot
refuse to execute over an invocation that respects its public

interface (although it can refuse the answer). This, however,
is not the only possible model of execution. In multi-agent
systems, for instance, an agent sending a request message to
another agent cannot be certain that it will ever be answered,
unless the interaction is ruled by a protocol. The protocol
plays, in a way, the role of the public interface: an agent
conforming to a protocol must necessarily answer and must be
able to handle messages sent by other agents in the context of
the protocol itself. The difference between the case of objects
and the case of protocols is that the protocol also defines an
“execution context” in which using messages. Therefore, the
set of messages that it is possible to use varies depending
on the point at which the execution has arrived. In a way,
the protocol is a dynamic interface that defines messages
in the context of the occurring interaction, thus ruling this
interaction. On the other hand, the user of an object is not
obliged to use all of the methods offered in the public interface
and it can implement more methods. The same holds when
protocols are used to norm the interaction. Generally speaking,
only part of the protocol will be used in an entity’s interaction
with another and they can understand more messages than
the one forseen by the protocol. Moreover, we will assume
that the initiative is taken from the entity that plays as a
sender, which will commit to sending a specific message out
of its set of alternatives. The receiver will simply execute
the reception of the message. Of course, the senders should
send a message that its counterpart can understand. For all
these reasons, performing the conformance test is analogous
to verifying at compilation time (that is, a priori) if a class
implements an interface in a correct way and to execute a
static typechecking.

Sticking to a specification, on the other hand, does not
mean that the service must do all that the role specification
defines; indeed, a role specification is just a formal definition
of what is lawful to say or to expect at any given moment
of the interaction. Taking this observation into account we
need to define some means for verifying that a single service
implementation comforms to the specification of the role in the
protocol that it means to play [14]. The idea is that if a service
passes the conformance test it will be able to interact with a
set of other services, equally proved individually conformant
to the other roles in the protocol, in a way that respects the
rules defined in the protocol itself.

151



A typical approach to the verification that a service im-
plementation respects a role definition is to verify whether
the execution traces of the service belong to the protocol [1],
[12], [7]. This test, however, does not consider processes with
different branching structures. Another approach, that instead
takes this case into account, is to apply bisimulation and say
that the implementation is conformant if it is bisimilar to
its role or, more generally, that the composition of a set of
policies is bisimilar to the composition of a set of roles [9],
[18]. Bisimulation [16], however, does not take into account
the fact that the implementor’s decisions of cutting some
interaction path not necessarily compromise the interaction.
Many services that respect the intuitions given above will not
be bisimilar to the specification. Nevertheless, it would be very
restrictive to say that they are not conformant (see Section III-
A). Thus, in order to perform the conformance test we need
a softer test, a test that accepts all the processes contained in
a space defined by the role. In this work we provide such a
test (Section III). This proposal differs from previous work
that we have done on conformance [7], [8] in various aspects.
First of all, we can now tackle protocols that contain an
arbitrary (though finite) number of roles. Second, we account
also for the case of policies and roles which produce the same
interactions but have different branching structures. This case
could not be handled in the previous framework due to the
fact that we based it exclusively on a trace semantics.

II. PROTOCOLS, POLICIES, AND CONVERSATIONS

A conversation policy is a program that defines the com-
municative behavior of an interactive entity, e.g. a service,
implemented in some programming language [3]. A conversa-
tion protocol specifies the desired communicative behavior of
a set of interactive entities. More specifically, a conversation
protocol specifies the sequences of messages (also called
speech acts) that can possibly be exchanged by the involved
parties, and that we consider as lawful.

In languages that account for communication, speech acts
often have the form m(as, ar, l), where m is the kind of
message, or performative, as (sender) and ar (receiver) are
two interactive entities and l is the message content. In the
following analysis it is important to distinguish the incoming
messages from the outgoing messages w.r.t a role of a protocol
or a policy. We will write m? (incoming message) and m!
(outgoing message) when the receiver or the utterer and the
content of the message is clear from the context or they are
not relevant. So, for instance, m(as, ar, l) is written as m?
from the point of view of ar, and m! from the point of view
of the sender. By the term conversation we will, then, denote
a sequence of speech acts that is a dialogue of a set of parties.

Both a protocol and a policy can be seen as sets of
conversations. In the case of the protocol, it is intuitive that
it will be the set of all the possible conversations allowed by
its specification among the partners. In the case of the single
policy, it will be the set of the possible conversations that the
entity can carry on according to its implementing program.
Although at execution time, depending on the interlocutor

and on the circumstances, only one conversation at a time
will actually be expressed, in order to verify conformance a
priori we need to consider them all as a set. It is important to
remark before proceeding that other proposal, e.g. [2], focus
on a different kind of conformance: run-time conformance,
in which only the ongoing conversation is checked against a
protocol.

Let us then introduce a formal representation of policies
and protocols. We will use finite state automata (FSA). This
choice, though simple, is the same used by the well-known
verification system SPIN [15], whose notation we adopt.
FSA will be used for representing individual processes that
exchange messages with other processes. Therefore, FSA will
be used both for representing the roles of a protocol, i.e. the
abstract descriptions of the interacting parties, as well as for
representing the policies of specific entities involved in the
interaction. In this work we do not consider the translation
process necessary to turn a protocol (e.g. a WS-CDL choreog-
raphy) or an entity’s policy (e.g. a BPEL process) in a FSA;
our focus is, in fact, conformance and interoperability. It is
possible to find in the literature some works that do this kind
of translations. An example is [12].

Definition 2.1 (Finite State Automaton): A finite state au-
tomaton is a tuple (S, s0, L, T, F ), where S is a finite set of
states, s0 ∈ S is a distinguished initial state, L is a finite set
of labels, T ⊆ (S ×L× S) is a set of transitions, F ∈ S is a
set of final states.
Similarly to [15] we will denote by the “dot” notation the
components of a FSA, for example we use A.s to denote the
state s that belongs to the automaton A. The definition of run
is taken from [15].

Definition 2.2 (Runs and strings): A run σ of a FSA
(S, s0, L, T, F ) is an ordered, possibly infinite, set of transi-
tions (a sequence) (s0, l0, s1), (s1, l1, s2), (s2, l2, s3), . . . such
that ∀i ≥ 0, (si, li, si+1) ∈ T , while the sequence l0l1 . . . is
the corresponding string σ.

Definition 2.3 (Acceptance): An accepting run of a finite
state automaton (S, s0, L, T, F ) is a finite run σ in which the
final transition (sn−1, ln−1, sn) has the property that sn ∈ F .
The corresponding string σ is an accepted string.

Given a FSA A, we say that a state A.s1 ∈ A.S is alive if
there exists a finite run (s1, l1, s2), . . . , (sn−1, ln−1, sn) and
sn ∈ A.F . Moreover, we will write A1 ⊆ A2 iff every string
of A1 is also a string of A2.

In order to represent compositions of policies or of individ-
ual protocol roles we need to introduce the notions of free and
of synchronous product. These definitions are an adaptation
to the problem that we are tackling of the analogous ones
presented in [4] for Finite Transition Systems.

Definition 2.4 (Free product): Let Ai, i = 1, . . . , n, be n

FSA’s. The free product A1 × · · · × An is the FSA A =
(S, s0, L, T, F ) defined by:

• S is the set A1.S × · · · × An.S;
• s0 is the tuple (A1.s0, . . . , An.s0);
• L is the set A1.L × · · · × An.L;

152



• T is the set of tuples
((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′

1, . . . , An.s′n))
such that (Ai.si, li, Ai.s

′

i) ∈ Ai.T , for i = 1, . . . , n; and
• F is the set of tuples (A1.s1, . . . , An.sn) ∈ A.S such

that si ∈ Ai.F , for i = 1, . . . , n.
We will assume, from now on, that every FSA A has an

empty transition (s, ε, s) for every state s ∈ A.S. When the
finite set of labels L used in a FSA is a set of speech acts,
strings will represent conversations.

Definition 2.5 (Synchronous product): Let Ai,
i = 1, . . . , n, be n FSA’s. The synchronous product of
the Ai’s, written A1 ⊗ · · · ⊗ An, is the FSA obtained as
the free product of the Ai’s containing only the transitions
((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′

1, . . . , An.s′n)) such
that there exist i and j, 1 ≤ i 6= j ≤ n, li = m!, lj = m?,
and for any k not equal to i and j, lk = ε.
The synchronous product allows a system that exchanges mes-
sages to be represented. It is worth noting that a synchronous
product does not imply that messages will be exchanged in
a synchronous way; it simply represents a message exchange
without any assumption on how the exchange is carried on.

In order to represent a protocol, we use the synchronous
product of the set of such FSA’s associated with each role
(where each FSA represents the communicative behavior of
the role). Moreover, we will assume that the automata that
compound the synchronous product have some “good prop-
erties”, which meet the commonly shared intuitions behind
protocols. In particular, we assume that for the set of such
automata the following properties hold:

1) any message that can possibly be sent, at any point of
the execution, will be handled by one of its interlocutor;

2) whatever point of conversation has been reached, there
is a way to bring it to an end.

An arbitrary synchronous product of n FSA’s might not meet
these requirements, which can, however, be verified by using
automated systems, like SPIN [15].

Note that protocol specification languages, like UML se-
quence (activity) diagrams and automata [17], naturally follow
these requirements: an arrow starts from the lifeline of a role,
ending into the lifeline of another role, and thus corresponds to
an outgoing or to an incoming message depending on the point
of view. Making an analogy with the computational model of
distributed objects, one could say that the only messages that
are sent are those which can be understood. Moreover, usually
protocols contain finite conversations.

We will say that a conversation is legal w.r.t. a protocol if
it respects the specifications given by the protocol, i.e. if it is
an accepted string of the protocol.

III. INTEROPERABILITY AND CONFORMANCE TEST

We are now in position to explain, with the help of a few
simple examples, the intuition behind the terms “conformance”
and “interoperability”, that we will, then, formalize. By in-
teroperability we mean the capability of a set of entities of
actually producing a conversation when interacting with one
another [5]. Interoperability is a desired property of a system

of interactive entities and its verification is fundamental in
order to understand whether the system works. Such a test
passes through the analysis of all the entities involved in the
interaction.

Fig. 1. Example of the summer school.

Figure 1 shows an intuitive example, in which a group of
persons wish to attend a summer school. Each of them can
speak and understand different languages. For instance, Jan
can speak English, Dutch, and French. The school registration
form requires the interested attendee to speak and understand
English, which is the official language of the school. This
requirement allows a person to decide if it will be in condition
to interact with the other participants before attending the
school. So, for instance, Matteo, who speaks Italian and could
therefore interact with Guido, will not be in condition to
understand the other participants. Jan and Leon could interact
by speaking Ducth, however, since they also know English,
they will be able to interact with all the other attendees and
so they will be in condition to participate. The fact that they
understand other languages besides the one required by the
“school protocol” does not compromise their interoperability
with the others. In fact, within the context of the school
everybody will speak English with them. Interoperability is
compromised when one does not understand (part of) the
protocol (e.g. Matteo) or when one decides to speak a language
that is not agreed (e.g. Leon when speaking Dutch).

In an open system, however, it is quite unlikely to have a
global view of the system either because it is not possible
to read part of the necessary information (e.g. some services
do not publish their behavior) or because the interactive
entities are identified at different moments, when necessary.
Protocols are adopted to solve such problems, in fact, having
an interaction schema allows the distribution of the tests in
time, by checking a single entity at a time against the role
that it should play. The protocol, by its own nature guarantees
the interoperability of the roles that are part of it. One might
argue why we do not simply verify the system obtained by

153



substituting the policy instead of its role within the protocol
and, then, check whether any message that can be sent will be
handled by some of the interlocutor roles, bringing to an end
the conversations. Actually, this solution presents some flaws,
as the following counter-example proves. Let us consider a
protocol with three roles: A1 sends m1 to A2, A2 waits
for m1 and then it waits for m2, and A3 sends m2 to A2.
Let us know substitute to role A2 the policy which, first,
waits for m2 and then it waits for m1. The three partners
will perfectly interoperate and successfully conclude their
conversations but the conversation that is produced is not legal
w.r.t. the protocol. In protocol-based systems, the proof of the
interoperability of an entity with others, obtained by checking
the communicative behavior of the entity against the rules of
the system (i.e. against an interaction protocol itself), is known
as conformance test. Intuitively, this test must guarantee the
following definition of interoperability.

Definition 3.1 (Interoperability w.r.t. an interaction protocol):
Interoperability w.r.t. an interaction protocol is the capability
of a set of entities of producing a conversation that is legal
w.r.t. the protocol.
Let us now consider a given service that should play a role
in a protocol. In order to include it in the interaction we need
to understand if it will be able to interact with the possible
players of the other roles. If we assume that the other players
are conformant to their respective roles, we can represent
them by the roles themselves. Roles, by the definition of
protocol, are interoperable. Therefore, in order to prove the
interoperability of our service, it will be sufficient to prove
for it the “ good properties” of its role. First of all, we should
prove that its policy does not send messages that the others
cannot understand, which means that it will not send messages
that are not accounted for by the role. Moreover, we should
prove that it can tackle every incoming message that the other
roles might send to it, which means that it must be able to
handle all the incoming messages handled by the role. Another
important property is that whatever point of conversation has
been reached, there is a way to bring it to an end. In practice,
if a role can bring to an end a conversation in which it has
been engaged, so must do the service. To summarize, in order
to check a service interoperability it will be sufficient to check
its conformance w.r.t. the desired role and this check will
guarantee that the service will be able to interact with services
equally, and separately, proved conformant to the other roles.
This, nevertheless, does not mean that the policy of the service
must be a precise “ copy” of the role.

A. Expectations for interoperability

Let us now discuss some typical cases in which a policy and
a role specification that differ in various ways are compared
in order to decide if the policy conforms to the role so as
to guarantee its interoperability with its future interlocutors
that will play the other roles in the protocol. With reference
to Figure 2, let us begin with considering the case reported
in row (a): here, the service can possibly utter a message
m3 that is not foreseen by the role specification. Trivially,

m2!

m3!

m1?

No!
m2!

m1?
Ok!

m2?

m3?

m1!

Ok!
m2?

m1!

m2!
m1?

m2!

m4!

m1?

m2?
m1!

m2?

m4?

m1!

(a)

(b)

(c)

(d)

6≤

≤

≤

6≤

Policy Protocol role

No! Missing edge

Fig. 2. A set of cases that exemplifies our expectations about a conformant
policy: cases (b) and (c) do not compromise interoperability, hence they should
pass the conformance test; cases (a) and (d) instead should not pass the
conformance test.

this policy is not conformant to the protocol because the
service might send a message that cannot be handled by any
interlocutor that conforms to the protocol. The symmetric case
in which the policy accounts for less outgoing messages than
the role specification (Figure 2, row (b)) is, instead, legal. The
reason is that at any point of its conversations the entity will
anyway always utter only messages that the entities playing
the other roles will surely understand. Hence, interoperability
is preserved. The restriction of the set of possible alternatives
(w.r.t. the protocol) depends on the implementor’s own criteria.

Let us now consider the case reported in Figure 2, row
(c). Here, the service policy accounts for two conversations in
which, after uttering a message m1, the entity expects one
of the two messages m2 or m3. Let us also suppose that
the protocol specification only allows the first conversation,
i.e. that the only possible incoming message is m2. When
the entity will interact with another that is conformant to the
protocol, the message m3 will never be received because the
other entity will never utter it. So, in this case, we would
like the a priori conformance test to accept the policy as
conformant to the specification.

Talking about incoming messages, let us now consider the
symmetric case (Figure 2, row (d)), in which the protocol
specification states that after an outgoing message m1, an
answer m2 or m4 will be received, while the policy accounts
only for the incoming message m2. In this case, the expec-
tation is that the policy is not conformant because there is
a possible incoming message (the one with answer m4) that
can be enacted by the interlocutor, which, however, cannot be
handled by the policy. This compromises interoperability.

To summarize, at every point of a conversation, we expect
that a conformant policy never utters speech acts that are not
expected, according to the protocol, and we also expect it to be
able to handle any message that can possibly be received, once

154



m2!

m3!

m1!

m1!

m2?

m3?

m1!

m1!

m3?

m2?

m1!

m3!

m2!

m1! No!

m3!

m2!

m1!

m3?

m2?

m1!

m2!

m3!

m1!

m1!

m2?

m3?

m1!

m1!

(a)

(b)

(c)

(d)

Policy

≤

6≤

6≤

≤

Protocol role

No! Missing edge

No! Missing edge

Fig. 3. A set of cases that exemplifies our expectations about a conformant
policy: differently than in Figure 2, for every row, the policy and the role
produce the same conversations but the structure of their implementations
differ.

again according to the protocol. However, the policy is not
obliged to foresee (at every point of conversation) an outgoing
message for every alternative included in the protocol but it
must foresee at least one of them if this is necessary to proceed
with the conversation. Trivially, in the example of row (b),
a policy containing only the conversation m1? (not followed
either by m2! or by m4!) would not be conformant.

Let us now consider a completely different set of situations,
in which the “ structure” of the policy implemented and the
structure of the role specification are taken into account. These
situations are taken from the literature on communicating
processes [13]. Figure 3 reports a set of cases in which the role
description and the policy allow the same conversations but
their structure differs: in rows (a) and (c) the policy decides
which message to send (receive, respectively) after m1 from
the very beginning, while in the protocol this decision is taken
after m1 is sent. In row (b) and (d) the situation is inverted.

The case of row (a) does not compromise conformance in
the same way as the case reported at row (b) of Figure 2
does not: after a non-deterministic choice the set of alternative
outgoing messages is restricted but in both cases only legal
messages that can be handled by the interlocutor will be sent.
The analogous case reported in row (c), concerning incoming
messages, instead, compromises the conformance. In fact, after
the non-deterministic step the policy might receive a message
that it cannot handle, similarly to row (d) of Figure 2.

The case of row (b), Figure 3, compromises the confor-
mance because after the non-deterministic choice the role
specification allows a single outgoing message with no alterna-
tives. The policy, instead, might utter one out of two alternative
messages (similarly to row (a) of Figure 2). Finally, the case

of row (d) does not compromise the conformance, following
what reported in Figure 2, row (c).

B. Conformance and interoperability

In this section we define a test, for checking conformance,
that is derived from the observations above. A first consider-
ation is that a conformance test is not an inclusion test w.r.t.
the set of possible conversations that are produced. In fact,
for instance, in row (d) of Figure 2 the policy produces a
subset of the conversations produced by the role specification
but interoperability is not guaranteed. Instead, if we consider
row (c) in the same figure, the set of conversation traces,
produced by the policy, is a superset of the one produced
by the protocol; despite this, interoperability is guaranteed.
A second consideration is that a conformance test is not a
bisimulation test w.r.t. the role specification. Actually, the
(bi)simulation-based test defined in concurrency theory [16]
is too strict, and it imposes constraints, that would exclude
policies which instead would be able to interoperate, within
the context given by the protocol specification. In particular,
all the cases reported in Figure 3 would not be considered
as conformant because they are all pairs of processes with
different branching structures. Despite this, we would like our
test to recognize cases (a) and (d) as conformant because they
do not compromise interoperability.

The solution that we propose is inspired by (bi)simulation,
but it distinguishes the ways in which incoming and outgoing
messages are handled, when a policy is compared to a role 1.
In the following, we will use “ A1 ≤ A2” to denote the fact
that A1 conforms to A2. This choice might seem contradictory
after the previous discussion, in fact, in general A1 ≤ A2 does
not entail A1 ⊆ A2. However, with symbol “≤” we capture the
fact that A1 will actually produce a subset of the conversations
forseen by the role, when interacting with entities that play
the other roles in the protocol (see Propositions 3.3 and 3.4).
This is what we expect from a conformant policy and from
our definition of interoperability. Let A an FSA, let us denote
by Succ(l, s) the set of states {s′ | (s, l, s′) ∈ A.T}.

Definition 3.2 (Conformant simulation): Given two FSA’s
A1 and A2, A1 is a conformant simulation of A2, written
A1 ≤ A2 iff there is a binary relation R between A1 and A2

such that

1) A1.s0RA2.s0;
2) if siRsj , where si ∈ A1.S and sj ∈ A2.S, then

a) for every (si, m!, si+1) ∈ A1.T , Succ(m!, sj) 6= ∅
and si+1Rs′ for every s′ ∈ Succ(m!, sj);

b) for every (sj , m?, sj+1) ∈ A2.T , Succ(m?, si) 6= ∅
and sj+1Rs′ for every s′ ∈ Succ(m?, si);

Particularly relevant is the case in which A2 is a role in
a protocol and A1 is a policy implementation. Notice that,
in this case, conformance is defined only w.r.t. the role that
the single policy implements, independently from the rest of
the protocol. As anticipated above, Definition 3.2 does not

1All proofs are omitted for lack of space, they will be supplied on demand.

155



imply the fact that “ A1 ≤ A2 entails A1 ⊆ A2” . Instead, the
following proposition holds.

Proposition 3.3: Let A1⊗· · ·⊗Ai⊗· · ·⊗An be a protocol,
and A′

i a policy such that A′

i ≤ Ai, then A1⊗· · ·⊗A′

i⊗· · ·⊗
An ⊆ A1 ⊗ · · · ⊗ Ai ⊗ · · · ⊗ An.
This proposition catches the intuition that a conformant policy
is able to produce a subset of the legal conversations defined
by the protocol but only when it is executed in the context
given by the protocol.

The above proposition can be generalized in the following
way. Here we consider a set of policies that have been individ-
ually proved as being conformant simulations of the various
roles in a protocol. The property states that the dialogues that
such policies can produce will be legal w.r.t. the protocol.

Proposition 3.4: Let A1 ⊗ · · · ⊗ An be a protocol and let
A′

1, . . . , A
′

n be n policies such that A′

i ≤ Ai, for i = 1, . . . , n,
then A′

1 ⊗ · · · ⊗ A′

n ⊆ A1 ⊗ · · · ⊗ An

In order to prove interoperability we need to prove that our
policies will actually produce a conversation when interacting,
while so far we have only proved that if a conversation will
be generated, it will be legal. By assumption, in a protocol
it is always possible to conclude a conversation whatever the
point at which the interaction arrived. We expect a similar
property to hold also for a set of policies that have been
proved conformant to the roles of a protocol. The relation ≤
is too weak, so we need to introduce the notion of complete
conformant simulation.

Definition 3.5 (Complete conformant simulation): Given
two FSA’s A1 and A2 we say that A1 is a complete
conformant simulation of A2, written A1 £ A2, iff there is a
A1 is a conformant simulation of A2 under a binary relation
R and

• for all si ∈ A1.F such that siRsj , then sj ∈ A2.F ;
• for all sj ∈ A2.S such that sj is alive and siRsj , si ∈

A1.S, then si is alive.
Now, we are in the position to give the following fundamental
result.

Theorem 3.6 (Interoperability): Let A1 ⊗ · · · ⊗ An be a
protocol and let A′

1, . . . , A
′

n be n policies such that A′

i £ Ai,
for i = 1, . . . , n. For any common string σ′ of A′

1 ⊗ · · · ⊗A′

n

and A1 ⊗ · · · ⊗ An there is a run σ′σ′′ such that σ′σ′′ is an
accepted string of A′

1 ⊗ · · · ⊗ A′

n.
Intuitively, whenever two policies, that have independently
been proved conformant to the two roles of a protocol, start
an interaction, thanks to Proposition 3.4, they will be able
to conclude their interaction producing a legal accepted run.
Therefore, Theorem 3.6 implies Definition 3.1 (interoperabil-
ity).

IV. CONCLUSIONS AND RELATED WORKS

In this work we have given a definition of conformance
and of interoperability that is suitable to application in open
environments, like the web. Protocols have been formalized
in the simplest possible way (by means of FSA) to capture
the essence of interoperability and to define a fine-grain
conformance test.

The issue of conformance is widely studied in the literature
in different research fields, like multi-agent systems (MAS)
and service-oriented computing (SOA). In particular, in the
area of MAS, in [7], [5] we have proposed two preliminary
versions of the current proposal, the former, based on a
trace semantics, consisting in an inclusione test, the latter,
disregarding the case of different branching structures. The
second technique was also adapted to web services [8]. Both
works were limited to protocols with only two roles while,
by means of the framework presented in this paper we can
deal with protocols with an arbitrary finite number of roles.
Inspired to this work the proposal in [1]: here an abductive
framework is used to verify the conformance of services to
a choreography with any number of roles. The limit of this
work is that it does not consider the cases in which policies
and roles have different branching structures. The first proposal
of a formal notion of conformance in a declarative setting is
due to Endriss et al. [11], the authors, however, do not prove
any relation between their definitions of conformance and
interoperability. Moreover, they consider protocols in which
two partners strictly alternate in uttering messages.

In the SOA research field, conformance has been discussed
by Foster et al. [12], who defined a system that translates
choreographies and orchestrations in labeled transition systems
so that it becomes possible to apply model checking techniques
and verify properties of theirs. In particular, the system can
check if a service composition complies with the rules of
a choreography by equivalent interaction traces. Violations
are highlighted back to the engineer. Once again, as we
discussed, basing on traces can be too much restrictive. In
[9], instead, “ conformability bisimulation” is defined, a variant
of the notion of bisimulation. This is the only work that
we have found in which different branching structures are
considered but, unfortunately, the test is too strong. In fact,
with reference to Figure 2, it excludes the cases (b) and (c),
and it also excludes cases (a) and (d) from Figure 3, which
do not compromise interoperability. A recent proposal, in this
same line, is [18], which suffers of the same limitations.

1) Acknowledgements.: This research has partially been
funded by the European Commission and by the Swiss Federal
Office for Education and Science within the 6th Frame-
work Programme project REWERSE number 506779 (cf.
http://rewerse.net), and it has also been supported by MIUR
PRIN 2005 “ Specification and verification of agent interaction
protocols” national project.

REFERENCES

[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and M. Mon-
tali, “An abductive framework for a-priori verification of web services,”
in Principles and Practice of Declarative Programming, PPDP’06).
ACM Press, 2006.

[2] M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello,
“ Specification and verification of agent interaction protocols in a logic-
based system,” in ACM SAC 2004. ACM, 2004, pp. 72–78.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Springer, 2004.

[4] A. Arnold, Finite Transition Systems. Pearson Education, 1994.

156



[5] M. Baldoni, C. Baroglio, A. Martelli, and Patti, “ Verification of protocol
conformance and agent interoperability,” in Post-Proc. of CLIMA VI, ser.
LNCS State-of-the-Art Survey, vol. 3900. Springer, 2006, pp. 265–283.

[6] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “ Reasoning about
interaction protocols for customizing web service selection and compo-
sition,” J. of Logic and Alg. Progr., special issue on Web Services and
Formal Methods, 2006, to appear.

[7] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “ Ver-
ifying protocol conformance for logic-based communicating agents,” in
Proc. of CLIMA V, ser. LNCS, no. 3487. Springer, 2005, pp. 192–212.

[8] — — , “ Verifying the conformance of web services to global interaction
protocols: a first step,” in Proc. of WS-FM 2005, ser. LNCS. Springer,
September, 2005, vol. 3670, pp. 257–271.

[9] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “ Chore-
ography and orchestration: a synergic approach for system design,” in
Proc. of 4th International Conference on Service Oriented Computing
(ICSOC 2005), 2005.

[10] B. Eckel, Thinking in Java. Prentice Hall, 2005.
[11] U. Endriss, N. Maudet, F. Sadri, and F. Toni, “ Logic-based agent com-

munication protocols,” in Advances in agent communication languages,
ser. LNAI, vol. 2922. Springer-Verlag, 2004, pp. 91–107, invited
contribution.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “ Model-based analysis of
obligations in web service choreography,” in Proc. of IEEE International
Conference on Internet&Web Applications and Services 2006, 2006.

[13] R. v. Glabbeek, “ Bisimulation,” Encyclopedia of Distributed Com-
puting (J.E. Urban & P. Dasgupta, eds.), Kluwer, 2000, available at
http://Boole.stanford.edu/pub/DVI/bis.dvi.gzz.

[14] F. Guerin and J. Pitt, “ Verification and Compliance Testing,” in Com-
munication in Multiagent Systems, ser. LNAI, H. Huget, Ed., vol. 2650.
Springer, 2003, pp. 98–112.

[15] G. J. Holzmann, The SPIN Model Checker : Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[16] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[17] OMG, “ Unified modeling language: Superstructure,” 2005.
[18] X. Zhao, H. Yang, and Z. Qui, “ Towards the formal model and

verification of web service choreography description language,” in Proc.
of WS-FM 2006, 2006.

157


