
Reasoning about Goals in BDI Agents:
the PRACTIONIST Framework

Vito Morreale∗, Susanna Bonura∗, Giuseppe Francaviglia∗, Fabio Centineo∗,
Massimo Cossentino†§, and Salvatore Gaglio†‡

∗R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A.
†ICAR-Italian National Research Council

‡DINFO-University of Palermo
§SET - Universit de Technologie Belfort-Montbliard, France

Abstract— The representation of goals and the ability to reason
about them play an important role in goal-oriented requirements
analysis and modelling techniques, especially in agent-oriented
software engineering. Moreover goals are more useful and stable
abstractions than others (e.g. user stories) in the analysis and
design of software applications. Thus, the PRACTIONIST frame-
work supports a goal-oriented approach for developing agent
systems according to the Belief-Desire-Intention (BDI) model.

In this paper we describe the goal model of PRACTIONIST
agents, in terms of the general structure and the relations among
goals. Furthermore we show how PRACTIONIST agents use
their goal model to reason about goals during their deliberation
process and means-ends reasoning as well as while performing
their activities.

I. I NTRODUCTION

With the increasing management complexity and main-
tenance cost of advanced information systems, attention in
recent years has fallen on self-* systems and particularly on
the autonomic computing approach and autonomic systems. In
[1] authors argue that adopting a design approach that supports
the definition of a space of possible behaviours related to the
same function is one of the ways to make a system autonomic.
Then the system should be able to select at runtime the best
behaviour on the basis of the current situation. Goals can be
used as an abstraction to model the functions around which
the systems can autonomously select the proper behaviour.

In this view, the explicit representation of goals and the
ability to reason about them play an important role in several
requirements analysis and modelling techniques, especially
when adopting the agent-oriented paradigm.

In this area, one of the most popular and successful agent
models is the BDI [2], which derives from the philosophical
tradition of practical reasoning first developed by Bratman[3].
It states that agents decide, moment by moment, which actions
to perform in order to pursue their goals. Practical reasoning
involves a deliberation process, to decide what states of affairs
to achieve, and a means-ends reasoning, to decide how to
achieve them.

Nevertheless there is a gap between BDI theories and
several implementation [4]. Indeed, most of existing BDI agent
platforms (e.g. JACK [5], JAM [6]) generally use goals instead
of desires. Moreover, the actual implementations of mental
states differ somewhat from their original semantics: desires

(or goals) are treated as event types (such as in AgentSpeak(L)
[7]) or procedures (such as in 3APL [8]) and intentions are
executing plans. Therefore the deliberation process and means-
ends reasoning are not well separated, as being committed to
an intention (ends) is the same as executing a plan (means).

Moreover, some available BDI agent platforms do not
support the explicit representation and implementation ofgoals
or desires with their properties and relations, but they deal with
them in a procedural and event-based fashion. As a result,
while such an explicit representation of goals provide useful
and stable abstractions when analysing and designing agent-
based systems, there is a gap between the products of those
phases and what development frameworks support.

According to Winikoff et al. [4], ”by omitting the declarative
aspect of goals the ability to reason about goals is lost”. What
is actually lost is the ability toknow if goals are impossible,
achieved, incompatible with other goals, and so forth. Thisin
turn can support thecommitment strategiesof agents and their
ability to autonomously drop, reconsider, replace or pursue
goals.

However, some other BDI agent platforms deal with declar-
ative goals. Indeed, in JADEX goals are explicitly represented
according to a generic model, enabling the agents to handle
their life cycle and reasoning about them [9]. Nevertheless, the
model defined in JADEX does not deal with relations among
goals.

The PRACTIONIST framework [10] adopts a goal-oriented
approach to develop BDI agents and stresses the separation
between the deliberation process and the means-ends reason-
ing, with the abstraction of goal used to formally define both
desires and intentions during the deliberation phase. Indeed,
in PRACTIONIST a goal is considered as an analysis, design,
and implementation abstraction compliant to the semantics
described in this paper. In other words, PRACTIONIST agents
can be programmed in terms of goals, which then will be
related to either desires or intentions according to whether
some specific conditions are satisfied or not.

After a brief overview of the general structure of PRAC-
TIONIST agents and their execution model (section II), this
paper addresses the definition of the goal model (section III).
We also describe how PRACTIONIST agents are able to
reason about available goals according to their goal model,

187

current beliefs, desires, and intentions (see section IV).All
aforementioned issues and the proposed model are fully imple-
mented in the PRACTIONIST framework and available when
developing applications by using the goal-oriented approach
and the concepts described in this paper (section V). Finally,
in section VI we present a simple example that illustrates the
definition and the usage of goals and their relations.

II. PRACTIONIST AGENTS

The PRACTIONIST framework aims at supporting the pro-
grammer in developing BDI agents and is built on top of JADE
[11], a widespread platform that implements the FIPA1 spec-
ifications. Therefore, our agents are deployed within JADE
containers and their main cycle is implemented by means of
a JADE cyclic behaviour.

A PRACTIONIST agent is a software component endowed
with the following elements:

• a set ofperceptionsand the correspondingperceptorsthat
listen to some relevant external stimuli;

• a set of beliefs representing the information the agent
has got about both its internal state and the external
environment;

• a set ofgoals the agent wishes or wants to pursue. They
represent some states of affairs to bring about or activities
to perform and will be related to either its desires or
intentions (see below);

• a set ofgoal relationsthe agent uses during the deliber-
ation process and means-ends reasoning;

• a set ofplansthat are the means to achieve its intentions;
• a set ofactions the agent can perform to act over its

environment; and
• a set ofeffectorsthat actually execute the actions.

Beliefs, plans, and the execution model are briefly described
in this section, while goals are the subject of this paper andare
presented in the following sections. However, for a detailed
description of the structure of PRACTIONIST agents, the
reader should refer to [10].

The BDI model refers to beliefs instead of knowledge, as
beliefs are not necessarily true, whileknowledgeusually refers
to something that is true [12]. According to this, an agent may
believe true something that is false from the other agents’ or
the designer’s point of view, but the idea is just to provide the
agents with a subjective window over the world.

Therefore each PRACTIONIST agent is endowed with a
prolog belief base, where beliefs are asserted, removed, or
entailed through inference on the basis of KD45 modal logic
rules [12] and user-defined formulas. Currently the PRAC-
TIONIST framework supports two prolog engines, i.e. SWI-
Prolog2 and one that was derived from TuProlog3.

In the PRACTIONIST framework plans represent an impor-
tant container in which developers define the actual behaviors
of agents.

1http://www.fipa.org
2http://www.swi-prolog.org
3http://tuprolog.alice.unibo.it

Each agent may own a declared set of plans (theplan
library), each specifying the course of acts the agent will
undertake in order to pursue its intentions, or to handle
incoming perceptions, or to react to changes of its beliefs.

PRACTIONIST plans have a set of slots that are used
by agents during the means-ends reasoning and the actual
execution of agent activities. Some of these slots are: the
trigger event, which defines the event (i.e. goals, perceptions,
and belief updating) each plan is supposed to handle; the
context, a set of condition that must hold before the plan can
be actually performed; the body, which includes the acts the
agent performs during the execution of the plan.

Through their perceptors, agents search for stimuli (percep-
tions) from the environment and transform them into (external)
events, which in turn are put into theEvent Queue(figure
1). Such a queue also contains internal events, which are
generated when either an agent is committed to a goal or there
is some belief updates. The former type of internal events is
particularly important in PRACTIONIST agents, as described
in the following sections.

The main cycle of a PRACTIONIST agent is implemented
within a cyclic behaviour, which consists of the following
steps.

1) it selects and extracts an event from the queue, according
to a properEvent Selectionlogic;

2) it handles the selected event through the following
means-ends reasoningprocess: (i) the agent figures out
thepractical plans, which are those plans whose trigger
event matches the selected event (Options in figure
1); (ii) among practical plans, the agent detects the
applicable ones, which are those plan whose context
is believed true, and selects one of them (main plan);
(iii) it builds the intended means, which will contain the
main plan and other alternative practical plans. In case
of goal event updates the corresponding intended means
stack; otherwise it creates a new intended means stack.

It should be noted that every intended means stack can
contain several intended means, each able to handle a given
event, possibly through several alternative means.

Moreover all intended means stacks are concurrently exe-
cuted, in order to provide the agents with the capability of
performing several activities (perhaps referring to related or
non-related objectives) in parallel. When executing each stack,
the top level intended means is in turn executed, by performing
its main plan. If it fails for some reason, one of alternative
plans is then performed, until the corresponding ends (related
to the triggering event) is achieved.

During the execution of a plan, several acts can be per-
formed, such asdesiring to bring about some states of affairs
or to perform some action,addingor removingbeliefs,sending
ACL messages, and so forth. Particularly, desiring to pursue
a goal triggers a deliberation/filtering process, in which the
agent figures out whether that goal must be actually pursued
or not, on the basis of the goal model declared for that agent.

The interaction among intended means belonging to differ-
ent stacks can occur at a goal level, since each plan could wait

188

Fig. 1. PRACTIONIST Agent Architecture

for the success/failure of some goal that the agent is pursuing
through another intended means.

III. G OAL MODEL

In the PRACTIONIST framework, a goal is an objective
to pursue and we use it as a mean to transform desires into
intentions through the satisfaction of some properties. Inother
words, our agents are programmed in terms of goals, which
then will be related to either desires or intentions according
to whether some specific conditions are satisfied or not.

Formally, a PRACTIONISTgoal g is defined as follows:

g = 〈σg, πg〉 (1)

where:
• σg is thesuccess conditionof the goalg;
• πg is the possibility conditionof the goal g stating

whetherg can be achieved or not.
Since we consider such elements as local properties of

goals, in the PRACTIONIST framework we defined them as
operations that have to be implemented for each kind of goal
(figure 3).

In order to describe the goal model, we first provide some
definitions about the properties of goals.

Definition 1 A goal g1 is inconsistentwith a goal g2

(g1⊥g2) if and only if wheng1 succeeds, theng2 fails.

Definition 2 A goal g1 entailsa goalg2 or equivalentlyg2

is entailed byg1 (g1 → g2) if and only if wheng1 succeeds,
then alsog2 succeeds.

Definition 3 A goal g1 is a precondition of a goal g2

(g1 7→ g2) if and only if g1 must succeed in order to be
possible to pursueg2.

Definition 4 A goal g1 dependson a goalg2 (g1 ↪→ g2) if
and only ifg2 is precondition ofg1 andg2 must be successful
while pursuingg1.

Therefore the dependence is a stronger form of precondition.
Both definitions let us specify that some goals must be
successful before (and during, in case of dependency) pursuing
some other goals (refer to section IV for more details).

Now, given a setG of goals and based on the above
definitions, it is also possible to define some relations
between those goals.

Definition 5 The inconsistencyΓ ⊆ G × G is a binary
symmetric relation on G, defining goals that are inconsistent
with each other. Formally,

Γ = {(gi, gj) i, j = 1, ..., |G| : gi⊥gj} . (2)

When two goals are inconsistent with each other, it might

189

be useful to specify that one is preferred to the other. We
denote thatgi is preferred togj with gi � gj.

Definition 6 The relation of preferenceΓ
′

⊆ Γ defines the
pair of goals(gi, gj) wheregi⊥gj andgi � gj . Formally,

Γ′ = {(gi, gj) ∈ Γ : gi � gj} . (3)

Therefore if there is no preference between two inconsistent
goals, the corresponding pair does not belong to the setΓ

′

.
Moreover, since several goals can be pursued in parallel,
there is no need to prefer some goal to another goal if they
are not inconsistent each other.

Definition 7 The entailmentΞ ⊆ G×G is a binary relation
on G, defining which goals entail other goals. Formally,

Ξ = {(gi, gj) i, j = 1, ..., |G| : gi → gj} . (4)

Definition 8 The precondition setΠ ⊆ G × G is a binary
relation on G, defining which goals are precondition of other
goals. Formally,

Π = {(gi, gj) i, j = 1, ..., |G| : gi 7→ gj} . (5)

Definition 9 The dependence∆ ⊆ G×G is a binary relation
on G, defining which goals depend on other goals. Formally,

∆ = {(gi, gj) i, j = 1, ..., |G| : gi ↪→ gj} . (6)

Finally, on the basis of the above properties and relations
we can now define the structure of thegoal modelof PRAC-
TIONIST agents as follows

GM = 〈G, Γ, Γ′, Ξ, Π, ∆〉 (7)

where:

• G is the set of goals the agent could pursue;
• Γ is the inconsistencyrelation among goals;
• Γ′ is thepreferencerelation among inconsistent goals;
• Ξ is theentailmentrelation among goals;
• Π is thepreconditionrelation among goals;
• ∆ is thedependencerelation among goals.

IV. REASONING ABOUT GOALS

In this section we show how the goal elements previously
defined are used by PRACTIONIST agents when reasoning
about goals during their deliberation process and the means-
ends reasoning. We also highlight the actual relations between
them and mental attitudes, i.e. desires and intentions.

In PRACTIONIST agents goals and their properties are
defined on the basis of what agents believe. Thus, an agent will
believe that a goalg = 〈σg, πg〉 has succeeded if it believes
that its success conditionσg is true. The same holds for the
other properties.

It is important to note that, in PRACTIONIST, desires and
intentions are mental attitudes towards goals, which are in
turn considered as descriptions of objectives. Thus, referring

to a goal, an agent can just relate it to adesire, which it is
not committed to because of several possible reasons (e.g. it
believes that the goal is not possible). On the other hand, a
goal can be related to anintention, that is the agent is actually
and actively committed to pursue it.

Let GM = 〈G, Γ, Γ′, Ξ, Π, ∆〉 be a goal modelof a
PRACTIONIST agentα and, at a given time,G′ ⊆ G be the
set of its active goals, which are those goals that the agent is
already committed to.

Suppose thatα starts its deliberation process and generates
the goalg = 〈σg, πg〉 as an option. Therefore the agent would
like to commit tog, that is itsdesireis to bring about the goal
g. However, since an agent will not be able to achieve all its
desires, it performs the following process in the context ofits
deliberation phase (figure 2): the agent checks if it believes
that the goalg is possibleand notinconsistent(see definition
1) with active goals (belonging toG′).

If both conditions hold the desire to pursueg will be
promoted to anintention. Otherwise, in case of inconsistency
amongg and some active goals, the desire to pursueg will
become an intention only ifg is preferred to such inconsistent
goals, which will in turn be dropped.

In any case, if the desire to pursueg is promoted to an
intention, before starting the means-ends reasoning, the agent
α checks if it believes that the goalg succeeds(that is, if it
believes that the success conditionσg holds) or whether the
goal g is entailed (see definition 2) by some of the current
active goals. In case of both above conditions do not hold,
the agent will perform the means-ends reasoning, by either
selecting a plan from a fixed plan library or dynamically
generating a plan and finally executing it (details on this
means-ends reasoning can be found in [10]).

Indeed, if the goalg succeeds or is entailed by some current
active goals (i.e. some other means is working to achieve a
goal that entails the goalg), there is no reason to pursue it.
Therefore, the agent does not need to make any means-ends
reasoning to figure out how to pursue the goalg.

Otherwise, before starting the means-ends reasoning, if
some declared goals are precondition forg, the agent will
first desire to pursue such goals and then the goalg.

In the PRACTIONIST framework, as a default, an agent
will continue to maintain an intention until it believes that
either such an intention has been achieved or it is no longer
possible to achieve the intention. This commitment strategy to
intention is calledsingle-minded commitment[13]. In order to
perform such a behaviour, the agent continuously checks if it
believes that the goalg has just succeeded and that the goal
g is still possible.

Moreover the agent checks if some dependee goal does
not succeed. If so, it will desire to pursue such a goal and
then continue pursuing the goalg. When all dependee goals
succeed, the agent resumes the execution of the plan.

In order to be able to recover fromplan failures and try
other means to achieve an intention, if the selected plan fails
or is no longer appropriate to achieve the intention, then the
agent selects one of applicablealternative planswithin the

190

check if the goal
is possible

check if the goal
succeeds

check if the goal is
inconsistent with active goals

exception: the goal
cannot be pursued

check if the goal is entailed
by some active goal

synchronize with the
entailing goal

check about goal
preconditions

[goal is not possible]

[goal inconsistent AND not preferred]
[goal succeeds]

[goal is not entailed
 by any active goal]

Fig. 2. Reasoning about goals: the deliberation phase.

same intended means and executes it.
If none of the alternative plans was able to successfully

pursue the goalg, the agent take into consideration the goals
thatentail g. Thus the agent selects one of them and considers
it as an option, processing it in the way described in this
section, from deliberation to means-ends reasoning.

If there is no plan to pursue alternative goals, the achieve-
ment of the intention has failed, as the agent has not other ways
to pursue its intention. Thus, according to agents beliefs,the
goal waspossible, but the agent was no able to pursue it (i.e.
there are no plans).

V. THE SUPPORT FOR THEGOAL MODEL IN THE

PRACTIONIST FRAMEWORK

In order to provide the PRACTIONIST framework with the
support for the definition/handling of agent goal models and
the capabilities for reasoning about goals, we identified and
fulfilled the following requirements:

• registration of the goals that each agent could try to
pursue during his life cycle;

• registration of the relations among such goals;
• checking whether two goals are inconsistent and which

the preferred one is (if any);
• getting the list of goals that entail a given goal;
• getting the list of goals that are precondition of a given

goal;
• getting the list of goals which a given goal depends on.
A proper ad-hoc search algorithm explores the goal model

and answers the queries, on the basis of both declared and
implicit relations. Indeed, implicit relations (especially incon-
sistence and entailment) can be inferred from the semantics
of some built-in goals, such as state goals (e.g.achieve(ϕ),
cease(ϕ), maintain(ϕ), andavoid(ϕ), whereϕ is a closed
formula of FOL). Therefore, the goal reasoner takes into
account implicit relations such asachieve(ϕ)⊥achieve(¬ϕ),
achieve(ϕ)⊥cease(ϕ), maintain(ϕ)⊥avoid(ϕ), and so
forth.

Figure 3 shows the actual structure of theGoalModel
that each agent owns (PRACTIONISTAgent is the ab-
stract class that has to be extended when developing
PRACTIONIST agents). Such a model stores informa-
tion about declared goals (with their internal properties,
i.e. success and possibility condition) and the four types
of relations these goals are involved in. Specifically the
interface GoalRelation provides the super interface

for all goal relations supported by the PRACTIONIST
framework (i.e.EntailmentRel, InconsistencyRel,
DependencyRel, and PreconditionRel) and defines
the operationverifyRel, whose purpose is to check each
specific relation.

In order to exploit the features provided by the goal model
and understand if a given goal the agent desires to pursue is
inconsistent with or implied by some active goals, the agent
must have information about such active goals and whether
them are related to either desires or intentions. Therefore, each
PRACTIONIST agent owns anActiveGoalsHandler
component, which, with the aid of theGoalModel, has the
responsibility of keeping track of all executing intended means
stacks with the corresponding waiting and executing goals and
managing requests made by the agent.

Thus, at any given time, theActiveGoalsHandler is
aware of current desires and intentions of the agent, referring
them to active goals.

VI. A N EXAMPLE

In this section we present the Tileworld example to illustrate
how to use the goal model presented in this paper and the
support provided by the PRACTIONIST framework.

The Tileworld example was initially introduced in [14] as
a system with a highly parameterized environment that could
be used to investigate the reasoning in agents. The original
Tileworld consists of a grid of cells on which tiles, obstacles
and holes (of different size and point value) can exist. Each
agent can move up, down left or right within the grid to pick
up and move tiles in order to fill the holes. Each hole has an
associated score, which is awarded to the agent that has filled
the hole. The main goal of the agent is to score as many points
as possible.

Tileworld simulations are dynamic and the environment
changes continually over time. Since this environment is
highly parameterized, the experimenter can alter various as-
pects of it through a set of available ”knobs”, such as the
rate at which new holes appear (dynamism), the rate at
which obstacles appear (hostility), difference in hole scores
(variability of utility), and so forth.

Such applications, with a potentially high degree of dy-
namism, can benefit from the adoption of a goal-oriented
design approach, where the abstraction of goal is used to
declaratively represent agents’ objectives and states of affairs
that can be dynamically achieved through some means.

191

Fig. 3. The structure of the support for the goal model in the PRACTIONIST framework.

Figure 4 shows the Tileworld environment, where new
agents can be added or removed and the corresponding pa-
rameters can be dynamically changed.

In our Tileworld demonstrator two types of agents were
developed, the Tileworld Management Agent (TWMA) and
the Tileworld Player Agent (TWPA): the former is the agent
that manages and controls the environment, by creating and
destroying tiles, holes and obstacles, according to the parame-
ters set by the user; the latter is the agent moving within the
grid and whose primary goal is to maximize its score by filling
holes with tiles. A player agent does not get any notification
about the environment changes (i.e. by the management agent),
but it can ask such an information (e.g. what the current
state of a cell is) by means of sensing actions, in order to
adopt the best strategy on the basis of the current state of
the environment. In fact, for each state of the environment
(e.g., static, dynamic, very dynamic, etc.) at least a strategy is
provided. All the strategies are implemented through plansthat
share the same goal and differ for their operative conditions
(i.e. the context).

It should be noted that, since PRACTIONIST agents are
endowed with the ability of dynamically building plans starting
from a given goal and a set of available actions, some strategies
could be generated on-the-fly by taking into account emerging
situations.

The player agent has beliefs about the objects that are
placed into the grid, its position, its score, the state of the
environment, etc.

The TWPA top level goal is to score as many points as
possible, but to do this, it has to register itself with the
manager, look for the holes and for the tiles, hold a tile, and
fill a hole.

We designed the TWPA by adopting the goal-oriented
approach described in this paper and directly implemented
its goal-related entities (i.e. goals and relations) thankto the
support provided by the PRACTIONIST framework. In figure
5 a fragment of the goal model of the TWPA is shown as a

UML class diagram with dependencies stereotyped with the
name of the goal relations. Actually some relations only hold
under certain condition and the diagram does not show such
details.

According to the diagram, the TWPA has to be
registered with the TWMA before increasing its
score (the goalScorePoints depends on the goal
RegisterWithManager). Moreover, in order to score
points, the TWPA has to fill as many holes as possible (the
goal FillHole entails the goalScorePoints). But, in
order to fill a hole, the TWPA has to hold a tile and find a
hole (the goalFillHole depends onthe goalHoldTile
and requires the goalFillHole as precondition); finally,
the TWPA has to find the tile to hold it (the goalHoldTile
has the goalFindTile as a precondition).

According to the above-mentioned description, the follow-
ing source code from the TWPAgent class shows how goals
and relations among them are added to the agent and thus
how to create the goal model through the PRACTIONIST
framework:

protected void initialize()
{
...
GoalModel gm = getGoalModel();

// Goal declaration
gm.add(new RegisterWithManager());
gm.add(new ScorePoints());
gm.add(new HoldTile());
gm.add(new FindTile());
gm.add(new FillHole(getBeliefBase()));
gm.add(new FindHole());

// relations among goals
gm.add(new Dep_ScorePoints_RegisterWithManager());
gm.add(new Ent_ScorePoints_FillHole());
gm.add(new Dep_FillHole_HoldTile());
gm.add(new Pre_HoldTile_FindTile());
gm.add(new Pre_FillHole_FindHole());

...
}

192

Fig. 4. The Tileworld environment.

In order to better understand how the above-mentioned
relations are implemented, the following source code shows
the precondition relation among the goalsHoldTile and
FindTile:

public class Pre_HoldTile_FindTile
implements PreconditionRel

{
public Goal verifyRel(Goal goal1, Goal goal2)
{
if((goal1 instanceof HoldTile) &&

(goal2 instanceof FindTile))
return new FindTile;

return null;
}
...

}

When the player agent desires to pursue a goal, it checks
if this goal is involved in some relations and in that case
it reasons about them during the deliberation, means-ends,
and intention reconsideration processes. Thus, developers only
need to specify goals and relations among them at the design
time.

As an example, when the TWPA desires to fill a hole (i.e.
FillHole), according to the defined goal model and the
semantics described in section 2, the agent automatically will
check if it just holds a tile (i.e.HoldTile); if not, such a
goal will be desired. On the other hand, the agent will check
if it has found a hole (i.e.FindHole) and again, if not, it
will desire that.

Moreover, when pursuing the goalFillHole, the agent
will continuously check the success of all its dependee goals
(i.e. HoldTile) andmaintain them in case of failure.

It should be noted that the plan to pursue the goal

FillHole does not need to include the statements to desire
either the dependee (i.e.HoldTile) or precondition (i.e.
FindHole) goals, as shown in the following code fragment.

public class FillHolePlan extends GoalPlan
{
public void body() throws PlanExecutionException
{

String posPred = "pos(obj1: X,obj2: Y)";
AbsPredicate pos =

getBeliefBase().retrieveAbsPredicate(
AbsPredicateFactory.create(posPred));

int xPos = pos.getInteger("obj1");
int yPos = pos.getInteger("obj2");

doAction(new ReleaseTileAction(xPos, yPos,
twaServer.getHoleValue(xPos, yPos)));

...
}

...
}

The Tileworld domain highlights how the PRACTIONIST
goal model is particularly adequate to model dynamic envi-
ronments in a very declarative manner.

VII. CONCLUSIONS AND FUTURE WORK

In the PRACTIONIST framework, desires and intentions are
mental attitudes towards goals, which are in turn considered
as descriptions of objectives.

In this paper we described how a declarative representation
of goals can support the definition of desires and intentionsin
PRACTIONIST agents. It also supports the detection and the
resolution of conflicts among agents’ objectives and activities.
This results in a reduction of the gap between BDI theories
and several available implementations.

193

Fig. 5. TWPA’s goal model.

We also described how goals and relations are used by
PRACTIONIST agents during their deliberation process and
the execution of their activities; particularly it is described how
agents manages these activities by using the support for the
goal model shown in the previous sections.

It should be noted that, unlike several BDI and non-BDI
agent platforms, the PRACTIONIST framework supports the
declarative definition of goals and the relations among them,
as described in this paper. This provides the ability tobelieve
if goals are impossible, already achieved, incompatible with
other goals, and so forth. This in turn supports thecommitment
strategiesof agents and their ability to autonomously drop,
reconsider, replace or pursue intentions related to activegoals.

The ability of PRACTIONIST agents to reason about goals
and the relations among them (as described in section IV)
lets programmers implicitly specify several behaviours for
several circumstances, without having to explicitly code such
behaviours, letting agents figure out the right activity to
perform on the basis of the current state and the relations
among its potential objectives.

Goals can be adopted throughout the whole development
process. Thus, we are defining a development methodology
where goals play a central role and maintain the same seman-
tics from early requirements to the implementation phase.

As a part of our future strategy, we aims at extending the
proposed model with further properties of goals and relations
among them. Finally, we aim at applying the concepts and
the model described in this paper in the development of
real-world applications based on BDI agents.

Acknowledgments. This work is partially supported by
the Italian Ministry of Education, University and Research
(MIUR) through the project PASAF.

REFERENCES

[1] A. Lapouchnian, S. Liaskos, J. Mylopolous, and Y. Yu, “Towards
requirements-driven autonomic systems design,”Proceedings of the

2005 workshop on Design and evolution of autonomic application
software, pp. 1–7, 2005, aCM Press, New York, NY, USA.

[2] A. S. Rao and M. P. Georgeff, “BDI agents: from theory to practice,”
in Proceedings of the First International Conference on Multi—Agent
Systems. San Francisco, CA: MIT Press, 1995, pp. 312–319. [Online].
Available: http://www.uni-koblenz.de/f̃ruit/LITERATURE/rg95.ps.gz

[3] M. E. Bratman,Intention, Plans, and Practical Reason. Cambridge,
MA: Harvard University Press, 1987.

[4] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah,“Declarative
& procedural goals in intelligent agent systems,” inKR, 2002, pp. 470–
481.

[5] P. Busetta, R. Rnnquist, A. Hodgson, and A. Lucas, “Jack intelligent
agents - components for intelligent agents in java,” 1999.

[6] M. J. Huber, “Jam: A bdi-theoretic mobile agent architecture.” in Agents,
1999, pp. 236–243.

[7] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a
logical computable language,” inSeventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, R. van
Hoe, Ed., Eindhoven, The Netherlands, 1996. [Online]. Available:
citeseer.ist.psu.edu/article/rao96agentspeakl.html

[8] K. V. Hindriks, F. S. D. Boer, H. W. van der, and J. J. Meyer,
“Agent programming in 3APL,”Autonomous Agents and Multi-Agent
Systems, vol. 2, no. 4, pp. 357–401, 1999, publisher: Kluwer Academic
Publishers, Netherlands.

[9] L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt, “Goal repre-
sentation for bdi agent systems,” inSecond International Workshop on
Programming Multiagent Systems: Languages and Tools, 7 2004, pp.
9–20.

[10] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentino, and S. Gaglio,
“Practionist: a new framework for bdi agents,” inProceedings of the
Third European Workshop on Multi-Agent Systems (EUMAS’05), 2005,
p. 236.

[11] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-
compliant agent framework,” inProceedings of the Practical
Applications of Intelligent Agents, 1999. [Online]. Available:
http://jmvidal.cse.sc.edu/library/jade.pdf

[12] B. F. Chellas,Modal Logic: An Introduction. Cambridge: Cambridge
University Press, 1980.

[13] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
BDI-architecture,” inProceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA, 1991, pp. 473–484.
[Online]. Available: http://citeseer.nj.nec.com/rao91modeling.html

[14] M. E. Pollack and M. Ringuette, “Introducing the tileworld: Experimen-
tally evaluating agent architectures,”National Conference on Artificial
Intelligence, pp. 183 – 189, 1990.

194

