
A QoS-Aware Architecture for Multimedia Content
Provisioning in a GRID Environment

Fabrizio Messina, Giovanni Novelli, Giuseppe Pappalardo, Corrado Santoro, Emiliano Tramontana
Dipartimento di Matematica e Informatica

Università di Catania, Viale A. Doria, 6 - 95125 Catania, Italy
{messina, novelli, pappalardo, tramontana}@dmi.unict.it, csanto@diit.unict.it

Abstract— In this paper, we propose a mobile agent infras-
tructure to support “Quality of Service” (QoS) parameters in
multimedia content streaming. The infrastructure is able to
face the issues concerning multimedia content transformation,
in order to ensure that the client-side QoS is met. A Grid
computing platform is exploited and content adaptation is per-
formed through appropriate agents that are allocated as jobs and
executed on Grid hosts. A location service is therefore devised
and made available within the Grid system, which helps finding
the hosts whose geographic position and network connections
minimise the delays required to move the desired multimedia
content from the storage to the processing site, and (after suitable
transcoding) from this to the requesting client.

Keywords: mobile agents, agent-based applications, GRID,
QoS, Globus.

I. INTRODUCTION

Nowadays a large number of multimedia coding formats
exists. Each format not only needs a proper decoder/player
at the client side but also a different transport protocol fea-
turing timing characteristics that require a network offering
mechanisms to guarantee throughput, latency, packet loss
ratio, jitter, etc. [2], [14], [17]. Such “Quality of Service”
(QoS) requirements [10], if not fulfilled, can cause delays or
interruptions in content playing and thus result in a service
whose quality could be lower than expected.

As for coding scheme, even if some well-known general-
purpose players, like WindowsTM Media Player or Xine,
are able to support the majority of multimedia formats,
there are still some schemes (e.g. QuickTimeTM MOV or
RealplayerTM RAM) that require their own players. Moreover,
some players are not able to adapt the content to the quality
of the connection used by the client, which could be too
slow for the selected multimedia file, thus preventing proper
reproduction. As a result, sometimes a multimedia content
cannot be retrieved, played and used at client side, because the
player is not available, the protocol is not supported, the client
connection has not enough bandwidth or client performance
is inadequate.

The reason behind this is due to the fact that current multi-
media provisioning solutions give the client the responsibility
of adapting the received content to both client and network
capabilities. This may well be deemed unreasonable if we
think that, in general, servers have more computational power
and performances than traditional desktops or laptops, so
having them adapt the provided content to each client seems

more appropriate. Moreover, when multimedia provisioning
is not performed by single servers but a Grid computing
environment is employed [5], server-side on-line adaptation
of streaming becomes not only feasible but also preferable:
thanks to the ability of managing and offering a huge amount
of storage space and CPU power, a Grid can be used not
only to store and provide multimedia contents, but also to
perform multimedia transcoding in order to satisfy at best the
QoS parameters requested by the user, taking also into account
network capabilities.

By considering the issues and goals outlined, this paper
proposes a software architecture, based on mobile agents
running in a computational Grid, for multimedia content
provisioning and QoS satisfaction1. The main aspect of the
proposed solution is that it is able to share the content adap-
tation cost between the client and the server, thus overcoming
the problems described. A location service is also included,
which aims at finding the host whose geographic position
and network connections capabilities are able to minimise
the time required to move the desired multimedia content (i)
from the storage to the processing site, and (ii)—after suitable
transcoding—from this to the requesting client.

The paper begins (Section II) with a description of a use-
case that serves as a reference scenario to introduce the
basic model of the solution. Then Section III illustrates the
software architecture of the solution as integrated in a Grid
environment, thus explaining how the main services of a Grid
can be exploited for our purpose. Section IV describes the
prototype implementation of the architecture, which has been
developed, using GridSim. Section V discusses and compares
other approaches. Section VI concludes the paper.

II. USE-CASE SCENARIO AND SYSTEM MODEL

We consider a scenario in which a user asks for the retrieval
and playing of a multimedia content by means of a client
program or a web interface. We suppose that the client/player,
when it connects to the server, specifies some Quality of
Service (QoS) parameters regarding its capabilities, such as
encoding scheme it is able to support, the speed of the
connection used, etc. In particular, two sets of QoS parameters

1This work has been (partially) carried out within the Web-Minds,
QUASAR and PI2S2 projects, funded by the Italian Ministry of Education,
University and Research (MIUR), and the TriGrid VL project, funded by
Regione Sicilia.

60



Application QoS Network QoS
Encoding Scheme End-to-end Throughput

Compression Scheme End-to-end Throughput Jitter
Compression Ratio Propagation Delay

Sampling/Frame Rate Propagation Jitter
Picture Size Packet-loss ratio

Colors
Channels

TABLE I

APPLICATION AND NETWORK QOS PARAMETERS

can be considered, which are summarised in Table I and
explained in the following:

• Application QoS parameters. They are those param-
eters concerning application-level multimedia handling
and include encoding scheme, compression scheme and
compression ratio, for all types of contents, sampling
rate, sampling size and number of channels for audio
contents, and frame rate, picture size and number of
colors for video data.

• Network QoS parameters. They refer to the capability
of the network and subnetworks located on the path
from the client to the server. Such parameters include
the end-to-end throughput, the propagation delay, the
propagation jitter, etc.

When the server receives a client’s request, it has to try to
fulfill it by matching the parameters specified with those of
the multimedia content to be retrieved, also considering the
capabilities of the network that has to carry the streamed data:
if they differ or the network is not able to deliver the content
according to the requirements, an adaptation would be needed,
the complexity and feasibility of which depend on how much
requested and offered contents differ from each other, and the
type of conversions they imply.

Following such a use-case scenario, our solution aims at
proving an efficient and reliable way to perform content
transcoding and adaptation in order to fulfill at best the require-
ments of a client program. The basic model of the solution,
which is based on mobile agent technology, exploits two
agents, called ClientProxy and ServerProxy , running
on the client and the server respectively, which act as “proxies”
intercepting and adapting multimedia data. Basically (see Fig-
ure 1), the ClientProxy is designed as able to talk with the
client application/player; it knows client’s abilities in handle
multimedia data and thus its application QoS parameters. On
the other hand, the ServerProxy is able to handle both
client’s application QoS and the format of the multimedia
content requested. Both agents start at the client side and thus
both knows how to support the player characteristics, but the
ServerProxy is a mobile agent; when the content streaming
has to begin, the ServerProxy migrates to the server and
both agents start to collaborate as follows:

1) The ServerProxy agent retrieves multimedia content
and analyses it.

2) Both agents, according to the application QoS parameters
of both the client and the content, and knowing the

Client

Player

Server

Server Application

Client

Player

Migration

Server

Server Application

Protocol
Inter−agent

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

����

Proxy
Server

�	
�

Proxy
Client

Proxy
Server

Proxy
Client

Fig. 1. Working Scheme of the Solution

capabilities of the transfer link (network QoS parameters),
establish an inter-agent protocol in order to transfer
the multimedia content. Therefore, the ServerProxy
performs the appropriate conversions and QoS adaptions
to allow data transmission through the network with the
negotiated inter-agent protocol.

3) The ClientProxy agent receives the data using the
inter-agent protocol and performs the final conversions in
order to supply data to the player with application QoS
parameters requested.

Roughly speaking, this solution provides a significant ad-
vantage since it (basically) is able to avoid QoS loss. In
fact, traditional solutions are based on some general purpose
QoS translation algorithms running at server side, but such
algorithms are not able to cover all the possible cases needed
by a client. On the other hand, in the proposed solution, the
transcoding part running in the server—the ServerProxy —
originates from the client machine: it exactly knows what are
the client’s requirements and thus can encapsulate the right
algorithms to perform a correct transcoding.

A significant drawback of the solution is however the com-
putational power needed, at server side, to perform transcoding
in the case of many concurrent requests. To face such an issue,
we consider our solution as running on a Grid infrastructure
since it can provide the power needed; to this aim a suitable
architecture has been designed and detailed in the following
Section.

III. RUNNING TRANSCODING AGENTS IN A GRID

ENVIRONMENT

For obtaining the transcoding of a multimedia content,
agents are allocated and executed in capable hosts of a Grid
system. The most widespread software system used for Grid
environment is the Globus Toolkit (GT) [13]. This includes
services to access and monitor computing and data resources,
enforce security, allow users to send and execute their applica-
tions. Computing resources have a specialised role according
to their characteristics. Hence, a host providing a large amount
of storage space is a Storage Element (SE); a host holding a

61



certain number of CPUs that can execute jobs is a Computing
Element (CE); whereas users are able to log into GT, send
their commands and receive results, by means of a host called
User Interface (UI) [6], [4].

In order to determine the host where the transcoding agent
should run it is appropriate to take into account: (i) the
location of the agent, (ii) the location of the user requesting the
multimedia content, and (iii) the location of available hosts.

The services necessary for performing this selection are
provided by the architecture components described in the
following (see Figure 2).

In order to make the multimedia contents available to users,
these are initially transferred into available SEs. Each content
is characterised by its name, encoding, length, description,
size, etc.

A user requests a multimedia content, by running a client
software on his/her UI. The request is characterised by: (i) the
name of the multimedia content or its description, and (ii) the
needed encoding format.

The request is processed by service MuM (for Multimedia
Mining) that finds available versions of the content. When
transcoding from an available format to the requested version
is required, other services are involved in order to: find an
appropriate CE that will host one or more capable agents,
find and transfer both the source version of the content and
the transcoding agent into the selected CE. The output of
the transcoding agent, which is a new format for the initial
multimedia file, is then provided to the user on his/her UI and
also stored to some SE so as to better serve further requests
for the same file and for the newly available format.

A. Services for Selecting Hosts

The service MuM is able to find the locations of a user
requested multimedia content (see in Fig. 2 interactions (1,
2, 3)). MuM returns the location, in terms of SE address,
where each format of the content can be found. MuM is
organised as a repository based on the existing Grid Resource
Information Service (GRIS) [3]2. MuM’s data are updated
when new contents are inserted, new formats are available, and
existing ones are re-organised (e.g. moved to better support
accessing them).

Service Agent Locator (AL) is responsible to store the
location of transcoding agents. While agents are initially
stored only on the users’ hosts, they are re-located to several
CEs according to the requests for transcoding the multimedia
contents. To minimise the re-location overhead, agents are kept
on the CEs even when idle, i.e. after contents processing has
finished. Service AL traces where each agent is, thus when AL
is queried for a given transcoding agent (see (4) in Fig. 2), it
returns the list of CEs addresses where that agent is located.

Service CE Locator (CEL) traces the availability and CPU
capacity of CEs. This service initially asks known GRIS
about data concerning the number of hosts in a CE, and the
characteristics of the hosts, in terms of CPU type and amount

2GRIS is part of the Monitoring and Discovery Service (MDS) provided
by the Globus Toolkit.

of RAM. Additionally, CEL periodically asks the length of the
job queue on a CE. All these data are asked asynchronously
from a user query and stored locally by CEL. This helps
reducing the performance penalties given by the interactions
with GRIS. When an agent has to be allocated, CEL is asked
for available hosts (see (5) in Fig. 2) and returns a list of CE
addresses, whose hosts are idle or lightly loaded.

Finally, service Resource Finder (ReF) selects a CE for
hosting transcoding agents. In selecting a CE, ReF tries to
minimise latencies due to the network and achieve the shortest
response time for having the adapted content. Latencies are
calculated according to the following three “distances”: (i) the
“distance” d(SEi, CEj) between the SEs where the needed
content is stored (provided by MuM) and the available CEs
(provided by CEL); (ii) the “distance” d(CEj , UI) between
available CEs and UI; and (iii) the “distance” d(CEj , A(Hk))
between the available CEs and agent A that can be found in
one of several hosts Hk (the locations where agent A is found
is provided by AL).

Each “distance” is measured as the number of seconds
necessary to deliver 100Mb across two end points, thus it takes
into account both the available bandwidth and the latency, i.e.
the physical space that has to be crossed. Measures between
each two pairs of known sites are performed off-line and
stored.

The selected sites SE
′

i , CE
′

j , representing, respectively, the
host from which the source content will be loaded and the host
allocating the transcoding agent are those that minimise

d(SEi, CEj) + d(CEj , UI)

for i, j ranging over the available sets of SEi, CEj .
Once CE

′

j has been determined, the value d(CE
′

j , A(Hk))

is minimised, i.e. the host H
′

k is chosen from which the agent
will be transferred.

Note that ReF collects the necessary data and determines the
CE that should host the transcoding agents, the CE providing
such an agent, and the SE where the source multimedia content
is stored. In Fig. 2, they are CE1, CE2 and SE2, respectively.

In order to activate multimedia content transformation and
delivery, ReF submits a job to the selected CE, e.g. CE1, (see
(6) in Fig. 2). This job executes the following set of steps.
Firstly, it collects the necessary parts, i.e. the transcoding agent
from CE2 (6.1) and the multimedia content from SE2 (6.2).
Secondly, it executes the agent that will process the content.
Finally, the result of content transformation is directly passed
on to the user front-end.

B. Handling QoS for Multimedia Contents

In order to have a short response time between a user
request for a multimedia content and the transcoded version,
the capabilities of the supporting infrastructure, i.e. available
bandwidth and computing “power” have to be determined
beforehand.

The preferences set by a user in terms of frame size and
coding format for a multimedia content affect the activities that
are performed by the infrastructure to serve the user request.

62



Fig. 2. Overview of interactions between front-end and services.

One of these activities consists in the multimedia processing,
another one is the a priori reservation of bandwidth and hosts.

At least one capable host will be reserved to run the
transcoding agent. However, just one host could be not suf-
ficient for the necessary processing. When the estimation of
the time needed to sequentially transcode the content on a
single host would result in an output rate that is less than the
rate necessary to ensure that the content can be seen/listened
smoothly, then a parallel transcoding activity is organised.
For this parallel processing, the initial multimedia content
is fragmented and each chunk processed by an agent on a
dedicated host.

Let us first express the way we estimate the time needed to
transcode a content from a format to another.

We have processed several videos having different resolu-
tion (see Table II and III) and observed that processing time is
mainly related with the frame resolution and size in bytes of
the frames to be processed. I.e. for the same video, having e.g.
a resolution of 320x240 pixels, the processing time is almost
proportional to the size (in bytes) of the JPEG frame that has
to be transcoded.

TABLE II

CHARACTERISTICS OF SAME SAMPLE VIDEOS.

content source resolution length (s) size (MB)
chinese AVI 320x191 152 20.3
wr AVI 320x240 14 1.0
cartoon AVI 480x272 115 7.6
dhl AVI 640x480 43 17.7

In Table III, we report for several videos (whose character-
istics are found in Table II) the time in milliseconds necessary
to convert from AVI to MPEG, MJPEG, h263p and rv10 (see
the 4 right-most columns, respectively) several chunks of the
content lasting 2 seconds each and having 50 or 60 frames,
as indicated in the column frames. Transcoding is performed

from the set of frames (each stored as a JPEG file) and whose
overall size in megabytes is indicated in column size.

TABLE III

TRANSCODING TIME FOR SOME SAMPLE VIDEOS.

content frames size MPEG4 MJPEG h263p rv10
chinese 1– 50 0.27 87 79 107 110

51–100 1.51 181 156 179 181
101–150 1.25 182 139 180 183
151–200 1.35 191 148 189 188

wr 1– 50 2.28 247 212 244 238
51–100 1.69 204 180 200 206

101–150 1.76 204 186 205 202
151–200 1.55 193 170 193 194

cartoon 1– 60 1.76 240 240 230 250
61–120 1.64 280 260 300 290

121–180 3.32 380 340 370 380
181–240 4.10 470 400 450 450

dhl 1– 60 8.00 935 894 901 891
61– 120 6.77 853 738 835 842

121– 180 6.64 808 733 815 806
181– 240 8.95 956 905 953 923

The reported values are just an excerpt of the experiments
we have performed. In other experiments we have converted
the whole reported video, moreover other videos have been
processed in a similar way.

The estimation function for the time needed to transcode
into MPEG4, but the same applies to the other output formats,
is the trend function calculated according to the values stored
in a database of observed times. The resulting trend function
takes as input the resolution and frame size as parameters and
returns the estimated time.

In order to calculate the number of hosts needed for the
transcoding, we compare the estimated transformation time
and the length in seconds of the processed video. When
transformation time is greater than processed video then we
must use more than one host for the transformation and the

63



number of needed hosts is the minimum natural number bigger
than the ratio between transformation time and length.

Bandwidth reservation aims at readily transfer data from a
disk to the selected CE that will perform transcoding and from
the CE to the user device.

The amount of bandwidth necessary is calculated as the
ratio between size of the content and length (this is just an
approximation since the amount of bytes per frame are not
constant for the whole video).

IV. SIMULATING ENVIRONMENT

In order to assess the timing characteristics of the proposed
software infrastructure and how it reacts when a large number
of users send requests for accessing multimedia contents, we
are in the process of developing a model of the proposed
infrastructure using the simulation environment GridSim [8].
GridSim is a Java toolkit that can be programmed to simulate
a Grid system, thus it offers support, in terms of classes, for
simulating CEs, SEs, Virtual Organisations, etc.

In our proposed infrastructure, transcoding agents can move
and communicate within a Grid environment. The underlying
support for allowing such agents to move, communicate, etc. is
an agent-platform, such as Jade [1]. For simulation purposes,
on top of GridSim we have developed a class library that
models the activities of an agent platform (similar to Jade).
Such a library, called GAP (Grid Agent Platform), includes
the classes: AgentPlatform, AgentSite, and Agent.

Class AgentPlatform represents a federation of sites of-
fering facilities that allow agents to move, find each other,
communicate, etc. This class allows the access to services that
are expected from an agent platform, such as: (i) a registry
informing about available agents on any site, simulated as
class DirectoryFacilitator; and (ii) an observer for all the
movements of agents, simulated as class NetworkMonitor.

Class AgentSite is responsible to hold data about the
location and the state (e.g. running, stopped, idle) of existing
agents in a given CE within the Grid system. AgentSite
extends GridSim class GridSim and holds an instances of
GridSim class GridResource, which represents the CE.

Class Agent represents an agent and holds data about the
identifier, state, type, and size of the agent. Each Agent
instance simulates the computation performed by an agent,
which can be affected by events that are notified to it through
messages. The events that can affect an agents are: stop,
resume, terminate, and migrate. Messages are exchanged be-
tween agents while performing their computation. Each time
an agent migrates or change its state, both classes Directory-
Facilitator and AgentSite are informed. An Agent instance
simulates some processing by generating jobs and submitting
them into the CE where the agent is located. A generated job
is an instance of GridSim class Gridlet.

The network connections between CEs and SEs are mod-
elled according to GridSim class Link. Instances of such a
class are set with values representing bandwidth and delay of
the network link, as well as the instances of GridResource
it connects.

An additional User class models the user requests, thus the
ability to ask for a content and receive a result.

Along the above classes, all the services of the proposed
infrastructure (i.e. ReF, MuM, AL and CEL) are modelled as
classes that execute on the Grid system, process requests and
provide corresponding results.

For running a simulation, the number of CEs, transcoding
agents types and users are set. The number of instances of
AgentSite created is according to the the given number of CEs
chosen. Each AgentSite instance is set with a CE identifier.
Each type of transcoding agent is modelled as an instance of
Agent. Several instances of Agent are created and each is set
with: a value for the size of the code of the agent (in bytes); its
initial location, using an instance of AgentSite; and the state
of the agent, as idle. Finally, instances of User are created.

Once a simulation is executed, GridSim output is a report
that for each modelled class describes the number of received
requests, the amount of time necessary to process the requests,
the time spent waiting for replies, etc. This report will provide
valuable feedback on all the assumptions concerning the
expected time of network connections to transfer multimedia
contents, hosts to process fragments of contents, infrastructure
to select hosts for processing, etc.

V. RELATED WORK

Several existing approaches, including [7], [15], generate
off-line different transcoded versions of a multimedia content,
i.e. before users request a format this is prepared and stored
into the disk. Thus serving a request is just a matter of
reading the content from the disk. Of course, generating
different formats for a given content requires a large amount
of computing resources, thus these approaches recur to parallel
processing, using clusters of hosts, for the initial content.

An approach for the on-line transcoding of multimedia
contents by means of software system for a Grid environment
is proposed in [16]. In such an approach, a broker component
finds and dynamically allocates transcoding jobs on available
Grid resources, according to the incoming requests. Similarly
to our approach, the broker component selects capable and
unloaded host for ensuring a short response time. However,
we additionally take into account both static and dynamic
network conditions. Moreover, in this approach the server
hosts have to be equipped with all the necessary transcoding
libraries beforehand. In contrast, our approach employs agents
that move to available hosts, thus we do not need to install
transcoding support into all the Grid hosts.

On-line transcoding is also faced in [11], where the authors
propose a support for fitting multimedia content into mobile
devices connected to a wireless network. Transcoding, which
is based on changing frame size, color depth and Q-scale,
is performed inside a HTTP proxy, therefore the approach is
suitable to adaptation of video content that could be found on
the web. In contrast to our proposal, this approach considers
only some parameters that are fixed at server-side and does
not perform automatic parameter adaptation on the basis of
network connection monitoring. Moreover, in our approach

64



agents are dispatched from the client, they are aware of
the target player’s capabilities and are thus able to adapt
the content at best, taking also into account the varying
communication conditions.

When having to serve requests for contents, Content Deliv-
ery Network (CDN) [9] can bring benefits in terms of efficient
delivering, since contents are replicated and relocated by the
CDN according to request types and origins. Our approach is
aimed not only at finding the nearest location for the requested
multimedia content, but especially for on-the-fly generation of
new a content format through transcoding according to client
requirements.

Adaptive Web Systems (AWS) [12] provide unaware users
with customised versions of contents, selected at server side on
the basis of user profile, location, access mode, terminal, etc.
In contrast, our approach suggest that clients have an active
role in the content adaptation process, i.e. they are represented
by their agents for this purpose. In principle, this permits more
sophisticated and dynamic forms of adaptation, but of course
requires a supporting infrastructure and a more capable and
aware client.

VI. CONCLUSIONS

This paper has presented a mobile agent architecture for
multimedia content provisioning and QoS adaptation which
exploits a computational Grid, for its CPU power and storage
space availability. The basic working scheme of our proposal
entails two mobile agents, one at client side and the other at
server side, what cooperate with each other to perform mul-
timedia adaptation and transcoding, thus aiming at adapting
the QoS of the content to the QoS requested by multimedia
player.

The architecture consists of a set of components entailed
with the task of finding (i) the storage element that possesses
the multimedia content to be played and (ii) the computing
element where to host the mobile agent in charge of server-
side transcoding. To this aim, some metrics are introduced,
intended to minimize the distances between user and the
computing element, and between the latter and the storage
element where the multimedia content is stored.

In order to evaluate the feasibility of our solution, numerous
tests have been performed to determine the time taken by
various types of transcoding. A prototype implementation,
running with a simulation tools, has also been developed, in
order to evaluate not only the feasibility of the solution but
also its performances.

As a future work, our goal is to package the system as
a Globus Toolkit extension, so as to obtain a complete and
standard solution.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent
systems with a FIPA-compliant agent framework. Software - Practice
and Experience, 31(2):103–128, 2001.

[2] Anjali Bhargava and Bharat Bhargava. Measurements and Quality of
Service Issues in Electronic Commerce Software. In Proceedings of
IEEE International Conference on application-specific Software Engi-
neering and Technology (ASSET-99), Texas, March 24-27 1999.

[3] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. In Proceedings of
the 10th IEEE Symposium On High Performance Distributed Computing,
2001.

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration. In Open Grid Service Infrastructure WG, Global Grid
Forum, June 22 2002.

[5] Ian Foster and Carl Kesselman, editors. The Grid (2nd Edition):
Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 2004.

[6] Fabrizio Gagliardi, Bob Jones, Mario Reale, and Stephen Burke. Euro-
pean DataGrid Project: Experiences of Deploying a Large Scale Testbed
for E-science Applications. Lecture Notes in Computer Science, 2459,
2002.

[7] F. Gonzalez-Castano, R. Asorey-Cacheda, R. Martinez-Alvarez,
E. Comesana-Seijo, and J. Vales-Alonso. Dvd transcoding with linux
metacomputing, 2003.

[8] Grid Computing and Distributed Systems (GRIDS) Laboratory. Grid-
Sim: A Grid Simulation Toolkit for Resource Modelling and Ap-
plication Scheduling for Parallel and Distributed Computing, 2005.
http://www.gridbus.org/gridsim/ .

[9] Markus Hofmann and Leland R. Beaumont. Content Networking.
Morgan Kaufmann, 2005.

[10] ITU-T (CCITT). Recommendation. Terms and Definitions Related to
The Quality of Service and Network Performance including Depend-
ability, August 1994.

[11] Ricardo Oliveira Parixit Aghera, Advait Dixit and Vidyut Samanta.
Wireless middleware: Dynamic video transcoding. In Communication
Systems Software and Middleware, New Delhi, India, jan 2006.

[12] Mike Perkowitz and Oren Etzioni. Adaptive web sites. Communication
ACM, 43(8):152–158, 2000.

[13] The Globus Alliance. Home page and publications.
http://www.globus.org .

[14] Andreas Vogel, Brigitte Kerhervè, Gregor von Bochmann, and Jan
Gecsei. Distributed Multimedia and QoS: A Survey. IEEE Multimedia,
2(1):10–19, 1995.

[15] Gord Watts and Steve Forde. Grid Computing: A Practical Guide to
Technology and Applications, chapter Grid Enabling Software Applica-
tions, pages 252–263. Charles River Media, Hingham, MA, 2003.

[16] Angelo Zaia, Dario Bruneo, and Antonio Puliafito. A scalable grid-
based multimedia server. In Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE), pages 337–342, 2004.

[17] John A. Zinky, David E. Bakken, and Richard D. Schantz. Architectural
Support for Quality of Service for CORBA Objects. Theory and Practice
of Object Systems, January 1997.

65


