

Integrating Ontology Support within AgentService

Christian Vecchiola, Alberto Grosso, Antonio Boccalatte
DIST – Department of Communications Computer and System Sciences

University of Genova
{christian, agrosso, nino}@dist.unige.it

Abstract
This paper describes the software infrastructure
introduced within the AgentService framework in order to
provide support for ontology design, development, and
management. Ontology enriches and normalizes the
interaction among agents by establishing a domain and a
set of relation among objects populating that domain. A
good support for ontology definitely adds value to the
design and the implementation of software agents:
software engineers can take advantages of the services
offered by the framework to produce new ontologies and
rely on them to quickly define interaction protocols which
are automatically translated into state machines used by
software agents.

1. Introduction

In computer science the word ontology refers to “a
data model that represents a domain and is used to reason
about the objects in that domain and the relations between
them” [1]. Software ontologies are used in different fields
of computer science such as information architecture,
semantic web, and knowledge representation. In
particular, the adoption of software ontologies for
knowledge representation is very attractive: ontologies
contribute to provide a structure, a collection of well
identified concepts along with their properties, and
relations among them to a given knowledge base. For
these reasons, they are very useful for software agents
that base their activity mainly on the interaction with
peers and on reasoning about the environment.
Ontologies provide a structured and efficient way to
perform these tasks.

The translation of software ontology into a collection
of software artifacts representing it delivers to MAS
engineers a high level of abstraction helping them in
defining the interactions among agents. From a practical
point of view, a given software ontology establishes the
content of messages exchanged among agents and
provides facilities to validate them. Moreover, ontologies
are a good starting point for defining interaction protocols
which are the most common way to define a structured

dialogue among two entities. Hence, a good support for
ontology design, development, and management,
definitely gives an added value to agent programming
frameworks since it simplifies and empowers the activity
of MAS engineers.

This paper presents the collection of software
abstractions and tools integrated into AgentService [2]
which provides the framework with ontology design,
development, and management (hereafter ontology
service). The ontology service has been designed by
following the specifications provided by FIPA [3]. In the
next sections we will give a brief description of
AgentService and the agent model it proposes (Section 2),
then we will mostly concentrate on the entire process of
defining, implementing an ontology and using it to
support interaction protocol design and implementation
(Section 3 and 4). Conclusions will follow.

2. AgentService

In this section we will give a brief overview of the
AgentService framework by pointing out only those
aspects which are relevant to understand how the
ontology service is integrated into the framework.
Basically, we will describe the components of the
framework and we will present the agent model. For a
more detailed introduction please see [2].

2.1. The Framework

AgentService is a framework to implement distributed
multi-agent systems. It provides support for agent design
and implementation, multi-agent system implementation
management and monitoring. The components which
constitute the framework are the following:

• a flexible agent model through which different agent
architectures can be implemented;

• a library which defines the core of the system and the
basic services of the framework;

• a software environment that hosts multi-agent
systems and controls their life-cycle;

166

• a set of programming language extensions
simplifying the implementation of software agents;

• a collection of tools supporting users in designing
and implementing multi-agent systems;

• complete support for ontology definition and
development;

• automatic code generation for interaction protocols
with ontology integration;

• a software infrastructure allowing agents to migrate
among different instances of the AgentService
platform;

• a set of support programs through which users can
maintain and monitor multi-agent systems.

The core of the framework relies on the Common

Language Infrastructure (hereafter CLI) [4] and makes
the framework portable over different implementations of
this specification like Mono, Rotor, and .NET. The key
features of the framework are the agent platform which is
a modular hosting environment for software agents and
the agent model which will be investigated in the next
paragraph.

2.2. The Agent Model

The framework defines a software agent an
autonomous software entity whose activity is constituted
by a set of concurrent tasks and whose state is defined by
a set of shared objects. Concurrent tasks are referred as
behaviour objects while the term knowledge object is
used to identify the components of the agent state.

Behaviour objects encapsulates all the computational
activity of a given software agent while knowledge
objects define the elements composing its knowledge
base. The formers can be considered as simple little
programs which have their execution stack and can
communicate each other by using the shared knowledge
objects. Behaviour objects can access the runtime services
of the agent platform and query the FIPA management
agents (AMS, MTS, DF, and Ontology Agent) in order to
obtain information about the environment, the community
of agents and the services they offer; for example they
can query the Ontology Agent in order to know which
ontologies are registered in the platform and which agents
are able to understand messages belonging to a given
ontology.

Knowledge objects are data structures containing items
which are exposed as properties. They resemble a C struct
or a Pascal record, but are designed with a built support
for persistence and concurrent multiple accesses.
Knowledge objects define the knowledge base of a given
software agent and the collection of their properties along
with the execution state of each agent define the state of
an agent instance.

Agents can interpret roles into a given communication
protocol and they can publish this service through the DF
which makes this information available to the entire
community of agents. Interpreting a role makes the agent
able to participate into the communication protocol which
defines that role. This feature is implemented by
providing the agent with a behaviour object which
automatically executes the state machine defining the
role. This issue will be further detailed in the next section.

3. Ontology Support in AgentService

AgentService provides a complete support to ontology
design, implementation, and management. These three
functionalities are collectively referred as the ontology
service. The ontology service is based on the following
framework components:

• a set of classes representing the object model
defining all the elements required to represent an
ontology (classes, concepts, instances, attributes,
constraints, validation, etc);

• a set of tools that can be used to automatically
generate the specific classes for a given ontology by
starting from its visual or textual representation;

• an Ontology Agent (OA) which maintains the
knowledge about all the ontologies registered in the
hosting agent platform and about the agent which are
able to communicate by using the concepts defined
into a given ontology;

• FIPA SL0 [5] ACL message support.

As we can notice, from the previous list the framework

does not directly provide any facility to visually design
software ontologies. We decided to rely on a very well
know and established tool that is Protégé [6] a software
projects maintained by the KSI lab the Stanford
University. Protégé, when equipped with Jambalaya [7],
provides all the required features to quickly design a
given ontology. In the following we will briefly illustrate
the object model designed to support ontology definitions
in AgentService, the role of the Ontology Agent, and the
ontology development process.

3.1. Ontology Object Model

The design and the implementation of the object model
defining the ontology reflects the specifications outlined
in the corresponding FIPA standards [3] and has been
inspired by the type system designed in JADE [8] to
support ontologies. The object model defined within
AgentService defines a meta-ontology which contains all
the concepts and the elements which are required to
compose user defined ontologies. The meta-ontology

167

defines the following entities: predicate, term, concept,
query, action, variable, primitive, and aggregate. Figure
1 describes how these elements are connected each other.

Figure 1. Ontology elements hierarchy

The elements depicted in figure 1 define the domain in
which every communication based on a given ontology
takes place. User defined ontologies will provide specific
instances of these elements and MAS engineers will have
to specialize the abstract classes representing the entities
defined by the meta-ontology: the new classes will
represents the concepts, the queries, the actions, the
terms, etc. which are pertaining to the specific problem
domain. Ontologies are also described using schemas
which are generic objects used to describe any ontology
element and provides all the information to represent a
specific ontology without using ontologies specific
classes. Ontology schemas are used internally by the
framework in order to maintain a catalog of all the
ontologies registered, while ontologies specific classes
constitute the API used by software agents to hard-code
the communication based on a specific ontology. Agents
which can dynamically learn to use a given ontology by
exploiting the services of the OntologyDescriptor class
which automatically extracts all the useful information
about a given ontology. It retrieves all the schemas
defining the specific entities of the ontology and provides
also other useful information such as assembly location,
file versioning and type names. The implemented solution
is very flexible since it provides an efficient way of using
ontologies when they are statically identified, while, at
the same time, provides facilities to dynamically reflect1
ontologies.

AgentService also provides support for SL0 which is a
minimal subset of the FIPA ACL message specification.
The framework defines a set of classes able to represent
all the elements of SL0 plus the = (equals) predicate. In
order to communicate with a given ontology agents

1 The verb reflect is used in the sense of type reflection
which identifies a well know set of operation aimed to
extract information about the class type of a given object.

exchange messages which contains SL0 objects and a
specific message content has been designed (the
ACLMessageBody class) in order to transport SL0
statements.

The joint use of the ontology API and of SL0 as a
vehicle allows agents to easily communicate each other.

3.2. The Ontology Agent

In order to be compliant with the specification
provided by FIPA we have introduced the Ontology
Agent which is responsible of maintaining the catalog of
all the ontologies registered with the system and of
providing useful information to software agents. The
entire list of task that should be performed by the
ontology agent is the following:

• ontology discovery and publishing;
• ontology maintenance;
• ontology mapping and translation;
• shared ontology discovery.

The ontology agent provided with the framework
implements only the two features of the previous list
which are also the most important. We think that the
ontology mapping service is a very difficult task to
implement and requires some sort of inductive knowledge
in order to detect similarities among different knowledge
representations.

In order to be available to the community of agents the
Ontology Agent registers its service to the DF. Since we
have implemented a reduced set of task of the ontology
agent we decided to embed these functionalities directly
into the Directory Facilitator, by adding a specific
behaviour which performs these tasks. The community of
agents asks to the DF which agent provides the ontology
service and the directory facilitator returns its own agent
identifier. Hence, the implementation of this feature is
completely transparent to the community of agents which
only expect to obtain the address of the Ontology Agent
in order to query it.

3.3. Ontology Development Process

In order to make users feel at ease and increase their

productivity we adopt, as written above, Protégé in
conjunction with Jambalaya for defining AgentService
ontologies. Figure 2 describes the entire process that by
starting from the Protégé editor generates the assembly
containing the type definitions for the ontology which are
required by the AgentService framework.

Projects designed in Protégé can be exported into the
XML format and a tool provided with AgentService
automatically generates the corresponding object model,
writes the source code and compiles it into an assembly

168

which can be easily deployed into the agent platform or
used by the protocol designer. After the compilation
process takes place MAS engineers are provided with the
entire object model describing the ontology they designed
with Protégé. The assembly can be included into a generic
software project and used as a library, directly deployed
into the agent platform, or, as showed in figure 2, used
within the protocol designer.

Figure 2. Ontology code generation

4. Protocol Design and Implementation

AgentService provide facilities to design, to
implement, and to integrate interaction protocols into
multi-agent systems. Interaction protocols rely on the
ability of agents of communicate each other by using the
services offered by the MTS and the messaging
subsystem. The development of a protocol for
AgentService can be enhanced by using ontologies which
give a sound meaning and a well defined structure to the
messages exchanged during the interaction. AgentService
relies on the Microsoft Visio visual modeling
environment and provides a plug-in which allows users to
define interaction protocols by following the AUML
standard [9].

In particular by using protocol designer developers
can:

• design protocol steps for each agent role involved;
• adopt previously defined ontology for message

content;
• export the protocol in a format usable by

AgentService;

• design agents interpreting the roles through dedicated
behaviours.

The plug-in introduces a new stencil in the Visio
environment which contains all the elements to visually
compose the protocol, and a toolbar which allows to
automatically generate the code implementing the state
machines for the protocols. Such state machines can be
embedded into specific behaviour objects which are then
able to participate in the interaction protocol.

The next paragraphs analyze more in details how the
tool works, in particular some extensions of the AUML
basic elements are introduced and the code generation
process is explained.

4.1 Designing AUML elements

Agent UML proposes extensions to UML and idioms

within UML in particular for sequence e collaboration
diagrams. Sequence diagrams seem to be the best way to
design and represent agent in order to capture inter-agent
dynamics [10]. Two fundamental parts constitute the
diagram model a frame, which delimits the sequence
diagram, and the message flow between roles through a
set of lifelines and messages [11]. Hence the frame
element contains lifelines, sets of messages, and AUML
operators commonly called combined fragments. In
addition to the basic elements proposed by AUML
specification (lifeline, message, alternative, optional,
break, loop), we introduce some new features in order to
make the model effective from the AgentService point of
view.

Since the definition of the protocol is designed in order
to generate running code for AgentService platform, the
tool provides features for inserting lines of .NET code for
each role. In particular designers can write code in order
to manage exceptions during protocol execution or reply
to an error message received from a peer.

Messages are obviously the core of protocol
interactions; the tool provides two kinds of messages:
ontological messages and native messages. The designer
is integrated with the AgentService ontology system; in
order to adopt an ontology it is only necessary to indicate
the assembly containing it. Hence if a user wants to use
an ontology within a protocol, he has to select an SL0
operator and then choose the ontological elements
contained within the previously loaded ontology. In the
case the user does not adopt an ontology, he has to define
the fields composing the body of the message, specifying
the name and the type of the message element (the
message content of AgentService is strongly typed).

The tool allows developer to design peer-to-peer or
client-server communications defining the cardinality of
the agent roles involved in a protocol. AgentService
messages are asynchronous; in client-server protocol the

169

reception by the server is time-outed and the server
manages client interaction by adopting a round-robin
approach.

The AUML tool for AgentService allows users to
define guard conditions (for alternative and optional
statements) as Boolean expressions which very often
involve elements contained within messages previously
received. Hence the guard condition is not a simple label
but it is a fundamental element involved in the generation
of the code modeling the protocol.

Finally the AUML Loop operator is extended in order
to be able to clearly indicate the agent role that manages
the loop.

4.2 Code generation and execution of interaction
protocols

Starting from the model representing the interaction

protocol it is import to be able to generate agents playing
roles within the protocol and then execute them. The
designer only defines the structure of the protocol and
creates classes targeting the AgentService object model
which represent the state machine executing the
interaction protocol. It is up to the agent playing a
specific role to complete the state machine generated by
the tool with all the information it needs.

Figure 3. Protocol development process

Figure 3 describes the protocol development process:
interaction protocols can either be exported into XML
format or into assemblies which can be directly used to
program software agents. Both of the two representations
contain the same information: the first is mainly used to
maintain a textual representation of the protocol and to
export it to third party applications, while the second is

the most important since it actually allows the use of
protocols inside the framework. Given an XML or a
visual representation of the interaction protocol, the
protocol compiler generates an assembly containing the
following entities:

• the definition of the protocol object model;
• the definition of state machines implementing the

roles defined in the interaction protocol;
• the definition of the interfaces types used by the state

machines to customize the execution flow of the
protocol.

Software agents, in order to participate into a protocol,

have to interpret one of the roles defined in the protocol.
This role is interpreted by adding a behaviour object
which executes the state machine defining the role; such
behaviour object has to implement the interface required
by the state machine and through the methods exposed by
this interface interacts and controls, when possible, the
execution of the state machine. The customization level
provided by interface is required, for example, in order to
let the agent choose among different alternatives and then
drive the execution of the protocol.

The state machines automatically handle all the
exceptions that can occur while executing the protocol
(i.e. wrong or malformed messages, etc.) and the
behaviour objects running the state machine can be
informed about these exceptions through specific events.

4.2 Related works

There are some interesting works based on Agent

UML involving the definition of design tools. Ehrler and
Cranefield propose a Plug-in for Agent UML Linking
(PAUL) [12] based on the FIPA-compliant agent platform
Opal [13] and the Eclipse Modeling Framework. In
particular this tool uses the UML Object Constraint
Language (OCL) [14] in order to define the input and
output of the operations an agent can perform within a
protocol. Our design tool does not require the definition
of I/O data for protocol operations; agents playing a
protocol role have access to all the content of the
messages received during the interaction and of course
can consult their knowledge base.

Winikoff [15] precisely defines the syntax of a subset
of AUML by using a textual notation; he provides a tool
for designing diagrams in order to support the notation.
This tool cannot generate code for the models that have to
be implemented manually.

Viper [16] is a graphical editor based on the earlier
version of AUML that can generate code for
AgentFactory [17]. The tool, in the implementation phase,
involves users for populating the protocol with
customized agent code, which together with code

170

automatically generated to reflect the protocol semantics
is compiled into useable agent designs. Hence the tool
generates a skeleton of code implementing the protocol
and users have to complete and compile it. Instead the
AgentService protocol designer generates an assembly
containing the classes representing the state machine of
the protocol and a programming interface that users can
implement in order to customize agent operations. Viper
is not provided with an ontology system.

5. Conclusions

In this paper we presented the software infrastructure

introduced into the AgentService framework in order to
support ontology design, implementation, and
management. Software ontologies are a high level
abstraction which is very useful for identifying the
concepts of a problem domain, to define their relation,
and to reason about them. Ontologies give an added value
to the interaction among software agents since they
provide facilities to define a communication and to
validate messages.

The support provided by AgentService covers, either
directly or not, all the activities previously cited:
AgentService relies on Protégé in order to define a new
ontology and translates the representation provided by
Protégé into a collection of classes fitting the object
model defined into the framework. These classes can be
easily used to define a conversation among software
agents: messages can be verified against a specific
ontology and eventually discarded if spurious. By
querying the ontology agent we can dynamically inspect
the ontology catalog maintained in every multi-agent
system and extract useful information about their
structure, such information can be easily used in order to
start a communication with agents which know that
ontology.

Software ontologies can also be useful to define
structured conversations among agents since they
completely define the content of the exchanged messages.
AgentService provides a useful tool to visually define
interaction protocol integrated with the ontology service:
it is then possible to start from the definition of the
problem domain with Protégé, translate that
representation into a software ontology, build an
interaction protocol based on those concepts, and produce
a state machine which can be directly used by software
agents to interpret roles. All this process can be
performed without writing a line of code thanks to the
supports provide by the framework.

Nonetheless, the ontology service can be improved:
now AgentService provides support only for the SL0
subset of the FIPA ACL specification while a complete
implementation of the SL2 specification is still to come.
Moreover, a more complete service provided by the

ontology agent has to be implemented in order to be
completely compliant with the FIPA specifications.

6. References

[1] Wikipedia, definition of software ontology, available at
http://en.wikipedia.org/wiki/Ontology (computer sci-ence).

[2] C. Vecchiola, A. Grosso, A.Gozzi, and A. Boccalatte,
“AgentService”, Proceedings of the 16th International
Conference on Software Enginnering and Knowledge
Engineering (SEKE04), Banff, Alberta Canada, KSI Publisher,
2004.

[3] FIPA, “FIPA Ontology Service Specification”, 2001,
[Online document], Availabe at
HTTP:http://www.fipa.org/specs/fipa00086/XC00086D.pdf.

[4] Standard ISO/IEC 23271:2003: Common Language
Infrastructure, March 28, 2003, ISO.

[5] FIPA, “FIPA SL Content Language Specification”, [Online
document] available at HTTP:
http://www.fipa.org/specs/fipa00008/SC00008I.html.

[6] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso,
M. Crubezy, H. Eriksson, N. F. Noy, and S. W. Tu, “The
Evolution of Protégé: An Environment for Knowledge-Based
Systems Development”, Stanford Knowledge System Lab,
2002.

[7] M. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R.
Fergerson, and N. Noy, “Jambalaya: Interactive visualization to
enhance ontology authoring and knowledge acquisition in
Protégé”, Workshop on Interactive Tools for Knowledge
Capture, Victoria, BC, Canada, 2001.

[8] G. Caire, “Jade Tutorial – Application-defined Content
Languages and Ontologies”, 2002.

[9] J. Odell, H. V.D. Parunak, and B. Bauer, “Extending UML
for agents”, Proceedings of Agent-Oriented Information Systems
Workshop (AOIS-00), 2000.

[10] J. Odell, H. V.D. Parunak, and B. Bauer, “Representing
agent interaction protocols in uml”, Paolo Ciancarini and
Michael J. Wooldridge Editors, Agent-Oriented Software
Engineering, No. 1957 in LNCS, pp. 121–140, Springer Verlag,
2000.

[11] FIPA. “FIPA Interaction Protocol Library Specification”,
2001. [Online document], Availabe at HTTP:
http://www.fipa.org/specs/fipa00025/XC00025E.pdf.

[12] L. Ehrler and S. Cranefield, “Executing agent UML
diagrams”, Proceedings of the third international conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp.
906–913, 2004.

171

[13] M. Purvis, S. Cranefield, M. Nowostawski, and D. Carter,
“Opal: A Multi-Level Infrastructure for Agent-Oriented
Software Development”, Information Science Discussion Paper
Series, No. 2002.

[14] J. B. Warmer and A. G. Kleppe, “The Object Constraint
Language: Getting your models ready for MDA”, Addison-
Wesley, 2nd edition, 2003.

[15] M. Winikoff, “Towards Making Agent UML Practical: A
Textual Notation and a Tool”, First international workshop on
Integration of Software Engineering and Agent Technology
(ISEAT 2005), Melbourne, Australia, 2005.

[16] C. Rooney, R. Collier, and G. M. P. O’Hare, “VIPER:
Visual Protocol EditoR”, 6th International Conference on
Coordination Languages and Models (COORDINATION 2004),
2004.

[17] R. Collier, “Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications”, Ph.D. Thesis,
Department of Computer Science, University College Dublin,
Ireland, 2001.

172

