
WOA 2006
Dagli Oggetti Agli Agenti

Sistemi Grid, P2P e Self-*

Catania (Italia), 26-27 Settembre 2006

Atti delle giornate di lavoro a cura di:

Flavio De Paoli, Antonella Di Stefano
Andrea Omicini, Corrado Santoro

Organizzato da:
Associazione Italiana per l’Intelligenza Artificiale
Associazione Italiana Tecnologie Avanzate basate su concetti Orientati ad Oggetti

Con il patrocinio della Facoltà di Ingegneria dell’Università degli Studi di Catania

PREFAZIONE

Le tecnologie degli agenti stanno assumendo un ruolo centrale non solo nel settore dell’in-
telligenza artificiale, ma anche in settori più tradizionali dell’informatica quali l’ingegneria del
software e i linguaggi di programmazione, dove il concetto di agente viene considerato una
naturale estensione di quello di oggetto. L’importanza di queste tecniche è dimostrata anche
in campo industriale dall’interesse per il loro utilizzo nella realizzazione di strumenti e applica-
zioni in molteplici aree.

Ormai giunto alla sua settima edizione, il workshop “WOA: dagli Oggetti agli Agenti” costitui-
sce un’usuale occasione di scambio di idee per tutti i ricercatori che operano nell’ambito dei
sistemi ad agenti. L’edizione 2006, svoltasi dal 26 al 27 Settembre presso la Facoltà di Ingegne-
ria dell’Università di Catania, è stata patrocinata dall’Associazione Italiana per l’Intelligenza
Artificiale (AI*IA) e dall’Associazione Italiana Tecnologie Avanzate Basate su concetti Orientati
ad Oggetti (TABOO). Questa edizione ha avuto come tema principale i Sistemi GRID, Self-* e
Peer-to-Peer, anche se gli articoli presentati hanno poi spaziato su varie tematiche relative al
mondo degli agenti software. Una novità introdotta quest’anno è stata la “sessione demo”,
uno spazio riservato a tutti coloro che desideravano dimostrare ai partecipanti al workshop i
propri prototipi di sistemi software ad agenti. Inoltre il workshop è stato preceduto, il giorno 25
Settembre 2006, da una miniscuola per studenti di dottorato e laureandi che ha consentito
alle nuove leve della ricerca di conoscere nel dettaglio e discutere produttivamente alcune
tra le tematiche principali del mondo della ricerca sui sistemi ad agenti.

Il Comitato Scientifico Organizzatore desidera esprimere un vivo ringraziamento a tutti co-
loro che hanno contribuito al successo di questa settima edizione di WOA: gli autori degli
articoli inviati, i componenti del comitato di programma per il lavoro di revisione, la Facoltà
di Ingegneria dell’Università di Catania, gli organizzatori locali e tutti collaboratori che hanno
partecipato all’organizzazione.

IL COMITATO SCIENTIFICO ORGANIZZATORE
Flavio De Paoli, Antonella Di Stefano

Andrea Omicini, Corrado Santoro

ii

COMITATO SCIENTIFICO ORGANIZZATORE
Flavio De Paoli Università di Milano - Bicocca
Antonella Di Stefano Università di Catania
Andrea Omicini Università di Bologna - Cesena
Corrado Santoro Università di Catania

ORGANIZZAZIONE SESSIONE DEMO
Alfredo Garro Università della Calabria

COORDINATORE MINISCUOLA
Matteo Baldoni Università di Torino

COMITATO ORGANIZZZATORE LOCALE
Antonella Di Stefano Università di Catania
Giuseppe Pappalardo Università di Catania
Corrado Santoro Università di Catania
Emiliano Tramontana Università di Catania

COMITATO DI PROGRAMMA
Stefania Bandini Università di Milano - Bicocca
Pietro Baroni Università di Brescia
Carlo Bellettini Università di Milano
Federico Bergenti Università di Parma
Lorenzo Bettini Università di Firenze
Enrico Blanzieri Università di Trento
Paolo Bouquet Università di Trento e IRST
Nadia Busi Università di Bologna
Giacomo Cabri Università di Modena e Reggio Emilia
Marco Cadoli Università di Roma La Sapienza
Nicola Cannata Università di Camerino
Massimo Cossentino ICAR-CNR, Palermo
Francesco Donini Università di Tuscia - Viterbo
Rino Falcone ISTC-CNR, Roma
Giancarlo Fortino Università di della Calabria
Alfredo Garro Università di della Calabria
Laura Giordano Università di Piemonte Orientale
Letizia Leonardi Università di Modena e Reggio Emilia
Marco Mamei Università di Modena e Reggio Emilia
Sara Manzoni Università di Milano - Bicocca
Viviana Mascardi Università di Genova
Emanuela Merelli Università di Camerino
Rebecca Montanari Università di Bologna
Maria Teresa Pazienza Università di Roma - Tor Vergata
Paola Quaglia Università di Trento
Alessandro Ricci Università di Bologna - Cesena
Giovanni Rimassa Whitestein Technologies, Zurich, Switzerland
Carla Simone Università di Milano - Bicocca
Paolo Torroni Università di Bologna
Emilio Tuosto University of Leicester, UK
Eloisa Vargiu Università di Cagliari
Mario Verdicchio Politecnico di Milano
Mirko Viroli Università di Bologna - Cesena
Giuseppe Vizzari Università di Milano - Bicocca

iii

DIRETTIVO WOA
Giuliano Armano Università di Cagliari
Matteo Baldoni Università di Torino
Antonio Corradi Università di Bologna
Flavio De Paoli Università di Milano - Bicocca
Emanuela Merelli Università di Camerino
Andrea Omicini Università di Bologna - Cesena
Agostino Poggi Università di Parma
Franco Zambonelli Università di Modena e Reggio Emilia

WEBMASTER
Giovanni Morana Università di Catania
Daniele Zito Università di Catania

PRODUZIONE ATTI
Vincenzo Nicosia Università di Catania

iv

INDICE

PROTOTIPI DI SISTEMI AD AGENTI
simpA-WS: An Agent-Oriented Computing Technology for WS-based SOA Applications
Alessandro Ricci, Claudio Buda, Nicola Zaghini, Antonio Natali,
Mirko Viroli, Andrea Omicini . 1

PRACTIONIST: a Framework for developing BDI agent systems
Vito Morreale, Susanna Bonura, Giuseppe Francaviglia, Michele Puccio, Fabio Centineo,
Giuseppe Cammarata, Massimo Cossentino, Salvatore Gaglio . 4

Simulation of Minority Game in TuCSoN
Enrico Oliva, Mirko Viroli, Andrea Omicini .6

Software Agents for Learning Nash Equilibria in Non-Cooperative Games
Alfredo Garro, Marco Iusi . 10

A multidimensional flocking algorithm for clustering spatial data
Antonio Augimeri, Gianluigi Folino, Agostino Forestiero, Giandomenico Spezzano 16

MetaMeth: a Tool For Process Definition And Execution
Roberto Caico, Massimo Cossentino,Luca Sabatucci, Valeria Seidita, Salvatore Gaglio21

Model driven design and implementation of activity-based applications in Hermes
Ezio Bartocci, Flavio Corradini, Emanuela Merelli, Leonardo Vito . 25

The W4 Model and Infrastructure for Context-aware Browsing The World
Gabriella Castelli, Alberto Rosi, Marco Mamei, Franco Zambonelli . 32

A Heterogeneous Multi-Agent System for Adaptive Web Applications
Andrea Bonomi, Giuseppe Vizzari, Marcello Sarini . 66

J-ALINAs: A JADE-based Architecture for Linguistic Agents
Savino Sguera, Armando Stellato, Donato Griesi, Maria Teresa Pazienza . 83

Software Agents for Autonomous Robots: the Eurobot 2006 Experience
Vincenzo Nicosia, Concetto Spampinato, Corrado Santoro . 90

SISTEMI SELF-*, SISTEMI AUTONOMICI, GRID COMPUTING
The W4 Model and Infrastructure for Context-aware Browsing The World
Gabriella Castelli, Alberto Rosi, Marco Mamei, Franco Zambonelli . 32

Mechanisms of Self-Organization in Pervasive Computing
Nicola Bicocchi, Marco Mamei, Franco Zambonelli . 41

An Agent Model for Future Autonomic Communications
Francesco De Mola, Raffaele Quitadamo .51

A QoS-Aware Architecture for Multimedia Content Provisioning in a GRID Environment
Fabrizio Messina, Giovanni Novelli, Giuseppe Pappalardo,
Corrado Santoro, Emiliano Tramontana . 60

v

APPLICAZIONI AD AGENTI
A Heterogeneous Multi-Agent System for Adaptive Web Applications
Andrea Bonomi, Giuseppe Vizzari, Marcello Sarini . 66

MAST: an Agent Framework to Support B2C E-Commerce
Salvatore Garruzzo, Domenico Rosaci, Giuseppe M. L. Sarnè . 76

J-ALINAs: A JADE-based Architecture for Linguistic Agents
Savino Sguera, Armando Stellato, Donato Griesi, Maria Teresa Pazienza . 83

Software Agents for Autonomous Robots: the Eurobot 2006 Experience
Vincenzo Nicosia, Concetto Spampinato, Corrado Santoro . 90

Building a MultiAgent System from a User Workflow Specification
Ezio Bartocci, Flavio Corradini, Emanuela Merelli . 96

Agent-Based Virtual Communities for Interactive Digital Television
Federico Bergenti, Lorenzo Lazzari, Agostino Poggi . 104

Distributed Workflow Enactment: an Agent-based Framework
Giancarlo Fortino, Alfredo Garro, Wilma Russo .110

A Lightweight Architecture for RSS Polling of Arbitrary Web sources
Sergio Bossa, Giacomo Fiumara, Alessandro Provetti . 118

AGENT-ORIENTED SOFTWARE ENGINEERING, SIMULAZIONE E LINGUAGGI AD AGENTI
Building Agents with Agents and Patterns
Luca Sabatucci, Massimo Cossentino, Salvatore Gaglio . 124

A repository of fragments for agent system design
Valeria Seidita, Massimo Cossentino, Salvatore Gaglio . 130

Expressing preferences declaratively in logic-based agent languages
Stefania Costantini, Pierangelo Dell’Acqua, Arianna Tocchio . 138

Models, Abstractions and Phases in Multi-Agent Based Simulation
Mizar Luca Federici, Stefano Redaelli, Giuseppe Vizzari . 144

COORDINAMENTO, INTEROPERABILITÀ, SEMANTICA
Conformance and Interoperability in Open Enviroments
Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti . 151

Importing Agent-like Interaction in Object Orientation
Matteo Baldoni, Guido Boella, Leendert van der Torre . 158

Integrating Ontology Support within AgentService
Christian Vecchiola, Alberto Grosso, Antonio Boccalatte . 166

Collective Sorting Tuple Spaces
Matteo Casadei, Luca Gardelli, Mirko Viroli .173

vi

Minority Game: A Logic-Based Approach in TuCSoN
Enrico Oliva, Mirko Viroli, Andrea Omicini . 181

Reasoning about Goals in BDI Agents: the PRACTIONIST Framework
Vito Morreale, Susanna Bonura, Giuseppe Francaviglia, Fabio Centineo187

vii

simpA-WS: An Agent-Oriented Computing
Technology forWS-based SOA Applications
Alessandro Ricci, Claudio Buda, Nicola Zaghini, Antonio Natali, Mirko Viroli, Andrea Omicini

DEIS, Universit̀a di Bologna Alma Mater Studiorum
Cesena (FC), 47023 Italy

Emails:{a.ricci, claudio.buda, nicola.zaghini, antonio.natali, mirko.viroli, andrea.omicini}@unibo.it

Abstract— This document briefly describessimpA-WS, a Java-
based agent-oriented computing technology to flexibly and ef-
fectively implement WS-I compliant SOA/WS applications—i.e.
Web-Service applications with a Service-Oriented Architecture—
both on the user side and the service side.

I. I NTRODUCTION

simpA-WS is a Java-based technology that makes it possi-
ble to build WS-I SOA/WS compliant applications adopting an
agent-oriented style in designing and developing the systems.
simpA-WS is based on ofsimpA model and technology
[1], an agent-orientedextension of the Java Object-Oriented
computational model providing high-level abstractions for
designing and developing complex software systems.

On the one side,simpA-WS provides a framework API to
build user applicationsin terms of sets of agents that flexibly
interact and use Web Services compliant with the WS-I Basic
Profile [12], represented asartifacts in agent workspaces. On
the other side,simpA-WS provides an API framework and
a middleware for building WS-I compliant Web Services in
terms of set of agents as providers of the services.

A. Human Cooperative Working Environments as Background
Metaphor

To tackle the complexity of modern and future software
systems,simpA introduces agents and artifacts as high-
level abstractions to design and build distributed / concurrent
software systems. This is theA&A (Agents andArtifact)
conceptual model [16], [15], [10], based on inter-disciplinary
studies involving Activity Theory and Distributed Cognition
as main conceptual background frameworks [9].

A&A metaphors are taken from human cooperative working
environments, where “systems” are composed by individual
autonomous entities which pro-actively carry on some kind of
activities or tasks, both individual and cooperative, typically
requiring forms of interaction and coordination with other
individuals. A fundamental aspect of such a picture is the
context —or theenvironment— that makes it possibile to such
activities to take place.Artifactsdesigned and built by humans
are an essential part of such a context, both as outcome of
the activities and as thetools exploited by humans to support
and realise them. Artifacts can be then resources and objects
constructed during the activities, but also whatever tools is
used to support humans communication, coordination, and—
more generally—cooperative working activities. The overall

picture is given byworkspaceswhere ensembles of individuals
work and interact in a coordinated manner, by communicating
and sharing / using the same artifacts, so as to achieve some
kind of objective.

A&A brings this metaphor down to software engineering,
conceiving a software system as one or multiple workspaces
where ensembles of autonomous entities—the agents—execute
their working activities and interact by co-constructing, shar-
ing and using artifacts, analogously to the human case.

simpA provides agents and artifacts as basic high-level
building blocks to decompose and structure complex systems,
in particular:

• agents are provided as first-class abstractions to model
and designpro-active entities, i.e. entites programmed
so as to autonomously execute some kind activity—
composed by one or moretasks—encapsulating the con-
trol of such activities;

• artifacts are provided as first-class abstractions to model
and design what is used or constructed by agents during
their activities, including resources, tools, devices: any
passiveentity encapsulating some kind of functionality,
exposed by a proper interface;

• workspacesare the logical place where agents and arti-
facts are immersed, used to give a topology to the overall
activities, and then partition the application environment.

Objects and classes are used as basic abstractions to define
data structures to build agents and artifacts.

B. A&A for Implementing SOA / Web Service Applications

simpA-WS makes it possible to exploit theA&A approach
and simpA for implementing SOA and Web-Service appli-
cations, following the basic architectured described in W3C
documentation [17](see Fig. 1).

UsingsimpA-WS both service users and providers are mod-
elled assimpA agents, as pro-active entities that respectively
(i) need to access and use services in their working activities,
encapsulating the business logic of user applications, and(ii)
process the requests and messages for services, encapsulating
the service business logic. In both cases, artifacts are used as
high-level mediating entities functioning as interfaces, encap-
sulating the technology needed to enable the interaction using
WS-* standards. In particular (refer to Fig. 2 and Fig. 3):

• on the user side, a specific kind of artifacts – calledWS-
Artifact — is provided to make it possible forsimpA

1

Fig. 1. Web Service Service Model according to W3C

agents to access and use what ever existing Web Service,
by simply creating and using instances of such an artifact;

• on the service side, artifacts calledService-Artifacts are
provided to make it possible forsimpA agents to get and
process the messages delivered to a specific Web Service,
again by simply creating and using instances of such an
artifact.

The adoption of the agent level of abstraction, and in particular
of agents and artifacts basic building blocks, makes it possible
to exploit a fully uncoupled approach for modelling and realis-
ing interaction with Web Services, as required by true service-
oriented architecture [6]. On the one side, agentsuse Web
Services by executing operations onWS-Artifact artifacts, by
means of fully asynchronousactions. On the other side, agents
perceivepossible information or result generated Web Services
by observing events — throughsimpA sensingprimitives —
generated by such artifacts.

II. SYSTEM REQUIREMENTS

CurrentlysimpA-WS can run on any Java-based platform,
version 5.0. Consequently, it can be seamlessly deployed
on machines with different kind of operating systems and
hardware configuration. A light-weight version is planned, in
order to port simpA-WS—the API for implementing user
application in particular—on J2ME, the Java platform for
mobile devices, so as to implement user applications on top
of J2ME-enabled smart phones / devices.

III. D ESIGN AND IMPLEMENTATION

Fig. 2 and Fig. 3 provide an overview of the architecture of
the simpA-WS technology, respectively on the user side and
the service side. Fig. 4 shows a mixed and articulated case,
where services are themselves users of other services.

simpA and simpA-WS are fully developed in Java, and
exploit apache Axis2 open-source libraries [7] for realising

Web Service
(WSDL Y)

WS-Artifact
con WSDL Y

WS-Artifact
con WSDL X

Agent

Agent

Agent

Web Service
(WSDL X)

Environment

WS-USER APPLICATION

simpA-WS

Java / JVM 5.0

AXIS2
tuProlog

simpA

Fig. 2. Abstract architecture ofsimpA-WS user applications

ServiceArtifact
with WSDL X

Agent

Environment

SERVICE APPLICATION

Web Servìce
Container +
the meta-ws
dynamically configured
with WSDL X

WS Msgs,
requests
responses

AXIS2 Web Service
Container

Tomcat 5.0.5

TuCSoN
Infrastructure

tuple centres

Java / JVM 5.0

simpa-WS meta-ws

Java / JVM 5.0
simpA-WS

TuCSoN
APItuProlog

simpA

Java / JVM 5.0

Fig. 3. Abstract architecture ofsimpA-WS service applications

low-level SOAP-based interaction with Web Services on the
user side and as Web Service container on the service side,
on top of Tomcat apache Java-based Web Server [8].

simpA and simpA-WS internally exploits tuProlog [5]
andTuCSoN [11] research technologies, respectively a light-
weight Java-based Prolog interpreter and a tuple-based agent
coordination infrastructure.

IV. A SAMPLE APPLICATION

Among the examples provided withsimpA-WS distribu-
tion, a supply-chain sample application is provided, following
the reference sample application defined by WS-I organisation,
available among the deliverables at WS-I Web Site [13]. The
supply-chain example is one among the illustrative scenarios
defined by the WS-I Sample Applications Working Group
to show the benefits of having interoperable Web services
applications, and to demonstrate the application of the WS-
I profiles to those scenarios.

2

ServiceArtifact
configured
with WSDL X

Agent

Environment

SERVICE APPLICATION

Agent

Agent

WS-Artifact

Agent

Fig. 4. Abstract architecture of mixedsimpA-WS applications

V. simpA-WS IN REAL-WORLD AND INDUSTRIAL

APPLICATIONS

simpA-WS is one of the technologies experimented for
implementing SOA-based applications in the context of STIL
(“Strumenti Telematici per l’Interoperabilità delle reti di imp-
rese: Logistica digitale integrata per l’Emilia-Romagna”).

STIL is a 2-years project funded by Emilia-Romagna, in the
context of the “Iniziativa 1.1 del Piano Telematico Regionale”
initiative [14]. The project has been funded to push and
improve the research activities in Emilia-Romagna targeted
to exploit innovative ICT technologies for the creation of a
global digital logistic district. Among the objectives, STIL
is dedicated to the creation of virtual organizations grouping
together different kind of actors directly or indirectly involved
in the logistic supply-chain, providing them effective ICT
supports for integrating and innovating their business.

For the purpose, a SOA-based infrastructure has been con-
ceived, designed and implemented to enable interoperability
among the different participants. The STIL infrastructure is
meant to provide an effective support for enabling commu-
nication, coordination and cooperation among the open and
heterogeneous kind of WS-based applications and services.
simpA-WS is currently experimented as one of the state-
of-the-art technologies for implementing the applications and
services, and first results are available on STIL web sites [14],
[3].

VI. I NDUSTRIAL SUPPORT ANDDISTRIBUTION

simpA andsimpA-WS are open-source projects, and can be
freely downloaded and used for research and non-commercial
purposes from related web sites [1], [2]. Besides the open-
source prototypes, an industrial-version of the technology will
be available as commercial product distributed byIRIS [4], a
start-up spin-off company hosted in Cesena.

REFERENCES

[1] The aliCE Research Group. simpA official web site.
http://www.alice.unibo.it/projects/simpa.

[2] The aliCE Research Group. simpA-WS official web site.
http://www.alice.unibo.it/projects/simpa-ws.

[3] aliCE-Unibo research unit. The STIL-UNIBO project web site.
http://www.alice.unibo.it/projects/stil.

[4] The IRIS Company.IRIS official web site. http://www.irislab.eu.
[5] Enrico Denti, Andrea Omicini, and Alessandro Ricci. Multi-paradigm

Java-Prolog integration intuProlog.Science of Computer Programming,
57(2):217–250, August 2005.

[6] Thomas Erl.Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2004.

[7] The Apache Software Foundation. Axis 2.0 — next generation web
services — official web site. http://ws.apache.org/axis2/.

[8] The Apache Software Foundation. Tomcat official web site.
http://tomcat.apache.org/.

[9] B. A. Nardi. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

[10] Andrea Omicini, Alessandro Ricci, and Mirko Viroli.Agens Faber:
Toward a theory of artefacts for MAS.Electronic Notes in Theoretical
Computer Sciences, 150(3):21–36, 29 May 2006. 1st International
Workshop “Coordination and Organization” (CoOrg 2005), COORDI-
NATION 2005, Namur, Belgium, 22 April 2005. Proceedings.

[11] Andrea Omicini and Franco Zambonelli. Coordination for Internet
application development.Autonomous Agents and Multi-Agent Systems,
2(3):251–269, September 1999. Special Issue: Coordination Mecha-
nisms for Web Agents.

[12] The WS-I Organization. WS-Basic Profile 1.0 document.
http://www.ws-i.org.

[13] The WS-I Organization. WS-I Official web site. http://www.ws-i.org.
[14] The STIL project. The STIL official web site. http://stil.pc.unicatt.it/.
[15] Alessandro Ricci, Mirko Viroli, and Andrea Omicini.Construenda est

CArtAgO: Toward an infrastructure for artifacts in MAS. In Robert
Trappl, editor,Cybernetics and Systems 2006, volume 2, pages 569–
574, Vienna, Austria, 18–21 April 2006. Austrian Society for Cybernetic
Studies. 18th European Meeting on Cybernetics and Systems Research
(EMCSR 2006), 5th International Symposium “From Agent Theory to
Theory Implementation” (AT2AI-5). Proceedings.

[16] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Programming
MAS with artifacts. In Rafael P. Bordini, Mehdi Dastani, Jürgen Dix,
and Amal El Fallah Seghrouchni, editors,Programming Multi-Agent
Systems, volume 3862 ofLNAI, pages 206–221. Springer, March 2006.
3rd International Workshop (PROMAS 2005), AAMAS 2005, Utrecht,
The Netherlands, 26 July 2005. Revised and Invited Papers.

[17] W3C WS Working Group. Web Services Architecture.
http://www.w3.org/TR/ws-arch/.

3

PRACTIONIST:
a Framework for Developing BDI Agent Systems

Vito Morreale∗, Susanna Bonura∗, Giuseppe Francaviglia∗,
Michele Puccio∗, Fabio Centineo∗, Giuseppe Cammarata∗,

Massimo Cossentino†, and Salvatore Gaglio†‡

∗R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A.
†ICAR-Italian National Research Council

‡DINFO-University of Palermo

I. THE FRAMEWORK

In this abstract we give a brief overview of the PRACTION-
IST framework, which supports programmers in developing
BDI agents and is built on top of JADE [1], a widespread
platform that implements the FIPA1 specifications. Therefore,
our agents are deployed within JADE containers and their main
cycle is implemented by means of a JADE cyclic behaviour
(figure 2).

Fig. 1. PRACTIONIST over JADE and Prolog.

A PRACTIONIST agent is a software component endowed
with the following elements (figure 2):

• a set ofperceptionsand the correspondingperceptorsthat
listen to some relevant external stimuli;

• a set of beliefs representing the information the agent
has got about both its internal state and the external
environment;

• a set ofgoals the agent wishes or wants to pursue. They
represent some states of affairs to bring about or activities
to perform and will be related to either its desires or
intentions (see below);

• a set ofgoal relationsthe agent uses during the deliber-
ation process and means-ends reasoning;

• a set ofplansthat are the means to achieve its intentions;
• a set ofactions the agent can perform to act over its

environment; and
• a set ofeffectorsthat actually execute the actions.

As shown in figure 2, PRACTIONIST agents are structured
in two main layers: the framework defines the execution logic
and provides the built-in components according to such a logic,
while the top layer includes the specific agent components to
be implemented, in order to satisfy system requirements.

1http://www.fipa.org

Fig. 2. Components of PRACTIONIST agents.

Therefore, a developer who wants to design an agent has to
develop(i) the Goals the agent could pursue,(ii) the means
(a set of plans, i.e. thePlan Library) to pursue such goals or
to react to the stimuli coming from the environment,(iii) the
Perceptorsto receive such stimuli,(iv) the Actions the agent
could perform and the correspondingEffectors, and(v) the set
of beliefs and rules (Belief Base) to model the information
about both its internal state and the external world (details on
beliefs are given in [2]).

In the following section we give an overview of how to pro-
gram some of agent components, with reference to the paper
”Reasoning about Goals in BDI Agents: the PRACTIONIST
Framework”, presented at the WOA 2006 [3].

II. I MPLEMENTING AGENT COMPONENTS

The concepts and the examples given in this section refer to
the tileworld demonstrator, which is a multi agent system with
two types of agents, i.e. an agent that manages the environment
and player agents.

4

Several simulation parameters can be altered at run time,
such as the appear rate and the life cycle of holes, tiles
and obstacles. These information was represented by beliefs
2 about the state of the environment represented through the
following predicates:

• gridSize(width: X, height: Y)represents the size of the
grid, in terms of width and height,

• holeBirth(rate: X) and holeLifecycle(rate: X)represent
the frequency of holes’ birth and their mean life cycle,

• tileBirth(rate: X) and tileLifecycle(rate: X)represent the
frequency of tiles’ birth and their mean life cycle,

• obstacleBirth(rate: X)andobstacleLifecycle(rate: X)rep-
resent the frequency of obstacles’ birth and their mean life
cycle,

• agent(name: X)represents other active player agents.
The framework provides the support to let agent make

meta-level reasoning. In other words, each player agent, by
reasoning on above information, will be able to select the
optimal strategy to increase its score. For example, the plan
FindTileInAmplitudePlanimplements a depth search behavior,
while the planFindTileRandomicallyPlanimplements a ran-
dom search strategy. Thus these plans are used by the player
to find a tile in several circumstances.

Analogously, agent beliefs about its state refer to the fol-
lowing predicates:

• position(xPos: X, yPos:Y)represents the position of the
player agent,

• score(value: X)represents the current score of the player,
• hold(obj: tile) states that the player agent holds a tile.
On the base of such beliefs, some goals are defined as well.

As an example, theHoldTile is a state goal that succeeds when
hold(obj: tile) is believed true by the agent for the sametile.
Thus, in theAchieveTilePlan, the player agent has to identify
a tile within the grid to satisfy theHoldTile goal and then hold
such a tile by executing the action of picking it up.

The player agent is endowed with theTakereffector, which
triggers and executes the pick up action and updates the
environment status and its internal state. The agent is also
provided with other effectors (e.g.Mover, Releaser, etc.) to
be able to perform other actions, such as moving itself in the
grid and releasing holding tiles.

Finally, the cognitive system of the agent includes a set
of perceptors that receive stimuli from the environment. As
an example, the player agent is equipped with the perceptors
TileLifeCyclePerceptor, HoleBirthPerceptor, etc. to be able to
perceive changes from the environment about tiles’ birth rate,
the obstacles’ life cycle, and so forth.

III. PRACTIONIST AGENT INTROSPECTIONTOOL

(PAIT)

The framework also provides developers with the PRAC-
TIONIST Agent Introspection Tool (PAIT), a visual integrated

2In PRACTIONIST beliefs can be about either predicates or other be-
liefs (expressed by the operatorBel). Moreover, predicates can be ex-
pressed by specifying the role of their arguments, i.e.predicate(role1 :
element1, role2 : element2, ..., roleN : elementN).

Fig. 3. The PRACTIONIST Agent Introspection Tool (PAIT).

monitoring and debugging tool, which supports the analysisof
the agent’s state during its execution. In particular, the PAIT
can be suitable to display, test and debug the agents’ relevant
entities and execution flow. Each of these components can
be observed at run-time through a set of specific tabs (see
figure 3); the content of each tab can be also displayed in an
independent window.

All the information showed at run-time could be saved
in a file, providing the programmer with the opportunity of
performing an off-line analysis. Moreover, the PAIT provides
an area for log messages inserted in the agent source code,
according to the Log4j approach. The usage of this console
and the advantages it provides are described in more details
in [4].

ACKNOWLEDGMENTS

This work is partially supported by the Italian Ministry
of Education, University and Research (MIUR) through the
project PASAF.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-
compliant agent framework,” in Proceedings of the Practical
Applications of Intelligent Agents, 1999. [Online]. Available:
http://jmvidal.cse.sc.edu/library/jade.pdf

[2] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentino,and S. Gaglio,
“PRACTIONIST: a new framework for BDI agents,” inProceedings of the
Third European Workshop on Multi-Agent Systems (EUMAS’05), 2005,
p. 236.

[3] V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M.Cossentino,
and S. Gaglio, “Reasoning about goals in BDI agents: the PRACTIONIST
framework,” inProceedings of Joint Workshop “From Objects to Agents”,
2006.

[4] V. Morreale, S. Bonura, F. Centineo, A. Rossi, M. Cossentino, and
S. Gaglio, “PRACTIONIST: implementing PRACTIcal reasONIng syS-
Tems,” in Proceedings of Joint Workshop “From Objects to Agents”,
2005.

5

Simulation of Minority Game in TuCSoN
Enrico Oliva
Mirko Viroli

Andrea Omicini
ALMA MATER STUDIORUM—Università di Bologna

via Venezia 52, 47023 Cesena, Italy
E-mail:{enrico.oliva,mirko.viroli,andrea.omicini}@unibo.it

I. APPLICATION DOMAIN

Minority Game (MG) is a mathematical model that takes
inspiration from the “El Farol Bar” problem introduced by
Brian Arthur (1). It is based on a simple scenario where at each
step a set of agents perform a boolean vote which conceptually
splits them in two classes: the agents in the smaller class win.
In this game, a rational agent keeps track of previous votes
and victories, and has the goal of winning throughout the steps
of the game—for which a rational strategy has to be figured
out.

One of the most important applications of MG is in the
market models: (2) use MG as a coarse-grained model for
financial markets to study their fluctuation phenomena and
statistical properties. Even though the model is coarse-grained
and provides an over-simplified micro-scale description, it any-
way captures the most relevant features of system interaction,
and generates collective properties that are quite similar to
those of the real system.

Another point of view, presented e.g. by (3), considers the
MG as a point in space of a Resource Allocation Game (RAG).
In this work a generalisation of MG is presented that relaxes
the constraints on the number of resources, studying how the
system behaves within a given range.

MG can be considered a social simulation that aims to repro-
duce a simplified human scenario. In principle, a logic-based
approach based on BDI agent makes it easier to explicitly
model a variety of diverse social behaviours.

As showed by (4), a multiagent system (MAS) can be used
to realise a MG simulation—there, BDI agents provide for
rationality and planning. An agent-based simulation is partic-
ularly useful when the simulated systems include autonomous
entities that are diverse, thus making it difficult to exploit the
traditional framework of mathematical equations.

In order to implement MG simulations we adopt the
TuCSoN infrastructure for agent coordination (5), which in-
troduces tuple centres as artifact representatives. A tuple centre
is a programmable coordination medium living in the MAS
environment, used by agents interacting by exchanging tuples
(logic tuples in the case of TuCSoN logic tuple centres). As
we are not concerned much with the mere issues of agent
intelligence, we rely here on a weak form of rationality,
through logic-based agents adopting pre-compiled plans called
operating instructions (6).

Monitor

Tuning

Agent

Coordination Artifact

Player

Fig. 1. TuCSoN Simulation Framework for MG

II. LOGIC ARCHITECTURE

The architecture proposed for MAS simulation is based on
TuCSoN (5), which is an infrastructure for the coordination of
MASs. TuCSoN provides agents with an environment made
of logic tuple centres, which are logic-based programmable
tuple spaces. The language used to program the coordination
behaviour of tuple centres is ReSpecT, which specifies how
a tuple centre has to react to an observable event (e.g. when
a new tuple is inserted) and has to accordingly change the
tuple-set state (7). Tuple centres are a possible incarnation of
the coordination artifact notion (8), representing a device that
persists independently of agent life-cycle and provides services
to let agents participate to social activities.

In our simulation framework we adopt logic-based agents,
namely, agents built using a logic programming style, keeping
a knowledge base (KB) of facts and acting according to
some rule—rules and facts thus forming a logic theory. The
implementation is based on tuProlog technology1 for Java-
Prolog integration, and relies on its inference capabilities for
agent rationality. Agents roughly follow the BDI architecture,
as the KB models agent beliefs while rules model agent
intentions.

Three kinds of agents are used in our simulation: player
agents, monitor agents and tuning agents (as depicted in
Figure 1): all the agents share the same coordination artifact.
The agent types differ because of their role and behaviour:
player agents play MG, the monitor agent is an observer

1http://tuprolog.alice.unibo.it

6

of interactions which visualises the progress of the system,
the tuning agent can change some rules or parameters of
coordination, and drives the simulation to new states. Note
that the main advantage of allowing a dynamic tuning of
parameters instead of running different simulations lays in
the possibility of tackling emergent aspects which would not
necessarily appear in new runs.

The main control loop of a player agent is a sequence of
actions: observing the world, updating its KB, scheduling next
intention, elaborating and executing a plan. To connect agent
mental states with interactions we use the concept of action
preconditions and perception effects as usual.

III. MINORITY GAME PERFORMANCE

To track the performance of an MG system, the most inter-
esting quantity is variance, defined as σ2 = [A(t)−A(t)]2: it
shows the variability of the bets around the average value A(t).
In particular, the normalised version of variance ρ = σ2/N is
considered. Figure 3 shows a typical evolution of the game.

Generally speaking, variance is the inverse of global ef-
ficiency: as variance decreases agent coordination improves,
making more agents winning. Variance is interestingly affected
by the parameters of the model, such as number of agents (N),
memory (m) and number of strategies (s): in particular, the
fluctuation of variance is shown to depend only on the ratio
α = 2m/N between agent memory and the number N of
agents.

The results of observations suggest that the behaviour of
MG can be classified in two phases: an information-rich
asymmetric phase, and an unpredictable or symmetric phase.
A phase transition is located where σ2/N attains its minimum
(αc = 1/2), and it separates the symmetric phase with α < αc

from an asymmetric phase with α > αc.
All these cases have been observed with the TuCSoN

simulation framework described in next section.

IV. THE SIMULATION FRAMEWORK

The construction of MG simulations with MASs is based
on the TuCSoN framework and on tuProlog as an inferential
engine to program logic agents. The main innovative aspect
of this MG simulation is the possibility of studying the

Beliefs

Agent mental state

Preconditions

Effects

Desires

Intentions

Action Perception

Preconditions

Effects

Fig. 2. Agent Architecture

Fig. 3. Typical Time evolution of the Original MG with N = 51, m = 5
and s = 2

Fig. 4. Variance of the Game with 11 Random Agents

evolution of the system with particular and different kinds of
agent behaviour at the micro level, imposed as coordination
parameters which are changed on-the-fly.

A. Operating Instructions

Each agent has an internal plan, structured as an algebraic
composition of allowed actions (with their preconditions) and
perceptions (with their effects), that enables the agent to use
the coordination artifact to play the MG. This plan can be
seen as Operating Instructions (6), a formal description based
on Labelled Transition System (LTS) that the agent reads to
understand what its step-by-step behaviour should be. Through
an inference process, the agent accordingly chooses the next
action to execute, thus performing the cycle described in
Section 2.

Operating instructions are expressed by the following the-
ory:

firststate(agent(first,[])).
definitions([
def(first,[],...),
def(main,[S],

[act(out(play(X)),pre(choice(S,X))),
per(in(result(Y)),eff(res(Y))),
agent(main,[S])]

),
...

]).

The first part of operating instructions is expressed by
term first, where the agent reads the game parameters that
are stored in the KB, and randomly creates its own set of
strategies.

In the successive part main, the agent executes its main
cycle. It first puts tuple play(X) in the tuple space, where
X = ±1 is agent vote. The precondition of this action
choice(S,X) is used to bind in the KB X with the

7

value currently chosen by the agent according to strategy S.
Then, the agent gets the whole result of the game in tuple
result(Y) and applies it to its KB. After this perception,
the cycle is iterated again.

B. Tuple Centre Behaviour

The interaction protocol between agents and the coordina-
tion artifact is then simply structured as follows. First each
agent puts the tuple for its vote. When the tuples for all agents
have been received, the tuple centre checks them, computes the
result of the game—either 1 or −1 is winning—and prepares
a result tuple to be read by agents.

The ReSpecT program for this behaviour is loaded in the
tuple centre by a configuration agent at bootstrap, through
operation set_spec(). The following ReSpecT reaction
is fired when an agent inserts tuple play(X), and triggers
the whole behaviour:
reaction(out(play(X)),(
in_r(count(Y)),
Z is Y+1,
in_r(sum(M)),
V is M+X,
out_r(sum(V)),
out_r(count(Z))

)).

This reaction considers the bet (X) counts the bets (Z)
and computes the partial result of the game (V). When
all the agents have played, the artifact produces the tuple
winner(R,NS,NumberOfLoss,MemorySize,last/more) which
is the main tuple of MG coordination.
reaction(out_r(count(X)),(
rd_r(numag(Num)),
X=:=Num,
in_r(totcount(T)),
P is T+1,
rd_r(game(G)),
in_r(sum(A)),
out_r(sum(0)),
rd_r(countsession(CS)),
in_r(count(Y)),
out_r(count(0)),
%%calculate variance
in_r(qsum(SQ)),
NSQ is A*A+SQ,
out_r(qsum(NSQ)),
%%calculate mean
in_r(totsum(R)),
NewS is R+A,
out_r(totsum(NewS)),

Fig. 5. Interface of the Monitor Agent

Fig. 6. Variance of the System with Initial Parameters N = 5 and m = 3

rd_r(numloss(NumberOfLoss)),
rd_r(mem(MemorySize)),
out_r(winner(A,P,CS,NumberOfLoss,MemorySize,G)),
out_r(totcount(P))

)).

The winner tuple contain the result of game (R), the
number of step (NS), two tuning parameters (NumberOfLoss
and MemorySize) and one constant to communicate agents
whether they have to stop or to play further (last/more).
Figure 5 reports the graphical interface of the monitor agent
that during its life-time reads the tuple winner and draws
variance.

C. Tuning the Simulation

In classical MG simulation there are a number of parameters
that can affect the system behaviour, which are explicitly
represented in the tuple centre in form of tuples: the number of
agents numag(X), memory size mem(X), and the number of
strategies numstr(X). In our framework, we have introduced
as a further parameter the number of wrong moves after
which the single agent should be recalculate own strategy,
represented as a tuple numloss(X). Such a threshold is
seemingly useful to break the symmetry in the strategy space
when the system is in a pathological state, i.e., when all
agents have the same behaviour and the game oscillates from
minimum to maximum value.

In our framework, it is possible to explore the possibility
to dynamically tune up the coordination rules by changing
numloss and mem coordination parameters, which are stored
as tuples in the coordination artifact. The simulation architec-
ture built in this way, in fact, allows for on-the-fly change of
some game configuration parameters—such as the dimension
of agent memory—with no need to stop the simulation and
re-program the agents.

By changing the parameters, the tuning agent can drive the
system from an equilibrium state to another, by controlling
agent strategies, the dimension of memory, or the number of
losses that an agent can accept before discarding a strategy.
This agent observes system variance, and decides whether and
how to change tuning parameters: reference variance is calcu-
lated by first making agents playing the game randomly—
see Figure 4. The new value of parameters is stored in
tuple centre through tuples numloss(NumberOfLoss) and

8

Fig. 7. System Evolution of the Variance in Figure 6

mem(MemorySize), the rules of coordination react and
update the information that will be read by the agents.

D. Simulation Results

The result of the tuned simulation in Figures 6 and 7 shows
how the system changes its equilibrium state and achieves
a better value of variance.2 In this simulation the tuning
agent is played by a human that observes the evolution of
the system and acts through the tuning interface to change
the coordination parameters, such as threshold of losses and
memory, hopefully finding new and better configurations. The
introduction of the threshold of losses in the agent behaviour
is useful when the game is played by few agents: these param-
eters enable system evolution and a better agent cooperative
behaviour.

V. PERSPECTIVES

In this paper, we aim at introducing new perspectives on
agent-based simulation by adopting a novel MAS meta-model
based on agents and artifacts, and by applying it to Minority
Game simulation. We implement and study MG over the
TuCSoN coordination infrastructure, and show some benefits
of the artifact model in terms of flexibility and controllability
of the simulation. In particular, in this work we focus on the
possibility to build a feedback loop on the rules of coordination
driving a system to a new and better equilibrium state.

We foresee some new perspectives in the use of the
TuCSoN simulation framework in a industrial environment.
The first one is to use the system to drive manufacturing in
case of limited resources. In this scenario each agent is a half-
processed item, whose production has to be completed as faster
as possible, and whose access to the resources is regulated by
dedicated resource artifacts. Another possible perspective is
to evaluate the product demand and production in order to
drive industry through market fluctuation. In our framework
we could model a market scenario by minority rules, and
then try to evaluate demand. Furthermore, all such applications
would benefit from using a logic-based approach rather than
an equation-based approach.

2In Figure 6, the first phase of equilibrium is followed by a second one
obtained by changing the threshold parameter S = 5. Finally, a third phase
is obtained changing the dimension of the memory to m = 5.

VI. ACKNOWLEDGEMENTS

The first author of this paper would like to thank Dr.
Peter McBurney and the Department of Computer Science at
University of Liverpool for their scientific support and their
hospitality during his stay in Liverpool, when this paper was
mostly written.

REFERENCES

[1] W. B. Arthur, “Inductive reasoning and bounded rational-
ity (the El Farol problem),” American Economic Review,
vol. 84, no. 2, pp. 406–411, May 1994.

[2] D. Challet, M. Marsili, and Y.-C. Zhang, “Modeling
market mechanism with minority game,” Physica A:
Statistical and Theoretical Physics, vol. 276, no.
1–2, pp. 284–315, Feb. 2000. [Online]. Available:
http://dx.doi.org/10.1016/S0378-4371(99)00446-X

[3] H. V. D. Parunak, S. Brueckner, J. Sauter, and R. Savit,
“Effort profiles in multi-agent resource allocation,” pp.
248–255.

[4] W. Renz and J. Sudeikat, “Modeling Minority Games
with BDI agents – a case study,” in Multiagent
System Technologies, ser. LNCS, T. Eymann, F. Klügl,
W. Lamersdorf, M. Klusch, and M. N. Huhns, Eds.
Springer, 2005, vol. 3550, pp. 71–81, 3rd German
Conference (MATES 2005), Koblenz, Germany, 11-
13 Sept. 2005. Proceedings. [Online]. Available: http:
//www.springerlink.com/link.asp?id=y62q174g56788gh8

[5] A. Omicini and F. Zambonelli, “Coordination for Internet
application development,” Autonomous Agents and Multi-
Agent Systems, vol. 2, no. 3, pp. 251–269, Sept. 1999.

[6] M. Viroli and A. Ricci, “Instructions-based semantics
of agent mediated interaction,” in 3rd International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), N. R. Jennings, C. Sierra,
L. Sonenberg, and M. Tambe, Eds., vol. 1. New York,
USA: ACM, 19–23 July 2004, pp. 102–109. [Online].
Available: http://portal.acm.org/citation.cfm?id=1018409.
1018737

[7] A. Omicini and E. Denti, “Formal ReSpecT,” Electronic
Notes in Theoretical Computer Science, vol. 48, pp. 179–
196, June 2001.

[8] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and
L. Tummolini, “Coordination artifacts: Environment-based
coordination for intelligent agents,” in 3rd International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), N. R. Jennings, C. Sierra,
L. Sonenberg, and M. Tambe, Eds., vol. 1. New York,
USA: ACM, 19–23 July 2004, pp. 286–293. [Online].
Available: http://portal.acm.org/citation.cfm?id=1018409.
1018752

[9] N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
Eds., 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004). New
York, USA: ACM, 19–23 July 2004.

9

�

Abstract—This paper describes SALENE, a Multi Agent
System (MA S) for l earning Nash Equilib r ia in non-cooperative
games. SALENE is based on the following assumptions: if agents
representing the players act as rat ional players, i.e. they act to
maximise their expected utility in each match of a game, and if
such agents play k matches of the game they will converge in
playing one of the Nash Equilibria of the game. SALENE can be
conceived as a heur istic and efficient method to compute at least
one Nash Equili bria in a non-cooperative game represented in its
normal f orm.

Index Terms�Multi- Agent Systems, Game Theory, Nash
Equilibria .

I. INTRODUCTION

he complexity of NASH [21], the problem consisting in

computing Nash equilibria in non-cooperative games, is

considered one of the most important open problem in

Complexity Theory [22]. In 2005, Daskalakis, Goldbergy, and

Papadimitriou showed that the problem of computing a Nash

equilibrium in a game with four or more players is complete

for the complexity class PPAD1 [7], moreover, Chen and

Deng extended this result for 2-player games [5]. However,

even in the two players case, the best algorithm known has an

exponential worst-case running time [23]; furthermore, if the

computation of equilibria with simple additional properties is

required, the problem immediately becomes NP-hard [3, 6, 11,

12].

Motivated by these results, recent studies have dealt with

the problem of computing Nash Equilibria by exploiting

approaches based on the concepts of learning and evolution

[10, 15]. In these approaches the Nash Equilibria of a game

are not statically computed but are the result of the evolution

of a system composed by agents playing the game. In

particular, each agent after different rounds will learn to play a

strategy that, under the hypothesis of agent�s rationality, will

be one of the Nash equilibria of the game [2, 4, 9, 13, 18].

In this paper we present SALENE, a MAS for learning

Nash Equilibria in non-cooperative games. In particular, given

A. Garro is with the Department of Electronics, Informatics and Systems

(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:

alfredo.garro @unical.it).

M. Iusi is with the Department of Electronics, Informatics and Systems

(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:

marco.iusi@tin.it).
1 PPAD (polynomial parity argument, directed version) class was

introduced by Papadimitriou in his seminal work in 1991 [20].

a static non cooperative game described in its normal form,

the agents of the system will play the static game k times; after

each match each agent will decide which strategy to play in

the next match on the basis of his beliefs about the strategies

that the other agents are adopting. More specifically, each

agent assumes that his beliefs about the other players�

strategies are correct and he plays a strategy that is a best

response to his beliefs. By increasing k the agents will

converge in playing one of the Nash equilibria of the game.

This paper is structured as follows. In Section 2, a formal

definition of the problem will be given and the system

requirements detailed. In Section 3 and in Section 4 the design

and the implementation of SALENE will be described

respectively, then, in Section 5, some experimental results will

be shown. Finally, in Section 6, conclusions and future efforts

will be addressed.

II. PROBLEM DEFINITION AND SYSTEM REQUIREMENTS

An n-person strategic game G can be defined as a tuple G

= (N; (Ai)i�N; (ri)i�N), where N = {1, 2, � , n} is the set of

players, Ai is a finite set of actions for player i�N, and ri : A1 ×

� × An o � is the payoff function of player i. The set Ai is

called also the set of pure strategies of player i. The Cartesian

product ×i�NAi = A1 × � × An can be denoted by A and r : A o

�N can denote the vector valued function whose ith

component is ri, i.e., r(a) = (r1(a), � , rn(a)), so it is possible

to write (N, A, r) for short for (N; (Ai)i�N; (ri) i�N).

For any finite set Ai the set of all probability distributions

on Ai can be denoted by
�

(Ai). An element � i �
�

(Ai) is a

mixed strategy for player i.

A (Nash) equilibrium of a strategic game G = (N, A, r) is an

N-tuple of (mixed) strategies � = (� i) i�N, � i �
�

(Ai), such that

for every i � N and any other strategy of player i, � i �
�

(Ai),

ri(� i,� -i) � ri(� i, � -i), where ri denotes also the expected payoff

to player i in the mixed extension of the game and � -i

represents the mixed strategies in � of all the other players.

Basically, supposing that all the other players do not change

their strategies it is not possible for any player i to play a

different strategy � i able to gain a better payoff of that gained

by playing � i. � i is called a Nash equilibrium strategy for

player i.

In 1951 J. F. Nash proved that a strategic (non-cooperative)

game G = (N, A, r) has a (Nash) equilibrium � [17]; in his

honour, the computational problem of finding such equilibria

is known as NASH [21].

Software Agents for Learning Nash Equilibria in

Non-Cooperative Games

Alfredo Garro, Marco Iusi

T

10

In order to exemplify the definitions given above let us

consider a game with two players (n=2) and |A1|=|A2|=m, i.e.,

the sets of pure strategies have both cardinality equals to m

[3]. In this case the set of pure strategies for each player could

be identified with the ordered set M = {1, 2, . . . , m} and the

game could be represented by two m×m matrices B and W.

The first player is called the row player and the second player

is called the column player. If the row player plays strategy i

and the column player strategy j, the payoff will be Bij for the

first player and Wij for the second player.

A mixed strategy, a probability distribution over pure

strategies, is a vector � � �M such that 1 ¦ �Ms s
F and for

every s � M, � s � 0.

When the row player plays mixed strategy � and the column

player plays mixed strategy � , their expected payoffs will be,

respectively, JF Bt and JF Wt (� t is the transpose of vector

�).

A Nash Equilibrium of the game described by the matrices

B and W is a pair of mixed strategies (� , �) such that for all

mixed strategies F and J , of the row and the column player

respectively, JFJF BB
t

t t and JFJF WW tt t .

Starting from the problem definition discussed above,

SALENE was conceived as a system for learning at least one

Nash Equilibrium of a non-cooperative game given in the

form G = (N; (Ai)i�N; (ri)i�N). In particular, the system asks the

user for:

- the number n of the players which defines the set of

players N = {1, 2, � , n};

- for each player i�N, the related finite set of pure

strategies Ai and his payoff function ri : A1 × � × An o

�;

- the number k of times the players will play the game.

Then, the system creates n agents, one associated to each

player, and a referee. The players and the referee both know

that G is the actual game to be played, i.e. there is complete

information [8, 19]. Each player is a rational player i.e. his

goal is to maximise his expected utility/payoff2. In particular,

in SALENE a rational player acts to maximise his expected

utility in each single match without considering the overall

utility that he could obtain in a set of matches.

This kind of agents will play the game G k times, after each

match, each agent will decide the strategy to play in the next

match to maximise his expected utility on the basis of his

beliefs about the strategies that the other agents are adopting.

By increasing k the agents will converge in playing one of the

Nash Equilibria of the game. This conclusion relays on the

hypothesis that the agents will act as rational players and

derives straightly from the assumptions on which the Nash�s

theorem is based [8, 17, 19, 25].

2 Payoffs are numeric representations of the utility obtainable by a player

in the different outcomes of a game.

III. SYSTEM DESIGN

On the basis of the requirements highlighted in the previous

section the SALENE (Software Agent for LEarning Nash

Equilibria) MAS was designed. The class diagram of

SALENE is shown in Figure 1.

FIPAAgent

ManagerAgent RefereeAgent PlayerAgent

1 0..*1 1

RefereeBehaviour

1

1

GameDefinition

PlayerBehaviourManagerBehaviour

1

1

<<uses>>
1

1

1

1

1

1

1

1..*

<<uses>> <<uses>> <<uses>>

1

1 1

1 1

1 1..*

1

1

Fig. 1. Class diagram of SALENE

The Manager Agent interacts with the user and it is

responsible for the global behaviour of the system. In

particular, after having obtained from the user the input

parameters G and k (see section II), the Manager Agent

creates both n Player Agents, one associated to each player,

and a Referee Agent that coordinates and monitors the

behaviours of the players. The Manager Agent sends to all the

agents the definition G of the game then he asks the Referee

Agent to orchestrate k matches of the game G. In each match,

the Referee Agent asks each Player Agent which pure strategy

he has decided to play, then, after having acquired the

strategies from all players, the Referee Agent communicates

to each Player Agent both the strategies played and the

payoffs gained by all players. After playing k matches of the

game G the Referee Agent communicates all the matches�

data to the Manager Agent which analyses it and properly

presents the obtained results to the user.

A Player Agent is a rational player that, given the game

definition G, acts to maximise his expected utility in each

single match of G. In particular the behaviour of the Player

Agent i can be described by the following main steps:

1. In the first match the Player Agent i chooses to play a

pure strategy randomly generated considering all the pure

strategies playable with the same probability: if |Ai|=m the

probability of choosing a pure strategy s�Ai is 1/m.

2. The Player Agent i waits for the Referee Agent to ask him

which strategy he wants to play, then he communicates to

the Referee Agent the chosen pure strategy as computed

in step 1 if he is playing his first match or in step 4

otherwise;

11

3. The Player Agent waits for the Referee Agent to

communicate him both the pure strategies played and the

payoffs gained by all players;

4. The Player Agent decides the mixed strategy to play in

the next match. In particular, the Player Agent updates the

beliefs about the mixed strategies currently adopted by

the other players and consequently recalculate the

strategy able to maximise his expected utility. Basically,

the Player Agent i tries to find the strategy � i �
�

(Ai),

such that for any other strategy � i �
�

(Ai), ri(� i, � -i) �

ri(� i, � -i) where ri denotes his expected payoff and � -i

represents his beliefs about the mixed strategies currently

adopted by all the other players, i.e. � -i=(� j)j�N,j�i, � j �
�

(Aj). In order to evaluate � j for each other player j�i the

Player Agent i considers the pure strategies played by the

player j in all the previous matches and computes the

frequency of each pure strategy, this frequency

distribution will be the estimate for � j. If there is at least

an element in the actually computed set � -i=(� j)j�N,j�i that

differs from the set � -i as computed in the previous match,

the Player Agent i solves the inequality ri(� i,� -i) � ri(� i, � -i)

that is equivalent to solve the optimization problem

P={max(ri(� i,� -i)), � i�
�

(Ai)}. It is worth noting that P is

a linear optimization problem, actually, given the set � -i,

ri(� i, � -i) is a linear objective function in � i (see the two

players example reported in Section II), and with |Ai|=m

� i�
�

(Ai) is a vector � � �M such that 1 ¦ �Ms s
F and for

every s�M � s�0, so the constraint � i�
�

(Ai) is a set of

m+1 linear inequalities. P is solved by the Player Agent

by using an efficient method for solving problems in

linear programming [14, 16], in particular the predictor-

corrector method of Mehrotra [16], whose complexity is

polynomial for both average and worst case. The obtained

solution for � i is a pure strategy because it is one of the

vertices of the polytope which defines the feasibility

region for P. The obtained strategy � i will be played by

the Player Agent i in the next match; ri(� i, � -i) represents

the expected payoff to player i in the next match;

5. back to step 2.

The Manager Agent, receives from the Referee Agent all

the data about the k matches of the game G and computes an

estimate of a Nash Equilibrium of G, i.e. an N-tuple � =(� i)i�N,

� i�
�

(Ai). In particular, in order to estimate � i (the Nash

equilibrium strategy of the player i), the Manager Agent

computes, on the basis of the pure strategies played by the

player i in each of the k match, the frequency of each pure

strategy: this frequency distribution will be the estimate for � i.

The so computed set � =(� i)i�N, � i�
�

(Ai) will be then

properly proposed to the user together with the data exploited

for its estimation.

IV. SYSTEM IMPLEMENTATION

The JADE-based classes of SALENE were

straightforwardly derived from the class diagram reported in

Figure 1. In particular:

� ManagerAgent, RefereeAgent and PlayerAgent extend the

Agent class of JADE [1];

� ManagerBehaviour,RefereeBehaviour and PlayerBehaviour

extend FSMBehaviour class of JADE which models a

complex task whose sub-tasks correspond to the activities

performed in the states of a finite state machine. In

particular, the behaviours of both the Referee and the

Player Agent are also cyclic.

The interactions among SALENE Agents are appositely

defined through sequences of ACL messages instances of the

ACLMessage class of JADE.

V. EXPERIMENTAL RESULTS

SALENE was tested on different games that differ from

each other both in the number and in the kind of Nash

Equilibria. This section presents the results obtained for three

popular games: (1) The Prisoner�s Dilemma which has one

pure Nash Equilibrium (that is an equilibrium in which all the

players play a pure strategy); (2) Matching Pennies which has

one mixed Nash Equilibrium (that is an equilibrium in which

at least one player plays a mixed strategy); (2) Battle of the

Sexes which has three Nash Equilibria (two Pure Equilibria

and one Mixed Equilibrium).

A. The Prisoner�s Dilemma

An informal description of the Prisoner�s Dilemma can be

found in [24]. Formally, in a game G of Prisoner�s Dilemma

(PD), two players (n=2) simultaneously choose a move, either

cooperate (c) or defect (d), so A1=A2={c,d} and

|A1|=|A2|=m=2. There are thus four possible outcomes for each

encounter: both cooperate (cc), the first player cooperates,

while the second defects (cd), vice versa (dc), and both

players defect (dd). Each player receives a payoff after each

encounter as reported in Table Ia-b. Table I semantic derives

straightly from the bimatrix representation of a two-player

game as discussed in Section II. In particular, the move of

Player 1 determines the row, the move of Player 2 determines

the column, and the pair (X,Y) in the corresponding cell

indicates that payoff of Player 1 is X and the payoff of Player

2 is Y. Regarding the payoffs reported in Table Ia the

following order must hold: T>R>P>L. Table Ib shows a valid

assignment for the payoffs.
TABLE I

(A) PAYOFFS FOR PRISONER'S DILEMMA

Player 2

c d

c R,R L,T
Player 1

d T,L P,P

(B) A VALID ASSIGNMENT FOR THE PAYOFFS (T>R>P>L)

Player 2

c d

c 6,6 0,10
Player 1

d 10,0 3,3

 By looking at Table Ib, it is possible to note that for Player

1 d is the best response to c (10>6) and d is also the best

response to d (3>0). The same is true for Player 2, so both

players rationally will play their pure strategy d that is their

12

dominant strategy. Formally, the Prisoner�s Dilemma has one

Nash Equilibrium � ={� 1, � 2}={ � , � }, � 1�
�

(A1), � 2 �
�

(A2), �

� �2, � � �2, where � =[0, 1] and � =[0, 1].

In order to compare the analytical result with the result

obtainable in SALENE we ran 30 experiments each consisting

of 100 matches (k=100) of the Prisoner�s Dilemma. In the

case of the Prisoner�s Dilemma the expected result was that as

soon as a Player Agent played his dominant strategy d, he

would never change his choice, so after few matches the

Player Agents played both their dominant strategy d so

converging in playing the Nash Equilibrium of the game. The

experiments confirm the expected result, as an example Figure

2a-b reports one of the experiments carried out. In particular,

Figure 2a(2b) shows the strategy played by Player 1(Player 2)

in each of the k match of an experiment. As showed in Figure

2a-b, after few matches both the Player Agents play their pure

strategy d as required by the Nash Equilibrium of the game.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

match

X
s

c
d

(a) Strategy played by Player 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

match

X
s

c
d

(b) Strategy played by Player 2

Fig. 2. The Prisoner�s Dilemma: experimental results

B. Matching Pennies

An informal description of the Matching Pennies game

follows: the game is played between two players, each player

has a penny and must secretly turn it to heads or tails, the

players then reveal their choices simultaneously; if the pennies

match (both heads or both tails), Player 1 receives S dollars

from Player 2. If the pennies do not match (one heads and one

tails), Player 2 receives S dollars from Player 1. This is an

example of a zero-sum game, where one player's gain is

exactly equal to the other player's loss. Formally, in a game G

of Matching Pennies (MP), two players (n=2) simultaneously

choose a move, either heads (h) or tails (t), so A1=A2={h,t}

and |A1|=|A2|=m=2. Each player receives a payoff after each

encounter as reported in Table IIa-b.

TABLE II

(A) PAYOFFS FOR MATCHING PENNIES

Player 2

h t

h L,-L -L,L
Player 1

t -L,L L,-L

(B) A VALID ASSIGNMENT FOR THE PAYOFFS (S=1)

Player 2

h t

h 1,-1 -1,1
Player 1

t -1,1 1,-1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

match

X
s

h
t

(a) Strategy played by Player 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

match

X
s

h
t

(b) Strategy played by Player 2

Fig. 3. Matching Pennies: experimental results

Matching Pennies has no pure strategy Nash equilibrium

since there is no pure strategy (heads or tails) that is a best

response to a best response, i.e. a dominant strategy.

Alternatively, there is not a pure strategy that a player would

ever change when told the pure strategy played by the other

player. Instead, the unique Nash equilibrium of Matching

Pennies is in mixed strategies: each player chooses heads or

tails with equal probability. In this way, each player makes the

other indifferent in choosing heads or tails, so neither player

has an incentive to try another strategy. Formally, Matching

Pennies has one mixed Nash Equilibrium � ={ � 1, � 2}={ � , � },

� 1�
�

(A1), � 2 �
�

(A2), � � �2, � � �2, where � =[0.5, 0.5]

and � =[0.5, 0.5].

In order to compare the analytical result with the result

obtainable in SALENE we ran 30 experiments each consisting

13

of 100 matches (k=100) of Matching Pennies. The expected

result was that, analyzing the pure strategies played by each

player in each of the k match, their frequency distribution

would asymptotically converge to the mixed Nash

Equilibrium of the game. The experiments confirm the

expected result: by increasing k the computed frequency

distributions asymptotically converge to the mixed Nash

Equilibria of the game. As an example Figure 3a-b reports one

of the experiments carried out. In this case the computed

frequency distributions were: � 1=� =[0.49, 0.51] and

� 2=� =[0.49, 0.51].

C. Battle of Sexes

An informal description of the Battle of Sexes game

follows: a man and a woman plan to meet after work to attend

an event: an opera or a football match, but they can not

communicate so they have to choose separately where to go.

The woman prefers the opera to the football match, whereas

the man prefers the football match to the opera, but both

prefer to be together at either event than alone at either one.

More formally in a game G of Battle of Sexes (BS), two

players (n=2) simultaneously choose a move, either opera (o)

or football (f), so A1=A2={o,f} and |A1|=|A2|=m=2. Each

player receives a payoff after each encounter as reported in

Table IIIa-b. Regarding the payoffs reported in Table IIIa the

following order must hold: T>R>L. Table IIIb shows a valid

assignment for the payoffs.

TABLE III

(A) PAYOFFS FOR BATTLE OF SEXES

Player 2

o f

o T,R L,L
Player 1

f L,L R,T

(B) A VALID ASSIGNMENT FOR THE PAYOFFS (T>R>L)

Player 2

o f

o 3,2 0,0
Player 1

f 0,0 2,3

Battle of Sexes has two pure strategy Nash equilibria, one

where both go to the opera and another where both go to the

football game; there is also a Nash equilibrium in mixed

strategies, where, given the payoffs listed in Table IIIb, each

player attends their preferred event with probability 2/3.

Formally, Battle of Sexes has three Nash Equilibria:

� I={ 1

I
V , 2

I
V }={ � I,� I}, 1

I
V �

�
(A1), 2

I
V �

�
(A2), � I � �2, � I �

�2, where � I =[1, 0] and � I=[1, 0];

� II={ 1

II
V , 2

II
V }={� II, � II}, 1

II
V �

�
(A1), 2

II
V �

�
(A2), � II � �2,

� II � �2, where � II =[0, 1] and � II=[0, 1];

� III={ 1

III
V , 2

III
V }={ � III,� III}, 1

III
V �

�
(A1), 2

III
V �

�
(A2), � III �

�2, � III � �2, where � III =[2/3, 1/3] and � III=[1/3, 2/3];

 In order to compare the analytical result with the result

obtainable in SALENE, we ran 30 experiments each

consisting of 100 matches (k=100) of the Battle of Sexes.

Battle of Sexes presents an interesting case for games theory

since each of the Nash Equilibria is deficient in some way.

The two pure strategy Nash Equilibria are unfair, one player

consistently does better than the other. In the mixed strategy

Nash Equilibrium the players will be together at the same

event with probability 4/9 and will be alone with probability

5/9, leaving each player with an expected payoff of 10/9 that

is very low if compared with the expected payoff of the two

pure Nash Equilibria.

The expected result was that as soon as both the Player

Agents played the same pure strategy (o or f), i.e. one of the

Pure Nash Equilibria of the game, the Agents would never

change their choices: the Player who plays his favorite

strategy will not have incentive to change it, the player who

does not play his favorite strategy will not change it because

in this case his expected payoff will get worse in the next

match. In particular, after 1 or h*(T+R) matches, k�h�1, there

is a probability of 50% that from this match on the Player

Agents will converge in playing one of the Pure Nash

Equilibria of the game.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

match

X
s

o
f

(a) Strategy played by Player 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

match

X
s

o
f

(b) Strategy played by Player 2

Fig. 4. Battle of Sexes: experimental results

The experiments confirm the expected result: in all the

experiments after 1 or h*(T+R) matches the Player Agents

play one of the two pure Nash Equilibria of the game. As an

example Figure 4a-b reports one of the experiments carried

out, in this case the played Nash Equilibrium was � I.

VI. CONCLUSIONS

The complexity of NASH, the problem consisting in

computing Nash equilibria in non-cooperative games, is still

debated, but even in the two players case, the best algorithm

known has an exponential worst-case running time. Starting

from these considerations SALENE, a MAS for learning Nash

Equilibria in non cooperative games, was developed.

14

SALENE is based on the assumptions that if agents

representing the players act as rational players, i.e. if each

player acts to maximise his expected utility in each match of a

game G, and if such agents play k matches of G they will

converge in playing one of the Nash Equilibria of the game. In

particular, after each match each agent decides the strategy to

play in the next match on the basis of his beliefs about the

strategies that the other agents are adopting. More specifically,

each agent assumes that his beliefs about the other players�

strategies are correct and plays a strategy that is a best

response to his beliefs. Analyzing the behaviour of each agent

in all the k matches of G, SALENE presents to the user an

estimate of a Nash Equilibrium of the game.

A set of experiments was carried out on different games

that differ from each other both in the number and in the kind

of Nash Equilibria. The experiments demonstrated that:

- if the game has one Pure Nash Equilibrium the agents

converge in playing this equilibrium;

- if the game has one Mixed Nash Equilibrium, the

frequency distributions of the pure strategies played by

each player asymptotically converge to the mixed Nash

Equilibrium of the game;

- if the game has p>1 Pure Nash Equilibria and s>1 Mixed

Nash Equilibria the agents converge in playing one of the

p Pure Nash Equilibria.

SALENE can be conceived as a heuristic and efficient

method for computing at least one Nash Equilibria in a non-

cooperative game represented in its normal form; actually, the

learning algorithm adopted by the Player Agents has a

polynomial running time [14, 16] for both average and worst

case.

 Efforts are currently underway to: (i) evaluate different

learning algorithms and extensively testing them on complex

games; (ii) let the user ask for the computation of equilibria

with simple additional properties.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent

systems with a FIPA-compliant agent framework. In Software Practice

and Experience, 31, pp. 103-128, 2001.

[2] M. Benaim and M.W. Hirsch. Learning process, mixed equilibria and

dynamic system arising for repeated games. In Games Econ. Behav., 29,

pp. 36-72, 1999.

[3] V. Bonifaci, U. Di Iorio, and L. Laura. On the complexity of uniformly

mixed Nash equilibria and related regular subgraph problems. In

Proceedings of the 15th International Symposium on Fundamentals of

Computation Theory (FCT) 2005.

[4] D. Carmel and S. Markovitch. Learning Models of Intelligent Agents. In

Proceedings of the 13th National Conference on Artificial Intelligence

and the Eighth Innovative Applications of Artificial Intelligence

Conference, Vol. 2, pp 62-67, AAAI Press, Menlo Park, California,

1996.

[5] X. Chen and X. Deng. Settling the Complexity of 2-Player Nash-

Equilibrium. Electronic Colloquium on Computational Complexity,

Report No. 140 (2005).

[6] V. Conitzer and T. Sandholm. Complexity results about Nash equilibria.

In Proceedings of the 18th Int. Joint Conf. on Artificial Intelligence,

pages 765�771, 2003.

[7] C. Daskalakis, P. W. Goldbergy, and C. H. Papadimitriou. The

Complexity of Computing a Nash Equilibrium. Electronic Colloquium on

Computational Complexity, Report No. 115 (2005).

[8] A.K. Dixit and S. Skeath. Games of Strategy (2nd edition). W.W. Norton

& Company, 2004.

[9] D.B. Fogel. Evolving Behaviours in the Iterated Prisoner�s Dilemma,

Evolutionary Computation, Vol. 1:1, pp 77-97, 1993.

[10] D. Fudenberg and D. Levine. The Theory of Learning in Games.

Cambridge, MA, MIT Press, 1998.

[11] I. Gilboa and E. Zemel. Nash and correlated equilibria: some complexity

considerations. Games and Economic Behavior, 1(1):80�93, 1989.

[12] G. Gottlob, G. Greco, and F. Scarcello. Pure Nash Equilibria: hard and

easy games. In Proceedings of the 9th Conference on Theorethical

Aspects of Rationality and Knowledge (TARK-2003), Bloomington,

Indiana, USA, June 20-22, 2003.

[13] P. Jehiel and D. Samet. Learning to Play Games in Extensive Form by

Valuation, NAJ Economics, Peer Reviews of Economics Publications, 3,

2001.

[14] N. Karmarkar. A New Polynomial-time Algorithm for Linear

Programming. In Combinatorica 4, 373-395, 1984.

[15] J. Maynard Smith. Evolution and the Theory of Games. Cambridge

University Press, 1982.

[16] S. Mehrotra. On the Implementation of a Primal-dual Interior Point

Method. In SIAM J. Optimization 2, 575-601, 1992.

[17] J. F. Nash. Non-cooperative games. In Annals of Mathematics, volume

54, pages 289�295, 1951.

[18] A. Neyman. Finitely Repeated Games With Finite Automata. In

Mathematics Of Operations Research, Vol. 23, No. 3, August 1998.

[19] M. J. Osborne. An Introduction to Game Theory. Oxford University

Press, 2002.

[20] C. H. Papadimitriou. On inefficient proofs of existence and complexity

classes. In Proceedings of the 4th Czechoslovakian Symposium on

Combinatorics, 1991.

[21] C. H. Papadimitriou. On the complexity of the parity argument and other

inefficient proofs of existence. Journal of Computer and Systems

Sciences, 48(3):498�532, 1994.

[22] C. H. Papadimitriou. Algorithms, Games and the Internet. In

Proceedings of the 33rd Annual ACM Symposium on the Theory of

Computing (STOC), pages 749�753, 2001.

[23] R. Savani and B. von Stengel. Exponentially many steps for finding a

Nash equilibrium in a bimatrix game. In Proceedings of the 45th Symp.

Foundations of Computer Science, pages 258�267, 2004.

[24] G. Tsebelis. Nested Games: rational choice in comparative politics.

University of California Press, 1990.

[25] J. Von Neumann and O. Morgenstern. Theory of Games and economic

Behaviour, Princeton University Press, 1944.

15

A multidimensional flocking algorithm for
clustering spatial data

Antonio Augimeri, Gianluigi Folino, Agostino Forestiero and Giandomenico Spezzano

Institute for High Performance Computing and Networking (ICAR-CNR)

augimeriantonio@email.it, (folino, forestiero, spezzano)@icar.cnr.it

Abstract—In this paper, we describe the efficient imple-

mentation of M-Sparrow, an adaptive flocking algorithm

based on the biology-inspired paradigm of a flock of birds.

We extended the classical flock model of Reynolds with two

new characteristics: the movement in a multi-dimensional

space and different kinds of birds. The birds, in this con-

text, are used to discovery point having some desired char-

acteristics in a multidimensional space. A critical point of

the algorithm is the efficient search of the k-neighbors in a

multidimensional space. This search was efficiently imple-

mented using the ANN libraries.

I. Introduction

Ants’colonies, flocks of birds, termites, swarms of bees
etc. are agent-based insect models that exhibit a collective
intelligent behavior (swarm intelligence) [2] that may be
used to define new distributed clustering algorithms.
In these models, the emergent collective behavior is the
outcome of a process of self-organization, in which insects
are engaged through their repeated actions and interac-
tion with their evolving environment. Intelligent behavior
frequently arises through indirect communication between
the agents using the principle of stigmergy [6]. This
mechanism is a powerful principle of cooperation in insect
societies. According to this principle an agent deposits
something in the environment that makes no direct contri-
bution to the task being undertaken but it is used to influ-
ence the subsequent behavior that is task related. Swarm
intelligence (SI) models have many features in common
with Evolutionary Algorithms (EA). Like EA, SI models
are population-based. The system is initialized with a pop-
ulation of individuals (i.e., potential solutions). These in-
dividuals are then manipulated over many iteration steps
by mimicking the social behavior of insects or animals, in
an effort to find the optima in the problem space. Unlike
EAs, SI models do not explicitly use evolutionary opera-
tors such as crossover and mutation. A potential solution
simply ’flies’ through the search space by modifying itself
according to its past experience and its relationship with
other individuals in the population and the environment.

These algorithms show a high level of robustness to
change by allowing the solution to dynamically adapt it-
self to global changes by letting the agents self-adapt to
the associated local changes.

In this paper, we present a prototype using a new algo-
rithm based on the concepts of a flock of birds that move
together in a complex manner with simple local rules, to
explore multidimensional spaces for searching interesting
objects. The algorithm is an extension of the classical flock

model of Reynolds with two new characteristics: the move-
ment in a multi-dimensional space and different kinds of
birds. The birds, in this context, are used to discovery
point having some desired characteristics in a multidimen-
sional space. The implementation is based on SWARM [7],
a software package for multi-agent simulation of complex
systems, developed at the Santa Fe Institute.

From an efficiency point of view the most critical point of
the algorithm is the efficient search of the k-neighbors (i.e.
the cardinality of the neighborhood) in a multidimensional
space. This search was efficiently implemented using the
ANN (Approximate Nearest Neighbor) libraries.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the adaptive flocking algorithm, section 3
shows how the approach was applied to multidimensional
spaces. Section 4 shows some interesting experimental re-
sults about the efficiency of the algorithm and its efficacy in
finding interesting patterns. Finally section 5 draws some
conclusions.

II. The adaptive flocking algorithm

The classical flocking model, introduced by Reynolds [8],
moves in a two dimensional space and all the birds have
the same characteristics. In the next subsections, we de-
scribe the two extensions introduced in M-Sparrow, the
use of birds having different characteristics (represented by
different colors) and the movement in a multidimensional
space.

A. Reynolds’ original flock model

The flocking algorithm was originally proposed by
Reynolds as a method for mimicking the flocking behav-
ior of birds on a computer both for animation and as a
way to study emergent behavior. Flocking is an example
of emergent collective behavior: there is no leader, i.e., no
global control. Flocking behavior emerges from the local
interactions. Each agent has direct access to the geomet-
ric description of the whole scene, but reacts only to flock
mates within a certain small radius. The basic flocking
model consists of three simple steering behaviors: separa-
tion, cohesion and alignment.

Separation gives an agent the ability to maintain a cer-
tain distance from others nearby. This prevents agents
from crowding too closely together, allowing them to scan
a wider area. Cohesion gives an agent the ability to cohere
(approach and form a group) with other nearby agents.
Steering for cohesion can be computed by finding all agents

16

in the local neighborhood and computing the average po-
sition of the nearby agents. The steering force is then ap-
plied in the direction of that average position. Alignment
gives an agent the ability to align with other nearby char-
acters. Steering for alignment can be computed by finding
all agents in the local neighborhood and averaging together
the ’heading’ vectors of the nearby agents.

Fig. 1. Computing the direction of a green agent.

B. An adaptive colored flocking algorithm

M-SPARROW extends the Reynolds’ flocking algorithm,
described in the previous subsection, considering four dif-
ferent kinds of agents, classified on the basis of some prop-
erties of data in their neighborhood. These different kinds
are characterized by a different color: red, revealing inter-
esting patterns in the data, green, a medium one, yellow, a
low one, and white, indicating a total absence of patterns.
In practise, the flock follows an exploring behavior in which
individual members (agents) to first explore the environ-
ment searching for goals whose positions are not known a

priori, and then, after the goals are located, all the flock
members should move towards these goals. Agents search
the goals in parallel and signal the presence or the lack of
significant patterns into the data to other flock members,
by changing color. The main idea behind our approach is
to take advantage of the colored agent in order to explore
more accurately the most interesting regions (signaled by
the red agents) and avoid the ones without clusters (sig-
naled by the white agents). Red and white agents stop
moving in order to signal this type of regions to the oth-
ers, while green and yellow ones fly to find more dense
clusters. Indeed, each flying agent computes its heading by
taking the weighted average of alignment, separation and
cohesion (as illustrated in figure 1). The entire flock then
moves towards the agents (attractors) that have discovered
interesting regions to help them, avoiding the uninterest-
ing areas that are instead marked as obstacles. The color
is assigned to the agents by a function associated with the
data analyzed. In practice, the agent computes the prop-
erty of the explored point and then it chooses the color
(and the speed) in accordance to the simple rules showed
in table I.

So red, reveals a high density of interesting patterns in
the data, green, a medium one, yellow, a low one, and
white, indicates a total absence of patterns. The color is
used as a communication mechanism among flock members
to indicate them the roadmap to follow. The roadmap is

property > threshold ⇒ mycolor = red (speed = 0)
threshold

4
< property ≤ threshold ⇒ mycolor = green (speed = 1)

0 < property ≤ threshold
4

⇒ mycolor = yellow (speed = 2)

property = 0 ⇒ mycolor = white (speed = 0)

TABLE I

Assigning speed and color to the agents

adaptively adjusted as the agents change their color mov-
ing to explore data until they reach the goal.

Green and yellow agents compute their movement ob-
serving the positions of all other agents that are at most
at some fixed distance (dist max) from them and applying
the rules of Reynolds’ [8] with the following modifications:

• Alignment and cohesion do not consider yellow agents,
since they move in a not very attractive zone.

• Cohesion is the resultant of the heading towards the
average position of the green flockmates (centroid), of
the attraction towards red agents, and of the repulsion
by white agents.

• A separation distance is maintained from all the
agents, whatever their color is.

Agents will move towards the computed destination with a
speed depending from their color: green agents will move
more slowly than yellow agents since they will explore
denser zones of clusters. An agent will speed up to leave
an empty or uninteresting region whereas it will slow down
to investigate an interesting region more carefully. The
variable speed introduces an adaptive behavior in the al-
gorithm. In fact, agents adapt their movement and change
their behavior (speed) on the basis of their previous expe-
rience represented from the red and white agents.

for i=1 . . . MaxIterations

foreach agent (yellow, green)

age=age+1;

if (age > Max Life)

generate new agent();die();

endif

if (not visited (current point))

property = compute property(current point);

mycolor= color agent(property);

endif

end foreach

foreach agent (yellow, green)

dir= compute dir();

end foreach

foreach agent (all)

switch (mycolor){

case yellow, green: move(dir, speed(mycolor)); break;

case white: stop(); generate new agent(); break;

case red: stop(); generate new close agent(); break; }

end foreach

end for

Fig. 2. The pseudo-code of M-SPARROW.

During simulations a cage effect, was observed; in fact,
some agents could remain trapped inside regions sur-

17

A MULTIDIMENSIONAL FLOCKING ALGORITHM FOR CLUSTERING SPATIAL DATA

rounded by red or white agents and would have no way
to go out, wasting useful resources for the exploration. So,
a limit on their life was imposed to avoid this effect; hence,
when their age exceeded a determined value (maxLife) they
were killed and were regenerated in a new randomly chosen
position of the space.

C. Exploring multidimensional spaces

We wanted use our adaptive flocking algorithm in or-
der to explore multidimensional space for searching point
having desired properties. A continuous data point can be
represented in a multidimensional Euclidean space, simply
normalizing its attributes. Our algorithm can search for
any kind of properties. In particular, we describe a useful
property for the task of clustering. Given a radius (Eps)
and a minimum number (MinPts) of points. A core point
is a point with at least MinPts number of points in an Eps-
neighborhood of the itself. Searching points having these
characteristic could be useful for different task (i.e. db-
scan [3] use these points to perform the task of clustering
databases). In the experimental section, we will show the
evaluation of our algorithm in effectively cope with this
task.

In the following, we give a more formal description of the
extension of the flocking algorithm to the multidimensional
space. Consider a multidimensional space with dimension
d. Each bird k can be represented as a point in this space,
having coordinates xk1, xk2, . . . , xkd and having direction
θk1,θk2, . . . ,θkd, where θki represent the angle between the
new direction of the bird k (computed using the rules of
the previous subsection) and the axis i. Each bird moves
following the the rules of the previous subsection having
speed vk. Then, for each iteration t, the new position of
the bird k can be computed as:

∀i = 1 . . . d xki(t + 1) = xki(t) + vk × cki (1)

where cki represents the projection along the i axis
of the direction of the boid k. Note that each compo-
nents is obtained summing the respective three compo-
nents of alignment, separation and cohesion (i.e. cki =
c alignmentki + c separationki + c cohesionki). In a mul-
tidimensional space, we can compute the components as:

ck1 =
d−1∏

j=1

cos(θkj)

cki = sin(θki−1)
d−1∏

j=i

cos(θkj) i = 2 . . .d

(2)

these formulas can be computed as a generalization of
the three-dimensional case illustrated in figure 3.

From a computational point of view, a critical point of
our algorithm is the efficient search of the k-neighbors
in a multidimensional space. Computing exact nearest
neighbors can be very expensive when dimension increases.

Fig. 3. Computing the components of the boid in a three-dimensional
space.

ANN (Approximate Nearest Neighbor) [1] is a library writ-
ten in C++, which supports data structures and algo-
rithms for both exact and approximate nearest neighbor
searching in high dimensional spaces. As showed in figure
4, we integrated ANN libraries using Java Native Inter-
face with M-Sparrow in order to efficiently compute the
neighbors necessary to our algorithm.

Fig. 4. Integrating M-Sparrow and ANN libraries.

III. Experimental results

In two previous papers, we demonstrated the goodness
of our algorithm in discovering clusters with different sizes,
shapes in noise data [5] and also with different densities [4]
in a two dimensional space.

Now, we want to show how the algorithm works in a
multidimensional space. We have built two dataset, each
one constituted by two gaussian distributions with different
densities of 1500 points. The first was three dimensional
and the latter four dimensional. We run our algorithm us-
ing 200 birds for 600 iterations with k = 50 and radius =
20. It succeeds in separating almost perfectly the two gaus-
sian distributions in both the cases. The three dimensional
case is illustrated in figure 5.

Furthermore, we want to verify the efficiency of the ANN
based implementation and then we run our algorithm com-
paring execution times of the latter ANN-based version
with the previous that used brute force computation for
searching the k-neighbors. The results of this comparison
for a three dimensional case are reported in figures 6 a and
b. Experiments show that the ANN libraries outperforms
the brute force approach in all the cases and the differ-

18

ence is really considerable when the number of neighbors
to search is greater than 50. If we consider datasets with
dimension larger than 3, ANN outperforms the brute force
approach by at least two order of magnitude, also for small
values of k.

IV. Conclusions

We have presented an efficient implementation of an
adaptive flocking algorithm that efficiently search multi-
dimensional spaces. The implementation is based on the
ANN libraries performing an efficient search of the k neigh-
bors. Experiments showed that the algorithm is able to
separate clusters in multidimensional spaces and it out-
performs the previous brute force approach in terms of
execution time.

References

[1] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silver-
man, and Angela Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of ACM,
45(6):891–923, 1998.

[2] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intel-
ligence: From natural to artificial systems. J. Artificial Societies
and Social Simulation, 4(1), 2001.

[3] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining, pages 226–231, 1996.

[4] Gianluigi Folino, Agostino Forestiero, and Giandomenico Spez-
zano. Swarming agents for discovering clusters in spatial data.
ispdc, 2003.

[5] Gianluigi Folino and Giandomenico Spezzano. An adaptive flock-
ing algorithm for spatial clustering. In PPSN, pages 924–933,
2002.

[6] P.P. Grass. La Reconstruction du nid et les Coordinations Inter-
Individuelles chez Beellicositermes Natalensis et Cubitermes sp.
La Thorie de la Stigmergie : Essai d’interprtation du Comporte-
ment des Termites Constructeurs in Insect. Soc. 6. Morgan Kauf-
mann, 1959.

[7] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm
simulation system, a toolkit for building multi-agent simulations,
1996.

[8] Craig W. Reynolds. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, pages 25–34, New York, NY, USA, 1987. ACM Press.

19

A MULTIDIMENSIONAL FLOCKING ALGORITHM FOR CLUSTERING SPATIAL DATA

(a)

(b) (c)

Fig. 5. Gaussian dataset. a) Original Gaussian dataset used in the experiments; b) First cluster extracted by the algorithm; c) Second
cluster extracted by the algorithm.

(a) (b)

Fig. 6. Execution time of the searching phase for the ANN-based version vs the Brute-force approach: a)Radius = 20; b) radius = 50.

20

MetaMeth
A Tool For Process Definition And Execution

Roberto Caico (2), Massimo Cossentino (2,3), Luca Sabatucci (1), Valeria Seidita (1), Salvatore Gaglio (1,2)

(1) DINFO - Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo - Viale delle Scienze, 90128 Palermo, Italy

 (2) Istituto di Calcolo delle Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche;
(3) SET - Université de Technologie Belfort-Montbéliard - 90010 Belfort cedex, France

robertocaico@libero.it; sabatucci@csai.unipa.it; cossentino@pa.icar.cnr.it; gaglio@unipa.it

I. INTRODUCTION
Nowadays, several different tools are used in Software
Engineering; in this work we are mainly interested to those
supporting the design phases. These are usually classified in
three categories: CASE, CAME, CAPE tools. MetaMeth is a
CAME and a CAPE tool at the same time.

A CAME tool is a computerized tool that supports the method
engineer in the construction of its own methods that is
principally based on reuse so it aids in storing the reusable
part of existing methodologies (method fragments) and in
providing the interface for a useful and easy retrieval and
assembly of fragments. MetaMeth allows a method engineer
to interface with a repository of method fragment in order to
retrieve them for creating his own methodology.

A CASE tool as an automated tool devotes to help the
designer in the software development process by providing a
software support for a reliable development of activities,
lowering the risk of errors and enhancing the productivity; this
definition even implies activities like planning, and
management, administrative and technical aspects of a project.
MetaMeth allows to manage the process through the
workflow engine, the agents devoted to design activities and
the expert system.

II. METAMETH – SYSTEM REQUIREMENTS
 Our work started with the identification of the requirements
for the tool to be built. The first part of these requirements
refer to the CAME functionalities:
1. Fragment Repository: the tool supports a fragment

repository collecting methods coming from several design
processes; each fragment is an extension of an existing
repository we built according to the work done within
FIPA, extended with the proper set of expert system rules
and software components (agents) used to support the
specific GUIs required in the fragment; the repository of
fragments already exists and we are working for
integrating it in the tool. We also considered important to
plan an easy extensibility of our tool supporting several
different design processes, but at the moment only the
fragments used to implement our own methodologies
(classic and agile process) are already fully integrated in
the tool.

2. Process Definition. Starting from the repository of
method fragments the tool allows the composition of new
processes. We decided to adopt a standard by OMG, the
Software Process Engineering Metamodel (SPEM) for
modeling our methodologies. Once the process is
modelled in SPEM we use a graphical tool (JaWE) to
produce its XPDL translation (XPDL is the process
specification language adopted by WFMC for describing
workflow processes).

Figure 1 – Architecture of the MetaMeth application

21

3. Process Lifecycle. The tool should support iterative and
incremental design processes composed of several
activities (eventually organized in some kind of
hierarchy) with several different possible iteration paths.

4. Notation, Syntactic and Semantic Rules. In a
methodology almost all work products have to respect
three types of rules: notational, syntactic and semantic.
The CAME tool have to allow the introduction of
syntactic and semantic rules (expressed in a first order
logic language) and to assign a graphical notation among
available for working with fragments coming from
different methodologies (a set of editors, developed ad-
hoc for this scope, will be available).

5. Process Roles. During the composition of the method the
method engineer may assign activities to perform to
different human roles involved in the process.

The second list of requirements is related to the CASE
functionalities:
1. Process Execution. The first requirement of this section

is to instantiate a methodology built using the
MetaMeth/CAME (received as XPDL specifications and
a set of rules for notation, semantic and syntactic
verification) and to orchestrate all the CASE services in
order to design a system.

2. Team Work. Our tool support distributed design
processes (involving several designer working on
different phases at the same moment in different
locations)

3. Automatic Composition. The tool keep in consideration
dependencies among work products and include the
possibility of automatically compose all (or portion of)
diagrams that allow such an help.

4. Automatic Verification. Syntax check on notational
aspects of the project and the consistency check on some
design aspects like the correct instantiation of the most
important elements of the MAS meta-model

5. Reuse and Code Generation. The tool integrates a reuse
technique based on design patterns; these are collected in
a repository and may be used during design. The tool has
a code generator that uses an MDA approach to transform
the design view in a implementation view and finally in a
code view; using this approach different coding languages
or implementation frameworks could be adopted. The tool
supports also the production of an adequate

documentation that, starting from the work products, is
able of creating complex documents merging diagrams,
text, tables and so on.

Figure 2 - A screenshot of the JaWE tool used for design the PASSI methodology

III. SOFTWARE ARCHITECTURE AND TECNOLOGIES
The prototype we developed is based on several technologies,
standards and existing tools, that are independent software for
enacting the process definition and the process execution; this
is shown in Figure 1.
The most relevant open source components we reused in our
Metameth tool are:
1. JaWE (by Enhydra) adopted as a graphical workflow

editor to design the process (it exports the process using
the XPDL format);

2. Shark (again by Enhydra) adopted as a workflow
execution engine (it is able of reading XPDL files and
also to interact with our Java-based Activity Agents); this
tool ensures the design process instantiation and allows
the distributed and asynchronous execution of the
different activities.

3. Jade is the platform we used to develop our Activity
Agents; this is the most diffused FIPA-compliant agent
development platform.

4. Jess is Java-based rule engine we used to build our expert
system; such a system is the ‘intelligent’ part of the
Metameth tool; a relevant portion of its services are
required by the Activity Agents that need reasoning
capabilities in order to assist the designer in his duty.

5. The MAS meta-model required by the adopted
methodology is depicted in form of an ontology using the
tool Protégé by the Stanford University, California.

6. IBM Eclipse is the IDE we used to develop our UML
editors.

IV. EXAMPLE.
Now we are going to illustrate with an example the main steps
of the construction of a new methodology and its enactment
with the MetaMeth tool.
The scenario starts with JaWE session used to define the new
methodology; this tool offers a graphical interface to model
the process as a flow of sub-processes, and activities; each
activity may be atomic or be decomposed in sub-activities. In
Figure 2 we report a screenshot of the tool showing three
different boxes each one related to a piece of the methodology
at a different level of abstraction. The first box (the top one)

22

describes the main phases of our methodology (system
requirements, agent society, agent implementation and code
model). In the second box there is an exploitation of the
system requirement phase in its composing activities (domain
description, agent identification, role description, agent
structure exploration and task specification); finally, in the
third box (the lowest one), the domain description activity is
decomposed in two atomic operations (define use case and
refine use case).

The next step in the definition of the methodology is the
specification in terms of Jess rules of the semantic of the MAS
meta-model elements and the (work products) composition
rules of the process. This is done using Protégé to draw the
ontology and a Rule editor tool we built to describe Jess rules
starting from some templates.

When the methodology has been entirely described using the
XPDL language (process aspects) and Jess rules (semantics
and composition rules), the process administrator may

instantiate it using the process execution module. This has
been developed using a multi-agent system composed by:

Figure 3 - An example of activity tool for the Domain
Requirement Description phase of PASSI

1. A Controller agent (that is interfaced with the workflow

execution engine).
2. One or more Stakeholder agents (one for each designer

that uses it to accept, start, decline the activities assigned
to him from the process definition). After a log in session,
the user may verify his activity list and can start/ refuse or
delegate an activity.

3. An Expert System agent (used to wrap the Jess engine).
4. One or more Activity agents.

When the designer chooses of performing an activity, an agent
becomes responsible for coordinating all the operations
related to the specific activity (also in collaboration with the
Expert agent and the UML editors). Activity agents offer
several services to the designer: i) auto-composition used
when a work product can be automatically modified/created or
updated; ii) notation interpretation, used to map notational
elements (use cases, classes, activities, …) into elements of
the MAS meta model (requirements, agents, behaviours, …),
iii) semantic validation used to verify the semantic consistence
of the whole project.

Figure 3 shows the user interface of the Activity agent
associated to the domain requirement description phase of our
methodology; semantic interpretation and validation have
been already done with the result that use cases have been
mapped to requirements. In Figure 4 the first three work
products of the methodology are reported (domain
requirements description, agent identification and role
identification).

V. FUTURE WORKS

Figure 4 - Some screenshots of the UML editor developed as a plug-in for Eclipse

23

In the future we are going to complete this tool with more
features, specifically we are going to interface it with an
agent-oriented pattern reuse tool that also allows code
generation for one of the most diffused agent development
platforms (Jade). The production of an extensive and well-
formatted documentation from the design artifact is also
scheduled and will be obtained through a society of agents,
each one specialized for the composition of one specific kind
of document.
Another improvement, we are working on, is the population of
the fragment repository, extracting methods from the existing
agent-oriented methodologies.

24

Model driven design and implementation of

activity-based applications in Hermes

Ezio Bartocci∗, Flavio Corradini∗, Emanuela Merelli∗, Leonardo Vito∗

∗ Dipartimento di Matematica e Informatica,

Università di Camerino,

Via Madonna delle Carceri, 62032 Camerino, Italy

{name.surname}@unicam.it

Abstract— Hermes is an agent-based middleware struc-
tured as a component-based and 3-layered software architec-
ture. Hermes provides an integrated, flexible programming
environment for design and execution of activity-based
applications in distributed environments. By using workflow
technology, it supports even a non expert user programmer
in the model driven design and implementation of a domain
specific application. In this paper, after a description of
Hermes software architecture, we provide a simple demo
in biological domain and we show some real case studies in
which Hermes has been validated.

I. INTRODUCTION

Hermes [9] is an agent-based middleware, for design

and execution of activity-based applications in distrib-

uted environments. It supports mobile computation as an

application implementation strategy. While middleware

for mobile computing has typically been developed to

support physical and logical mobility, Hermes provides an

integrated environment where application domain experts

can focus on designing activity workflow and ignore

the topological structure of the distributed environment.

Generating mobile agents from a workflow specification is

the responsibility of a context-aware compiler. Agents can

also developed directly by an expert user using directly

the Application Programming Interface (API) provided

by Hermes middleware. The Hermes middleware layer,

compilers, libraries, services and other developed tools to-

gether result in a very general programming environment,

which has been validated in two quite disparate applica-

tion domains, one in industrial control [6] and the other

in bioinformatics [13]. In the industrial control domain,

embedded systems with scarce computational resources

control product lines. Mobile agents are used to trace

products and support self-healing. In the bionformatics

domain, mobile agents are used to support data collection

and service discovery, and to simulate biological system

through autonomous components interactions. This paper

is organized as follows. Section II describes the Hermes

Software Architecture. Section III provides a simple demo

in biological domain. In Section IV, we present several

projects in which Hermes middleware has been adopted.

We conclude in Section V.

II. HERMES SOFTWARE ARCHITECTURE

Hermes is structured as a component-based, agent-

oriented system with a 3-layer software architecture

shown in Figure 1: user layer, system layer and run-time

B1

C1B2

User-Level Workflow

U
s
e
r L

a
y
e
r

WE -A-

Pool of Workflow Executors (WEs)

S
y
s
te

m
 L

a
y
e
r

Agent-Level Workflow

R
u
n
-T

im
e
 L

a
y
e
r

WE -A- WE -B- WE -C-

AIXO SOAPLAB WSIF Java Mail
API

SAXON Tool ...

ServiceAgents (SAs)

Hermes Core

Discovery Mobility Genesis Communication Security

Legend

Activity

Agent

Tool

Start Stop

Transition

fork

join

Component

SoapL
SA

Interaction
Protocol

Thinlet

WE -B-WE -C-

WSIF
SA

Email
SA

XQuery

SA
.....
SA

XUL
SA

SAWE -A-

WE -B-WE -A-

Agent
communication

Request

Response

Error

W
F
C

o
m

p
il
e
r

UserAgents

AIXO
SA

Fig. 1. Hermes Software Architecture

layer. At the user layer, it allows designers to specify

their application as a workflow of activities using the

graphical notation. At the system layer, it provides a

context-aware compiler to generate a pool of user mobile

agents from the workflow specification. At the run-time

layer, it supports the activation of a set of specialized

service agents, and it provides all necessary components

to support agent mobility and communication. The main

difference between the run-time layer and the system

layer is how agents function in each. ServiceAgents in the

run-time layer are localized to one platform to interface

with the local execution environment. UserAgents in the

system layer are workflow executors, created for a specific

goal that, in theory, can be reached in a finite time by

interacting with other agents. Afterwards that agent dies.

25

Fig. 2. Specification of Complex/Primitive activities in JaWE

Furthermore, for security UserAgents can access a local

resource only by interacting with ServiceAgent that is the

“guard” of the resource. It follows a detailed description

of the main components and functionalities of each layer.

A. User Layer

The user layer is based on workflow technology and

provides to users a set of programs for interacting with

the worklow management system. There are two main

families of programs: programs for specifying, managing

and reusing existing workflow specifications, and pro-

grams enabling administration and direct interaction with

the workflow management system. The workflow editor is

the program that supports the workflows specification by

composing activities in a graphical environment. Hermes

provides two editors, one is a plugin of the stand-alone

JaWE [10] editor and the other is WebWFlow, a web-

based editor. Both editors enable the specification of

workflows by using XML Process Definition Language

(XPDL) [14] a standard provided by the WfMC [12].

Activities used in a workflow are configured by speci-

fying input parameters and their effects are recognizable

as modification of state variables or modification on

the environment’s status. Workflow editors enable the

composition of both primitive and complex activities.

A primitive activity is an activity that can be directly

executed. Users can specify primitive activity without

knowing the real implementation. A complex activity is

an activity that must be specified before it can be used;

as Figure 2 shows the specification of a complex activity

could be a workflow of complex and/or simple activities.

By using complex activities the specification of workflows

is simplified because they enhance both hierarchical speci-

fication and reuse: we can use an already existing complex

Fig. 3. Outline of workflow compilation process in Hermes

activity without caring of its specification. Users can

use complex activities and stored workflows to increase

productivity when specifying new workflows. Moreover,

large libraries of both domain specific primitives and

complex activities can be loaded to specialize the editor

for a specific application domain.

B. System Layer

System Layer, on the middle architecture, provides

the needed environment to map a user-level workflow

into a set of primitive activities. The execution of these

latter is coordinated by suitable model, they implement

the activities at user level and embed implementation

details abstracted from the execution environment. These

primitive activities are implemented by autonomous soft-

ware entities UserAgent able to react to the environment

changes where they are executed. A compiler generates

a pool of user mobile agents from the workflow speci-

fication. Due to the lack of space, workflow compilation

process shown in Figure 3 will not discussed here and we

refer to [4] for further details.

C. Run-time Layer

Run-time Layer, at the bottom of the architecture,

provides primitives and services essential for agent mo-

bility and resources access. The kernel is the plat-

form for mobile computing which provides primitives

for discovery, mobility, communication, and security. As

already described, the overall structure of the system

is very complex, it supports abstract specifications that

are mapped into a complex distributed and coordinated

26

Fig. 4. 3-Layered Architecture of Hermes Mobile Computing Platform.

flows of activities over a large-scale distributed system.

In order to master this complexity and to support the

reusability of existing artefact during the development of

a middleware system for a specific application domain, we

designed Hermes kernel following a component-based [7]

approach. Figure 4 shows the main components placed in

the 3-Layered Architecture of Hermes Mobile Computing

Platform. It follows a detailed description of components

belonged to each layer.

1) Core Layer: It is the lowest layer of the architec-

ture and contains base functions of the system, such as

the implementation of the inter-platform communication

protocols and agent management functions. This layer is

composed of four components: ID, SendReceive, Starter

and Security. The ID component, implements general

identity management functions by managing a repository

containing information about locally generated agents.

This repository is accessed whenever we want to know

the current position of an agent. The ID component is

also responsible for the creation of the identifiers to

be associated to new agents. These identifiers contain

information about birthplace, date and time of the agent’s

creation. Agent localization is simplified by information

contained directly in the ID, such as birth place. In fact,

the birth place of an agent hosts information about agent’s

current location. A second important feature of the Core is

the SendReceive component. This component implements

low level inter-platform communication by sending and

receiving messages and agents. By using traceability

services offered by the ID component, SendReceive can

easily update or retrieve the exact position of a specific

user agent. The Starter component processes any request

for agent creation. This particular component, in fact, take

an inactive agent (just created or migrated), and checks it

for the absence of malicious or manipulated code. These

agents, before activation, are dynamically linked to all

basic services of the platform. During execution the agent

is isolated from the Core Layer by the BasicService layer.

The Security component, as mentioned above, checks for

the presence of malicious code or manipulations within

agent code.

2) BasicService Layer: This layer has five main com-

ponents: Discovery, Mobility, Genesis, Communication

and Security Politics. The Discovery component searches

and detects service agents. When a user agents wants to

communicate with a service, it will ask the Discovery

for the right identifier to use as the messages’s receiver.

The service detection strategy can be implemented in

several ways; for example by a fixed taxonomy or by an

UDDI [5], commonly used in WebServices application

domain. The mobility component enables the movement

of code across platforms [11], it implements the interface

used by the Agent component and it accesses to compo-

nents of the Core layer to send, receive and load agents.

It is important to note that real communication between

different locations can be achieved only through Core’s

SendReceive component, and then migration is indepen-

dent of the type of used transport. Mobility consists on

copy the agent i.e. its code and its current state and send

it to the destination platform where it will re-started in

a specific point (weak mobility). The local agent is de-

stroyed. The Communication component makes possible

to send and receive agent-directed messages both in an

intra- and inter-platform context. Intra-platform messages

are messages sent between agents and services residing in

the same platform. Inter-platform messages are messages

sent to agents residing in different platforms (our system

does not allow for remote communication between user

agents and service agents). The agent requesting the

dispatch of a message does not need to know, effectively,

where the target agent is; in fact, the ID is sufficient to

post correctly a message. The Communication component

uses one of the Security Policy’s interfaces to ascertain

whether the specific UserAgent or ServiceAgent has the

right privileges for communication. If an Agent is not

authorized to use a service, the message is destroyed.

Before accessing resources and services, an agent must

authenticate itself. The identification is performed by

sending a login message to a specific ServiceAgent, as

consequence the SecurityPolitics component jointly with

the Communication component intercept the message and

unlock the communication. The SecurityPolitics compo-

nent centralizes control of permissions, protects services

and resources from the user agents, and provides the

administrator with an easy way to manage all permissions.

The last component of the service layer is the Genesis

component that enables agent creation. A special case

of agent creation is cloning that is performed when it

is necessary to create a copy of an existing agent. The

two copies differ only for the agent identifier.

3) Agent Layer: The Agent Layer is the upper layer of

the mobile platform, the Agent Layer, contains all service

and user agents. This component has not any interface, but

it has only several dependencies upon the BasicService

Layer. The Agent component provides a general abstract

Agent class. UserAgent and UserAgent classes extend this

abstract class. ServiceAgent consists of agents enabling

access to local resources such data and tools. User agents

execute complex tasks and implement part of the logic

of the application. Java programmers can also develop

27

Fig. 5. Final result produced by McDuckAgent.java

UserAgents by using the API provided by Hermes Mobile

Computing Library. Listing 1 shows a simple demo. A

MkDuckAgent called “Della Duck” creates three sons

Qui, Quo and Qua -lines 24 to 40- by cloning itself.

After clonation each new agent start its behaviour calling

“afterCloning” as initial method.

1 package samples ;

2 import hermesV2 .∗ ;

3 import hermesV2 . a g e n t .∗ ;

4

5 p u b l i c c l a s s McDuckAgent ex tends UserAgent {
6

7 p u b l i c McDuckAgent (S t r i n g agentName) {
8 super (” D e l l a Duck”) ;

9 }
10

11 p u b l i c vo id i n i t () {
12 r e c e p t i o n () ; / / I e n a b l e t h e r e c e p t i o n

13 / / o f messages f o r t h e f a t h e r

14

15 System . o u t . p r i n t l n (” H e l l o World ! ! ”) ;

16 System . o u t . p r i n t l n (” I ’m D e l l a Duck ! ! ! ”) ;

17

18 I d e n t i f i c a t o r temp= nul l , son1= nul l ,

19 son2= nul l , son3= n u l l ;

20

21 /∗ a f t e r C l o n i n g i s t h e f i r s t method

22 c a l l e d a f t e r t h e c l o n a t i o n ∗ /

23

24 t r y {
25 son1 = c l o n e (” a f t e r C l o n i n g ” , ” Qui ”) ;

26 System . o u t . p r i n t l n (new Date (

27 System . c u r r e n t T i m e M i l l i s ()) +

28 ” : Qui was born ! ! ”) ;

29 son2 = c l o n e (” a f t e r C l o n i n g ” , ”Quo”) ;

30 System . o u t . p r i n t l n (new Date (

31 System . c u r r e n t T i m e M i l l i s ()) +

32 ” : Quo was born ! ! ”) ;

33 son3 = c l o n e (” a f t e r C l o n i n g ” , ”Qua”) ;

34 System . o u t . p r i n t l n (new Date (

35 System . c u r r e n t T i m e M i l l i s ()) +

36 ” : Qua was born ! ! ”) ;

37 } catch (C l o n e E x c e p t i o n ce) {
38 System . o u t . p r i n t l n (ce) ;

39 }
40 Message m0= nul l , m1= nul l , m2= nul l , m3= n u l l ;

41 whi le (! (m1!= n u l l && m2!= n u l l &&

42 m3!= n u l l)){
43 m0 = getMessageSynch () ;

44 temp = m0 . g e t S e n d e r A g e n t I d () ;

45 i f (son1 . e q u a l s (temp)) m1 = m0 ;

46 i f (son2 . e q u a l s (temp)) m2 = m0 ;

47 i f (son3 . e q u a l s (temp)) m3 = m0 ;

48 System . o u t . p r i n t l n ((S t r i n g)m0 . g e t O b j e c t ()) ;

49 }

50 /∗The mother r e p l i e s t o sons ∗ /

51 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;

52 m1 = new Message (myId , son1 ,

53 ”Mom: Ok Qui ! ! \n ”+

54 ” I ’ ve r e c e i v e your message . ”) ;

55 m2 = new Message (myId , son2 ,

56 ”Mom: Ok Quo ! ! \n ”+

57 ” I ’ ve r e c e i v e your message . ”) ;

58 m3 = new Message (myId , son3 ,

59 ”Mom: Ok Qua ! ! \n ”+

60 ” I ’ ve r e c e i v e your message . ”) ;

61 t r y {
62 sendMessageToUserAgent (m1) ;

63 sendMessageToUserAgent (m2) ;

64 sendMessageToUserAgent (m3) ;

65 } ca tch (Communica t ionExcep t ion ce) {
66 System . o u t . p r i n t l n (ce . ge tMessage ()) ;

67 }
68 }
69

70 p u b l i c vo id a f t e r C l o n i n g () {
71 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;

72 P l a c e A d d r e s s myBPA = myId . g e t B o r n P l a c e A d d r e s s () ;

73 i n t myBPAPort = myBPA . g e t P o r t () ;

74 t r y {
75 i n t p o r t = (myBPAPort == 9100) ? 9000 : 9100 ;

76

77 P l a c e A d d r e s s myMPA =

78 new P l a c e A d d r e s s (myBPA . g e t I p () , p o r t) ;

79 t h i s . move (myMPA, ” a f t e r M o v i n g ”) ;

80 } ca tch (M i g r a t i o n E x c e p t i o n me) {
81 System . o u t . p r i n t l n (” M i g r a t i o n E x c e p t i o n ” + me) ;

82 }
83 }
84

85 p u b l i c vo id a f t e r M o v i n g () {
86 r e c e p t i o n () ; / / I e n a b l e t h e r e c e p t i o n

87 / / o f messages f o r t h e son

88

89 I d e n t i f i c a t o r myId = g e t I d e n t i f i c a t o r () ;

90 I d e n t i f i c a t o r mother = g e t F a t h e r I d e n t i f i c a t o r () ;

91 Message m = n u l l ;

92

93 t r y {
94 m = new Message (myId , mother ,

95 getAgentName () +

96 ” : I have moved t o a n o t h e r P l a c e ”) ;

97 sendMessageToUserAgent (m) ;

98 } ca tch (Communica t ionExcep t ion ce) {
99 System . o u t . p r i n t l n (ce . ge tMessage ()) ;

100 }
101 m = getMessageSynch (mother) ;

102 System . o u t . p r i n t l n ((S t r i n g)m. g e t O b j e c t ()) ;

103 }
104 }

Listing 1. McDuckAgent.java

28

Fig. 6. Multiple blast workflow

By using “move” method -line 79- Qui, Quo amd Qua

migrate to a Place different from where they were born.

When they arrive in the new Place each one call the

“afterMoving” -line 85- method. Then they notify to their

mom their moving by using “sendMessageToUserAgent”

-line 97- and “getMessageSynch” -line 101- methods.

Figure 5 shows the final results.

D. Software requirements

One of the main features of Hermes middleware is

its scalability. The present version, HermesV2, is a pure

Java application whose kernel requires about 120KB of

memory and interoperates across a systems ranging from

microprocessors to very power workstations. The Hermes

Mobile Computing Platform is available under LGPL on

Sourgeforge 1 Web Site.

III. MODEL DRIVEN DESIGN AND IMPLEMENTATION

OF ACTIVITY-BASED APPLICATIONS: A DEMO

In the present post-genomic era, biological informa-

tion sources are crammed with information gathered

1http://sourceforge.net/projects/hermes-project

from results of experiments performed in laboratories

around the world, i.e., sequence alignments, hybridization

data analysis or proteins interrelations. The amount of

available information is constantly increasing, its wide

distribution and the heterogeneity of the sources make

difficult for bioscientists to manually collect and integrate

information. In this section we present a demo of Hermes

in the biological domain. In our example we want to find

similar DNA sequences to a given one in several databases

using Basic Local Alignment Search Tool 2 (BLAST).

In particular, in this demo we want to compare, using

BLAST, the nucleotide sequence in FASTA format of a

given entry identificator with the sequences contained in

the following databases:

• Protein Data Bank (PDB) 3

• SWISS-PROT 4

• DDBJ 5

2http://www.ncbi.nlm.nih.gov/BLAST/
3http://www.rcsb.org/pdb/
4http://www.ebi.ac.uk/swissprot/
5http://www.ddbj.nig.ac.jp/

29

Fig. 7. Multiple blast compilation and execution

The access to these databases is guaranteed by a set of

Web Services. By using workflow editors a bioscientist

can specify the logic order, as Figure 6 shows, of a set

of domain-specific activities without knowing the related

implementation details. Each rectangle is an activity and

each swimlane represents a UserAgent. As Figure 7-b

shows, user can exploit a set of previous defined domain-

specific activities by importing the proper library.

BlastnDDBJ Agent, BlastXSWISS Agent and BlastX-

PDB Agent receive the nucleotide sequence from the

BlastDemo Agent and throught an interation with WSIF

ServiceAgent, they compare the received sequence with

sequences in each database using BLAST. If no excep-

tions occur, BlastDemo Agent join partial results and

send the final document to user by email throught an

interaction with the Email ServiceAgent. After saving

this specification, you can reload -Figure 7-a-, compile

-Figure 7-d- and execute -Figure 7-c and 7-e - the

workflow previous defined.

IV. SOME CASE STUDIES

The Hermes middleware has been validated in several

projects. It follows a brief case study description of

Hermes application in some of them.

A. SI.CO.M project

In the SI.CO.M 6 project we have developed a proto-

type based on Hermes middleware for the traceability of

ichthyic products. Generally the product is traced throught

the updating of databases distributed along the main sites

of the weaving factory. This approach is not efficient

because trace a faulty batch of products requires to query

all databases, usually with an heterogeneous schema, of

all sites interested in the production process. The proposed

6http://sicom.cs.unicam.it/

30

solution with the prototype named “TraceFish”, exploiting

the agent-based technology, allows to move automatically

the information about a single batch from a site to another

of the weaving factory overcoming the limits of the

classical client/server approach.

B. O2I Project

The Oncology over Internet (O2I) 7 project is aimed to

develop a framework to support searching, retrieving and

filtering information from Internet for oncology research

and clinics. Hermes in the context of O2I project is called

Bioagent 8, it supports the the design and execution of

user workflows involving access to literature, mutation

and cell lines databases.

C. LITBIO Project

The main objective of the Laboratory of Interdiscipli-

nary Technologies in Bioinformatics (LITBIO) 9 is to

create infrastructure capable of supporting challenging

international research and to develop new bioinformatics

analysis strategies apply to biomedical and biotechno-

logical data. To satisfy the most bioinformaticians needs

we have proposed a multilayer architecture [2] based on

Hermes middleware. At the user layer, it is intended to

support in-silico experiments, resource discovery and bi-

ological systems simulation. The pivot of the architecture

is a component called Resourceome [8], which keeps an

alive index of resources in the bioinformatics domain

using a specific ontology of resource information. A

Workflow Management System, called BioWMS [3], pro-

vides a web-based interface to define in-silico experiments

as workflows of complex and primitives activities. High

level concepts concerning activities and data could be

indexed in the Resourceome, that also dynamically sup-

ports workflow enactment, providing the related resources

available at runtime. ORION [1], a multiagent system,

is a proposed framework for modelling and engineering

complex systems. The agent-oriented approach allows

to describe the behavior of the individual components

and the rules governing their interactions. The agents

also provide, as middleware, the necessary flexibility

to support data and distributed applications. A GRID

infrastructure allows a transparent access to the high

performance computing resources required, for example

in the biological systems simulation.

ACKNOWLEDGMENT

This work is supported by the Investment Funds for

Basic Research (MIUR-FIRB) project Laboratory of In-

terdisciplinary Technologies in Bioinformatics (LITBIO).

V. CONCLUSION

As the demo presented shows, Hermes middleware pro-

vides an integrated, flexible programming environment,

7http://www.o2i.it/
8http://www.bioagent.net/
9http://www.litbio.org/

whose user can easily configure for its application do-

main. Hermes is structured as a component-based, agent-

oriented, 3-layered software architecture. It can config-

ured for specific application domains by adding domain-

specific component libraries. The user can specify, modify

and execute his workflow in a very simple way. Workflow

is specified abstractly in a graphical notation and mapped

to a set of autonomous computational units (UserAgents)

interacting through a communication medium. The map-

ping is achieved by compiler that is aware not only of

contents of a library of implemented user activities but

also the software and hardware environment to executing

them. By using workflow as suitable technology to hide

distribution and on mobile agents as flexible implemen-

tation strategy of workflow in a distributed environment,

Hermes allows even to a not expert programmer a model

driven design and implementation of a domain specific

activity-based application.

REFERENCES

[1] M. Angeletti, A. Baldoncini, N. Cannata, F. Corradini, R. Cul-
mone, C. Forcato, M. Mattioni, E. Merelli, and R. Piergallini.
Orion: A spatial multi agent system framework for computational
cellular dynamics of metabolic pathways. In Proceedings of Bioin-

formatics ITalian Society (BITS) Meeting, Bolgna, Italy, 2006.
[2] E. Bartocci, D. Cacciagrano, N. Cannata, F. Corradini, E. Merelli,

and L. Milanesi. A GRID-based multilayer architecture for
bioinformatics. In Proceedings of NETTAB’06 Network Tools and

Applications in Biology, Santa Margherita di Pula, Cagliari, Italy,
2006.

[3] E. Bartocci, F. Corradini, and E. Merelli. BioWMS: A web based
workflow management system for bioinformatics. In Proceedings

of Bioinformatics ITalian Society (BITS) Meeting, Bologna, Italy,
2006.

[4] E. Bartocci, F. Corradini, and E. Merelli. Building a multiagent
system from a user workflow specification. In Proceedings of

Workshop From Objects to Agents - WOA, 2006.
[5] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo,

Y. L. Husband, K. Januszewski, S. Lee, B. McKee, J. Munter, and
C. von Riegen. UDDI version 3.0. Published specification, Oasis,
2002.

[6] D. Bonura, F. Corradini, E. Merelli, and G. Romiti. Farmas: a
MAS for extended quality workflow. In 2nd IEEE International

Workshop on Theory and Practice of Open Computational Systems.
IEEE Computer Society Press, 2004.

[7] D. Bonura, L. Mariani, and E. Merelli. Designing modular agent
systems. In Proceedings of NET.Object DAYS, Erfurt, pages 245–
263, September 2003.

[8] N. Cannata, E. Merelli, and R. B. Altman. Time to organize the
bioinformatics resourceome. PLoS Comput Biol., 1(7):e76, 2005.

[9] F. Corradini and E. Merelli. Hermes: agent-based middleware for
mobile computing. In Mobile Computing, volume 3465, pages
234–270. LNCS, 2005.

[10] Enhydra. Jawe. http://jawe.enhydra.org/, 2003.
[11] A. Fuggetta, G. Picco, and G. Vigna. Understanding code mobility.

IEEE Transaction of Software Engineering, 24(5):352–361, May
1998.

[12] D. Hollingsworth. The Workflow Reference Model, January 1995.
[13] E. Merelli, R. Culmone, and L. Mariani. Bioagent: a mobile agent

system for bioscientists. In NETTAB Workshop on Agents Nd

Bioinformatics, Bologna, July 2002.
[14] WfMC. Xml process definition language (xpdl). WfMC standard,

W3C, October 2005.

31

�
Abstract—The imminent mass deployment of pervasive

computing technologies such as sensor networks and RFID tags,
together with the increasing par ticipation of the Web community
in feeding geo-located information within tools such as Google
Earth, will soon make available an incredible amount of
information about the physical and social worlds and their
processes. This opens up the possibi lity of exploiting all such
information for the provisioning of pervasive context-aware
services for “browsing the world”, i.e., for facilit ating users in
gathering informat ion about the world, int eracting with it , and
understanding it. However, for t his to occur, proper models and
infrastructu res must be developed. In this paper we propose a
simple model for the representation of contextual information,
the design and implementation of a general infr astru cture for
browsing the world, as well as some exemplar services we have
implemented over it.

Index Terms—Pervasive computing, Browsing the world , GIS,
GPS, RFID tags.

I. INTRODUCTION

wo apparently disjoint trends motivate this work. On the
one hand, the imminent mass diffusion of pervasive
computing technologies such as sensor networks

[ChoK03] and RFID tags [Wan06] will soon make available
an incredible amount of real-time information about the
physical world, its processes, and its objects. On the other
hand, the dramatic success of participatory Web tools (aka
Web 2.0 technologies) is feeding the Web with information of
any kind about any topic. In particular, mapping tools such as
Google Earth and Google Maps get continuously enriched by
geo-located information coming from very diverse social
communities and related to a variety of facts and events
situated in the world [But06].

Overall, both the above trends contribute to accumulate
information that can be potentially used to build real-time and
historical models of a number of facts and processes
happening in the world. More pragmatically, the possibility of
acquiring detailed digital information about the surrounding
context opens up the possibility of exploiting all such
information for “browsing the world” [Cas06]. The concept of
browsing the world considers that, by properly integrating

Manuscript received July 7, 2006. This work was supported in part by the

project CASCADAS (IST-027807) funded by the FET Program of the
European Commission.

Gabriella Castelli, Alberto Rosi, Marco Mamei, Franco Zambonelli are
with the Dipartimento di Scienze e Metodi dell’Ingegneria. Università di
Modena e Reggio Emilia, Italy; e-mail: name.surname@unimore.it.

information about the surrounding world coming from both
pervasive devices and form the Web, it will be possible for
users to gather contextualized relevant information, and for
services to effectively support user activities related to
interacting with the physical world in a context-aware way.

However, considering that the amount of available
information from a variety of sources could become
overwhelming, its effective exploitation by users and services
calls for proper models to represent such data in an expressive
yet simple-to-be-manipulated way, and for proper software
infrastructure to organize and provide access to it.
Accordingly, the contribution of this paper is twofold.

First, we propose a simple model to represent contextual
information about the physical world, for the use of both
users’ querying activities and context-aware services. The
model, which we call “W4 ”, is based on the consideration that
most information about the world can be simply represented in
terms of four “W”s – Who, What, Where, When – and that
such a representation enables for very expressive, and flexible
data usages.

Second, we describe the design and implementation of a
general middleware infrastructure for browsing the world,
facilitating the development and supporting the activities of
general-purpose context-aware pervasive services. The
infrastructure supports PDAs and laptops access to
information coming from both pervasive devices and the Web,
provides for representation and organization of data in W4
terms, makes available a Java interface for users’ queries and
for services access to such data, and it is integrated with both
Google Earth and Google Map for the sake of effective user
interfacing.

The remainder of this paper is organized as follows.
Section 2 better details the general scenario of browsing the
world and the challenges it implies. Section 3 presents the W4
model. Section 4 details the implemented software
infrastructure. Section 5 presents some services we have
implemented on top of our system. Section 6 discusses related
work in the area. Section 7 concludes.

II . BROWSING THE WORLD

In this section, we better define the scenario in which our
research situates, by properly identifying the components
involved in the “browsing the world” v ision, and by
discussing the associated key challenges.

A. Scenarios

As stated in the introduction, in the near future, our
everyday environments will be densely populated by a variety

The W4 Model and Infrastructure for Context-
aware Browsing The World

Gabriella Castelli, Alberto Rosi Marco Mamei, Franco Zambonelli

T

32

of embedded devices such as sensor networks [ChoK03],
RFID tags [Wan06]. Users in an environment will be able, via
wireless interfaces mounted on some wearable computing
device (e.g. a PDA or a smart phone), to directly access
devices in their proximities to gather information about
phenomena occurring in the surroundings or (as in the case of
RFID tags attached to objects) about nearby physical objects.
In addition, users will be able to access to the Web via some
wireless communication technology, to dynamically retrieve
any needed information. Other than accessing “traditional”
Web information (e.g., html pages and Web services), this
also enables users to access geo-located information
concerning specif ic sites geographical areas and general facts
and annotations about them, as they can continuously
provided via collaborative Web 2.0 technologies by the Web
community [Esp01, TerK06]. In addition, it enables users to
access information generated by sensors and embedded
devices (far in the world or close to him but beside his range
of direct access).

Users, in turn, can decide to unveil (totally or to some
limited extent) their presence in an environment, by making
somehow available to the public their identity, location, and/or
activities. This can occur by dynamically uploading such
information on the Web, or by making it available to other via
ad-hoc connections, or even by uploading it into surrounding
pervasive devices. In this latter case, pervasive devices such
as RFID tags would act as a sort distributed memory
infrastructure [MamQZ06]. The location of users will be
always available, either because they will carry on a GPS or
because of location can be inferred by the patterns of access to
pervasive devices (e.g., the access to a RFID tag with a known
location implicitly determines the location of the user [Sat05])
(see Fig. 1).

Figure 1. The general scenar io of browsing the worl d.

On the basis of the above considerations, the concept of
browsing the world, in general terms, consider the possibility
of navigating in an information space that – by properly
merging and integrating information coming from both
pervasive devices and the Web can represent a detailed model
of the world, comprising both present and historic fine-
grained geo-located data about the world, its entities, its
processes, and its social life. In context-aware user-centric
terms, which are the ones of more interest here, the concept of

browsing the world implies the possibility for users in an
environment to access and navigate meaningful information
about the surrounding physical world, and for software
services to access and manipulate such information to enforce
various degree of context-awareness and context-adaptation.

B. Challenges

From the merely technological viewpoint, the “browsing the
world” vision could be already turned into reality. Indeed,
novel services and Web sites that can be included in the
“browsing the world” category appear every day [Cas06].
However, beside specific service implementations, for
browsing the world to become common practice based on
sound engineered activities, several challenges remains to be
addressed. In particular:
1. It would be fundamental to create a general model to

represent context information and to build a world model.
Spatial information is important but it is not enough.
Temporal information must be included, as well as
information describing the activities taking place in the
world. The model should enable to deal with incomplete
information, and should allow navigation among context
information on the basis of what is available at a given
time.

2. It would be important to have a general infrastructure
supporting the model that should work without requiring
or committing to the availabili ty of specific technologies.
The infrastructure should be general-purpose, autonomic
and adaptable. Relying on this infrastructure, the
activities of browsing the world should not be
compromised because of say, the temporal unavailability
of an Internet connection or the unavailability of a GPS,
or of an RFID reader. Consequently, applications built on
that infrastructure should not mandate the availability of
specific information, but should exploit whatever
available information on a best effort basis.

Beyond the horizon, it would be important for such a general
model to enable easy processing of data, to facilitate the
identification of links between isolated bunch of information.
This would enable the creation of complex knowledge
networks, and possibly would promote the creation of “new
knowledge”, as it can be derived by inference from existing
information [Bau06].
The attempt to face the above challenges, by defining a simple
yet effective model for context data and a general software
infrastructure, as preliminary and incomplete as it can be, is
the exact goal of our work.

III. THE W4 CONTEXT MODEL

We propose a simple model in which context data is expressed
by a four field structure: who, what, where and when. Such a
model appears effective in a number of circumstances since it
points out some of the main topics that are also involved in
human thinking: who is acting? What is he/she/it doing?
Where and when the action takes place?

33

A. Overview

The goal of our proposal is to develop a general model to
manage contextual information. Information to be handled
will come from multiple and heterogeneous sources, and
would be related to a large number of situations ranging from
the description of physical properties in geographic areas, to
social facts and processes happening in the world.
In particular, we developed a model in which context data is
described by means of 4-fields tuple: (Who, What, Where,
When). We chose this structure because of its evident
meaning and flexibilit y. In fact, a W4-tuple allows to express
a situation in a rather natural and human-like way, e.g.,
“someone or something (Who) does some activity (What) in a
certain place (Where) at a specific time (When)”. We call each
of these tuples a knowledge atom to describe the fact they
represent an atomic unit of context information.
Knowledge atoms are created by a number of software agents
running on different (possibly embedded) devices, and will be
stored in a suitable shared data space (in section 4, we detail
our actual implementation of this space). Application agents
that can range from context-aware service providers, to simple
interfaces supporting users in browsing information, wil l
access the shared space to retrieve those context information
that are suitable for their application task.

B. W4 Data Representation and Generation

We define context as a four-field tuple (Who, What, Where,
When):
- Who is the subject described by the context structure.

Who may be a human person (e.g., Gabriella) or an
unanimated part of the context (e.g., an RFID tag). The
Who field is represented by a string with an associated
namespace that defines the “kind” of entity that is
represented. For example, valid entries for this field are:
“person:Gabriella” , “tag:tag#567”.

- What is the activity performed by the subject. In the
likely case that this is not directly available, it can be
inferred from the other context parameters (e.g., an
accelerometer can reveal that the user is jogging), or it ca
be explicitly supplied by the user. This field is
represented as a string containing a predicate-complement
statement. For example, valid entries for the What field
are: “read:book” , “work:pervasive computing group”,
“read:temperature=23”.

- Where is the location to which the context relates. In our
model the location may be a physical space represented
by coordinates (longitude, latitude) or by geographic
regions (specifically, our model adopts the Postgis
language to describe such regions
[postgis.refractions.net]). Moreover, it can also be
represented as a logical place. Logical places like
“campus” or “bank” are mapped in the respective
geographic by using a fixed dictionary. Logical places
like “here” are mapped via simple algorithms considering
the user current GPS location. Note that this enforces
context-awareness, the same “here” information get
multiple meanings depending on the user actual location.

- When is the time duration to which the context relates. It
may be an exact range (e.g., “2006/07/19:09.00am -

2006/07/19:10.00am”), a concise description of a range
(e.g., 9:28am), or even a logical value (e.g., “now”,
“today”, “yesterday”, “before”). Exact values are
represented with a “begin-time-of-day – end-time-of-day”
expression. Concise description and logical values are
mapped via simple algorithms to the corresponding exact
value. For example 9:28am = 2006/07/19:9:28am ± 5min.
It is important to emphasize that concise time descriptions
and logical times are contextual operators, their meaning
depends on the time the query is actually issued.

Software agents are in charge of creating and inserting
knowledge atoms in the shared space. Agents sense
information from several devices (e.g. RFID tag, GPS devices,
Web services) and combine them in order to produce a
concise and effective description of what is happening in
terms of a W4 tuple. The following examples illustrates the
atom generation process.
Gabriella is walking in the campus’ park. An agent running on
her PDA can periodically create an atom describing her
situation.
Who: user:Gabriella
What: works:pervasive computing group
Where: lonY, latX
When: now
The Who and What information are entered directly by the
user at the login of the agent application, Where and When are
dynamically provided by the GPS device.
Gabriella’s PDA is connected with a RFID tag reader. A
specific RFID agent controls the reader and handles the
associated events. When a tag is read, the RFID agent creates
a knowledge atom to store the tag information. In particular,
either the tag would contain its own description, or the tag ID
would be resolved in a dictionary to retrieve the description.
This information, together with the “tag” namespace will fill
the Who field. What is left unspecified. The agent accesses the
GPS to retrieve location of the tag and fill the Where field.
Finally, it completes the When field with the logical value
“now”.
Who: tag:statue of Ludovico Ariosto
What: -
Where: lonY, latX
When: now

C. W4 Interface

Knowledge atoms wil l be stored in a shared data space. In
particular, our model relies on the following non-blocking and
deterministic operations:
void inject(KnowledgeAtom a); enters a knowledge atom in
the shared space
KnowledgeAtom[] read(KnowledgeAtom a); retrieves all
the atoms matching a template knowledge atom.
The inject operation is trivial: an agent accesses the shared
data space and store a knowledge atom there.
The read operation, instead, requires some more discussion.
The W4 Model is suitable not only to represent context
information, but for questioning too. A query will be
represented by a W4 tuple with missing values (i.e., fields left
unspecified). The read operation triggers a patter matching

34

procedure between the query and the knowledge atoms that
already populate the data space. Matching atoms are returned
as results of the query. In this process, it is important to
understand that the pattern matching operations work rather
differently from the traditional tuple space model. In fact, our
proposal can rely on the W4 structure to enforce more
expressive pattern matching operations that have a different
meaning for the various Ws.
- Who and What. Pattern matching operations in these

two fields is based on string-based regular expressions.
For example, a patter like “user:*” will match any user.

- Where. Pattern matching in this field involves spatial
operations (again inspired by Postgis operations).
Basically, the template defines a bounding box.
Everything within the bounding box, matches the
template. For example, a pattern like
“circle,center(lonY,latX),radius:500m” defines a circle
centered at (lonY, latX) with a 500m radius. Tuples with
a Where field within the circle will match the template.
Logical places have to be translated into actual spatial
regions before of going through the pattern matching.

- When. In this kind of pattern matching, the template
defines a time interval. Everything that happened within
that interval matches the template. Concise time
descriptions and logical times will be converted into
actual time interval before of pattern matching.

The following two examples illustrate the querying process.
Gabriella is walking in the campus, and wants to know if
some colleague is near. She will ask (read operation):
Who: user:*
What: works:pervasive computing group
Where: circle,center(lonY,latX),radius:500m
When: now
Analogously, Gabriella can ask if some of her colleagues has
gone to work in the morning:
Who: user:*
What: works:pervasive computing group
Where: office
When: 2006/07/19:09.00am - 2006/07/19:10.00am
It is important to emphasize that returned answers have not to
be “complete” W4 atoms. The pattern matching mechanism
also allows matches between incomplete information. Thus,
following this approach, applications are based on
components entering complete and incomplete context
information and getting in response other refined (but possibly
stil l incomplete) information.

D. Discussion and Future Extensions

In our opinion the proposed W4 model addresses some of the
previous challenges. First of all, the model is general enough
to be used in different application fields, e.g. outdoor and
indoor navigation, location-based services etc. The field
structure is suitable fore a variety of application, indeed no
field is application specific. The 4-field structure is supposed
to have meaning for almost all context subject. Nevertheless,
if a field is empty the others may carry useful piece of
knowledge. The lack of a field doesn’ t compromise the
correctness of an atom neither the ability of retrieving atoms.

This makes the model autonomic and adaptable. Even if the
structure is very simple, it conveys a lot of information
beyond the spatial ones. The description includes both
parameters of the context (time, location) and parameters
about activities being undertaken.
In our opinion, there are however two important extensions
that could be valuably added to the model.
On the one hand, the current model is somewhat limited by
the lack of a reference ontology that could add semantic
relationships to the concepts in the W-fields. With such an
ontology in place, knowledge atoms could be related also if
their fields do not match exactly, and also application agents
would be able to manipulate the retrieved context information
in a more meaningful way.
On the other hand, Although pattern matching operations
proved rather flexible to retrieve context information, in our
future work, we would like to exploit the W4 structure to
better navigate the context repository. More specifically, we
would like to link together the various knowledge atoms to
form a knowledge network where it would be possible to
navigate from one W4 tuple to the other. From this
perspective, the W fields could be link to other knowledge
atoms, so that it would be possible, for example, to follow the
Where link to get further information on where a given entity
is located. Our idea, is that the possibili ty of querying this
network, instead of a flat tuple space, would allow much more
semantically rich questions and inferences. In particular, new
knowledge could be produced by navigating the knowledge
network and combining and aggregating existing information
into new knowledge atoms.

IV. THE “BROWSING THE WORLD” INFRASTRUCTURE

To enable the concept of “browsing the world” , we designed
and implemented an infrastructure based on the W4 model. In
this section we first present the general architecture
underlying our infrastructure, then we will detail the parts that
fulfil l the W4 model.

A. The W4 Architecture

A general infrastructure to enable human-centric browsing of
the world must include services for data acquisition, data
integration, and data visualization. The architecture we have
implemented is organized as follows:

1. Putting humans at the center, our architecture considers
users with portable computing devices (i.e., laptops or
PDAs), integrating localization devices (i.e., GPS),
devices to acquire information from the physical world
(i.e., RFID readers and sensors), and means to connect to
the Internet (i.e., WiFi and/or UMTS connections).

2. Data coming from these devices (there included user
GPS data) is represented by means of the W4 tuples, and
stored in the local tuple space to be later accessed by
application agents.

3. Relevant data are sent to a globally accessible shared
tuple space containing the W4 model of the world. This
space allows multiple users to exchange information and
to conduct wide-area queries.

4. A RFID reader (in the form of a wearable glove)
connected to the laptop or to the PDA via a serial cable

35

can be used to collect information from RFID tags
dispersed in the environment. This information, enriched
with the physical location where it has been collected (as
provided by the GPS, device) is stored in the local tuple
space.

5. Data coming from sensor network nodes (Crossbow
MICAz) can be accessed by a suitable agent that collects
sensed data and store them in the data space. Data is
enriched with the physical location of the actual sensors
and converted in the W4 format. Alternatively, sensor
data could be collected by a base-station and sent
directly to the “World” tuple space.

6. Specific services can be realized by means of application
agents (i.e., autonomous software components) running
locally on the user portable device and accessing, via the
W4 model, both the local and “World” tuple spaces.
Also, application agents can interface with a local GIS
client (Google Earth or Google Maps) to turn data into a
user-centric perspective.

7. Agents can dynamically connect to the Web to retrieve
additional information to integrate with that coming from
the W4 tuple spaces.

The whole system has been realized using the Java language.
The “World” tuple space has been implemented through a
Postgres database with spatial and temporal extensions. The
local tuple space is simply implemented by a Java Vector. The
RFID reader and the sensors are accessed via JNI and sockets
respectively. User interface is provided by Google Earth (for
laptops) and Google Maps accessed via the Minimo browser
(for PDAs).

Figure 2. User centr ic infrastructure for bro wsing the
wor ld

B. W4 Tuple Space

All the information coming from the supported embedded
devices (GPS, RFID and wireless sensors) is represented by

means of W4 tuples, and stored in a local tuple space.
Application agents access this space to retrieve W4 context
information supporting their activities. Thus, application
agents are completely decoupled from low-level embedded
devices, and so they access and deal with contextual
information only in tem of the W4 model. In addition, the
availability of a local tuple space allows the system to work
also in absence of a network connection and allows to
minimize the generated data traffic (and its associated costs).
Since this tuple space has to run on portable devices, it has
been implemented by a simple Java Vector accessible with the
W4 interface as described in 3.c.
Other than the local tuple space, our infrastructure is provided
with a globally accessible shared tuple space containing a
model of the world. This space allows multiple users to
exchange information and to conduct wide-area queries. For
scalabil ity reasons, there could be more World tuple spaces,
physically dislocated in the environment and linked in a DNS-
like hierarchy. However, our current implementation consists
of a single Web-accessible Tomcat server giving access to a
Postgres database that store the W4 tuples. We realized JSP
and Servlets implementing the W4 interface.
Application agents have to decide which information has to be
sent to the World tuple space and which has to remain only
locally confined. This decision may depend on many factor,
such as privacy issues (e.g., a user may not be comfortable of
constantly sending his GPS location on the Web) and
scalabil ity reasons. For example, trivial math says that storing
one person entire life (100 years) GPS traces (2 floats)
sampled at 0.1Hz amounts at 2.5 GB of highly redundant (thus
compressible) data. Depending on needs, agents can decide
the rate of data to send to the global server.

C. W4 Query Engine

The W4 query engine is the component that is in charge of
managing the W4 queries and perform pattern matching
operations.
The query engine running on the local tuple space has been
developed in Java. It basically, scans the local Vector of tuples
and uses String parsing methods and simple geometric
algorithms (to handle Where clauses) for pattern matching.
The query engine running on the “World” tuple space
dynamically translates W4 queries in SQL to execute them on
the Postgres database. In this implementation, query pattern
matching is supported either natively by SQL or by the
Postgis spatial extension for the Where field.
It is worth emphasizing that the current implementation is
only a first prototype and the current tuple space and query
method is rather naïve. However, in future implementations,
we will enrich the current infrastructure so as to manage,
organize and integrate data in a more complex and clever way.
In particular, as discussed in 3.4, we would like to abandon
the current flat tuple-based implementation and structure
context information in networks of knowledge. Such network-
based representation would be more naturally distributable
and could make our infrastructure more adaptive and
autonomic.

36

D. The Graphical Interface

We developed a flexible graphical subsystem that can be
easily employed on both laptops and PDAs. In particular, it
interfaces with the GIS tools made available by Google:
Google Earth and Google Maps to display retrieved context
information as placemarks in a specific geographical area (see
Fig. 3, 4, 5). Our graphical subsystem is based on the Keyhole
Markup Language (KML), fully supported by Google Earth
(at the moment only available for desktops and laptops), and
at least partially supported by Google Maps and Google Maps
for Mobile (that can be accessed also by PDAs and smart
phones). This language allows to enrich geographical images
coming from the Google GIS software with custom
placemarks, images, 3D objects, etc. Thus, our graphical
interface just translates proper W4 tuples in a corresponding
KML f ile and dynamically provides it to the Google software.
It is worth noticing that the KML language allows also to
specify the user viewpoint on the map. This naturally supports
context awareness, in that an agent could decide to center the
map where relevant information are located.
Following this approach, application agents can then acquire
relevant information by both interfacing with embedded
devices, and relying on user interfaces. Such information wil l
be represented in the W4 language for the sake of easy
retrieval, manipulation and understanding. Finally, it will be
converted in KML f or the sake of effective visualization.

V. APPLICATION EXAM PLES

To test our model and infrastructure, we developed some
simple applications highlighting the flexibility of the W4
model and infrastructure. In all these examples, we
implemented a software agent that:

1. receives either static or dynamic queries from the user.
2. accesses the World tuple space to retrieve suitable

context information.
3. creates a KML-formatted answer, and displays it either in

Google Earth (for laptops) or in Google Map (for PDAs).

A. The Journey Map

A first application allows to provide context-aware
information to a user equipped with a GPS device and a RFID
reader. In particular, we focused on the scenario in which a
tourist wants to automatically build and maintain a diary of his
journey. To this end, the proposed service allows to keep
track of all the user movements and have them displayed on
the map of the visited place. Moreover, the support for RFID
allows to access likely-to-be-soon-available tourist
information stored in RFID tags attached to monuments and
art-pieces. From the diary perspective, this allows to store the
visited art-pieces’ location together with their description on
the journey map. The W4 model can accommodate a number
of interesting queries in this scenario. A first query allows to
retrieve information about RFID tags being read.
Who: rfid:*
What: *
Where: lonY, latX
When: now

We implemented this as a static query that the agent asks
cyclically to the local cache of tuple space (recall that the
RFID agent is the one in charge of reading nearby tags and
represent them in W4 format). If a tag is found, its content
(properly parsed and enriched with Web-retrieved
information) is used to create a KML placemark that will be
displayed in the user interface (see Fig. 3). It is worth noticing
that data coming from sensor network could be accessed via a
similar W4 query.
Another service we realized for the journey map application
allows an agent to recover user past locations from the World
tuple space. This service could be useful to review a past tour
and check the places where the user has been. The associated
W4 query can be expressed in the form:
Who: user:Gabriella
What: *
Where: *
When: yesterday
Similarly as before, we implemented this service as a static
query. The agent queries the World tuple space, retrieves a list
of past GPS traces and displays as a KML- ployline in the user
interface (see Fig. 5).

Figure 3. (top) The RFID-reader embedded in a glove
allows to identify tagged objects. (bottom) RFID tags
becomes placemark with Web-retrieved information in the
GIS software.

37

Figure 4. GUI showing user’s past GPS traces

B. The People Map

A user equipped with a GPS device can decide to share his
location with other users and, analogously, he may wish to be
aware of the location of others users. For example, a group of
friends can share their actual GPS locations (represented as
knowledge atoms) with each other. This can happen either by
uploading knowledge atoms to the World repository, or by
exchanging them in ad-hoc way and storing them in the local
tuple space cache only. Either way, collected knowledge
atoms can be used to display users’ locations on real-time a
map (which, by the way, can highlight other interesting Web-
retrieved information for the group, such as museums or bar,
depending on the specific interests of the group). It is finally
worth noticing that our current implementation of the service
deal with privacy by leaving up to the individual user to
decide whether to: share its position or not (and with which
accuracy), make it available only to a restricted group of
users, or to make it publicly available but only in an
anonymous way.
The W4 model can accommodate the some relevant tasks with
the following query
Who: user:*
What: works:pervasive computing group
Where: *
When: now
In addition, using the W4 model, we developed an advanced
interface to enable location dependent queries. A user can use
the “Who” , “What”, “Where” and “When” fields to
dynamically compose queries and to ask information about
local facts and “things” (e.g., “Find all restaurants within 500
meters”) and get in answer the visualization at the correct
location (i.e., in the form of Google Earth / Google Maps
placemarks) of all that is found matching the query. Since the
answer to a location-dependent query is based on the location
of the mobile users, the results of these queries dynamically
change as the users change their location in context-aware
fashion. The query interface lets the user choose the number
of unknown fields, potentially the user can access to the whole
atom knowledge letting all the fields set to “any”.

Figure 5. Map showing users real time locations with
neighbor university facilities. (top) PDA user interface
with the browser Minimo. (bottom) laptop user interface
with Google Earth.

VI. RELATED WORKS

In the past few years, several models addressing contextual
information and context-aware services have been
investigated, and several infrastructure approaching -- to
some extent – our concept of “browsing the world” have been
proposed. In this section, we discuss and compare with ours
some relevant proposals in these area.

A. Related Context Models

Existing researches on models for context-aware information
try to create high-level and general-purpose context
representation to be easily queried.
First works by Schmidt et al.[SchATT99] concentrate on the
acquisition of context data from sensors and the processing of
this raw data through a layered model. Similarly, the Context
Toolkit [DeyAS99] focuses upon deriving context from raw

38

data by providing abstract component that can be connected
together to capture and process the data from sensors.
Although powerful, in our opinion, these approaches lacks of
a common semantic to describe the data. This force
developers to build new query languages depending on the
kind of information at hand. On the contrary the W4 model
provides a common semantic to deal with multiple context
information in a coherent way.
We focuses upon develop a context model that can be easily
queried. The pioneering work in this area is by Schilist et al.
[SchAW94], who proposed a simple context model in which
information are maintained by a set of environments variables.
Analogously, Henricksen et al. in [HenIR02] analyze context
adding the temporal aspect, information imperfection, various
representation and high interrelation. However this approach
leads to a long list of all characteristics of context, lacking in
simplicity.
Others authors use structured context models as tuple space.
In mobile computing several systems such as
MARS[CabLZ00] and LIME[MurPR01] use the notion of
reactive programming for shared unstructured tuple spaces.
The Context Fabric’ s fundamental abstraction is the
InfoSpace [Hong02]. Each InfoSpace is a context tuple
describing a single piece of context data in terms of entities
(people, place, thing), attributes (e.g. the name) and
relationship, special kinds of attributes that points to other
entities. That approach doesn’ t address the temporal
dimension of context. Egospaces [JulR02] provides a
structured notion of context as name-value pairs in a Linda-
like tuple space. Egospaces addresses context-aware
programming in Ad-Hoc environments populated of agents by
proposing an egocentric notion of context, i.e. every agent
holds a personal representation of the world - that
representation is called view. That approach is related to our
approach with whom we share the idea of a structured
representation of the context, however it is not concise
because requires multiple tuples to represent a context piece.
Indeed we don’ t have an egocentric notion of context.
Chang Xu et al. in [XuC05] propose a model very similar to
our approach. It consists in a seven-field data structure that
manage the description of the context. The fields are: subject,
predicate, object, time, area, certainty, freshness, with similar
meaning to W4. Beyond the field meaning, the purpose is
different: their context model is not for browsing the world
application. Similar considerations apply for the system
described in [BraHCN06]: it describes RFID tags with the
who-what-where-when structure. This approach is related to
our with whom we share the idea of merging some
information from different sources, e.g. the id from the tag
with location from GPS or subject from the Web. However
it’ s not a general model, since it is applied only to RFID tag.

B. Related Infrastructures

It is clear that a general infrastructures for browsing the world
does not exist. Nevertheless, there exist several application-
specific infrastructure and services which can show the
importance of the problem. Some streams of works is simply
based on representing Web information overlaid to
geographical maps [But06, Rou05]. Examples include

representations of avian–flu-outbreak reports
[declanbutler.info/Flumaps1/avianflu.html], celebrity
sightings [www.gawker.com/stalker], real estate information
[www.forsalebyownercenter.com/google-earth-real-
estate.aspx], and videogames [www.findskullisland.com].
Location-based services are natural candidates to use the
power of novel GIS systems. A survey of novel tools to create
location-based services is presented in [HarK05]. The
presented systems combine GPS data, Web-search engines
and GIS tools to retrieve and visualize services on a location
basis. One system, for example, converts GPS data into street
address by exploiting a standard geo-coding service
(www.mapquest.com/features/main.adp?page=geocode). The
address is then used to refine a search query submitted to a
Web-search engine. Finally, the results are automatically
displayed on a GIS tool. More dynamic applications, combine
collaborative technologies (e.g., blogs and wiki) to GIS tools.
MapWiki [TerK06], for example, is a Wiki collaborative
environment where all the contents are located on a map. The
contents can be edited and moved across the map and
accessed on a location basis. Similarly, the Socialight software
(socialight.com) allows a user to leave virtual Post-it notes,
called sticky shadows, in specific sites around a city. The
application checks the user actual coordinates with the note
geospatial database and retrieves matching content.
In our opinion, all the above projects represents promising
starting points of a future in which a wide range of
information will be properly conveyed by novel GIS services.
However, most of the above researches are special purpose
and lack of a general architecture to manage and integrate
pervasive, Web and GIS data. Furthermore, in opposition at
our user-centric vision, their aim is to produce a centralized
view of the world.
Other works concerned systems characterized by the presence
of exploratory users and a surrounding environment. Users
move forward the environment and access information
exploiting different type of embedded sensors. Example of
this systems are TinyLime [CuGG05] and all these system of
world browsing like the system proposed in the past by our
group [MamQZ06]. TinyLime is a middleware for wireless
sensor networks that departs from the traditional setting where
sensor data is collected by a central monitoring station, and
enables instead multiple mobile monitoring stations to access
the sensors in their proximity and share the collected data
through wireless links. This context-aware setting is
demanded by applications where the sensors are sparse and
possibly isolated, and where on-site, location-dependent data
collection is required. An extension of the LIME middleware
for mobile ad hoc networks, TinyLime makes sensor data
available through a tuple space interface, providing the
illusion of shared memory between applications and sensors.
At the same way our group describes the design and
implementation of a tuple-based distributed memory realized
with the use of RFID technology. The key idea is that
everyday environments will be soon pervaded by RFID-
tagged objects. By accessing in a wireless way the re-writable
memory of such RFID tags according to a tuple-based access
model, it is possible to enforce mobile and pervasive
coordination and improve our interactions with the physical

39

world. From a certain point of view we can consider these
systems as “World Browsing” systems. Nevertheless we can
say that our new system is certainly more complete and
structured. These systems indeed base their functionality on
specific technologies (in this case environmental sensors and
RFID tags), they aren’t based on a well structured standard
context model and further they don’ t exploit information
coming from the Web (as our does). A further interesting
project is FLAME2008 [WeissVoG04]. Users through their
PDA access to services (related to the 2008 Olympics games
in Bijing) expressly fitted on their needs: FLAME2008
elaborates them on the base of activities and situations carried
out by the user. The infrastructure is very interesting, in
particular for its use of ontologies, and appears to be very
complete. Nevertheless we noticed that it’s too bound to a
specific application field and it doesn’t perform any
mechanism for generate and store new knowledge (think at
our mechanism of generating new knowledge atoms from
performed queries in the past). Our model is certainly more
user centric and location independent, besides it has been
developed to adapt itself to a generic context, and above all, to
be fully functional in any location with or without
infrastructure support.

VII. CONCLUSIONS AND FUTURE WORKS

In the next few years, browsing the world will be as common
as today is browsing the Web, and the increasing number of
proposals and applications in this area definitely testify this
trend. However, a number of challenging research issues still
have to be faced to fully realize the vision. In this paper we
present a simple model and infrastructure to handle some of
these challenges. Our future research in this area will mainly
focus on two aspects. On the one hand, we will try to integrate
ontologies in our model to improve its expressiveness and
flexibil ity. In particular, ontologies will allow more semantic
forms of pattern matching. On the other hand, we wil l try to
go further than the current flat knowledge atom representation
and link knowledge atoms in suitable knowledge networks
allowing a better and more semantic navigation of context
information.

REFERENCES

[BraHCN06] J. Bravo, R. Hervas, G. Chavira ,S. Nava, "Modeling Contexts

by RFID-Sensor Fusion," percomw, pp. 30-34, Fourth Annual
IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOMW'06), 2006.

[But06] D. Butler, “Virtual Globe: the Web-Wide World” , Nature,
439:776-778, Feb 2006.

[CabLZ00] Giacomo Cabri , Letizia Leonardi , Franco Zambonelli, MARS: A
Programmable Coordination Architecture for Mobile Agents,
IEEE Internet Computing, v.4 n.4, p.26-35, July 2000.

[Cas06] G. Castelli, A. Rosi, M. Mamei, F. Zambonelli, “Browsing the
World: Bridging Pervasive Computing and the Web”, 2nd
International Workshop on Ubiquitous Information Systems,
Munster (D), September 2006.

[ChoK03] C.-Y. Chong, S. P. Kumar, “Sensor Networks: Evolution,
opportunities, and challenges”, Proceedings of the IEEE,
91(8):1247-1256, Aug. 2003.

[CuGG05] C.Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy,
G.Picco: “Mobile Data Collection in Sensor Networks: The
TinyLIME Middleware”; Dip. di Elettronica e Informazione,

Politecnico di Milano, Italy and Dept. of Informatics, University
of Lugano, Switzerland.

[CugP] G. Cugola, G. P. Picco, "PeerWare: Core Middleware Support
for Peer-To-Peer and Mobile Systems", Technical report
available at the URL: http://peerware.sourceforge.net/

[DeyAS99] Anind K. Dey, Gregory D. Abowd, Daniel Salber. A Context-
Based Infrastructure for Smart Environments. Proceedings of the
1st International Workshop on Managing Interactions in Smart
Environments, Dublin, Ireland, Dec 1999.

[Esp01] F. Espinoza, P. Persson, A. Sandin, H. Nystrom, E. Cacciatore,
M. Bylund, "GeoNotes: Social and Navigational Aspects of
Location-Based Information Systems", International Conference
on Ubiquitous Computing, Atlanta (GE), 2001.

[HarK05] R. Hariharan, J. Krumm, E. Horvitz, "Web-Enhanced GPS",
International Workshop on Location and Context Awareness,
Munich (DE), 2005.

[HeyIR02] K. Henricksen , J. Indulska , A. Rakotonirainy, Modeling Context
Information in Pervasive Computing Systems, Proceedings of the
First International Conference on Pervasive Computing, p.167-
180, August 26-28, 2002.

[Hong02] Hong. J. I., “The Context Fabric: An Infrastructure for Context-
Aware Computing.” , Proc CHI 2002

[JulR02] C. Julien , G. Roman, Egocentric context-aware programming in ad
hoc mobile environments, Proceedings of the 10th ACM
SIGSOFT symposium on Foundations of software engineering,
November 18-22, 2002, Charleston, South Carolina, USA.

[MamQZ06] M. Mamei, R. Quaglieri, F. Zambonelli, “Making Tuple Spaces
Physical with RFID Tags”, ACM Symposium on Applied
Computing, Dijon, FR, April 2006.

[MasCE01] C. Mascolo, L. Capra, W. Emmerich, “An XML based
Middleware for Peer-to-Peer Computing”, 1st IEEE International
Conference of Peer-to-Peer Computing, Linkoping (S), 2001.

[MurPR01] Murphy A. L., Picco G. P., and Roman G.-C., “Lime: A
middleware for physical and logical mobility .” In Proc. of the
21st Int’ l. Conf. on Distributed Computing Systems, pages 524–
533, 2001.

[Rou05]W. Roush, “Killer M aps”, Technology Review, 11 September 2005
[Sat05] I. Satoh, “A Location Model for Pervasive Computing Environments”,

3rd International Conference on Pervasive Computing and
Communications, IEEE CS Press, pp. 215-224, March 2005.

[SchATT99] A. Schmidt , K. A. Aidoo , A. Takaluoma , U. Tuomela , K. Van
Laerhoven , W. Van de Velde, Advanced Interaction in Context,
Proceedings of the 1st international symposium on Handheld and
Ubiquitous Computing, p.89-101, September 27-29, 1999,
Karlsruhe, Germany.

[SchAW94] B. Schilit, N. Adams, and R. Want. Context-aware computing
applications. In IEEE Workshop on Mobile Computing Systems
and Applications, 1994.

[TerK06] Y. Teranishi, J. Kamahara, S. Shimojo, “MapWiki: A Ubiquitous
Collaboration Environment on Shared Maps”, 6th International
Symposium on Applications and the Internet Workshops,
Phoenix (AZ), 2006.

[Wan06] R. Want, “An Introduction to RFID Technology”, IEEE
Pervasive Computing, 5(1):25-33, 2006.

[WeissVoG04] N. Weißenberg, A. Voisard, Rüdiger Gartmann, “Using
Ontologies in Personalized Mobile Applications”, GIS'04,
November 12-13, 2004, Washington, DC, USA.

[XuC05] Chang Xu , S. C. Cheung, Inconsistency detection and resolution for
context-aware middleware support, ACM SIGSOFT Software
Engineering Notes, v.30 n.5, September 2005..

40

�
Abstract—The mass deployment of sensors and pervasive

computing systems expected in the next few years, will require
novel approaches to program and gather information from such
systems. Suitable approaches will be general purpose,
independent of a specific scenar io and sensor deployment, and
able to adapt autonomically to different scales and to a number
of unforeseen circumstances. This paper focuses on the
requirements and issues of upcoming pervasive computing
scenario, and surveys current research initiat ives to deal with
them. In particular researches addressing data retr ieval and
aggregation, macro-programming, and data integration in
pervasive computing infrastructu res will be detailed. Overall, the
paper illustrates our ideas on collecting information from both
sensor systems and Web resources and on linking them together
in overlay knowledge network offering applications
comprehensive and understandable informat ion about their
computational environment.

Index Terms—Pervasive computing, Sensor network, RFID
tags, Self-organization.

I. INTRODUCTION

n the near future, computer-based systems will be
embedded in all our everyday objects and in our everyday
environments. These systems will be typically

communication enabled, and capable of coordinating with
each other in the context of complex mobile distributed
applications.
Current realizations of such scenarios, mainly in research labs,
focus on special purpose systems, tailored for a specific
application task. This specialization comes rather directly
from the extremely limited capabil ities of pervasive devices,
that impose to rule out ancillary and general properties for the
sake of optimization. In sensor network scenarios, for
example, in order to be compliant with the thin battery budget
of each sensor, applications rely on special purpose algorithms
tailored for a specific sensors’ deployment and for a specific
set of data to be measured [WerL06].

Manuscript received July 7, 2006. This work was supported in part by the
project CASCADAS (IST-027807) funded by the FET Program of the
European Commission.

Nicola Bicocchi is with the Dipartimento di Scienze e Metodi
dell’Ingegneria. Università di Modena e Reggio Emilia, Italy; e-mail:
mamei.marco@unimore.it

Marco Mamei is with the Dipartimento di Scienze e Metodi
dell’Ingegneria. Università di Modena e Reggio Emilia, Italy; e-mail:
mamei.marco@unimore.it.

Franco Zambonelli is with the Dipartimento di Scienze e Metodi
dell’Ingegneria. Università di Modena e Reggio Emilia, Italy; e-mail:
franco.zambonelli@unimore.it.

In our opinion, such extreme specialization is transitory and
more general-purpose approaches are likely to emerge soon.
We think that future pervasive computing systems will be
general purpose and users will be able to install and execute
applications both on their private pervasive computing
infrastructure (e.g., in smart home scenarios), and in publicly
available ones (e.g., citywide infrastructures offering tourist
information and services) [JonG05,Sri06]. In our opinion, this
vision is motivated by the following considerations:

1. Advances in the manufacturing of pervasive computing

devices (e.g., wireless sensors) will dramatically increase
their performance, both in terms of computational
capabilities and energy resources [Chu06].

2. Advances in energy-optimized and resource-optimized
algorithms will provide efficient mechanisms to perform a
number of basic services (e.g., routing), thus lowering the
“resource-constraint-pressure” even further [Jon01].

3. Specialization hinders application development from a
software engineering point of view. To create complex,
dynamic and flexible services, it is mandatory to rely on
general-purpose software infrastructures facilitating the
programming task [Zam04].

All the above considerations show that general-purpose
pervasive systems will be feasible in the next future, and will
be required to offer advanced, flexible, robust and
customizable services.
Given the extreme heterogeneity of future pervasive
computing systems, their inherent dynamism and – most
importantly – the incredible amount of data they wil l be able
to produce, applications will have to autonomously adapt their
behavior to different circumstances ranging from the scale of
the pervasive network, to the quantity and granularity of
information that will be available.
To achieve such a flexibil ity, applications will have to be
highly context-aware (to understand and meaningfully interact
with their environment) and, to this end, they will need to
access properly represented contextual information.
In this direction, a number of recent researches try to represent
contextual information by relying on overlay knowledge
networks [Jel05, MamZ05, NagM04, Zam04]. Overlay
knowledge networks can be regarded as distributed data
structures encoding specific aspects of the application
components’ operational environment. Overlay knowledge
networks are easily accessible by the components and provide
easy-to-use context information (i.e., the overlays are
specifically conceived to support their access and fruition).

Mechanisms of Self-Organization in Pervasive
Computing

Nicola Bicocchi, Marco Mamei, Franco Zambonelli

I

41

The strength of these overlay knowledge networks is that they
can be accessed piecewise as the application components visit
different places of the distributed environment. This lets the
components to access the right information at the right
location.
From our perspective, “classic” overlay networks such as
spanning tree and mesh data structures (i.e., routing
distributed data structures providing components with a
suitable application-specific view of the network) are
particular examples of the more general concept of overlay
knowledge networks [Jel05, IntG00, MadF02].
Overlay data structures such as fields and gradients
[MamZ05], used in a number of macro-programming
mechanisms [HadM06, NagM04], are another example of
overlay knowledge network.
This paper is devoted to the above concepts and its main
contribution is twofold:

1. We wil l better illustrate the scenario of general purpose

pervasive computing showing its evolution and
highlighting requirements and issues. In particular, we will
discuss how considering the system as composed of a
“continuum” of sensors and devices, rather than a discrete
collection of them, may provide useful ideas and
abstractions to deal with general purpose pervasive
computing scenarios.

2. We will survey current research initiatives applying overlay
knowledge networks to several autonomic and self-
organizing pervasive computing applications. In particular,
we will discuss how overlay knowledge networks could be
suitable to the general scenario depicted above. By means
of this survey, we will present how different research
fields, ranging from data mining to distributed systems, are
beginning to merge and complement each other to provide
viable solutions to these novel scenarios.

The rest of this paper will be organized as follows. Section 2
details the upcoming scenario of pervasive computing and
sensor networks, and illustrates the current shift fr om special-
purpose and single-owner systems, to general-purpose and
public pervasive infrastructures. Section 3 discusses issues
and current approaches to program and gather information
from pervasive distributed systems. In particular, it
emphasizes the important role of overlay knowledge network
in the majority of the proposals. Finally, Section 4 concludes
the paper presenting some future research avenues in this area.

II . SCENARIO

As pointed out in the introduction, pervasive computing
scenarios are moving toward general-purpose and widely
available infrastructures that will enable a wide range of novel
applications. In this section we are going to present the current
setting of the scenario and its possible future evolution.

A. Current Setting

Recent advances in manufacturing and wireless
communication are leading to the vision of pervasive and
ubiquitous computing [But06, JonG05, Sri06]. The following

technologies, currently widespread in research labs and likely
to impact soon the real world, are the workhorses of this
vision:

1. Sensor networks consist of several micro sensors scattered

across an environment that collect environmental data (e.g.
sound and temperature), process data (e.g., compute
average and aggregate values) and wirelessly transmit such
data to other sensors or base stations. The wireless sensor
networks of the near future are envisioned to consist of
hundreds to thousands of inexpensive wireless nodes, each
with some computational power and sensing capability,
operating in an unattended mode. They are intended for a
broad range of environmental sensing applications from
vehicle tracking to habitat monitoring. The hardware
technologies for these networks (low cost processors,
miniature sensing and radio modules) are available today,
with further improvements in cost and capabili ties
expected within the next decade [WerL06].

2. Radio Frequency Identification (RFID) tags are small
wireless radio transceivers that can be attached
unobtrusively to objects as small as a watch or a
toothbrush. Tags are extremely cheap and battery-free.
Thus, they do not have power-exhaustion problems. Each
tag is marked with a unique identifier and provided with a
tiny memory allowing to store data. Suitable devices,
called RFID readers access RFID tags by radio for read or
write operations. The tags respond or store data
accordingly using power scavenged from the signal
coming from the RFID reader [Wan06, MamZ05]. For
example, a mobile device detecting tagged objects nearby
can build a sort of database of the objects available. This
could have several applications in inventory and ware
house management [LegT06].

In our opinion, these relatively static and hard-coded
applications will be soon complemented by much more
dynamic ones that will leverage sensors and RFID tags as a
general, publicly-available infrastructure to “in terface” with
the physical world. Sensor data and RFID tags will be
accessed by handheld devices we carry on everyday and wil l
provide us with information such as crowded pubs nearby,
dynamically-computed bus time tables and customized and
useful information about objects and products around
[MamQZ06, CurG05, Bor05, NatR06]. For example, RFID
tags will possibly host scripts that will enable to tell how the
data in it should be handled. This can enable forms of parasitic
computing (the script is executed when a reader in range
powers up the tag) [Rie06]. In addition, RFID tags can be
coupled with sensors. A reader can power up the sensor that
takes a measure and returns it to the reader [Wan04].

3. Localization technologies are key enablers for pervasive

computing applications. Several mechanisms and
technologies are currently proposed both for outdoor and
indoor localization [HigB01, Sat05]. Location in the
physical world remains the primary contextual information
for almost all pervasive computing applications.

4. The Web. Given the ever improving coverage and

42

bandwidth of wireless network technologies, all kind of
application scenarios could benefit from the ever
increasing information available on the Web. For example,
it is possible can find information about the small shop
round the corner and discover the menu and the price list
of that nice restaurant you have seen in that little village a
few days ago. Still, the Web is missing connection with
the physical world and with your actual physical location.
So that a query as simple such as “where is the closest
Chinese restaurant?” is something that current Web cannot
answer satisfactorily. There is a lot of work in this kind of
location-based services, but still some general purpose
architecture to implement the idea is missing [Esp01,
Eag05, HarK05].

On the basis of the above considerations, future pervasive
infrastructures will be hosting several services and will
integrate data from various sources, ranging from RFID,
sensor networks and Web resources (see Fig. 1). Users in this
scenario, will be able to access – via a number of handheld
and wearable devices – several services dispersed in the
environment.

x Users could query, either directly or via a proper base

station, sensors in the environment to get various
information such as traffic reports, weather conditions, and
environmental parameters (e.g., temperature, light-
condition) [Bal06, Sri06].

x Users could join profile matching services and applications.
Profile matching applications consist of a sensor network
composed of the smart-phones of the persons joining the
application (note that a Bluetooth phone can be easily
regarded as a wireless sensor, in that it can provide various
data to other devices around). Such sensors will monitor
their surrounding environment looking for nearby
“compatible” persons and notify their users upon positive
matches. [Eag05].

x Users could benefi t of a number of automated pervasive
services to complete economic transaction and acquire
information. For example, RFID allows the vision of
cashier-free retailers where a user just enters a retailer,
takes what he needs and, when exiting, RFID readers
installed at the retailer door read the items being taken and
charge the customer credit card accordingly. RFID could
also allow to store information where they will be most
useful. For example, information on goods and products
could be stored in RFID tags stuck at that product [Bor05,
NatR06].

x Users could complement and integrate all the above data
and information by means of suitable Web resources. For
example, a sensor network detecting some kind of
polluting agent could integrate collected data with a map
showing nearby industrial implants to discover possible
causes of the pollution, or in a map showing natural
reserves to predict dangerous effects [JRDMS]. Similarly,
a group of friends could decide to share with each other
their actual GPS locations, and to display them on a map
which highlights pubs and bars (coming from Web-based

yellow pages) [Cas06].

RFID Reader

Mote Sensor

Mote Sensor

Mote Sensor

Base Station
Base Station

Sever

Figure 1. General pervasive architecture

B. Future Vision

The technologies described above could lead, in the next
future, to a scenario in which sensors, actuators, memory and
computational infrastructures will seamlessly wrap the real
world. This will allow to collect and handle data coming from
an unpredictable number of devices (sensors and Web
resources) that will produce a sort of enriched perception of
the world. With such an infrastructure in place, several
interesting applications, in which users will be able to
perceive the word beyond their five senses, will become
feasible. For example, while walking on a street, it will be
possible to perceive (i.e., get real-time information) on how
much the restaurants nearby a crowded. In a similar way, it
will be always possible to “sense” where friends and relatives
are located, so as to arrange for meeting on the fly.
From our perspective, there are two main streams of research
fueling this vision:

1. Novel approaches are needed to provide human users and

application components with “extra-sensory” i nformation
without overloading their cognitive capabiliti es. With
regard to human users, research on wearable computer is
developing mechanisms to enable a person to see (by
means of suitable see-through visors) computer-generated
images overlaid to the physical world. Such images can
augment the word by providing additional information
[Dan06]. For example, they could show directions overlaid
to the actual environment, or provide personal information
overlaid to the person we are actually talking with. With
regard to application components, suitable software
infrastructures are needed to represent context information
in a way that will be easy for the components to
understand and use [MamZ05].

2. It is fundamental to actually store and manage that
information at the infrastructure level. Research on RFID
tags and sensors infrastructures, is a promising approach
(complementary to the previous one) leading to this vision.
In this context, the idea is to store and later retrieve
information in the RFID tags and sensors that are likely to

43

populate (and saturate) our physical environment. Such an
infrastructure could be used to enrich the world with
context information that could be retrieved properly
[MamQZ06]. For example, the infrastructure would allow
to store “v irtual” post-it notes across an environment to be
found later on.

It is rather clear that such a vision implies a huge amount of
information and data pervading the physical world that (given
its scale) requires novel methodologies to be dealt with. In our
opinion, a paradigm leading to the development of proper
methodologies, in this context, could be based on the
“continuum” abstraction [BeaB06]. Following this approach
the system is designed having in mind a continuum of data
sources (rather than a discrete network of devices) and so the
abstraction being realized have to scale to an arbitrary number
of devices. Of course to deal with such kind of large scale
systems, autonomic and self-organization principles are
needed [Dob07]. This is because managing the system at a
fine-grained scale and addressing individual components wil l
not be feasible (with the continuum abstraction in mind, the
very concept of individual component tend to vanish), and so
autonomic and self-organization mechanisms – where
individual components manage themselves -- have to be
introduced.
In particular, we envision an architecture, like the one
depicted in Fig. 2. There, a countless number of sensors
(wireless mote sensors, RFID, smart phones, and yet-to-come
devices) enrich the world with digital information. This layer
(represented as the bottom layer in Fig. 2) will be constituted
by a huge number of heterogeneous and dynamically varying
devices. The data at this basic level is at the finest possible
granularity, and because of that will be hardly manageable and
understandable by application components (i.e., too much
data, too sparse knowledge).
Overlay knowledge networks are distributed data structures
encoding specific aspects of the application components’
operational environment. Overlay knowledge networks are
easily accessible by the components and provide easy-to-use
context information [MamZ05]. These overlay knowledge
networks come into play to organize the data of the bottom
layer into higher-level and more semantically expressive
concepts. An example of this idea would be an overlay
knowledge network that aggregates the data produced in a
region of the underlying network to offer application
components a single aggregated value (e.g., the average)
representing the whole region. In other words, data produced
by the bottom sensors can be aggregated at different level of
abstractions. This aggregation produce discrete data elements
each one managing portions of the continuum sensor space.
These elements of the overlay knowledge network are
represented in the higher layers of Fig. 2 and the upward
arrows represent the process of creating higher-level concepts
from low-level sensors.
This upward direction is not the only possible. In several
situation, overlay knowledge network need to integrate and
contextualize high-level concepts to a lower layer using sensor
data. This integration is represented by the bottomward arrows
in Fig. 2.

The resulting scenario is that of a hierarchy of an arbitrary
number of overlays representing context information at
different level of granularity. Application components,
depending on their task, decide at which level to consider the
context. Lower-level information will be aggregated to the
proper level of abstraction. Higher-level information will be
possibly contextualized to that level, and all this information
will be integrated together in coherent view supporting
application tasks.
Al though the above description is at the level of modeling,
and data aggregation, contextualization and integration
mechanisms could be realized via whatever approach, in
practice the model easily support a hierarchical architecture
where higher-level servers collect and provide data at a certain
level of granularity. Adopting this viewpoint, at the top level
of Fig. 2, we have globally accessible Internet server
providing worldwide aggregated information. At the lower
layers, there are servers providing more and more specific
data (e.g., state-wide, city-wide, building-wide data). At the
bottom-layer there are the individual sensors offering
extremely localized – but extremely detailed and up-to-date --
information.
Whatever the architecture, in order to realize the conceptual
model in Fig. 2, it will be fundamental to rely on self-
organization and autonomic principles. In fact, to guarantee
robustness and scalability, the overlay knowledge network
will have to maintain its coherency despite network glitches,
sensors failures, the addition and removal of part of
knowledge and other kind of contingencies.

Figure 2. Continuum pervasive network with an arbitr ary
number of overlays describing context at different
granularity

II I. ISSUES AND CURRENT APPROACHES

Several new technologies and mechanisms are needed to
fulfil l the above vision and to create general purpose
pervasive applications. In particular, we think that the main
challenge is to provide applications with suitable overlay

44

knowledge networks to gather, understand and exploit context
information at the proper level of abstraction for their
application task. If a suitable context-representation is
available, often the application task becomes easy, since
application components see clearly from their context how to
achieve the task [MamZ05].
From our perspective, there are three main research fields that
are fruitfully tackling the above problems by exploiting
overlay knowledge networks.

1. Data Retr ieval and Aggregation comprises a number of

researches trying to get data from a distributed sensors in
an efficient way. In this context, overlay knowledge
networks are used to create the routing structures to collect
and aggregate data.

2. Macro Programming deals with programming a
distributed system without explicitly defining single
entities activities, but letting a compiler or a distributed
middleware to translate high-level task into individual
component activities in an automatic way. In this context,
overlay knowledge networks are used to create regions and
areas in a distributed systems allowing to suitably
differentiate application execution disregarding individual
components’ activities.

3. Data Integrat ion allows to integrate data from various
sources (Web services and pervasive sensors) to offer
application components an all-encompassing view of the
operational environment (context). In this context, overlay
knowledge networks are used to actually represent the
integrated view that will be provided to application
components.

In the next subsections we will present a survey of current
research initiatives in these areas, showing also how the
different areas themselves complements one another and
pursue from different perspective the same ultimate goals.

A. Data Aggregation and Retrieval

The main goal of a sensor network (and of the majority of
pervasive computing systems) is to collect data from the
environment and to suitably present the data to application
components. For this reason several researches try to devise
mechanism to retrieve, collect and possibly aggregate data
form a sensor network. The most common approach to collect
data from the network consists in deploying data collector
(i.e., sink) nodes which subscribe to some type of data flowing
from sensing nodes about some particular phenomena. Once a
data collector is registered to the network, each node starts to
periodically send data to it. For example there may be a sink
interested in receiving data from a particular region “A”
between 2pm and 6pm if the temperature in that zone exceed
50°. Each day, during the selected time frame, sensors which
detect temperatures over the selected threshold wil l send data
to the sink. This is the simplest possible approach to retrieve
data but has several disadvantages. In general since different
sensor nodes detect the same phenomenon, it is likely that
there will be an high degree of redundancy in the data flowing
to the sink from different sources. Moreover each node
located between a source and sink has to spend energy to

route the message towards the destination. When compared to
local processing of data, wireless transmission is extremely
expensive. Researchers at the University of California,
estimate that sending a single bit over radio is at least three
orders of magnitude more expensive than executing a single
instruction [ShrP04]. Last but not least, this approach is very
sensitive to reading errors and sensors faults. If a node, broken
or malicious, produces fake data, there is no straightforward
way to filter it out.
To overcome the above problems, in-network filtering,
processing and aggregation techniques can be used to
conserve the scarce energy resources and improve data
quality. From the information sink point of view in network
data aggregation has two main advantages. The first one
consist on a reduction of the potentially overwhelming data
streams produced by the sensors. The second one, due to the
activity of fil tering and processing, is to reduce the complexity
and the amount of data gathered letting further analysis more
manageable. Probably, during the next few years, due to the
increase of the size and density of sensor networks these
advantages will quickly become determinant and every
application will use some mechanisms where some sort of “i n
network” aggregation will be implemented natively.

Figure 3. A spanning tree is created in the sensor network
to route the collected data to a root node.

The work described in [Jel05] distinguishes reactive and
proactive protocols for computing aggregate functions in a
sensor network.

x Reactive protocols try to respond on demand to queries

injected by nodes. If the answer is found in some region of
the network, it is routed directly to the issuer node (see
Fig. 3). Examples of this approach are well described in
[IntG00, MadF02].

x Proactive protocols continuously provide aggregated data
using some function and aim to diffuse meaningful values
on every nodes in the networks in an adaptive way (see
Fig. 4). “Adaptive” means that if sensed values change
over time, the output of the algorithm should track
variations reasonably quickly. Proactive protocols are
often useful when aggregation is used as a building block
for completely decentralized solutions to complex tasks
[Jel05].

45

The above computation of aggregate functions is a key
building block for many applications. In fact, aggregate data
can be regarded as a simpli fied view of the components
operational environment. Components may find simpler to
access the aggregate value rather than distill the individual
sensor readings.
Some examples of most used aggregated values are network
size, average load, average uptime, location and description of
hot spots, and so on. Local access to global information is
often very useful, if not indispensable for building
applications that are robust and adaptive. For example a fire
alarm system has to trigger an alarm if the average
temperature inside a building exceed a certain threshold or a
distributed storage system has to know the overall free space
over various device before processing a write() request. To
reach the goal of a local access to global network features we
have mainly two choices.

x The first one consists of gathering on some sinks all the

(aggregated on not) sensor readings. After that we have to
diffuse the global aggregated values into the overall
network. This approach is simple and straightforward but
has several serious limitations. The main one is the poor
scalability . In fact as the network size grows, the amount
of data that the sink has to manage become quickly
overwhelming.

x On the other side we can use gossip based aggregations
methods [Jel05]. Using this kind of algorithm local sensor
readings are not to be convoyed to a sink, but can stay on
sensors. The core of these protocols is a simple gossip-
based communication scheme in which each node
periodically selects some other random node to
communicate with. During this communication the nodes
update their local approximate values by performing some
aggregation specific and strictly local computation based
on their previous approximate values. After some
iterations the local approximate value converge to the
global value. The main advantages of these methods are
that they are simple, scalable and provide local access to
global values without any additional burden.

The last reported feature is really important in our vision. In a
world full of sensors and actuators, users will need simple
(i.e., aggregated) representations of the area of the network
where they will be immersed. Using traditional routing based
aggregation algorithm, due to their inherent “reactive” nature,
will require, for each query, the building of a dedicated tree
and to wait answers from an unknown number of sensors
(which will may be very high). Instead, using gossip based
algorithm, any user will be able to get, without any additional
burden for the network, a simpli fied view of the area.
In general, the resulting aggregate value distributed across the
network becomes an instance of overlay knowledge network.
The overlay in fact extracts low level sensor reading to higher
level concepts (i.e. aggregate values).

Figure 4. A gossip algor ithms is run by nodes to aggregate
data and repor t them back to an inquir ing node.

In the next paragraph we briefly highlight some general
examples of either reactive and proactive algorithm
applications.
Data aggregation and retrieval is at the basis of a number of
relevant application in the context of pervasive computing and
sensor network. Currently the main application of sensor
networks is environmental monitoring. This application
consist of deploying a suitable number of ad hoc wireless
connected sensors in a region. Such devices periodically read
some environmental properties and route the acquired data
towards a base station that is in charge of gathering and
storing them. A good example of this kind application has
been deployed on a natural reserve island in front of the
Maine coast [Pol06]. There a hundred of sensors collect data
from the birds nest, monitoring their micro climate. The data
being collected are sent over the Internet and publicly
available over the web.
Another promising application, which has not yet been fully
developed, is object tracking. This activity consists of
recognize and subsequently track moving targets over a
monitored field. To achieve this task sensors do not have to
collect massive amount of data to a central station for further
analysis, but the network have to process sensed information
and produce a simplified view of the physical world in which
the object being tracked is readily visible. This application has
been originally conceived in the mili tary setting to drive
vehicles in un-trusted areas. A promising new approach of this
application involves multi sensory tracking. With this
mechanism the same phenomenon can be recognized by
means of different sensory inputs. For example, a car reaching
a blind spot in a camera network could be tracked using sound
sensors.

B. Macro Programming

A key challenge in pervasive computing is to provide
powerful programming models to facilitate the development
of applications in dynamic and heterogeneous environments.
One of the main conceptual difficulties is that we have direct
control only on the agents’ local activities, while the
application task is often expressed at the global scale
[Zam04]. Bridging the gap between local and global activities
is not easy, but it is possible: distributed algorithms for
autonomous sensor networks like the ones presented in the
previous subsection have been proposed and successfully

46

verified, routing protocols is MANET (in which devices
coordinate to let packets flow from sources to destinations)
have already been widely used. The problem is still that the
above successful approaches are ad-hoc to a specific
application domain and it is very diff icult to generalize them
to other scenarios.
One promising research initiative in this direction is macro
programming. The idea is to specify the global application
tasks to be achieved and leaving to a compiler or a distributed
middleware [HadM06, Nag02, NagM04] the tasks of mapping
these global task into individual component activities. To
build these languages there are two fundamental challenges:

x devise a global language suitable for a relevant class of

applications
x devise a set of distributed algorithms to map the language

into the component activities.

The above two tasks aim at hiding from the programmer low
level details such as the heterogeneity and the scale of the
underlying network.
In the last few years a number of research initiatives
addressing macro programming have been proposed in several
application scenarios.
In the Amorphous Computing project [Nag02], a macro-
programming language is used to control shape formation in a
reconfigurable sheet composed of thousands of identically-
programmed, locally-interacting robotic agents. The desired
global shape is specif ied at an “abstract” level as a folding
construction on a continuous sheet of paper (i.e., origami).
This construction is then automatically compiled to produce
the program run by the identically-programmed agents. The
global language allows to define the regions where the sheet
has to fold, leaving to the compiler the identification of the
low level action needed to actually reconfigure (i.e., bend) the
robots.
Similar approaches for the control of shape and motion in a
modular robot (i.e. a collection of simple autonomous actuator
with few degrees of freedom connected with each other) have
been recently proposed [StoN04, WerB06]. In these
approaches a global description of the shape to be formed or
of the gait to be followed is provided to the robot, either by
representing the shape in some coordinate frame, or by
adopting a description functionally specifying how the robot
has to bend its actuators to move. Such a global description is
then compiled into low level messages and actions to drive
and coordinate the individual modules.
TinyDB [MadF02] and Cougar [YaoG02] provide a high-level
SQL or XML-based query interface to sensor network data.
The query is expressed by means of a high-level language
indicating the data to be gathered in a declarative way. A
compiler translates the query into the low-level sensor
activities needed for the creation of the proper data collection
and aggregation distributed algorithms.
Spatial Programming (SP) [Bor04] is a macro programming
approach to program a sensor network. This approach allows
to define regions in the network adopting a high-level
semantic. In SP, for example, it is possible to address (and get

a handle to) all the sensor in a given geographic region
(described e.g. by its latitude and longitude). A low-level
distributed middleware in then in charge to set-up suitable
routing structures to actually address the proper sensors.
Abstract Regions (AR) [NewA04] is another macro
programming approach to define regions in a sensor network.
Rather than focusing on geographic regions like in Spatial
Programming, AR focus on network regions (e.g., x-hop
neighbors, spanning tree and planar meshes). A high-level
language allows to specify the network region, while low level
algorithm create the actual routing structure to handle the
proper nodes.
Regiment is a functional macro programming [WelN04]
language that generalize both the previous approaches.
Regiment allows to define regions in the network able to
represent spatially distributed, time-varying collections of
node state. The programmer uses the language to express
interest in a group of nodes with some geographic, logical, or
topological relationship, such as all nodes within k radio hops
of some anchor node. A distributed middleware is then in
charge to map the regions into suitable sensor-level
coordination protocols. Similar approaches to define regions
in a distributed system according to spatial and functional
characteristics have been presented in [BecH04]
A more comprehensive survey of currently proposed macro-
programming languages can be found in [HadM06].
In general, all the reported macro-programming approaches
uses suitable overlay knowledge networks to control the
distributed program. In most of the proposals, overlay
knowledge networks are used to define the regions where the
components activities wil l be different. In Spatial
Programming, for example, the overlay knowledge network is
represented by the data structure identifying the region where
data should be collected by the application.
To create complex, dynamic and flexible services, it is
mandatory to rely on general-purpose software infrastructure
facilitating the programming task. The ability to program a
distributed system without explicitly and directly defining
individual entities’ activities will be a fundamental asset in
this direction.

C. Data Integration

Pervasive computing applications will be naturally integrated
with Web services and Internet resources. Not only Web
services will be a natural technology to access pervasive
applications remotely, but it could also provide further context
information to the pervasive device. For example, sensors
could get from the Internet the average temperature of the
region they are in, and compare their sensor readings with that
average. With this regard, we think that in the next future
application will integrate together data coming from the
Internet and data coming from the real world (sensors) and
actually merge it together in a coherent framework providing
advanced context-aware applications.
In this context, overlay knowledge networks are used to merge
the collected data together, and to provide such data to
application components in a coherent view.
A number of recent projects from different research
communities (data mining, distributed systems, semantic Web,

47

Web services, etc.) are tackling the challenge of data
integration across multiple providers.
One interesting research in this area is described in [PerP04].
The goal of this project is to develop a context-awareness
system to detect and infer domestic activities performed by the
users. The proposed approach is to infer the activities of the
user on the basis of the objects he touches. For example, by
sensing that the user touches a “teapot”, some “teabags”,
“glasses” and “spoons”, the system can infer that the user’s
action is “making tea”. This kind of knowledge could be of
use in a number of smart-home scenarios. To implement such
an idea, the system relies on RFID tags associated to (and
identifying) everyday objects, and gloves integrated with
RFID reader worn by the user. This allows the system to
detect, rather naturally, what the user is touching.
This stream of data coming from pervasive devices requires
models of activities to detect what the user is doing. Such
models are automatically mined from the Web. In particular,
the system connects to specific “How to” sites, describing
how to perform a specific activity, extracts the labels
associated to the object being used, and creates a Bayesian
network describing probabilistically the objects involvement
in the different activities. The model is finally, checked
against the data coming form the RFID reader to infer the
activities being carried on.
In our opinion, this project is a perfect example of the fact that
pervasive and Web resources complement each other, and by
integrating them, it is possible to obtain novel and powerful
services.
Another relevant approach is presented in [Eag03]. The goal
of this work is to infer users context by capturing their speech.
The voice of the user is record by a PDA carried on by the
user. The voice signal is sent over a wireless network to a
server that process the signal and transcribes the speech. The
server connects to a Web service called Concept Net [Liu04]
that is based on a knowledge network describing common-
sense activities. Concept Net is, in fact, a huge repository of
commonsense sentences (e.g., you’d order food in a
restaurant) and a suitable API to access and mine the
repository.
By providing ConceptNet with the speech transcription, the
service is able to infer the most likely context for the user. For
example, the speech: “Hi, today I’m going to have a
cheeseburger and a beer” would let ConceptNet infer that the
user context is “ordering food at a resturant” . Such
information is then sent back to the PDA for further actions.
Another interesting mechanism to combine sensor data and
Web information involves the usage of GPS as sensors and
Web-retrieved maps from open GIS-tool like Google Earth
(http://earth.google.com). In [Cas06], we describe two
services in this direction. A f irst service allows a user
equipped with a RFID reader and a GPS device to see his
actual location and past movements, and to dynamically create
Google Earth placemarks of the tagged objects being read
with the RFID reader at the right location. This service can be
fruitfully employed in a number of situations. In particular, we
focused on the scenario in which a tourist wants to
automatically build and maintain a diary of his journey. To
this end, the proposed service allows to keep track of all the

user movements and have them displayed on the map of the
visited place. Moreover, the support for RFID allows to access
likely-to-be-soon-available tourist information stored in RFID
tags attached to art-pieces. From the diary perspective, this
allows to store the visited art-pieces’ location together with
their description on the journey map. In addition, our service
could also provide with important logistic information. For
example, the action of reading the tag of the user’s car at a
certain location triggers a new car-placemark on Google Earth
showing the actual position of the car. This allows the tourist
to easily recall where the car has been parked.
Another service, allows multiple users to share their list of
placemarks and their current location. Again, this service can
be employed in several scenarios, and we focused on
supporting a group of tourists cooperatively visiting a place.
Such a situation applies to a class of students or to a group of
boy-scouts, where each person can visit the place
independently, while keeping in touch and sharing
information with the other members. To this end the service
allows to share GPS data with other members and with the
group leader (e.g., the teacher may be in need of monitoring
the location of all the students). Moreover, placemarks pointed
by one person may be shared across al the group. This can be
useful to share opinions or interesting sightings, but also to
easily agree on some meeting points. For example, by sharing
placemarks, all the users can spot a suitable place (e.g., a pub)
that is in the middle of them and agree to meet there (see
Figure 5).
Other approaches in this direction, developed by other
research groups, [PatL04] combine GPS data and maps to
create a probabilistic model of the user activities. This
approach allows to the system to learn the user motion routine
(e.g., where does he go, where does he park the car, etc.) and
possibly to check anomalies against the learned trend.

file1.kml

View KML on the Web. Reload
the file to see any change

<?xml v ersion ="1.0 " enc oding ="UTF -8"?>

<kml xm lns="h ttp:/ /eart h.goo gle.c om/km l/2.0 ">

<Placem ark>

<descri ption> New Y ork C ity</ descr iptio n>

<name>Ne w Yor k Cit y</na me>

<Point>

<coordi nates> -74.0 06393 ,40.7 14172 ,0</c oordi nates >

</Point>

</Place mark>

</kml>

RFID Reader
Figure 5. Integration of GPS data and Web maps.

Finally, another source of information that researchers are
trying to integrate is that coming from images widely
available and tagged by services like Flickr (www.flickr.com).
The idea at the core of some recent researches is to try to
match pictures taken from cameras with those available on the

48

Internet. This would allow to get information about objects
without the need of tagging them artificially. For example, the
image of a tower taken by a camera phone could be matched
against a data base of images to properly recognize it as the
Pisa leaning tower [Jia06].
All the above examples show rather clearly that the approach
of integrating resources and data from pervasive systems and
Web resources in a promising research avenue.

IV. CONCLUSIONS

In this paper we presented our vision for next future pervasive
computing systems. In our opinion, these systems will be
general purpose and users will be able to install and execute
applications both on their private pervasive computing
infrastructure (e.g., in smart home scenarios), and in publicly
available ones (e.g., citywide infrastructures offering tourist
information and services). Given the extreme heterogeneity of
this scenario, its inherent dynamism and – most importantly –
the incredible amount of data the system will be able to
produce, applications will be required to match and comply
those characteristics. Applications will have to autonomously
adapt their behavior to different circumstances ranging from
the scale of the pervasive network, to the privacy-level being
requested by the users. To achieve such a flexibilit y
applications will have to be highly context-aware (to
meaningfully interact with their environment) and autonomic.
To this end, they will be able to gather relevant context
information both from the pervasive network sensing the
environment and from global-accessible Internet services. We
also introduced how considering the system as composed of a
“continuum” of sensors and devices, rather than a discrete
collection of them, may provide useful ideas and abstractions
to deal with the above challenges.
In addition, we presented the key mechanisms and researches
trying to fulfill the above vision:

x Retrieve and aggregate data will provide developers with

advanced tools to get data from a distributed system in an
efficient way.

x Macro Programming a distributed system deals with
programming a distributed system without explicitly
defining single entities activities, but letting a compiler or
distributed middleware to translate high-level task into
individual component activities. This will allow
developers to design systems composed of a huge number
of components that will be able to carry on complex
coordinated activities.

x Integrate data gathered from various sources allows to offer
application components a coherent view of their context.

In particular, we tried to present how the concept of overlay
knowledge networks may be at the basis of most of the
proposal, and how overlay knowledge network may represent
a framework to develop applications in future pervasive
computing scenarios.
In our opinion, these researches are only at the beginning of
addressing satisfactorily the requirements of future scenarios
and several questions remain open: How to represent context

information in a general way? How can we retrieve and access
such huge amount of knowledge? Which kind of autonomic
algorithms should we enforce to add robustness and self-
organization properties to those systems?
Our future research within the CASCADAS European project
will try to address some of these questions.

REFERENCES
[Bal06] H. Balakrishnan, S. Madden, V. Bychkovsky, K. Chen, W. Daher, M.

Goraczko, H. Hu, B. Hull, A. Miu, E. Shih, "CarTel: A Mobile
Sensor Computing System", MIT CSAIL Report, 2006.

[BeaB06] J. Beal, J. Bachrach, "Infrastructure for Engineered Emergence on
Sensor/Actuator Networks", IEEE Intelligent Systems, 21(2):10-
19,2006

[BecH04] C. Becker, M. Handte, G. Schiele, K. Rothermel, “PCOM - A
Component System for Pervasive Computing”, IEEE
International Conference on Pervasive Computing and
Communications, Orlando (FL) ,USA , 2004.

[Bor04] C. Borcea, D. Iyer, P. Kang, A. Saxena, L. Iftode, "Spatial
Programming using Smart Messages: Design and
Implementation", International Conference on Distributed
Computing Systems, Tokio, Japan, 2004.

[Bor05] G. Borriello, “RFID: Tagging the World”, Communication of the
ACM, ACM Press, 48(9):34-79, 2005.

[But06] D. Butler, “2020 Computing: everything, everywhere”,
news@nature.com, 22 March 2006.

[Cas06] G. Castelli, M. Mamei, A. Rosi, F. Zambonelli, “Browsing the
World: bridging pervasive computing and the Web”,
International Workshop on Ubiquitous Geographical Information
Services, Munster, Germany, 2006.

[Chu06] C. Park, P. Chou, Y. Sun, “A Wearable Wireless Sensor Platform
for Interactive Art Performance”, IEEE International Conference
on Pervasive Computing and Communications, Pisa, Italy, 2006.

[CurG05] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy, G.
Picco, “TinyLIME: Bridging Mobile and Sensor Networks
through Middleware”. IEEE International Conference on
Pervasive Computing and Communications, Kauai Island, HW
(USA), 2005.

[Dan06] W. Daniel, T. Pintaric, F. Ledermann, S. Dieter, "Towards
Massively Multi-User Augmented Reality on Handheld
Devices", International Conference on Pervasive Computing,
Munich, Germany, 2005.

[Dob07] S. Dobson, S. Denasiz, A. Fernandez, D. Gaiti, E. Gelenbe, F.
Massacci, P. Nixon, F. Saffre, N. Schmidt, F. Zambonelli, "A
Survey of Autonomic Communications", ACM Transactions on
Autonomous and Adaptive Systems, ACM Press, to appear,
2007.

[Eag03] N. Eagle, P. Singh, and A. Pentland, “Common sense conversations:
understanding casual conversation using a common sense
database”. Workshop on Artif icial Intelligence, Information
Access, and Mobile Computing, Acapulco, Mexico, 2003

[Eag05] N. Eagle and A. Pentland, "Social Serendipity: Mobilizing Social
Software", IEEE Pervasive Computing, IEEE CS Press, 4(2):28-
34, 2005.

[Esp01] F. Espinoza, P. Persson, A. Sandin, H. Nystrom, E. Cacciatore,
M. Bylund, "GeoNotes: Social and Navigational Aspects of
Location-Based Information Systems", International Conference
on Ubiquitous Computing, Atlanta (GE), USA, 2001.

[HadM06] S. Hadim, N. Mohamed,"Middleware Challenges and Approaches
for Wireless Sensor Networks", IEEE Distributed Systems
Online, 7(3), 2006.

[HarK05] R. Hariharan, J. Krumm, E. Horvitz, "Web-Enhanced GPS",
International Workshop on Location and Context Awareness,
Munich, Germany, 2005.

[HigB01] J. Hightower, G. Borriello, "Location Systems for Ubiquitous
Computing", IEEE Computer, IEEE CS Press, 34(8):57-66,
2001.

[IntG00]C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor

49

networks”, International Conference on Mobile Computing and
Networking, Rome, Italy, 2000.

[Jel05] M. Jelasity, A. Montresor, O. Babaoglu, “Gossip-Based Aggregation
in Large Dynamic Networks”, ACM Transaction on Computer
Systems, ACM Press, 23(3):219-252, 2005.

[Jia06] M. Jia, X. Fan, X. Xie, M. Li, W. Ma, "Photo-to-Search: Using
Camera Phones to Inquire of the Surrounding World",
International Conference on Mobile Data Management, Nara,
Japan, 2006.

[Jon01] C. Jones, K. Sivalingam, P. Agrawal, J. Chen, "A Survey of
Energy Efficient Network Protocols for Wireless Networks",
Wireless Networks, Kluwer Academic Publisher, 7(4):343-358,
2001.

[JonG05] Q. Jones, S. Grandhi, “P3 Systems: Putting the Place Back into
Social Networks”, IEEE Internet Computing, IEEE CS Press,
9(5):38-46, 2005.

[JRDMS] James Reserve Data Management System,
http://dms.jamesreserve.edu

[LegT06] C. Legner, F. Thiesse, “RFID-Based Facility Maintenance at
Frankfurt Airport”, IEEE Pervasive Computer, IEEE CS Press,
5(1):34-39, 2006.

[Liu04] H. Liu, P. Singh, "ConceptNet: A Practical Commonsense
Reasoning Toolkit", BT Technology Journal, Kluwer Academic
Publishers, 22(4):211-226, 2004.

[MadF02] S. Madden, M. Franklin, J. Hellerstein, W. Hong. "TAG: A Tiny
AGgregation Service for Ad-Hoc Sensor Networks", Symposium
on Operatign Systems Design and Implementation, Boston (MA)
,USA, 2002.

[MamQZ06] M. Mamei, R. Quaglieri, F. Zambonelli, “Making Tuple Spaces
Physical with RFID Tags”, ACM Symposium on Applied
Computing, Dijon, France, 2006.

[MamZ05] M. Mamei, F. Zambonelli, “Physical Deployment of Digital
Pheromones Through RFID Technology”, IEEE Swarm
Intelligence Symposium, Pasadena (CA), USA, 2005.

[Nag02] R. Nagpal, "Programmable Self-A ssembly Using Biologically-
Inspired Multiagent Control", Joint Conference on Autonomous
Agents and Multi-Agent Systems, Bologna, Italy, 2002.

[NagM04] R. Nagpal, M. Mamei, "Engineering Amorphous Computing
Systems", Methodologies and Software Engineering for Agent
Systems, Kluwer Academic Publishing, 2004.

[NatR06] B. Nath, F. Reynolds, R. Want, “RFID Technology and
Appliations”, IEEE Pervasive Computing 5(1):22-69, 2006.

[NewA05] R. Newton, Arvind, M. Welsh, "Building up to
Macroprogramming: An Intermediate Language for Sensor
Networks", International Symposium on Information Processing
in Sensor Networks, Los Angeles (CA), USA, 2005.

[PatL04] D. Patterson, L. Liao, K. Gajos, M. Collier, N. Livic, K. Olson,
S. Wang, D. Fox, H. Kautz, “Opportunity Knocks: a System to
Provide Cognitive Assistance with Transportation Services”,
International Conference on Ubiquitous Computing, Tokyo,
Japan, 2004.

[PerP04] M. Perkowitz, M. Philipose, D. Patterson, K. Fishkin. “Mining
Models of Human Activities from the Web”. International World
Wide Web Conference, New York (NY), USA, 2004.

[Pol06] J. Polastre, R. Szewcyk, A. Mainwaring, D. Culler, J. Anderson,
"Analysis of Wireless Sensor Networks for Habitat Monitoring",
Wireless Sensor Networks, Kluwer Academic Publishers, 2004.

[Rie06] M. Rieback, B Crispo, A. Tanenbaum, “ Is Your Cat Infected with a
Computer Virus?”, IEEE International Conference on Pervasive
Computing and Communications, Pisa, Italy, 2006.

[Sat05] I. Satoh, “A L ocation Model for Pervasive Computing
Environments”, Proceedings of IEEE International Conference
on Pervasive Computing and Communications, Kauai Island,
HW (USA), 2005.

[ShrP04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal
and Subhash Suri, “Medians and Beyond: New Aggregation
Techniques for Sensor Networks,” ACM Conference on
Embedded Networked Sensor Systems (SenSys 2004), 2004.

[Sri06] M. Srivastava, M. Hansen, J. Burke, A. Parker, S. Reddy, G.
Saurabh, M. Allman, V. Paxson, D. Estrin, “Wireless Urban
Sensing Systems”, CENS Technical Report #65 , 2006.

[StoN04] K. Stoy, R. Nagpal, "Self-Reconfiguration Using Directed Growth",
International Symposium on Distributed Autonomous Robotic
Systems", Toulouse, France, 2004.

[Wan04] R. Want, “Enabling Ubiquitous Sensing with RFID”, IEEE
Computer, IEEE CS Press, 37(4):84-86, 2004.

[Wan06] R. Want, “An Introduction to RFID Technology”, IEEE
Pervasive Computer, IEEE CS Press, 5(1):25-33, 2006.

[WelN04] M. Welsh, R. Newton, "Region streams: functional
macroprogramming for sensor networks", International
Workshop on Data Management for Sensor Networks, Toronto,
Canada, 2004.

[WerB06] J. Werfel, Y. Bar-Yam, D. Rus, R. Nagpal, "Distributed
construction by mobile robots with enhanced building blocks",
International Conference on Robotics and Automation, Orlando
(FL), USA, 2006.

[WerL06] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo , J. Johnson,
J. Lees, M. Welsh, “Deploying a Wireless Sensor Network on an
Active Volcano.”, IEEE Internet Computing, IEEE CS Press,
10(2):18-25, 2006.

[YaoG02] Y. Yao, J. Gehrke, "The Cougar approach to in-network query
processing in sensor networks", ACM Sigmod Record, ACM
Press, 31(3):9-19, 2002.

[Zam04]F. Zambonelli, V. Parunak, "Towards a Paradigm Change in
Computer Science and Software Engineering: a Synthesis", The
Knowledge Engineering Review, 18(4), 2004.

50

Abstract — The continuous growth in ubiquitous and

mobile network connectivity, together with the increasing

number of networked computational devices populating

our everyday environments (e.g., PDAs, sensor networks,

tags, etc.), call for a deep rethinking of traditional

communication and service architectures. The emerging

area of autonomic communication addresses such

challenging issues by trying to identify novel flexible

network architectures, and by conceiving novel conceptual

and practical tools for the design, development, and

execution of “autonomic” (i.e., self-organizing, self-

adaptive and context-aware) communication services. In

this paper, after having introduced the general concepts

behind autonomic communications and autonomic

communication services, we analyze the key issues related

to the identification of suitable “component” models for

autonomic communication services, and discuss the strict

relation between such models and agent models. On this

basis, we try to synthesize the key desirable characteristics

that one should expect from a general-purpose agent

model for autonomic communication services.

Index Terms— Autonomic Communication, Services, Self-

organization, Self-adaptation, Multiagent Systems

I. INTRODUCTION

UR everyday world is increasingly being populated with a

wide variety of new communication technologies and

computing devices. On the one hand, several wireless and ad-

hoc communication solutions are being deployed with the

potential of ensuring us 24/7 ubiquitous connectivity to the

Internet and to the surrounding devices. On the other hand,

devices such as sensor networks [6], RFID tags [18], cameras,

GPS and other location systems [9], will enable us to

dynamically acquire information and interact with the physical

world.

The above scenario opens up the possibility for a wide

range of brand new applications (e.g., on-line monitoring of

the world [6] and enhanced social experiences [13]), as well as

for enhancing the quality and effectiveness of current

1 Dipartimento di Ingegneria dell’Informazione – Università di Modena e

Reggio Emilia - 41100 Modena, Italy, email: {demola.francesco,
quitadamo.raffaele}@unimore.it

communication services (via context-awareness and dynamic

personalization [5]). However, it also introduces a dramatic

increase in complexity and a number of novel design issues,

challenging current communication and distributed computing

paradigms, and making it difficult to deliver the promised

benefits in truly usable and economically feasible ways.

The complexity we are talking about is due to several

factors, there included:

• Heterogeneity of involved components. The range of

newly introduced network and computing

technologies is already wide and it is expected to

grow consistently.

• Dynamism of network scenarios and applications. As

connectivity is becoming ubiquitous and mobile, and

as computers are getting embedded in our everyday

objects, the resulting network becomes highly

dynamic in terms of topology and usage patterns.

• Decentralization and unreliability. The highly

decentralized and embedded nature of the involved

components, makes it hard (whether not impossible)

to enforce some forms of direct control over their

configuration and their activities.

Other than from the above sources of complexity, additional

challenges are introduced by the need of exploiting in full the

potentials of the new scenarios and put them at the service of

users. This implies identifying suitable models and tools by

which innovative services can be designed, developed and

deployed, and by which existing and new services can be made

more flexible and dynamically adaptable, i.e. able to properly

react to the dynamics and unreliability of the scenario without

suffering from any malfunctioning, and able to increase user

satisfaction by adapting their behaviour to the current context

(physical and/or social) of users and to their own individual

needs.

The emerging inter-disciplinary research area of autonomic

communication [1, 14] attempts to overcome the limitations of

current communication models and architectures in addressing

complexities and issues raised by modern network scenarios.

In particular, autonomic communication broadly relates to the

study and development of novel semantic communication

models [5], novel adaptive and evolvable architecture for

network components [3], as well as novel paradigms and tools

for the design, development, and execution of autonomic (i.e.,

self-organizing, self-adapting, and context-aware)

communication services [12].

Towards an Agent Model for Future

Autonomic Communications

Francesco De Mola
1
, Raffaele Quitadamo

1

O

51

In this paper, we specifically focus on autonomic

communication services with the goals of: (i) analysing the key

issues related to the identification of novel software

engineering approaches and of a novel “component” model for

the design and development of autonomic communication

services (Section II); (ii) eventually, trying to synthesize the

key desirable characteristics that one should expect from a

general-purpose component model for autonomic

communication services and the contributions that can come

from the agent community (Section III). The key message we

hope to get home is that current researches in software agents

and multi-agent systems have the potential for playing a major

role in inspiring and driving the identification of such model,

and more in general for influencing and advancing the whole

area of autonomic communication.

II. AUTONOMIC COMMUNICATION SERVICES

Autonomic communication generally refers to all those

research thrusts involved in a deep foundational re-thinking of

communication, networking, and distributed computing

paradigms, to face the increasing complexities and dynamics

of modern network scenarios. The ultimate vision of

autonomic communication researches is that of a networked

world, in which networks and associated devices and services

will be able to work in a totally unsupervised – i.e., autonomic

[10] – way, being able to self-configure, self-monitor, self-

adapt, and self-heal. To some extent, the idea is to consider

networks as sorts of immense organisms, and by conceiving

components within as parts of these organisms, able to prosper

and autonomously survive contingencies [12]. On the one

hand, this will enable to effectively have networks capable of

dynamically adapting their behaviour to meet the specific

needs of individual users. On the other hand, this will enable to

dramatically decrease the complexity – and the associated

costs – currently involved in the effective and reliable

deployment of networks and communication services.

A. Scenarios of Autonomic Communication

The need for re-thinking communication and distributed

computing paradigms directly derives from the novel

characteristics exhibited by modern and emerging network

scenarios. Traditional communication and distributed

computing paradigm were conceived to target a now obsolete

perspective of computer networks: wired networks of (rather

homogeneous) medium/high-end computers and routers. In

such scenarios, network disconnections and failure of

components are considered exceptions, and network and

system managers are always assumed to be able to act on the

system for re-configuration and fault-recovery. However, as

stated in the introduction, modern network scenarios more and

more include a large number of very heterogeneous

components (from low-end computer-based sensors, to PDA,

laptops, and workstations), interacting over a variety of

wireless channel (from WiFi, to Bluetooth and ZigBee), and in

the presence of mobility (of both devices and users exploiting

them). There, failures of components and network

disconnections are the norm rather than the exception, and the

possibility for network and system managers to intervene in

the system is challenged by the intrinsic decentralization and

complexity of the scenario.

Figure 1. An urban scenario of autonomic communication

Just to reach a better understanding of what such scenarios

could look like, imagine what our cities will be in the next few

years (see Figure 1). First, a variety of computer-based sensors

will be spread around in every street, crossing, squares, and

within buildings. We can already find a variety of simple

sensors around in our cities (e.g., to measure traffic intensity

and pollution), but the future will see these sensors become

wireless-enabled, and dramatically increase in density and

diversity. It is not unrealistic to think that – say in ten years – it

will be possible to determine in real time how many free

benches are there in a specific park or how long is the queue at

the nearest post office. Second, wireless-enabled computing

devices will be worn by each and every person and will be

embedded in any cars. Such devices, beside the capability to

access to the Internet, will also be able (via ad-hoc wireless

communications) to directly interact with each other and with

sensors around, and localize themselves via GPS or other

means. After all, smart phones with GPS, Bluetooth, and

cameras, are already a reality. Third, all of these devices will

be able to mobilize data from and to the Internet, based on a

variety of communication channels, from WiFi, to UMTS or

satellite communications.

The heterogeneity of components and network technologies

involved in the above scenario is very evident, as it is the fact

that the resulting network is highly dynamic (due to both the

unreliable nature of sensors and the ephemeral and mobile

nature of wearable and car-embedded devices) and highly

decentralized (no system manager could enforce a strict

control over dispersed sensors and over personal devices).

This factors clearly justify the efforts of autonomic

communication researches towards the identification of: (i)

52

innovative ways of modeling communication, suitable for

dense dynamic networks of wireless devices and overcoming

the limitations of traditional point-to-point Shannon-oriented

communication models; (ii) the definition of innovative

flexible architecture for network devices, suitable to tackle

dynamics and decentralization via dynamic re-configuration;

(iii) the identification of innovative models and tools for the

design, development, and execution of autonomic

communication services.

B. Towards Autonomic Communication Services

In general terms, a communication service is a functionality

that is made available within a network to access and exploit

the network resources. IP datagram routing, DNS, socket-

based point-to-point communication, cryptographic tools, web

services and P2P data delivery services, can all be considered

communication services. The definition applies independently

of the fact that such services can be conceived to act either as

“user-level” services or as “infrastructural” ones, to be put at

the service of other services.

In the sketched scenario, a variety of communication services

can (should) be put in place to properly access and exploit the

available network and computing resources, some of which of

an innovative nature.

At the more infrastructural level, we could think at localization

services that, by exploiting GPS, WiFi signal strength, or

whatever localization tool is available, are able to provide the

location of users, cars, or devices. Also, we could think of a

variety of routing services, able to deliver data and messages

across the network, from more traditional routing services

offering delivery to a specific network ID, to more advanced

routing services capable of delivering messages at specific

locations of the network (for which the routing service has to

exploit the available localization services) or to multicast

messages at specific groups of nodes or users.

Shifting to the user level, the presence of sensors, ubiquitous

and mobile connectivity, localization services, opens up an

incredible range of possibilities for the deployment of highly

innovative and useful services. By properly exploiting

sensors, localization services, and proper routing services, one

could think of making available to users various services to

query the physical world and obtain any kind of information

about the surrounding situation (there included other users),

and possibly to integrate this information with information

dynamically downloaded form the Web. As another example,

one could think at elaborated services to alleviate roads

congestion problems. This would imply devices in cars (for

computing, sensing and visualization) to interact with devices

in streets and crossings (for sensing the current traffic situation

and communicate it to cars). Cars could also interact with each

other (the same as sensor could) and form wireless ad-hoc

network that can be used to properly forward information

across the town. The overall service could then exploit all this

available information to map in real-time the status of streets

in the city, and calculate on-the-fly faster routes for users that

avoid congestion areas or areas that are likely to become

congested soon.

Whatever communication service one can think of, and

whether at the infrastructure level or at the user level, it is clear

this will be generally realized in terms of some software

components (though it may be the case that some components

can be directly encoded in hardware) [11, 12]. Such

components will act as access points to the service, and will be

able to provide the service either in autonomy or by interacting

with each other in the distributed network environment, as it

should necessarily happen for all those services, like routing,

which are of an intrinsic distributed nature.

However, in modern network scenarios, the only possible way

to effectively develop and deploy services is by making them

autonomic, (i.e., capable of self-organization, self-monitoring,

self-healing) and flexibly adaptable (to meet very diverse

situations and diverse user needs). For instance, a localization

service should always be able to provide information on a

best-effort basis in any situation, without rigidly requiring the

availability of specific localization devices and rather

exploiting a variety of heterogeneous localization devices. As

another example, a routing service should guarantee message

delivery in very dynamic and mobile networks, without

requiring manual reconfigurations, and should possibly tune

quality-of-service depending on the specific needs of the

user/application exploiting it. These needs induce specific

requirements on what a proper autonomic and adaptive

component model for autonomic communication services

should be, and also forces abandoning traditional (i.e. stack

layered) communication service architectures.

C. Requirements for Autonomic Communication Services

The need for communication services to fit the complexities of

modern network scenarios by becoming autonomic and

adaptable, calls for an underlying component model capable of

satisfying a set of requirements. In particular:

• Autonomicity. A component model for autonomic

communication services implies the capability of

components (at the individual level, or at an

aggregate social level, or both) to support self-

preservation and self-healing of some specific

functional and/or non-functional properties

independently of contingencies, just like a living

organism is able to maintain its internal balances [10].

• Dynamic Adaptation to Changes. A component

model requires the capability of tolerating dynamic

self-reconfiguration of components, and of their

composition and interaction patterns, without

requiring any a priori information and/or human

intervention.

• Situation-Awareness. To achieve autonomic

behaviour and adaptivity, a component model for

autonomic communication services must be

necessarily aware of what’s happening around.

• Generality. It is expected that next-general autonomic

communication services will involve several

components executing on a variety of heterogeneous

devices and interacting via a variety of

communication technologies.

• Scalability. Given the possible very large scale of the

target network scenarios, the component model

should be based on design principles that can be

53

practically applicable to small systems as well as very

large systems, and should promote organizing

services according to patterns that exhibit scalable

performances (or quality of service).

At this point of the discussion, the reader will probably

already think that the requirements for such envisioned

component model can simply and directly be mapped into an

agent-based model, and that the ecology of autonomic

communication services can be considered as a sort of

complex agent society. This is true only to some extent and the

rest of the paper will better unfold and analyze such an issue,

keeping in mind the above mentioned requirements throughout

the discussion.

III. TOWARDS A MODEL FOR AUTONOMIC COMMUNICATION

SERVICE AGENTS

In this section, we claim that an agent model can be the most

suitable answer to the challenging requirements of autonomic

communications. Nonetheless, past agent models do not fulfill

all the requirements discussed earlier and thus we stated that

such a model should exhibit some peculiar features that we try

to discuss in the remainder of the paper.

A. Agents as Autonomic Service Providers

Taking into account the intrinsic dynamicity and complexity of

the above scenario and its requirements, it clearly emerges that

autonomic communication services cannot be modeled and

implemented as “passive components”, like in a standard

service-oriented architecture. Rather, autonomic

communication services should be modeled and implemented

by “active” autonomous components, exposing their service

and integrating (at the component or at the system level)

features of autonomicity, self-adaptation, and situation-

awareness, in a scalable and general way. Accordingly, at this

point, we can state that the search for a novel autonomic

component model for autonomic communication services

corresponds to the search for a proper “service agent” model.

In general, we envision that the nodes of an autonomic

communication architecture should host some sort of

agent/service execution environment on top of the operating

system (see Figure 2), to act as a general flexible support for

the execution of service agents. The execution environment

should tolerate the hosting of both very simple reactive agents

and of more heavy-weight “intelligent” self-adaptive agents.

Furthermore, it is likely that such environment will have to

host also other kinds of “artifacts”, such as tuple spaces,

resources, channels and so forth. The execution environment

should be as thin as possible: it should provide only the

minimal set of basic services to agents (e.g., agent creation and

cloning, capability to perceive local events), so as to make it

possible to run it even on small resource-constrained devices,

like sensors or smart-phones. Upon the distributed set of

execution environments, agents of different types can execute,

reproduce themselves, and interact with each other. Whenever

a specific autonomic communication service is needed, users

(or other agents) can provide it, “injecting” the proper service

agents in the network. Any type of communication service,

from infrastructural ones to user-level ones, is realized by

specific service agents deployed in the infrastructure, without

any pre-defined “layering”. Rather, the idea is that of an

“ecology” of distributed agents, in which different species of

agents, from ant-based to intelligent ones co-exist, each

providing specific services either as a species or as individuals,

and interacting with each other so as to gather what services

they need from each other.

Figure 2. Aggregation of autonomic service agents

In this general scenario, satisfying the requirements of

autonomicity, self-adaptability, situation-awareness,

scalability, and generality, requires defining a service model

and associated tools to support:

• different forms of spontaneous self-aggregation by

service agents, to enable both multiple distributed

agents to collectively and adaptively provide a

distributed communication service and a service

agent to properly exploit other services on need;

• some ways to enforce control in the ecology of

service agents;

• self-similar forms of aggregation, capable of

reproducing nearly identical structures over multiple

scales, and achieving software engineering

scalability;

• suitable models for the organization of situational

information and their access by agents, promoting

more informed adaptation choices by agents and

advanced forms of stigmergic interactions.

These issues are analyzed in the following of this section.

B. Self-Aggregation as an Adaptation Mechanism

In an “ecology” of self-adaptive service agents executing on a

very thin and bare environment, self-aggregation is the key

mechanism to build and exploit complex communication

services. Self-aggregation is clearly an autonomic adaptation

process, in that it must occur on need and without direct

human intervention: whenever some changes occur in the

surrounding environment, some simple communication

services can decide to form a coalition that can better handle

the new unforeseen situation or provide an improved service.

54

Enabling self-aggregation in our agent model implies

rethinking traditional integration architectures both from an

architectural and a behavioural point of view.

Let’s consider, first of all, the architectural viewpoint,

i.e. how our service agents should be designed to support

aggregation formations and to accomplish the discussed

requirements of autonomic communications. A TCP socket

can be seen, for instance, as a composition of layered services,

e.g. the IP routing service and the Ethernet data link service.

This type of composition can be defined a containment,

because an outer component (i.e. the TCP service)

encapsulates one or more inner components (i.e. the IP

service) and uses their services. Every service request

delivered to the outer component is forwarded to an inner one

and, while negligible in many simple aggregations, the

overhead introduced by this forwarding can be significant in

resource-constrained devices and/or when more complex

aggregations are formed. Autonomic communication services

overcome the limits of layering, proposing a flattened model,

in which composing service agents means rather

combining/fusing their service interfaces into a new

negotiated interface. This avoids the overhead of forwarding

messages/function calls across the several layers of the

aggregation.

Moreover, our flattened service model means also that

agents should be allowed to participate in more than one

aggregation, e.g. because their service can be shared among

different clients. This requires that our service agent should be

more than simply a “service provider” with a fixed published

interface. We envision a new concept of interface that is far

more flexible than classical software component interfaces.

When a service agent participates in an aggregation, its

interface should be updated or, better, it must expose a new

interface: the “aggregate service interface”. Such interface is

expected to be the same in every agent participating in that

aggregation and its provided operations are negotiated and

constructed according to the aggregation strategy and the

requirements of the new complex service. As a consequence,

in our agent model service agents are considered sort of

“polyhedral components”, capable of exposing several

interfaces as different service access points. Let’s consider, for

example, the case of a service agent participating in more than

one aggregation: it has to dynamically choose the right

interface to expose, depending on the access point from where

it is accessed.

Moreover, each provided interface can even change

depending on internal reorganizations of the aggregate service,

e.g. due to adaptation to environmental happenings, like the

failure of one aggregated service. Handling multiple and

dynamic interfaces requires a sort of interface negotiation

mechanism among service agents: in place of fixed interfaces,

the interface negotiation mechanism defines and requires

service agents to support universally known “introspection

facilities” by which support for other services can be

ascertained at runtime. Clients of a service agent use these well

known services to obtain mutually agreeable interfaces.

Autonomic communication services are very often

located on different network nodes and the aspect of the

physical distribution of services should be taken into account,

even though the aggregated service appears conceptually

unique. For example, services provided by self-organizing

swarm agents are usually distributed by their own nature (e.g.

some localization service whose agents are distributed across

many sensors in the environment), and do not respond to a

central controller or supervisor; nonetheless, these agents

should ideally work as a unique service, which can be invoked

from many scattered access points. This leads as a

consequence that our agent model should transparently support

“at least” both centralized and distributed service aggregations

(see Figure 2) and we said “at least”, because there might be

intermediate or hybrid solutions between these two extremes.

Centralized aggregations are those where many service

agents, locally available or instantiated at runtime, are

combined into a new complex service. In this case, the

“aggregator agent” is the new centralized access point to the

service and is not physically distributed. It exposes a single

communication interface to other services all over the network.

Distributed aggregation raises more challenging design issues,

because, in this case, several agents decide to join together

into an aggregated service, but they still preserve their physical

distribution in the network. In other words, they all agree on a

common “aggregate service interface”, but there is no

aggregator agent exposing it; every single participant instead is

considered “access point” to the aggregate service and exposes

the same interface as all others.

Besides architectural design choices, self-aggregation

needs effective algorithms and tools to work in dynamic and

open environments, without human intervention. From a more

behavioural standpoint, service agents are expected to support

different aggregation techniques, which are an active research

area of AI. Several coalition formation algorithms have been

proposed for task allocation problems [16, 15] and, although

we are not interested here in one particular algorithm, we state

that autonomic self-aggregation will likely draw much

inspiration from such research work. Therefore, each service

agent in our model must include a proper aggregation

interface (through which the agent can be involved in new

aggregations, leave broken coalitions and so on) and such

interface should be as much general as possible, to support a

wide range of coalition formation algorithms. Finally, we must

recall that autonomicity should be enforced at all levels of

aggregation and this requires proper mechanisms to

control/supervise the behaviour of the aggregated components.

Such issues are the subject of the next Subsection.

C. Enforcing Control for Self-management

As already highlighted, one of the key driving principle of the

autonomic communication vision is that services should be

self-managing. The fundamental problem when trying to

enable autonomicity (at all levels of service aggregation, from

primitive service to complex ones) consists in establishing

some kind of control over service agents, in order to constantly

guarantee an optimal overall functionality, protect against

malfunctioning parts and so forth. The IBM proposal for

building autonomic components [10] is based upon the

introduction of the so-called “autonomic manager” (see Figure

3), which is an intelligent software entity that monitors the

55

activity of its managed resource, and can take corrective

actions in a sort of continuous control loop. Nonetheless,

control and supervision at the individual level does not

guarantee an autonomic behaviour of the entire system: in an

aggregation of service agents, where every member constantly

monitors and regulates its own essential variables (i.e. in a

local loop), it often occurs that the selfish nature of each

component does not result in an optimal outcome of the

aggregated service. Applied to our highly dynamic, open and

distributed scenarios, the problem of enforcing control and

achieving an adequate level of self-management is even

trickier.

managed element

managed element
managed element

established relationship

managed element

SOAP

message

Figure 3. Autonomic components in the IBM perspective

To this purpose, some more traditional design patterns

introduce a special “sentinel element”, in charge of supervising

the behaviour of each autonomic element and avoid dangerous

or incorrect actions: many autonomic component frameworks

(e.g. [11]) adopt this pattern, since they continuously monitor

deployed components and influence their behaviour injecting

proper “adaptation rules”. These rules are interpreted by the

component and translated in corrective actions on its internal

parameters, leading hereafter to a modified behaviour of the

same component. Other more agent-inspired solutions rely on

the “cooperation capability and sociality” of autonomic

managers: exchanging information with each other and

orchestrating their actions, these intelligent individual

controllers can ensure an autonomic behaviour of a composed

service. All such approaches are essentially coupling

traditional monitoring and resource management with artificial

intelligence techniques for planning and knowledge

management, as well as multi-agent systems negotiation ones.

Nevertheless, we argue that these approaches, though

still feasible and valid, will prove to be increasingly unsuitable

for many autonomic communication scenarios, like they have

been presented so far. Autonomic communication services are

expected to be pervasive and to run on even small wearable

devices and, having autonomic managers logically separated

from their managed services, can produce heavyweight service

agents. In fact, designing each single service agent, with the

rational capability to react to all possible contingencies

planning proper corrective actions, may end up in a

cumbersome service architecture. It can be stated that the

limitations of the discussed autonomic self-management

derives from its being inspired by traditional human-based

management, where we usually have the controller and the

controlled entity. Self-organization approaches support instead

the biologically inspired idea that “a system should be able to

self-manage by its own very nature and not by external

intervention of other “non-self” entities” [19]. Self-organizing

systems exhibit an intrinsic self-managing capability, which

only indirectly depends on the behaviour of their individual

little agents, but rather descends for the combination of their

local interactions. Service emergence helps avoiding

intelligent elements, with planning and knowledge

management capabilities to react to unforeseen environmental

changes, and produces simpler and more lightweight

architectures. As autonomic computing design patterns have

their drawbacks, current approaches to self-organization are

likewise limited, e.g. because they can implement only a

limited set of self-managing functionalities, but often fail in

accounting the diverse and complex requirements of

autonomic communications.

The agent model we are sketching in this paper should

be thus as much flexible and general-purpose as possible. It

should still allow both traditional autonomic managers and

self-organizing approaches, but here we deem crucial to

introduce also an innovative vision of self-management [19]

tailored to the peculiarities of autonomic communications.

Since most autonomic communication usage scenarios will be

dramatically distributed, often without any clearly identifiable

stakeholders, the only solution to enforce some forms of

control over them, and to have the self-management features of

each individual system coexist with more decentralized forms

of self-management, will be that of populating the ecosystem

with additional “manager components”. In an environment

where every single service, even the most basic one, is

provided by a service agent, it is reasonable to assume that

self-management should be enforced by means of some first-

class elements, injected on demand into the self-organizing

system. These “manager agents” will have to live inside the

system and interact with other self-organizing service agents,

to monitor their execution and possibly influence their

emergent behaviour. This brings as a consequence that the

knowledge management and planning capability, previously

placed as a possibly heavyweight burden on every single

component, is now “externalized” and made distributed across

the various deployed manager agents. It must be pointed out

that some of these ideas have been already experimented and

formalized in MAS research: the idea of Electronic Institutions

(EI) and norm-aware agent societies have been proposed as a

model to specify the kinds of interactions among software

agents using norms (e.g. obligations, permissions, etc.). In [2]

norms are explicitly represented and managed via rules and a

team of “administrative (institutional) agents” is deployed in

the distributed architecture, to ensure normative positions are

complied with and updated by individual agents. Experiences

from this and other research on norm-based systems will be of

56

paramount importance to formalize our “ecology-like”

autonomic communications service model.

D. Robustness and Generality with Holonic Agents

Given the importance of self-aggregation in our model, the

combination of primitive services into new complex ensembles

must be fully scalable, i.e. the software design principles

should be applicable to small systems, as well as very large

systems, possibly made by huge numbers of heterogeneous

nodes and service components. In our service agent model, all

agents should at least expose a common set of basic

functionalities, i.e. a “common interface”, besides their

specific peculiar operations. Aggregate service agents will be

services in their turn and will thus have the same basic shared

interface. Applying the self-similarity principle means that

“individual components self-organize and self-aggregate so as

to reproduce nearly identical structures over multiple scales”

[4].

From a software engineering point of view, having the

same structural and organizational principles in force at

different scales facilitates the management of services: e.g. if

service agent A decides to aggregate with service agent B, it

can at least rely upon the shared common interface to negotiate

the aggregation and agree on the new aggregated interface to

expose. Self-similarity helps to achieve the key requirement of

generality: this feature is fundamental to better handle design

complexity in an environment where possibly thousands of

heterogeneous software agents can be hosted. It would allow

“diving” into specific sub-systems whenever necessary,

without having to modify abstractions and tools to work at

finer levels of granularity.

From a more architectural standpoint, self-similar

structures are known to be intrinsically robust: it is more than

desirable that the combination of some autonomic

communication services brings to entities that are robust and

capable of adapting to changes in the environment (e.g. a

wireless link goes down, but the service will find alternative

paths to deliver the message). Many biological systems exhibit

such properties, thanks to their being organized in hierarchical

and self-similar structures at different scales.

A successful agent model for autonomic

communication services should therefore support self-similar

aggregation and MAS research has already explored some

important applications in this direction, introducing the

promising idea of holonic agents [7, 8] (mainly applied to

manufacturing scenarios). The term holon was originally

introduced by the philosopher Arthur Koestler in order to

name recursive and self-similar structures in biological and

sociological entities: a lot of systems in nature can be seen as

either “whole” or “part” of a larger system; for example, a

human individual is on the one hand a composition of organs,

consisting of cells that can be further decomposed, and on the

other hand he (or she) may be part of a group which in turn is

part of the human society. According to Koestler, a holon is a

structure that is stable and coherent and that consists of further

holons that function similarly. Koestler defines a holarchy as a

hierarchy of self-regulating holons which function

a. as autonomous wholes in supra-ordination to their

parts,

b. as dependent parts in sub-ordination to controls on

higher levels,

c. in co-ordination with their local environment.

Therefore, it is clear how self-similar service aggregations are

endowed with the properties that are intrinsic in this holarchy

definition. Building holonic service compositions enables the

construction of very complex systems that are efficient in the

use of resources, highly resilient to disturbance (both internal

and external) and adaptable to changes in their surrounding

environment. Holarchies (i.e. service aggregations) are

recursive in the sense that a holon (i.e. an agent) may itself be

an entire holarchy that acts as an autonomous and cooperative

unit in the first holarchy. The stability of holonic service

aggregations stems from holons being self-reliant units, which

have a degree of independence and handle circumstances and

problems on their particular level of existence (i.e. the local

execution environment of the aggregator agent), without

asking higher level holons for assistance. Holons can also

receive instructions from and, to a certain extent, be controlled

by higher level holons. The self-reliant characteristic ensures

that holons are able to survive disturbance, while the

subordination to higher level holons ensures the effective

operation of the larger whole.

Like holons, self-similar aggregate agents would

participate in further aggregations/holarchies or would simply

exist as new available services, but always as self-reliant units:

hiding their internal complexity under a self-similar interface,

they can react to changes in the environment and adapt to

different situations, transparently re-organizing their internal

structure.

E. Organizing Situational Data into Knowledge Networks

Another essential requirement for autonomic communication

services is their capability to perceive their surrounding

context and consequently adapt and improve their behaviour.

Information about the context is expected to be increasingly

important to enable situation-awareness in next generation

communication services.

Nowadays, several mechanisms exist to produce

situational data from the environment (e.g. intelligent sensors

or monitoring mechanisms) and such knowledge is expected to

become a dramatic amount in the near future. In our vision,

this huge amount of information cannot be fully managed or

internalized by every single service agent: it would require a

significant knowledge management capability that we consider

an avoidable burden in our agent model. Our basic idea is that

situational data should be somehow scattered part in the

environment (e.g. in a shared tuple space) and part across the

different service agents. In further details, we envision that

when service agents decide to form aggregations, they share

their pieces of context knowledge with the other participants,

forming a sort of “aggregated situational knowledge”. This

knowledge, scattered among aggregate agents, will be thus

organized in a hierarchical fashion among all the running

service agents: in a few words, one agent could own a piece of

knowledge about the local context and, by joining an

aggregation, it would integrate its information within the

aggregated knowledge. The aggregated entity, being self-

similarly part of another aggregate or of the Service Execution

57

Environment (see Figure 2), would perform the same

integration in turn. Therefore, the global knowledge would be

dynamically built by the various service agents that join and

leave the system during the execution.

Moreover, situational data should be elaborated and

any relationships between such information properly

represented and correlated according to well-defined

ontological constructs. We expect that the bulk of this sort of

continuous “knowledge analysis and elaboration” phase will be

performed mainly out of the service agents that will access and

use it. It would be advisable to have special “knowledge

manager” agents injected in the environment, in charge of

properly analyzing and correlating such diffused situational

data. Distributing such analysis activity among different actors

helps achieving better scalability and reduces the reasoning

capability that a service agent should have (we do not want a

heavyweight rational service agent).

The final conceptual outcome of the above knowledge

organization and analysis phases is the formation of so-called

knowledge networks, in which all information about individual

contexts are properly represented, organized and correlated,

and around which semantically-enriched stigmergic

interactions among individual agents can take place.

Distributing such knowledge in the environment and

hierarchically among agent aggregations, service agents can

self-organize their activities using “cognitive stigmergy”

approaches [17]. As anticipated earlier, the distributed

knowledge network is expected to play the part of a high-level

intelligent and dynamic environment, useful in particular for

those self-organizing services that use the environment as a

mediator for their local stigmergic interactions. Self-

adaptation and self-organization would be driven by more

sophisticated application-level knowledge data, other than

simple pheromones value to react, and this will enable more

robust and adaptive configuration patterns (e.g. the knowledge

network can be used to enforce a more semantic control over a

set of swarm agents). In addition, scattering context

information among aggregate agents allows to make services

situation-aware with different degrees of granularity: locally

relevant situational data are consumed in place, while

components are allowed also to reason about more global

situational data, interrogating the distributed dynamic

knowledge network: service components can “navigate”

through the available knowledge hierarchy to attain, on

demand, the degree of contextual awareness they require.

IV. CONCLUSIONS

The continuous growth in ubiquitous and mobile network

connectivity, together with the increasing number of

networked computational devices populating our everyday

environments, call for a deep rethinking of traditional

communication and service architectures. In this paper, we

have focused on communication services, and have analyzed

the key characteristics and features that a proper innovative

component model for the effective development and

deployment of autonomic (i.e., self-organizing, self-adaptive,

self-healing) communication services should exhibit.

The results of our analysis can be simply summarized

as follows:

• Such new component model should be general-

purpose, able to enforce autonomic behaviour in both

the forms of self-adaptation and self-organization,

able to handle “situatedness” in complex knowledge

environments, and should tolerate scalable forms of

dynamic aggregation.

• Multiagent systems researches can play a major role

in the definition of such component model and, more

in general, in the advance of the autonomic

communication research area. Nevertheless, as this

paper envisioned, their scope should be limited by a

clear and suitable component model, tailored to the

requirements of autonomic communications. Such a

model is the aim of the CASCADAS project in the

future years.

V. ACKNOWLEDGEMENTS

Work supported by the European Commission within the

Integrated Project CASCADAS (IST-027807) “Component-

ware for Autonomic, Situation-aware Communications, And

Dynamically Adaptable Services” (FET Proactive Initiative,

IST-2004-2.3.4 Situated and Autonomic Communications).

REFERENCES

[1] The Autonomic Communication Forum, www.autonomic-

communication-forum.org.

[2] J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodriguez and C. Sierra,

“Engineering Open Environments with Electronic Institutions”, in

Journal on Engineering Applications of Artificial Intelligence,

18(2):191-204, 2005.

[3] I. Carreras, I. Chlamtac, H. Woesner, C. Király,

”BIONETS: BIO-inspired NExt generaTion networks” in the

Proceedings of the 1st IFIP Workshop on Autonomic

Communications, LNCS No. 3457, Springer Verlag, 2004.

[4] S. Dill, R. Kumar, K. Mccurley, S. Rajagopalan, D. Sivakumar, A.

Tomkins, "Self-Similarity in the web", ACM Tran14tions on Internet

Technology 2(3):205-223, 2003.

[5] S. Dobson, “Putting meaning into the network: some semantic issues

for the design of autonomic communications systems”, in the

Proceedings of the 1st IFIP Workshop on Autonomic

Communications, LNCS No. 3457, Springer Verlag, 2004.

[6] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the

Physical World with Pervasive Networks”, IEEE Pervasive

Computing, 1(1):59-69, Jan. 2002.

[7] K. Fisher, “Holonic multiagent systems - theory and applications”, in

the Proceedings of the 9th Portuguese Conference on Progress in

Artificial Intelligence (EPIA-99), LNAI Volume 1695, Springer

Verlag, 1999.

[8] A. Giret and V. Botti, “Holons and agents”, in Journal of Intelligent

Manufacturing, vol. 15, pp. 645-659, Kluwer Academic Publishers,

2004.

[9] J. Hightower, G. Borriello, “Location Systems for Ubiquitous

Computing”, IEEE Computer, 34(8):57-66, Aug. 2001.

[10] J. Kephart, D. M. Chess, “The Vision of Autonomic Computing”,

IEEE Computer, 36(1):41-50, January 2003.

58

[11] H. Liu, M. Parashar, "Component-based Programming Model for

Autonomic Applications", in the Proceedings of the 1st International

Conference on Autonomic Computing, New York, NY, USA, 2004.

[12] A. Manzalini, F. Zambonelli, “Towards Autonomic and Situation-

Aware Communication Services: the CASCADAS Vision”, 1st IEEE

Workshop on Distributed Intelligent Systems, Prague (CZ), June

2006.

[13] A. Pentland, “Socially Aware Computation and Communication”,

IEEE Computer, 38(3):63-72, March 2005.

[14] The European Commission, “The Situated and Autonomic

Communications Initiative”,

http://cordis.europa.eu/ist/fet/comms.htm.

[15] T. Sandholm and V. Lesser, “Coalitions Among Computationally

Bounded Agents”, in Artificial Intelligence, Special Issue on

Economic Principles of Multi-Agent Systems, Vol. 94, N. 1, pp. 99-

137, 1997.

[16] O. Shehory, S. K. Sycara and S. Jha, “Multi-agent Coordination

through Coalition Formation”, in Lecture Notes in Artificial

Intelligence, n. 1365, pp. 143-154, Springer Verlag, 1997.

[17] L. Tummolini, C. Castelfranchi, A. Ricci, M. Viroli, A. Omicini,

“Exhibitionists and Voyeurs do it better: A Shared Environment

Approach for Flexible Coordination with Tacit Messages",

Environments for MultiAgent Systems. LNAI 3374, Springer-Verlag,

January 2005.

[18] R. Want, “An Introduction to RFID Technology”, IEEE Pervasive

Computing, 5(1):25-33, Jan.-March 2006.

[19] F. Zambonelli, “Self-management and the Many Facets of Nonself”,

in IEEE Intelligent Systems, Vol. 21, N. 2, pp. 50-56, 2006.

59

A QoS-Aware Architecture for Multimedia Content
Provisioning in a GRID Environment

Fabrizio Messina, Giovanni Novelli, Giuseppe Pappalardo, Corrado Santoro, Emiliano Tramontana
Dipartimento di Matematica e Informatica

Università di Catania, Viale A. Doria, 6 - 95125 Catania, Italy
{messina, novelli, pappalardo, tramontana}@dmi.unict.it, csanto@diit.unict.it

Abstract— In this paper, we propose a mobile agent infras-
tructure to support “Quality of Service” (QoS) parameters in
multimedia content streaming. The infrastructure is able to
face the issues concerning multimedia content transformation,
in order to ensure that the client-side QoS is met. A Grid
computing platform is exploited and content adaptation is per-
formed through appropriate agents that are allocated as jobs and
executed on Grid hosts. A location service is therefore devised
and made available within the Grid system, which helps finding
the hosts whose geographic position and network connections
minimise the delays required to move the desired multimedia
content from the storage to the processing site, and (after suitable
transcoding) from this to the requesting client.

Keywords: mobile agents, agent-based applications, GRID,
QoS, Globus.

I. INTRODUCTION

Nowadays a large number of multimedia coding formats
exists. Each format not only needs a proper decoder/player
at the client side but also a different transport protocol fea-
turing timing characteristics that require a network offering
mechanisms to guarantee throughput, latency, packet loss
ratio, jitter, etc. [2], [14], [17]. Such “Quality of Service”
(QoS) requirements [10], if not fulfilled, can cause delays or
interruptions in content playing and thus result in a service
whose quality could be lower than expected.

As for coding scheme, even if some well-known general-
purpose players, like WindowsTM Media Player or Xine,
are able to support the majority of multimedia formats,
there are still some schemes (e.g. QuickTimeTM MOV or
RealplayerTM RAM) that require their own players. Moreover,
some players are not able to adapt the content to the quality
of the connection used by the client, which could be too
slow for the selected multimedia file, thus preventing proper
reproduction. As a result, sometimes a multimedia content
cannot be retrieved, played and used at client side, because the
player is not available, the protocol is not supported, the client
connection has not enough bandwidth or client performance
is inadequate.

The reason behind this is due to the fact that current multi-
media provisioning solutions give the client the responsibility
of adapting the received content to both client and network
capabilities. This may well be deemed unreasonable if we
think that, in general, servers have more computational power
and performances than traditional desktops or laptops, so
having them adapt the provided content to each client seems

more appropriate. Moreover, when multimedia provisioning
is not performed by single servers but a Grid computing
environment is employed [5], server-side on-line adaptation
of streaming becomes not only feasible but also preferable:
thanks to the ability of managing and offering a huge amount
of storage space and CPU power, a Grid can be used not
only to store and provide multimedia contents, but also to
perform multimedia transcoding in order to satisfy at best the
QoS parameters requested by the user, taking also into account
network capabilities.

By considering the issues and goals outlined, this paper
proposes a software architecture, based on mobile agents
running in a computational Grid, for multimedia content
provisioning and QoS satisfaction1. The main aspect of the
proposed solution is that it is able to share the content adap-
tation cost between the client and the server, thus overcoming
the problems described. A location service is also included,
which aims at finding the host whose geographic position
and network connections capabilities are able to minimise
the time required to move the desired multimedia content (i)
from the storage to the processing site, and (ii)—after suitable
transcoding—from this to the requesting client.

The paper begins (Section II) with a description of a use-
case that serves as a reference scenario to introduce the
basic model of the solution. Then Section III illustrates the
software architecture of the solution as integrated in a Grid
environment, thus explaining how the main services of a Grid
can be exploited for our purpose. Section IV describes the
prototype implementation of the architecture, which has been
developed, using GridSim. Section V discusses and compares
other approaches. Section VI concludes the paper.

II. USE-CASE SCENARIO AND SYSTEM MODEL

We consider a scenario in which a user asks for the retrieval
and playing of a multimedia content by means of a client
program or a web interface. We suppose that the client/player,
when it connects to the server, specifies some Quality of
Service (QoS) parameters regarding its capabilities, such as
encoding scheme it is able to support, the speed of the
connection used, etc. In particular, two sets of QoS parameters

1This work has been (partially) carried out within the Web-Minds,
QUASAR and PI2S2 projects, funded by the Italian Ministry of Education,
University and Research (MIUR), and the TriGrid VL project, funded by
Regione Sicilia.

60

Application QoS Network QoS
Encoding Scheme End-to-end Throughput

Compression Scheme End-to-end Throughput Jitter
Compression Ratio Propagation Delay

Sampling/Frame Rate Propagation Jitter
Picture Size Packet-loss ratio

Colors
Channels

TABLE I

APPLICATION AND NETWORK QOS PARAMETERS

can be considered, which are summarised in Table I and
explained in the following:

• Application QoS parameters. They are those param-
eters concerning application-level multimedia handling
and include encoding scheme, compression scheme and
compression ratio, for all types of contents, sampling
rate, sampling size and number of channels for audio
contents, and frame rate, picture size and number of
colors for video data.

• Network QoS parameters. They refer to the capability
of the network and subnetworks located on the path
from the client to the server. Such parameters include
the end-to-end throughput, the propagation delay, the
propagation jitter, etc.

When the server receives a client’s request, it has to try to
fulfill it by matching the parameters specified with those of
the multimedia content to be retrieved, also considering the
capabilities of the network that has to carry the streamed data:
if they differ or the network is not able to deliver the content
according to the requirements, an adaptation would be needed,
the complexity and feasibility of which depend on how much
requested and offered contents differ from each other, and the
type of conversions they imply.

Following such a use-case scenario, our solution aims at
proving an efficient and reliable way to perform content
transcoding and adaptation in order to fulfill at best the require-
ments of a client program. The basic model of the solution,
which is based on mobile agent technology, exploits two
agents, called ClientProxy and ServerProxy , running
on the client and the server respectively, which act as “proxies”
intercepting and adapting multimedia data. Basically (see Fig-
ure 1), the ClientProxy is designed as able to talk with the
client application/player; it knows client’s abilities in handle
multimedia data and thus its application QoS parameters. On
the other hand, the ServerProxy is able to handle both
client’s application QoS and the format of the multimedia
content requested. Both agents start at the client side and thus
both knows how to support the player characteristics, but the
ServerProxy is a mobile agent; when the content streaming
has to begin, the ServerProxy migrates to the server and
both agents start to collaborate as follows:

1) The ServerProxy agent retrieves multimedia content
and analyses it.

2) Both agents, according to the application QoS parameters
of both the client and the content, and knowing the

Client

Player

Server

Server Application

Client

Player

Migration

Server

Server Application

Protocol
Inter−agent

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

����

Proxy
Server

�	
�

Proxy
Client

Proxy
Server

Proxy
Client

Fig. 1. Working Scheme of the Solution

capabilities of the transfer link (network QoS parameters),
establish an inter-agent protocol in order to transfer
the multimedia content. Therefore, the ServerProxy
performs the appropriate conversions and QoS adaptions
to allow data transmission through the network with the
negotiated inter-agent protocol.

3) The ClientProxy agent receives the data using the
inter-agent protocol and performs the final conversions in
order to supply data to the player with application QoS
parameters requested.

Roughly speaking, this solution provides a significant ad-
vantage since it (basically) is able to avoid QoS loss. In
fact, traditional solutions are based on some general purpose
QoS translation algorithms running at server side, but such
algorithms are not able to cover all the possible cases needed
by a client. On the other hand, in the proposed solution, the
transcoding part running in the server—the ServerProxy —
originates from the client machine: it exactly knows what are
the client’s requirements and thus can encapsulate the right
algorithms to perform a correct transcoding.

A significant drawback of the solution is however the com-
putational power needed, at server side, to perform transcoding
in the case of many concurrent requests. To face such an issue,
we consider our solution as running on a Grid infrastructure
since it can provide the power needed; to this aim a suitable
architecture has been designed and detailed in the following
Section.

III. RUNNING TRANSCODING AGENTS IN A GRID

ENVIRONMENT

For obtaining the transcoding of a multimedia content,
agents are allocated and executed in capable hosts of a Grid
system. The most widespread software system used for Grid
environment is the Globus Toolkit (GT) [13]. This includes
services to access and monitor computing and data resources,
enforce security, allow users to send and execute their applica-
tions. Computing resources have a specialised role according
to their characteristics. Hence, a host providing a large amount
of storage space is a Storage Element (SE); a host holding a

61

certain number of CPUs that can execute jobs is a Computing
Element (CE); whereas users are able to log into GT, send
their commands and receive results, by means of a host called
User Interface (UI) [6], [4].

In order to determine the host where the transcoding agent
should run it is appropriate to take into account: (i) the
location of the agent, (ii) the location of the user requesting the
multimedia content, and (iii) the location of available hosts.

The services necessary for performing this selection are
provided by the architecture components described in the
following (see Figure 2).

In order to make the multimedia contents available to users,
these are initially transferred into available SEs. Each content
is characterised by its name, encoding, length, description,
size, etc.

A user requests a multimedia content, by running a client
software on his/her UI. The request is characterised by: (i) the
name of the multimedia content or its description, and (ii) the
needed encoding format.

The request is processed by service MuM (for Multimedia
Mining) that finds available versions of the content. When
transcoding from an available format to the requested version
is required, other services are involved in order to: find an
appropriate CE that will host one or more capable agents,
find and transfer both the source version of the content and
the transcoding agent into the selected CE. The output of
the transcoding agent, which is a new format for the initial
multimedia file, is then provided to the user on his/her UI and
also stored to some SE so as to better serve further requests
for the same file and for the newly available format.

A. Services for Selecting Hosts

The service MuM is able to find the locations of a user
requested multimedia content (see in Fig. 2 interactions (1,
2, 3)). MuM returns the location, in terms of SE address,
where each format of the content can be found. MuM is
organised as a repository based on the existing Grid Resource
Information Service (GRIS) [3]2. MuM’s data are updated
when new contents are inserted, new formats are available, and
existing ones are re-organised (e.g. moved to better support
accessing them).

Service Agent Locator (AL) is responsible to store the
location of transcoding agents. While agents are initially
stored only on the users’ hosts, they are re-located to several
CEs according to the requests for transcoding the multimedia
contents. To minimise the re-location overhead, agents are kept
on the CEs even when idle, i.e. after contents processing has
finished. Service AL traces where each agent is, thus when AL
is queried for a given transcoding agent (see (4) in Fig. 2), it
returns the list of CEs addresses where that agent is located.

Service CE Locator (CEL) traces the availability and CPU
capacity of CEs. This service initially asks known GRIS
about data concerning the number of hosts in a CE, and the
characteristics of the hosts, in terms of CPU type and amount

2GRIS is part of the Monitoring and Discovery Service (MDS) provided
by the Globus Toolkit.

of RAM. Additionally, CEL periodically asks the length of the
job queue on a CE. All these data are asked asynchronously
from a user query and stored locally by CEL. This helps
reducing the performance penalties given by the interactions
with GRIS. When an agent has to be allocated, CEL is asked
for available hosts (see (5) in Fig. 2) and returns a list of CE
addresses, whose hosts are idle or lightly loaded.

Finally, service Resource Finder (ReF) selects a CE for
hosting transcoding agents. In selecting a CE, ReF tries to
minimise latencies due to the network and achieve the shortest
response time for having the adapted content. Latencies are
calculated according to the following three “distances”: (i) the
“distance” d(SEi, CEj) between the SEs where the needed
content is stored (provided by MuM) and the available CEs
(provided by CEL); (ii) the “distance” d(CEj , UI) between
available CEs and UI; and (iii) the “distance” d(CEj , A(Hk))
between the available CEs and agent A that can be found in
one of several hosts Hk (the locations where agent A is found
is provided by AL).

Each “distance” is measured as the number of seconds
necessary to deliver 100Mb across two end points, thus it takes
into account both the available bandwidth and the latency, i.e.
the physical space that has to be crossed. Measures between
each two pairs of known sites are performed off-line and
stored.

The selected sites SE
′

i , CE
′

j , representing, respectively, the
host from which the source content will be loaded and the host
allocating the transcoding agent are those that minimise

d(SEi, CEj) + d(CEj , UI)

for i, j ranging over the available sets of SEi, CEj .
Once CE

′

j has been determined, the value d(CE
′

j , A(Hk))

is minimised, i.e. the host H
′

k is chosen from which the agent
will be transferred.

Note that ReF collects the necessary data and determines the
CE that should host the transcoding agents, the CE providing
such an agent, and the SE where the source multimedia content
is stored. In Fig. 2, they are CE1, CE2 and SE2, respectively.

In order to activate multimedia content transformation and
delivery, ReF submits a job to the selected CE, e.g. CE1, (see
(6) in Fig. 2). This job executes the following set of steps.
Firstly, it collects the necessary parts, i.e. the transcoding agent
from CE2 (6.1) and the multimedia content from SE2 (6.2).
Secondly, it executes the agent that will process the content.
Finally, the result of content transformation is directly passed
on to the user front-end.

B. Handling QoS for Multimedia Contents

In order to have a short response time between a user
request for a multimedia content and the transcoded version,
the capabilities of the supporting infrastructure, i.e. available
bandwidth and computing “power” have to be determined
beforehand.

The preferences set by a user in terms of frame size and
coding format for a multimedia content affect the activities that
are performed by the infrastructure to serve the user request.

62

Fig. 2. Overview of interactions between front-end and services.

One of these activities consists in the multimedia processing,
another one is the a priori reservation of bandwidth and hosts.

At least one capable host will be reserved to run the
transcoding agent. However, just one host could be not suf-
ficient for the necessary processing. When the estimation of
the time needed to sequentially transcode the content on a
single host would result in an output rate that is less than the
rate necessary to ensure that the content can be seen/listened
smoothly, then a parallel transcoding activity is organised.
For this parallel processing, the initial multimedia content
is fragmented and each chunk processed by an agent on a
dedicated host.

Let us first express the way we estimate the time needed to
transcode a content from a format to another.

We have processed several videos having different resolu-
tion (see Table II and III) and observed that processing time is
mainly related with the frame resolution and size in bytes of
the frames to be processed. I.e. for the same video, having e.g.
a resolution of 320x240 pixels, the processing time is almost
proportional to the size (in bytes) of the JPEG frame that has
to be transcoded.

TABLE II

CHARACTERISTICS OF SAME SAMPLE VIDEOS.

content source resolution length (s) size (MB)
chinese AVI 320x191 152 20.3
wr AVI 320x240 14 1.0
cartoon AVI 480x272 115 7.6
dhl AVI 640x480 43 17.7

In Table III, we report for several videos (whose character-
istics are found in Table II) the time in milliseconds necessary
to convert from AVI to MPEG, MJPEG, h263p and rv10 (see
the 4 right-most columns, respectively) several chunks of the
content lasting 2 seconds each and having 50 or 60 frames,
as indicated in the column frames. Transcoding is performed

from the set of frames (each stored as a JPEG file) and whose
overall size in megabytes is indicated in column size.

TABLE III

TRANSCODING TIME FOR SOME SAMPLE VIDEOS.

content frames size MPEG4 MJPEG h263p rv10
chinese 1– 50 0.27 87 79 107 110

51–100 1.51 181 156 179 181
101–150 1.25 182 139 180 183
151–200 1.35 191 148 189 188

wr 1– 50 2.28 247 212 244 238
51–100 1.69 204 180 200 206

101–150 1.76 204 186 205 202
151–200 1.55 193 170 193 194

cartoon 1– 60 1.76 240 240 230 250
61–120 1.64 280 260 300 290

121–180 3.32 380 340 370 380
181–240 4.10 470 400 450 450

dhl 1– 60 8.00 935 894 901 891
61– 120 6.77 853 738 835 842

121– 180 6.64 808 733 815 806
181– 240 8.95 956 905 953 923

The reported values are just an excerpt of the experiments
we have performed. In other experiments we have converted
the whole reported video, moreover other videos have been
processed in a similar way.

The estimation function for the time needed to transcode
into MPEG4, but the same applies to the other output formats,
is the trend function calculated according to the values stored
in a database of observed times. The resulting trend function
takes as input the resolution and frame size as parameters and
returns the estimated time.

In order to calculate the number of hosts needed for the
transcoding, we compare the estimated transformation time
and the length in seconds of the processed video. When
transformation time is greater than processed video then we
must use more than one host for the transformation and the

63

number of needed hosts is the minimum natural number bigger
than the ratio between transformation time and length.

Bandwidth reservation aims at readily transfer data from a
disk to the selected CE that will perform transcoding and from
the CE to the user device.

The amount of bandwidth necessary is calculated as the
ratio between size of the content and length (this is just an
approximation since the amount of bytes per frame are not
constant for the whole video).

IV. SIMULATING ENVIRONMENT

In order to assess the timing characteristics of the proposed
software infrastructure and how it reacts when a large number
of users send requests for accessing multimedia contents, we
are in the process of developing a model of the proposed
infrastructure using the simulation environment GridSim [8].
GridSim is a Java toolkit that can be programmed to simulate
a Grid system, thus it offers support, in terms of classes, for
simulating CEs, SEs, Virtual Organisations, etc.

In our proposed infrastructure, transcoding agents can move
and communicate within a Grid environment. The underlying
support for allowing such agents to move, communicate, etc. is
an agent-platform, such as Jade [1]. For simulation purposes,
on top of GridSim we have developed a class library that
models the activities of an agent platform (similar to Jade).
Such a library, called GAP (Grid Agent Platform), includes
the classes: AgentPlatform, AgentSite, and Agent.

Class AgentPlatform represents a federation of sites of-
fering facilities that allow agents to move, find each other,
communicate, etc. This class allows the access to services that
are expected from an agent platform, such as: (i) a registry
informing about available agents on any site, simulated as
class DirectoryFacilitator; and (ii) an observer for all the
movements of agents, simulated as class NetworkMonitor.

Class AgentSite is responsible to hold data about the
location and the state (e.g. running, stopped, idle) of existing
agents in a given CE within the Grid system. AgentSite
extends GridSim class GridSim and holds an instances of
GridSim class GridResource, which represents the CE.

Class Agent represents an agent and holds data about the
identifier, state, type, and size of the agent. Each Agent
instance simulates the computation performed by an agent,
which can be affected by events that are notified to it through
messages. The events that can affect an agents are: stop,
resume, terminate, and migrate. Messages are exchanged be-
tween agents while performing their computation. Each time
an agent migrates or change its state, both classes Directory-
Facilitator and AgentSite are informed. An Agent instance
simulates some processing by generating jobs and submitting
them into the CE where the agent is located. A generated job
is an instance of GridSim class Gridlet.

The network connections between CEs and SEs are mod-
elled according to GridSim class Link. Instances of such a
class are set with values representing bandwidth and delay of
the network link, as well as the instances of GridResource
it connects.

An additional User class models the user requests, thus the
ability to ask for a content and receive a result.

Along the above classes, all the services of the proposed
infrastructure (i.e. ReF, MuM, AL and CEL) are modelled as
classes that execute on the Grid system, process requests and
provide corresponding results.

For running a simulation, the number of CEs, transcoding
agents types and users are set. The number of instances of
AgentSite created is according to the the given number of CEs
chosen. Each AgentSite instance is set with a CE identifier.
Each type of transcoding agent is modelled as an instance of
Agent. Several instances of Agent are created and each is set
with: a value for the size of the code of the agent (in bytes); its
initial location, using an instance of AgentSite; and the state
of the agent, as idle. Finally, instances of User are created.

Once a simulation is executed, GridSim output is a report
that for each modelled class describes the number of received
requests, the amount of time necessary to process the requests,
the time spent waiting for replies, etc. This report will provide
valuable feedback on all the assumptions concerning the
expected time of network connections to transfer multimedia
contents, hosts to process fragments of contents, infrastructure
to select hosts for processing, etc.

V. RELATED WORK

Several existing approaches, including [7], [15], generate
off-line different transcoded versions of a multimedia content,
i.e. before users request a format this is prepared and stored
into the disk. Thus serving a request is just a matter of
reading the content from the disk. Of course, generating
different formats for a given content requires a large amount
of computing resources, thus these approaches recur to parallel
processing, using clusters of hosts, for the initial content.

An approach for the on-line transcoding of multimedia
contents by means of software system for a Grid environment
is proposed in [16]. In such an approach, a broker component
finds and dynamically allocates transcoding jobs on available
Grid resources, according to the incoming requests. Similarly
to our approach, the broker component selects capable and
unloaded host for ensuring a short response time. However,
we additionally take into account both static and dynamic
network conditions. Moreover, in this approach the server
hosts have to be equipped with all the necessary transcoding
libraries beforehand. In contrast, our approach employs agents
that move to available hosts, thus we do not need to install
transcoding support into all the Grid hosts.

On-line transcoding is also faced in [11], where the authors
propose a support for fitting multimedia content into mobile
devices connected to a wireless network. Transcoding, which
is based on changing frame size, color depth and Q-scale,
is performed inside a HTTP proxy, therefore the approach is
suitable to adaptation of video content that could be found on
the web. In contrast to our proposal, this approach considers
only some parameters that are fixed at server-side and does
not perform automatic parameter adaptation on the basis of
network connection monitoring. Moreover, in our approach

64

agents are dispatched from the client, they are aware of
the target player’s capabilities and are thus able to adapt
the content at best, taking also into account the varying
communication conditions.

When having to serve requests for contents, Content Deliv-
ery Network (CDN) [9] can bring benefits in terms of efficient
delivering, since contents are replicated and relocated by the
CDN according to request types and origins. Our approach is
aimed not only at finding the nearest location for the requested
multimedia content, but especially for on-the-fly generation of
new a content format through transcoding according to client
requirements.

Adaptive Web Systems (AWS) [12] provide unaware users
with customised versions of contents, selected at server side on
the basis of user profile, location, access mode, terminal, etc.
In contrast, our approach suggest that clients have an active
role in the content adaptation process, i.e. they are represented
by their agents for this purpose. In principle, this permits more
sophisticated and dynamic forms of adaptation, but of course
requires a supporting infrastructure and a more capable and
aware client.

VI. CONCLUSIONS

This paper has presented a mobile agent architecture for
multimedia content provisioning and QoS adaptation which
exploits a computational Grid, for its CPU power and storage
space availability. The basic working scheme of our proposal
entails two mobile agents, one at client side and the other at
server side, what cooperate with each other to perform mul-
timedia adaptation and transcoding, thus aiming at adapting
the QoS of the content to the QoS requested by multimedia
player.

The architecture consists of a set of components entailed
with the task of finding (i) the storage element that possesses
the multimedia content to be played and (ii) the computing
element where to host the mobile agent in charge of server-
side transcoding. To this aim, some metrics are introduced,
intended to minimize the distances between user and the
computing element, and between the latter and the storage
element where the multimedia content is stored.

In order to evaluate the feasibility of our solution, numerous
tests have been performed to determine the time taken by
various types of transcoding. A prototype implementation,
running with a simulation tools, has also been developed, in
order to evaluate not only the feasibility of the solution but
also its performances.

As a future work, our goal is to package the system as
a Globus Toolkit extension, so as to obtain a complete and
standard solution.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent
systems with a FIPA-compliant agent framework. Software - Practice
and Experience, 31(2):103–128, 2001.

[2] Anjali Bhargava and Bharat Bhargava. Measurements and Quality of
Service Issues in Electronic Commerce Software. In Proceedings of
IEEE International Conference on application-specific Software Engi-
neering and Technology (ASSET-99), Texas, March 24-27 1999.

[3] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. In Proceedings of
the 10th IEEE Symposium On High Performance Distributed Computing,
2001.

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration. In Open Grid Service Infrastructure WG, Global Grid
Forum, June 22 2002.

[5] Ian Foster and Carl Kesselman, editors. The Grid (2nd Edition):
Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 2004.

[6] Fabrizio Gagliardi, Bob Jones, Mario Reale, and Stephen Burke. Euro-
pean DataGrid Project: Experiences of Deploying a Large Scale Testbed
for E-science Applications. Lecture Notes in Computer Science, 2459,
2002.

[7] F. Gonzalez-Castano, R. Asorey-Cacheda, R. Martinez-Alvarez,
E. Comesana-Seijo, and J. Vales-Alonso. Dvd transcoding with linux
metacomputing, 2003.

[8] Grid Computing and Distributed Systems (GRIDS) Laboratory. Grid-
Sim: A Grid Simulation Toolkit for Resource Modelling and Ap-
plication Scheduling for Parallel and Distributed Computing, 2005.
http://www.gridbus.org/gridsim/ .

[9] Markus Hofmann and Leland R. Beaumont. Content Networking.
Morgan Kaufmann, 2005.

[10] ITU-T (CCITT). Recommendation. Terms and Definitions Related to
The Quality of Service and Network Performance including Depend-
ability, August 1994.

[11] Ricardo Oliveira Parixit Aghera, Advait Dixit and Vidyut Samanta.
Wireless middleware: Dynamic video transcoding. In Communication
Systems Software and Middleware, New Delhi, India, jan 2006.

[12] Mike Perkowitz and Oren Etzioni. Adaptive web sites. Communication
ACM, 43(8):152–158, 2000.

[13] The Globus Alliance. Home page and publications.
http://www.globus.org .

[14] Andreas Vogel, Brigitte Kerhervè, Gregor von Bochmann, and Jan
Gecsei. Distributed Multimedia and QoS: A Survey. IEEE Multimedia,
2(1):10–19, 1995.

[15] Gord Watts and Steve Forde. Grid Computing: A Practical Guide to
Technology and Applications, chapter Grid Enabling Software Applica-
tions, pages 252–263. Charles River Media, Hingham, MA, 2003.

[16] Angelo Zaia, Dario Bruneo, and Antonio Puliafito. A scalable grid-
based multimedia server. In Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE), pages 337–342, 2004.

[17] John A. Zinky, David E. Bakken, and Richard D. Schantz. Architectural
Support for Quality of Service for CORBA Objects. Theory and Practice
of Object Systems, January 1997.

65

A Heterogeneous Multi-Agent System

for Adaptive Web Applications

Andrea Bonomi, Giuseppe Vizzari

Department of Informatics, Systems and Communication

University of Milan–Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

{andrea.bonomi, vizzari}@disco.unimib.it

Marcello Sarini

Department of Psychology

University of Milan–Bicocca

Piazza dell’Ateneo Nuovo 1, 20126 Milan - Italy

sarini@disco.unimib.it

Abstract— A web site presents an intrinsic graph–like spatial
structure composed of pages connected by hyperlinks. This
structure may represent an environment in which agents related
to visitors of the web site are positioned and moved in order
to track their navigation. To consider this structure and to
keep track of these movements allows the monitoring of the site
and of its visitors, in order to support the enhancement of the
site itself through forms of adaptivity, carried out by specific
interface agents. This paper presents a heterogeneous multi-
agent system supporting the collection of information related to
user’s behaviour in a web site by specific situated reactive agents.
The acquired information is then exploited by an application
supporting the proposal of hyperlinks based on the history of
user’s movement in the web site environment.

I. INTRODUCTION

A web site presents an intrinsic graph–like spatial structure

composed of pages connected by hyperlinks. However, this

structure is generally not considered by web servers, which

essentially act as a sort of extended and specific File Transfer

Protocol servers [1], receiving requests for specific contents

and supplying the related data. Several web–based applications

instead exploit the structure of the sites itself to support users

in their navigation, generating awareness of their position. For

instance, many e–commerce sites emphasize the hierarchical

structure linking pages related to categories (and possibly

subcategories), included products and their specific views, and

remind users’ relative position (i.e. links to higher level nodes

in the tree structure). Some specific web–based applications,

mainly bulletin boards and forums (see, e.g., phpBB1), are

also able to inform users about the presence of other visitors

of the web site or even, more precisely, of the specific area of

the site that they are currently viewing. Web site structure and

users’ context represent thus pieces of information that can be

exploited to supply visitors a more effective presentation of

site contents.

Different visitors, however, may have very different goals

and needs, especially with reference to large web sites made

up of several categories and subcategories. This consideration

is the main motivation for the research in the area of adaptive

web sites [2]. The various forms of adaptation may provide

a customization of site’s presentation for an individual user

1http://www.phpbb.com/

or even an optimization of the site for all users. There are

various approaches supporting these adaptation activities, but

they are generally based on the analysis of log files which

store low–level requests to the web server: this kind of file

is generally made up of entries including the address of the

machine that originated the request, the indication of the

time and the resource associated to the request. In order to

obtain meaningful information on users’ activities these raw

data must be processed (see, e.g., [3]), for instance in order

to collapse requests related to various elements of a single

web page (e.g. composing frames and images) into a single

entry. Moreover, this kind of information must be further

processed to detect groups of requests that indicate the path

(web pages connected by hyperlinks) that a user followed

in the navigation. Recent results [4] show that this kind of

analysis, also referred to as web usage mining, could benefit

from the consideration of site contents and structure.

This paper proposes to exploit the graph-like structure of a

web site as a Multi–Agent System (MAS) environment [5] on

which agents representing visitors of the web site (hereafter

user agents) are positioned and moved according to their

navigation. In particular, in this case, the environment is a

virtual structure which allows the gathering of information

on user’s activities in a more structured way, simplifying

subsequent phases of analysis and adaptation of site contents.

Furthermore, part of the adaptivity could be carried out

without the need of an off-line analysis, but could be the

result of a more dynamic monitoring of users’ activities. In

particular, the paths that are followed by users are often related

to recurrent patterns of navigation which may indicate that

the user could benefit from the proposal of additional links

providing shortcuts to the terminal web pages, as a sort of

suggestion to the web site visitor. Index pages may thus be

enhanced by the inclusion of links representing shortcuts to

the typical destinations of the user in the navigation of the

web site. Moreover, links between terminal content pages that

are not provided by the static structure of the site can also be

identified and exploited. Users without a relevant history (and

also anonymous or unrecognized ones) may instead exploit

the paths that are most commonly followed by site visitors.

Moreover such an information could also be communicated

to the webmaster suggesting possible modifications to the

66

Web
page

User
agent

MMASS
node

Fig. 1. The diagram shows a mapping between a web site structure and an
agent environment.

static predefined structure of the site. This approach provides

thus both a support for site optimization, but also for the

customization to specific visitor’s needs and preferences.

The metaphor of a web site as an environment on which

users move in search for information is not new (see, e.g., [6]

but also more recent approaches such as [7]), and its applica-

tion to web site adaptation resembles the emergent, collective

phenomenon of trail formation [8] which can be identified

in several biological systems. However, this proposal provides

more than just gather information on users’ behaviours for sake

of web pages adaptation or navigation support, but exploits

the MAS environment to provide users a means for mutual

perception and interaction. In fact information related to users’

positions on the environment representing the web site can

also be used to supply them awareness information on other

visitors which are currently browsing the same page or area

of the site. Moreover, to keep track of this information allows

the conception of a form of interaction among users that is

based on their positions on the site. Essentially, more than just

showing a user the other registered visitors that are “nearby”

(i.e. viewing the same page or adjacent ones), the system

could also allow to communicate with them. This form of

interaction, in addition to the web page adaptation function,

requires the adoption of a supporting technology that goes

beyond the request/response model.

The overall system architecture requires thus proper in-

terface agents, able to interact with user agents situated in

the previously introduced environment in order to exploit the

acquired information on users’ behaviours. This second type

of agent is totally different from user agents, both from a

modelling point of view and with reference to the supporting

technology. In fact the web interface agent must be active as

long as the related web page is being viewed by a visitor

and it must be able, in collaboration with the rest of the

system, to proactively modify the page to improve the user’s

browsing experience. The overall system architecture includes

thus heterogeneous agents collaborating to achieve this goal.

The following section describes the general framework of

this approach, the mapping between the web site structure and

agents’ environment, while Section III introduces the gath-

ered information on agents’ movement in their environment.

Section IV describes an application providing the exploitation

of this information for the adaptation of web pages, both

for customization and optimization. The adopted technology

supporting the design and development of the related interface

agent is introduced, and discussed with reference to existing

alternatives. A brief comparison of this approach and related

work can be found in Section V, and finally concluding

remarks and future developments will end the paper.

II. SITE STRUCTURE AND REACTIVE USER AGENTS

A web site is made up of a set of HTML pages (generally

including multimedia contents) connected by means of hyper-

links. It is possible to obtain a graph-like structure mapping

pages to nodes and hyperlinks to edges interconnecting these

nodes. This kind of spatial structure could be exploited as an

environment on which user agents related to site visitors are

placed and move according to the related users’ activities. A

diagram showing a sample mapping among a web site and this

kind of structure is shown in Figure 1.

This structure can be either static or dynamic: for instance it

could vary according to specific rules and information stored

in a database (i.e. database driven web sites). However, this

kind of structure (both for static and dynamic web sites)

can generally be obtained by means of a crawler (see, e.g.,

Sphinx [9] and the related WebSphinx project2); then it could

be maintained by having periodic updates.

Given this spatial structure, a multi-agent model allowing

an explicit representation of this aspect of agents’ environment

is needed to represent and exploit this kind of information.

Environments for Multi Agent Systems [10] and situated

agents represent promising topics in the context of MAS

research, aimed at providing first class abstractions for agents

environment (which can be more than just a message transport

system), towards a clearer and more concrete definition of

concepts such as locality and perception. There are not many

models for situated agents, which provide an explicit repre-

sentation of agent’s environment. Some of them are mainly

focused on providing mechanisms for coordinating situated

agent’s actions [11], other provide the interaction among

agents through a modification of the shared environment (see,

e.g., [12], [13]). An interesting approach that we adopted for

this work is represented by the Multilayered Multi Agent

Situated Systems (MMASS) [14] model. MMASS allows the

explicit representation of agents’ environment through a set of

interconnected layers whose structure is an undirected graph

of nodes (also referred to as sites in the model terminology;

from now on we will use the term node to avoid confusion

with web sites). The model was adopted given the similarity

among the defined spatial structure of the environment and the

structure underlying a web site. Moreover, the model defines

a set of allowed actions for agents’ behavioural specification

2http://www-2.cs.cmu.edu/ rcm/websphinx/

67

!"#$%&'()"& !"#$*"&+"&

"+",-)./-01

2&345"-
$*"&+1"-

64-7+"$)"))7',)$17)-

892$"+",-)./-01

6:",-$*"&+"&

;3-3

"+",-)./-01

3:",-<$=>?
@3:"<$

"+",-)./-01 0
'
+
"

=>?

"+",-)./-01

A,-"&B34"$
6:",-

-&345"&$7,+'43-7',
C)"&$=>?D

',$@3:"$"+",-)./-01$

EC)"&$=>?F

Fig. 2. A diagram showing how user actions influence the related reactive user agent through the capture of requests by the Tracker module.

(including a primitive for agents’ movement); for this specific

application, however, the constraint which limits the number

of agents positioned in a node was relaxed. In fact there is no

limit to the number of users that are viewing the same web

page.

Moreover a platform for the specification and execution of

simulations based on the MMASS model [15] was exploited to

implement the part of the system devoted to the management

of agents in their environments. The definition of spatial

structure of the environment was supplied by the previously

introduced crawler, while agents’ movement is guided by

external inputs generated by the requests issued by the related

web site visitor. The general architecture of the system is

shown in Figure 2: the Agent server module is implemented

through the MMASS platform, while the Web server is a

Tomcat servlet container hosting SnipSnap3, a Java-based

weblog and wiki software. The highlighted Tracker module

is a implemented through a Java Servlet, which is invoked by

every page of the site but does not produce a visible effect on

the related web page. The Tracker is responsible for triggering

the creation and the movement of agents related to visitors in

the environment related to the web site structure. In particular,

when a user makes his/her first page request the Tracker is

invoked by the interface agent associated to the page. Then

the Tracker tries to set a cookie on the client including the

session information. If the cookie is accepted, it is possible to

use the session information to identify the user; on the other

hand, requests from clients not accepting cookies will not be

monitored.

The management of agents creation and movement is not as

simple as its intuitive description might indicate. In fact, the

same user could be using different browser pages or tabs to

simultaneously view distinct pages of the site. In other words,

a user might be simultaneously following different trajectories

in his/her web site navigation. In order to manage these

situations, a user can be related to different agents, and his/her

requests must be associated to the correct agent (possibly a

new one). Finally, agents related to finished (or interrupted)

user navigation should be eliminated by the system, storing

3http://snipsnap.org

the relevant part of their state in a persistent way, until the

related user requires again a page of the site. In particular,

remote users’ requests may be divided into two main classes,

according to their effects on the Tracker and Agent server:

• creating a new agent: whenever a new user requires a web

page, the Tracker will invoke the Agent Server requiring

the creation of an agent whose starting position is the

node related to the required page; the same effect is

generated by a request coming from an already registered

user which was not present in the system, but in this case

information related to previous user agents must be re-

trieved in order to determine the new agent’s state; finally,

when an already registered and active user requires a page

that is not adjacent to its current one, a new agent related

to the new browsing activity must also be created;

• generating the movement of an agent: when the viewer of

a page follows one of the provided links, the related web

browser will generate a request for a page that is adjacent

to one of the related agents which must be moved to the

node related to the required page; whenever there are

two or more agents in positions that are adjacent to the

required page, in order to solve the ambiguity and choose

the agent to be moved, the Tracker will invoke the Session

object in which it stores the current URL related to the

viewed page.

The following section will describe how the raw information

that can be gathered thanks to the above described framework

can be processed in order to obtain higher level indications

on users’ behaviours. Since the interface agent collaborates to

the user monitoring process, more details on this topic will

instead be given in Section IV-B.

III. GATHERED INFORMATION: BROWSING TRACES

This system allows to gather and exploit two kinds of

information: first of all situated agents related to web site

visitors have a perception of their local context, both in terms

of relative position, adjacent nodes and presence of other

visitors; second, agents may gather information related to the

paths defined by the browsing activities or the related user in

the site itself.

68

A

1 2

3
4

Trace 1

Trace 2

(a) (b)

1

Trace 2

2

A1

A2

Trace 1

A1

Fig. 3. A diagram describing two traces that are derived by a sequence of
user requests.

There are inherent issues in determining in a precise way the

actual users’ activities on the web site, due to the underlying

request/response model: the only available indications on

these activities can be obtained by requests captured by the

Tracker. In particular, we have an indication of the page that

was required by a user and the time-stamp of the request.

Starting from this raw information the system can try to detect

emerging links, which are hyperlinks that are not provided by

the structure of the site but can be derived by the behaviour

of specific visitors. To this purpose, the concept of trace

was introduced as a higher level information describing the

behaviour of a user. A trace synthesizes a path followed by

a user, from the web page representing his/her entry point, to

a different point of the environment (i.e. another web page)

which may represent an interesting destination. Every agent

related to a visiting user is associated to a temporary trace,

and it may generate several actual traces (also called closed

traces) in the course of its movement in the environment.

Formally a trace is a three-tuple 〈AId, Start,Dest〉, where

AId represents the identifier of the agent to which the trace is

related, while Start and Dest indicate the starting and desti-

nation node related to the browsing sequence which generated

the trace. A new trace is generated when a user enters the

site, triggering the creation of a related agent. The starting

trace has a null value for the destination node. Subsequent

requests by the user generated following hyperlinks will bring

the related agent to an adjacent node, and the the Dest field

of the corresponding trace will be modified in order to reflect

user’s current position. Non trivial traces provide Start and

Dest nodes that are not directly connected by means of a

hyperlink.

There are two relevant exceptions to the basic rule for trace

update, that are related respectively to the duplication of a

trace and to its closing. According to the previously introduced

informal definition, a trace should be coherent in time and

space. In fact, whenever the same user requires simultaneously

two or more different pages he/she is probably following

distinct search trajectories, possibly even related to different

goals. In this case, as previously introduced, the Tracker will

detect this situation and create additional agents that refer to

the same user. Figure 3 shows two sample situations providing

respectively trace duplication and closing: in (a) the user has

chosen to open a hyperlink in a new browser page (request 1)

and then has followed another link in the first browser page

(request 2). According to the previously described Tracker

behaviour, two agents are now associated to the user, and they

are associated to different traces sharing the Start field.

In (b), instead, the user has followed links 1 and 2 from the

starting page, then he/she made a step back (request 3) and

eventually moved to the last known position (request 4). The

step back causes the closure of the temporary trace associated

to the agent (Trace 1 in the Figure), and the creation of a

new temporary one with the same Start field (Trace 2). In

this case the step back may have different interpretations: it

could refer to a negative evaluation of the page contents but it

could also indicate the fact that the user has found what he/she

was searching for. An information that could be exploited to

determine if the Dest field of the trace was interesting for the

user is the time interval between request 2 and 3: for instance,

given ∆td a threshold indicating the minimum time required

to reasonably inspect the content of a specific web page, if

timestamp(3)− timestamp(2) < ∆td then Trace 1 could be

ignored. However, the mere interval between the two requests

is not a safe indicator of the fact that the page was actually

viewed and considered interesting.

In fact, the time spent on a web page is also important in

order to determine when a temporary trace must be closed. In

fact, whenever a user does not issue requests for a certain time

we could consider that his/her browsing activity has stopped,

possibly because he/she is reading the page related to the

Dest field of the trace associated to the related agent. In other

words, every agent has a timer, set to the previously introduced

threshold ∆td, which is set when the agent is created and it

is reset whenever it moves. The action associated to this timer

specifies that its temporary trace becomes closed, and a new

timer is set: the action associated to this second timer caused

the disappearance of the agent from the system, and the storage

of the related state.

It is important to note that even anonymous visitors (i.e. non

authenticated ones) whose clients are accepting cookies, can

be tracked and can thus generate traces, although anonymous

ones. The latter can be exploited for sake of web optimization

but are not relevant for sake of user specific site customization.

User agents provide thus a support to interface agents

by monitoring users’ behaviours and, in this specific case,

selecting relevant traces. Figure 4 shows how the user agents

interact with the interface agents to provide them with relevant

information for page adaptation, but more details on this topic

will be provided by the following section.

IV. THE WEB INTERFACE AGENT

The aim of the Interface Agent is to improve the browsing

experience of a user by adapting the page he/she is currently

viewing to his/her preferences, needs or habits. To do so, it

must be active during the time–span in which the page is

visualized by the browser, and it must be able to dynamically

alter its appearance. To do so, it must also be able to interact

with the previously introduced system to be informed about

past user’s behaviour. In other words the interface agent is

69

!"#$%&'#()#(

*$%#(+,-#&!"#$%

.#/&0(123#(
.#/&'#()#(

'4""#3%51$
&'#()6#%

73#(&!"#$%3

73#(38
/#9,)514(3

Fig. 4. A diagram showing the interaction among an interface agent, the
user agent (in the MMASS environment) and the users’ behaviors database.

a client–side component, “living” in the web browser and

interacting with it in a proactive way, as shown in Figure 4.

In the following sections, we describe the technology

adopted to implement the interface agent, comparing it with

other currently available technologies that could have been

selected to develop this kind of client-side web application.

Then the behaviour of the interface agent is briefly introduced,

focusing on its setting in the overall architecture and on the

adopted strategy for page adaptation.

A. Technologies for Web Interface Agents: Java Applet, Flash

and AJAX

Today there are several technologies suitable to develop

rich client–side web applications, and in particular interface

agents able to “live” in a common web browser. The most

common are Java Applet, Macromedia (now Adobe) Flash and

AJAX. We intentionally chose not to consider recent browser

extensions and plug-ins for the visualization of 3D virtual

environments, and to focus on more traditional forms of web

browser interfaces.

Java Applet4 is the oldest technology used to provide

interactive features to web applications. An applet is a Java

software component that runs in a Web browser using the

Java Virtual Machine. Applets can be included in HTML (or

XHTML) pages in the same way as an image or another

multimedia content, and they are executed in a sandbox, an

infrastructure preventing them from accessing client’s local

data (though there may be exceptions to this principle, and

in particular trusted applets). This kind of approach is very

powerful because applets can exploit all the Java API: they

can, for example, generate complex user interfaces, with a rich

multimedia support (e.g. 3D graphics, sound, movies), or they

can interact with server–side application via Web Services,

Java RMI (Remote Method Invocation) or CORBA. It is

possible to develop very complex applications using common

Open Source Java IDEs (like Eclipse or Netbeans) and run

them in web browser as applets. Though Java Applet can be

a suitable technology for many complex web application, it is

difficult to implement an interface agent with an applet because

of its lack of integration with the web browser. An applet is

in fact confined in a sandbox and cannot manipulate the data

of the page in which it is being executed. For example, an

applet cannot be used to extract all the links of the current

4http://www.sun.com/applets/

user page. Another disadvantage of Java Applet is represented

by the requirements of the Java Runtime Environment: first of

all it is not available by default on all web browsers, moreover

it has a large memory occupation (around 20 Mb) and applets

cannot start until the Java Virtual Machine is running.

Flash5 is a multimedia technology commonly used to create

animations, to build interactive web pages and to develop

client-side web applications. The flash files (called Flash

Movies) run in a virtual machine called Flash Player, that

is available for a wide variety of different browsers, platforms

and devices. The Flash Player is smaller than Java runtime

(less than 1 MB) and it is installed on over 500 million devices

and more than 97% of Internet-enabled desktops6. Moreover,

a Flash Player is embedded in many consumer electronics

devices, like Kodak EasyShare-One digital camera: the user

interface, built using Flash, enables simple navigation during

picture taking and sharing, and includes rich graphical scene

modes. Flash Movies can be programmed with a scripting

language called ActionScript, that is an ECMAScript7–based

programming language, object oriented, loosely–typed and has

a syntax quite similar to C. In contrast with JavaScript (which

is also ECMAScript compliant), ActionScript is compiled

into bytecode which is interpreted by a virtual machine.

ActionScript has a rich API supporting the elaboration of

numbers, strings, XML and graphical element (vectorial and

raster); it allows to play sounds and movies and to interact

with server side application with a fast proprietary protocol

(Flash Remoting8) or the slower SOAP (Simple Object Access

Protocol).

AJAX (shorthand for Asynchronous JavaScript and XML)

is not a technology in itself, but a term that refers to the use

of a group of technologies together [16]. In fact, AJAX is

a combination of JavaScript, DHTML (Dynamic HTML)9,

XML and the Remote Scripting (also described in [16]).

Remote Scripting is used to deliver content dynamically with-

out the need to refresh the page and DHTML is a method

for creating interactive web pages by using a combination

of a markup language (HTML) and a client–side scripting

language (JavaScript): one major use of JavaScript is to write

functions that are embedded in or included from HTML

pages and interact with the Document Object Model (DOM).

Other typical examples of JavaScript usage are: validating web

form input, opening popup window, playing sounds, changing

images size and performing text conversion operation. The

scripts can be embedded in HTML pages or contained in

.js files linked to the web pages. The overall AJAX web

application model, compared to traditional web applications, is

shown in Figure 5. Since JavaScript is an interpreted language,

errors are not detected until the faulty program line is executed.

Another problem of AJAX (and JavaScript in general) are the

5http://www.adobe.com/products/flash/
6NPD Online survey, conducted in April 2006
7http://en.wikipedia.org/wiki/ECMAScript
8http://www.adobe.com/products/flashremoting/
9http://www.w3.org/DOM/faq.html#DHTML–DOM,

http://www.w3schools.com/dhtml/

70

Fig. 5. The traditional web applications compared to the AJAX model. Figure
by J. J. Garrett taken from [16].

differences between different JavaScript engine implementa-

tions, so applications must be tested systematically on the

different target browsers and platforms. Nonetheless, AJAX is

not only a scripting language that supports a rapid prototyping

of web applications but it is also suitable for industry-strength

systems (from WebGIS applications like Google Maps10, to

complex enterprise messaging and collaboration systems like

Zimbra11).

To compare the different technologies, several sample ap-

plications that are available and freely accessible online can be

evaluated. In particular several instant messengers have been

implemented adopting Java Applet, Flash and AJAX technolo-

gies: for instance ICQ2Go!12 is is available both as a Java

Applet and as a Flash application and Meebo13 is developed

with AJAX. Despite all are instant messenger applications, the

user experience is very different: the Java version as ICQ2Go!

has a very long startup time and it requires a huge amount

of memory but it has most functions of the stand–alone ICQ

client application and it is able to communicate with the server

adopting the common ICQ protocol. The new Flash version

of ICQ2Go! and Meebo are comparable in terms of user

experience: both of them start much faster than the ICQ2Go!

applet, but they still have a very good look and feel and

an extensive set of functionalities. However, both the Flash

and the AJAX version required a special server–side wrapper

because they can communicate only with a XML protocol.

After the analysis of the various technologies, we have

chosen to adopt AJAX in order to develop the Interface Agent.

With AJAX, it is possible to create an agent hosted in the web

10http://maps.google.com/
11http://www.zimbra.com/
12http://go.icq.com/
13http://www.meebo.com/

browser that remains alive and active during the visualization

of a web page. So it is possible to go beyond the classic web

request/response model and develop proactive interface agents.

We chose AJAX instead of Flash because it is possible to

develop AJAX applications with Open Source tools (in fact,

only a common text editor is needed). Today, a commercial

IDE is required to build Flash web applications; although

there is an Open Source ActionScript compiler14, the lack of

a proper full–featured Open Source IDE and mature tools for

user interface drawing is a major drawback. Compared to Java

Applet, instead, AJAX is lightweight and better integrated in

the browsing environment: JavaScript functions have a com-

plete control on the page content while applets are confined

in a sandbox. This is a very important feature because the aim

of an interface agent is to interact with the user, so an agent

with more freedom of action over the interface can perform

its task more effectively.

B. The Interface Agent in the Overall Architecture

The interface agent starts its activity when a web page

of the site is loaded into client Web Browser. The first

action performed by the agent is adding to every link of

the page a parameter (called linkfrom) with the URL of the

current page as value. This action permits to identify the

source page of every subsequent request. For example, assume

that current page address is http://host/index.html, the

link Events included in the

page will be rewritten as

Events

Similarly, Events
will be rewritten as

Events

The content of the page is dynamically changed at client-

side by JavaScript DOM (Document Object Model), so the

original page on the server remains intact. DOM will allow

scripts to dynamically access and update the content, structure

and style of current page. The document can be further pro-

cessed and the results of that processing can be incorporated

back into the presented page. The agent doesn’t update every

link of the page, but only the HTTP links to the current site.

So links to other sites, or links to a FTP repository or mail

address remain unchanged.

The next action performed by the interface agent is

to call the tracker. If the current page is called with

the linkfrom parameter, this parameter is passed to the

tracker. The tracker uses this parameter to build the

traces. For example, if the URL of the current page is

events.html?linkfrom=index.html the user’s last page

was index.html. The tracker can add a trace for the current

user from index.html to events.html (or update an existing

one). The tracker doesn’t perform this operation itself, instead

it informs the user agent on the MMASS environment, which

is responsible for adding the trace. Then the interface agent can

14http://www.mtasc.org/

71

!"#$%&'($)*+$"#

,$-).%/01$%

2/%$3+")*+$"#
4&/%)$5'678$9

'):;;)*++%$+'#/%<

;=++$1#3/"1
%$>=$1#?

:$17/"1$)'1
:;;

;=++$1#3/"1
%$>=$1#?

:$17/"1$)'1
:;;

,$-);$%@$%

;=++$1#3/"
);$%@8$#

A%'(B$#
);$%@8$#

A%'(B$%)3"@/('#3/"

*+$"#);$%@$%

Fig. 6. Interface Agent and Foreign Agent interaction with the MMASS user
agent are performed through the Suggestion Servlet.

query the server to obtain the emerging links to be suggested to

the user.Suggestions are in fact generated on the server–side

and are published as an RSS15(Really Simple Syndication)

feed. The agent suggestion request is managed by the user

agent (analogously as for traces). We choose RSS instead of a

proprietary format because this allows foreign interface agents

(other then our interface agent) to interact with the system.

The interface agents loads the RSS by using the

XMLHttpRequest16 class, which allows to perform an asyn-

chronous request to the web server hosting the current web

page and to store the response in a local variable. The

response could be a XML document or plain text. In the

first case, XMLHttpRequest stores the retrieved data in a

DOM-structured object, which can be navigated using the

standard JavaScript DOM access methods and properties, such

as getElementsByTagName() and childNodes[]. The fol-

lowing code is an example of using XMLHttpRequest to asyn-

chronously request the server side page suggestions.jsp:

req = new XMLHttpRequest();

req.onreadystatechange = processReqChange;

req.open("GET", "suggestions.jsp", true);

req.send(null);

In order to find out when the method has finished retrieving

data, a specific event listener must be defined: in this case

the method is processReqChange, reported in the following

code snippet:

function processReqChange() {

if ((req.readyState == 4) && (req.status == 200)) {

// Gets the items from the XML document

var xml = req.responseXML;

var items = xml.getElementsByTagName("item");

// Builds new suggestions

var html = "";

for (item in items) {

var title = getValue(item, "title");

var link = getValue(item, "link");

// Adds a link and a carriage return

html += "" + title + "";

html += "
";

}

// Replaces the content of the suggestions box

document.getElementById("sBox").innerHTML = html;

}

}

15http://www.rssboard.org/rss-specification
16http://www.w3.org/TR/XMLHttpRequest/

This method of the interface agent parses the RSS document

and displays the suggestions in a box in the web page. This

operation is done by using DHTML: the agent searches for

the suggestion box (sBox) in the DOM of the page (which

is a tree representation of the page HTML source) and than

it replaces the content of the suggestion box with the freshly

generated one. The latter is based on RSS suggestions: for

each suggested page (represented as an item in the RSS) the

Interface Agent adds a link to the page and uses the title of the

page as label for the link. The following RSS is a suggestion

example:

<?xml version="1.0" encoding="UTF-8"?>

<rss version="2.0"

xmlns:lintar="http://www.lintar.disco.unimib.it/">

<channel>

<title>Suggested contents for index.html</title>

<link>http://example.com/index.html</link>

<language>en</language>

<pubDate>Wed, 28 Jun 2006 02:28:19 +0200</pubDate>

<ttl>1</ttl>

<item>

<title>Events</title>

<link>http://example.com/events.html</link>

<guid>http://example.com/events.html</guid>

<lintar:usersTraces>75</lintar:usersTraces>

<lintar:onlineUsers>3</lintar:onlineUsers>

</item>

[... more items ...]

</channel>

</rss>

In this example, the first suggested element is the Events

page, whose URL is http://example.com/events.html.

The tags in the lintar namespace are our extension to

the basic RSS: the <lintar:onlineUsers> tag identifies

the number of users currently viewing the page and the

<lintar:usersTraces> tag represent the intensity of foot-

prints on the page, in the spirit of [6]. Footprints are signs

that one or more users have recently viewed the page. This

information is also displayed by the interface agent on the

suggestion box: the number of online users is displayed as

a picture of little red man and the presence of users traces is

represented by corresponding icon. The number of online users

and the intensity of footprints are displayed in a tip box that

it is shown when the mouse arrow is over the picture. It must

be noted that the interface agent does not just provide a “one

shot” behaviour. In fact, when initialized, it sets a timeout for

a cyclical invocation of its main execution cycle by the web

browser. In this specific application, in particular, it is this able

to update and refresh the indication on the presence of other

visitors and footprints on suggested pages. The overall cycle

of interaction between the interface agent and the back end of

the system is illustrated in Figure 6 and a screenshot of the

web page enriched by the interface agent is shown in Figure 7.

C. The Adaptation Strategy

Every MAS agent of the implemented system provide

personalized suggestions about items that user will find in-

teresting, according to the history of the user and to the other

72

!"#$%&#'$(&$'#)*+,(-#.$/,.$"(&$/)0(*,&
/'#$)/10%'#.$23$0"#$0'/)4#'$5"()"$(,$0%',
5(66$7*8#$0"#$'#6/0#.$/+#,0$/))*'.(,+639

!"(&$/'#/$(&$/./10#.$/))*'.(,+$0*$0"#$0'/)#&$0"/0
5#'#$1'#8(*%&63$+#,#'/0#.23/+#,0&$'#6/0#.$0*$0"(&

%&#'&$/,.$*0"#'$8(&(0*'&9
!"#$:,0#';/)#$<+#,0$%1./0#&$0"(&$/'#/$#8#'3$;#5$&#)*,.&9

!"#$=;**01'(,0&=$7#/,&$&*7#*,#$'#)#,063$8(&(0$0"#$1/+#>
0"#$=6(006#$7/,=$7#/,&$/$%&#'$(&$8(&(0(,+$0"#$1/+#9

Fig. 7. A screenshot of a web page adapted according to gathered traces.

users path. These suggesting links have relationship with the

previously introduced traces, which represent behaviors and

movements of a user in a web site: the strategy which is

adopted to select the most relevant traces to be presented to

a given user considers the occurrence of trace generation and

the success rate of the traces that were proposed.

A first element of this strategy is adopted when new users

(or non authenticated ones) enter the site. In this case the user

has no previous history (or it is not possible to correlate the

user with his/her history), and the adopted strategy considers

all stored traces, not considering the user which generated

them. An additional information that is stored with traces

is the number of times that the related trace was effectively

selected and shown to a user and the number of times that

the related link was effectively exploited by a user. This kind

of information allows to obtain an indication of the success

rate of the suggestions that were chosen by the agent, and can

be exploited to select the traces to be shown in the adaptive

block. When the agent has an indication of the user which

issued the request, it may focus the selection activity to those

traces that compose the history of user’s activities in the

web site, in a web customization framework. In fact traces

include an indication of the agent which generated them, and

in turn agents are related to registered users. Moreover, in

order to focus on a specific user’s history but do not waste

the chance to exploit other users’ experiences, just two of the

three available slots for emergent links are devoted to traces

that were generated by that user and one is selected according

to the strategy adopted for anonymous or new users. Because

the time spent on a page had a strong correlation with explicit

interest [17], the adopted strategy uses this information to

refine the proposed suggestions.

An example of page adaptation refers to the adoption of a

recurrent trace leading from the index of the web site to a con-

tent page, that is not directly connected to the index but that is

visited very frequently. This kind of “vertical”17 emerging link

is frequently observed in the prototypal implemetation of the

system, which is installed in a web site presenting information

about a research laboratory as well as information on courses

held by members of the group18. Since the number of students

of some of these courses is very high, they frequently generate

traces connecting the index to the page related to those courses.

These traces represent effective shortcuts allowing to bypass

intermediate index pages related to education activities and

university courses. However, emerging links can also connect

pages deep in the site structure. For example, a page related

to a project might not be explicitly connected to another page

describing a particular modeling approach adopted in that

project, but a user might browse the web site and effectively

discover that page, causing the generation by the system of a

correspondant trace connecting the project and the modeling

approach. This trace might not be extremely relevant to all

visitors of the web site, due to the fact that this navigation

path will probably be not very frequent, but if the visitor is a

registered user the trace could be stored and suggested anyway,

since a number of slots in the adaptive area of the page is

reserved to user–generated emerging links.

This strategy for the exploitation of the gathered and stored

traces, based on users’ behaviours and movement in the web

site environment, represents a very simple way of exploiting

this kind of information without requiring an off-line analysis

17Here vertical is intended as describing the typical navigation path starting
from an index page and going deeper into the web site.

18http://www.lintar.disco.unimib.it

73

of the logs generated by the web server. The design, imple-

mentation and test of more complex strategies, for instance

based on details of the outcomes of emerging link proposals

(e.g. which user effectively followed the suggested adaptive

hyperlink) are object of future works.

V. RELATED WORK

There are several different approaches and relevant ex-

periences in the area of web site adaptation, and some of

them are also related to agent technologies. In particular,

a relevant approach provides the adoption of information

agents supporting users in their navigation [18]. These agents

generally consider both the specific behaviour of the user and

the actions of other visitors, and adopt multiple strategies for

making recommendations (e.g. similarity, proximity, access

frequency to specific documents).

The Footprints system [6] instead provides a site optimiza-

tion through the metaphor of site visitors leaving traces in

their navigation. These signals accumulate in the environ-

ment, generating awareness information on the most frequently

visited areas of the web site. No user profile is needed,

as visitors are essentially provided this information which

could represent an indicator of the most interesting pages

to visit. The metaphor of the structure of the web site as

an environment on which visitors move in their search for

information is very similar to the one on which the proposed

framework is based, but we also propose the exploitation of

the gathered information on users’ paths for user specific

customization. Another interesting recent work [19] represents

an attempt to integrate interaction mechanisms similar to the

one adopted by Footprints, often referred to as stigmergic

interaction mechanisms [20], and cognitive agents. This line

of research could represent an interesting way to integrate the

proposed approach, which is able to generate and manage

awareness contextual information, with higher level mecha-

nisms and strategies of adaptation.

Other approaches provide instead the generation of index

pages [3], that are pages containing links to other pages

covering a specific topic. These pages, resulting from an

analysis of access logs aimed at finding clusters grouping

together pages related to a topic, are proposed to web masters

in a computer-assisted site optimization scheme. A differ-

ent approach provides the real-time generation of shortcut

links [21], through a predictive model of web usage based

on statistical techniques and the concept of expected saving

of a shortcut, which considers both the probability that the

generated link will be effectively used and the amount of

effort saved (i.e. intermediate links to follow). In particular,

this framework is very similar to the one proposed here with

reference to the aims of the overall system, but it incorporates

a complex algorithm for off-line analysis of logs, while the

proposed approach provides a light and dynamic generation of

most probable useful links and the storage of these proposals

and high level information on site usage for a possible further

off-line analysis.

A different approach to web site adaptation provides the

adoption of a learning network to model the evolution of

a distributed hypertext network, such as a web site [22].

Also in this case the adaptation provides a modification in

the structure of a web site, and the concept of emergent

link and the underlying mechanisms present a similarity with

the learning rules adopted for that kind of learning network.

However that approach also provides a deep modification

in the architecture of the site and modifications in the web

protocols, while this work aims at providing a solution that

can be easily integrated with a traditional web architecture.

Moreover, recent developments of that line of research were

aimed at identifying analogies and relations among words by

means of web mining [23], rather than realizing adaptive web

systems.

The introduced system supporting web site adaptation seems

more similar to a recommendation system. A relevant type

of recommender exploiting users’ behaviours to decide which

contents could be interesting for a certain visitor is represented

by the collaborative filter approach [24]. The latter has been

adopted in different recommendation systems, filtering mail

messages, newsgroup articles and web contents in general,

but typically requires users to rate these items. Moreover,

it generally provides a concept of explicit users descriptions

through profiles which can be compared to determine similar-

ity among them. The idea is that contents that received a high

rating by a certain user could be considered interesting by a

similar user. The introduced system instead does not require an

explicit rating of contents, but it rather observes the frequency

of specific navigation paths, and exploits emergent links for

customization or optimization of site structure. However, the

adaptive block of the page can include emerging links that are

not related to the specific visitor who is currently browsing

that page, but were generated by other users which frequently

followed paths that the current one still did not follow.

From this point of view, the system provides a very basic

collaborative browsing scheme, but a more through analysis of

a possible integration with this approach is object of current

and future works.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper introduced a general framework providing the

adoption of a web site as an environment on which agents

related to visitors move and possibly interact. This approach

allows the gathering of a structured form of information on

users’ behaviours and activities in the web site. The concept

of emerging links and traces have been introduced in order

to support an application exploiting information on users’

browsing history for sake of web pages adaptation. The intro-

duced framework and the application to web site adaptation

have been designed and implemented, exploiting a platform

supporting systems based on the MMASS model.

A campaign of tests aimed at evaluating the effectiveness

of the adaptation approach, and also for sake of tuning

the involved parameters (e.g. timings, number of presented

possible emerging links) is under way. This evaluation will

74

be based on user interviews and also on the exploitation

of the gathered information of the success rate of proposed

adaptive hyperlinks. Such an indicator might be obtained as a

ratio between the number of times an emerging link has been

actually selected by a user and the total number of times its has

been shown. However, it must be noted that we currently do

not have an indication of threshold to discriminate successful

suggestions from unsatisfactory ones; a further analysis of

methods adopted to evaluate related approaches is currently

being carried out. The results of this evaluation might also lead

to consider the modelling, design and implementation of more

complex trace selection strategies, and thus a more complex

behaviour for the interface agent.

Future works will be focused on the introduction and

exploitation of higher level semantic information related to

the site structure and contents, and thus agents’ environment,

aimed at providing additional forms of adaptation, including

images and multimedia contents. While in [25] an analysis

on how a conceptual view on the topics may be used as

an additional level of description of the environment, another

aspect that will be considered is the possibility to improve the

effectiveness of web–based applications supporting processes

with adaptive functionalities. Finally, a further development

provides also the design and implementation of a prototype

supporting the context-aware interaction among web site vis-

itors. In this framework, the environment related to the web

site also supports the mutual perception of the agents situated

in it and it also supports a form of interaction among them

depending on their relative positions. The latter can be thus

considered as a form of context–dependant interaction. A more

thorough analysis of the possible applications of this approach

can be found in [25], and a prototypal implemetation of these

interaction mechanisms is currently under way.

REFERENCES

[1] A. S. Tanenbaum, Computer Networks - third edition. Prentice Hall,
1996.

[2] M. Perkowitz and O. Etzioni, “Adaptive Web Sites: an AI Challenge.” in
Proceedings of the Fifteenth International Joint Conference on Artificial

Intelligence (IJCAI 1997), 1997, pp. 16–23.
[3] ——, “Adaptive Web Sites,” Communications of the ACM, vol. 43, no. 8,

pp. 152–158, 2000.
[4] R. Cooley, “The Use of Web Structure and Content to Identify Subjec-

tively Interesting Web Usage Patterns,” ACM Transactions on Internet

Technology, vol. 3, no. 2, pp. 93–116, 2003.
[5] D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber,

“Environments for Multiagent Systems State-of-the-art and Research
Challenges.” in Environments for Multi-Agent Systems, First Inter-

national Workshop (E4MAS 2004), ser. Lecture Notes in Computer
Science, vol. 3374. Springer–Verlag, 2005, pp. 1–47.

[6] A. Wexelblat and P. Maes, “Footprints: History-Rich Tools for Infor-
mation Foraging,” in Proceedings of the SIGCHI conference on Human

factors in computing systems. ACM Press, 1999, pp. 270–277.
[7] J. Liu, S. Zhang, and J. Yang, “Characterizing Web Usage Regularities

with Information Foraging Agents,” IEEE Transactions Knowledge and

Data Engineering, vol. 16, no. 5, pp. 566–584, 2004.
[8] D. Helbing, F. Schweitzer, J. Keltsch, and P. Molnár, “Active Walker

Model for the Formation of Human and Animal Trail Systems,” Physical

Review E, vol. 56, no. 3, pp. 2527–2539, January 1997.

[9] R. C. Miller and K. Bharat, “Sphinx: a Framework for Creating Personal,
Site-specific Web Crawlers,” Computer Networks and ISDN Systems,
vol. 30, no. 1–7, pp. 119–130, 1998.

[10] D. Weyns, F. Michel, and H. V. D. Parunak, Eds., Environments for

Multi-Agent Systems, First International Workshop (E4MAS 2004), ser.
Lecture Notes in Artificial Intelligence, vol. 3374. Springer–Verlag,
2005.

[11] D. Weyns and T. Holvoet, “Model for Simultaneous Actions in Situated
Multi-Agent Systems,” in First International German Conference on

Multi-Agent System Technologies, MATES, ser. Lecture Notes in Com-
puter Science, vol. 2831. Springer–Verlag, 2003, pp. 105–119.

[12] M. Mamei, F. Zambonelli, and L. Leonardi, “Co-fields: Towards a
Unifying Approach to the Engineering of Swarm Intelligent Systems,”
in Engineering Societies in the Agents World III: Third International

Workshop (ESAW2002), ser. Lecture Notes in Artificial Intelligence, vol.
2577. Springer–Verlag, 2002, pp. 68–81.

[13] K. Hadeli, P. Valckenaers, C. Zamfirescu, H. V. Brussel, B. S. Germain,
T. Hoelvoet, and E. Steegmans, “Self-organising in Multi-Agent Coor-
dination and Control Using Stigmergy,” in Engineering Self-Organising

Systems: Nature-Inspired Approaches to Software Engineering, ser.
Lecture Notes in Computer Science, vol. 2977. Springer–Verlag, 2004,
pp. 105–123.

[14] S. Bandini, S. Manzoni, and C. Simone, “Dealing with Space in Multi–
Agent Systems: a Model for Situated MAS,” in Proceedings of the first

international joint conference on Autonomous agents and multiagent

systems. ACM Press, 2002, pp. 1183–1190.
[15] S. Bandini, S. Manzoni, and G. Vizzari, “Towards a Platform for

Multilayered Multi Agent Situated System Based Simulations: Focusing
on Field Diffusion,” Applied Artificial Intelligence, vol. 20, no. 4–5, pp.
327–351, 2006..

[16] J. J. Garrett, “AJAX: a New Approach to Web Applications,”
Adaptive Path Essay, Tech. Rep., 2005. [Online]. Available:
http://www.adaptivepath.com/publications/essays/archives/000385.php

[17] M. Claypool, P. Le, M. Waseda, and D. Brown, “Implicit Interest
Indicators.” in Intelligent User Interfaces, 2001, pp. 33–40.

[18] M. J. Pazzani and D. Billsus, “Adaptive Web Site Agents,” Autonomous

Agents and Multi-Agent Systems, vol. 5, no. 2, pp. 205–218, 2002.
[19] A. Ricci, Omicini, M. Viroli, L. Gardelli, and E. Oliva, “Cognitive

Stigmergy: a Framework Based on Agents and Artifacts,” in 3rd Inter-

national Workshop “Environments for Multi-Agent Systems” (E4MAS

2006), D. Weyns, H. V. D. Parunak, and F. Michel, Eds., 2006, pp.
44–60.

[20] G. Theraulaz and E. Bonabeau, “A Brief History of Stimergy,” Artificial

Life, vol. 5, no. 2, pp. 97–116, 1999.
[21] C. R. Anderson, P. Domingos, and D. S. Weld, “Adaptive Web

Navigation for Wireless Devices,” in Proceedings of the Seventeenth

International Joint Conference on Artificial Intelligence (IJCAI 2001),
2001, pp. 879–884.

[22] J. Bollen and F. Heylighen, “Algorithms for the Self-Organisation of
Distributed, Multi-User Networks. Possible Application to the Future
World Wide Web,” in Proceedings of the 13th European Meeting on

Cybernetics and Systems Research, R. Trappl, Ed. Austrian Society
for Cybernetic Studies, 1996, pp. 911–916.

[23] F. Heylighen, “Mining Associative Meanings from the Web: from
Word Disambiguation to the Global Brain,” in Proceedings of the

International Colloquium: Trends in Special Language & Language

Technology, R. Temmerman and M. Lutjeharms, Eds. Standaard
Editions, Antwerpen, 2001, pp. 15–44.

[24] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grou-
plens: an Open Architecture for Collaborative Filtering of Netnews,”
in CSCW ’94: Proceedings of the 1994 ACM conference on Computer

supported cooperative work. ACM Press, 1994, pp. 175–186.
[25] S. Bandini, M. Sarini, C. Simone, and G. Vizzari, “WWW in the Small:

Towards Sustainable Adaptivity,” World Wide Web Journal, 2006 (to
appear).

75

MAST: an Agent Framework to Support B2C
E-Commerce

Salvatore Garruzzo, Domenico Rosaci and Giuseppe M.L. Sarné
DIMET - University Mediterranea of Reggio Calabria
Località Feo di Vito - 89060 Reggio Calabria, Italy

Email: {salvatore.garruzzo, domenico.rosaci, sarne}@unirc.it

Abstract— In this paper we present an XML-based multi-agent
system, called Multi Agent System for Traders (MAST), that
completely supports Business-to-Customer E-commerce activi-
ties, including advertisements and payments. MAST helps both
customers and merchants in their tasks with a homogeneous
and personalized approach. In particular, E-payments in MAST
are implemented under the availability of financial institutions.
This avoids exchanging of sensible customers’ information and
reinforces the confidence between customers and merchants.
A complete prototype of MAST has been implemented in the
JADE framework, and it has been exploited for realizing some
experiments, in order to evaluate its performances.

I. INTRODUCTION

A great contribution to the Internet diffusion has been pro-
vided by E-Commerce (EC) activities, i.e. all trading activities
carried out by means of Internet. In [15] a classification of the
EC activities in homogeneous categories has been realized on
the basis of the typology of the traders and of the specific trade
activity carried out over the Internet. In this paper we deal
with one of these categories, i.e. the Business-to-Consumer
(B2C), that can be compared to the retail trade of traditional
commerce.

Nowadays, the B2C involves a large number of merchants
interested in offering products using a convenient media and
customers that desire to purchase those products. In this con-
text, customers and merchants can exploit different opportuni-
ties as: (i) absence of time and space boundaries; (ii) simple,
fast and comfortable purchases; (iii) low costs and several
sale terms available. However, a significant customer-merchant
distrust still persists, mostly due to the absence of personal
contacts and to a low acceptance of the e-payment methods
for security reasons. To capture the different phases carried
out by enacting a B2C process, some behavioural models
can be exploited, and particularly, in this paper we adopt
the Consumer Buying Behavior (CBB) model [8], where the
trading activities have been embedded in six different phases
(resp., “Need Identification”, “Product Brokering”, “Merchant
Brokering”, “Negotiation”, “Purchase and Delivery”, “Service
and Evaluation”).

This work presents a multi-agent framework to support B2C
activities of merchants and customers. Such a framework,
called Multi-Agent System for Traders (MAST), is composed
of a set of agents and a central agency. In particular, in MAST
each merchant and each customer is provided by a software
agent, managing a personal profile, able to support B2C

activities during all the CBB stages. The MAST framework
presents the following important features: (i) software agents
are XML-based to manage agent profiles and messages in a
light and easy manner and to realize agent communications in
ACML language [3], [7] assuring portability; (ii) an Ontology
is used as a common language for all agents allows to unify the
representation of products and categories belonging to various
catalogues; (iii) an e-payment protocol called AIPP (Agent
Internet Payment Protocol) [6], based on existing financial
institutions, is fully compliant with the standard FAST [2]
and it is used together with single-use account identifiers [18];
(iv) a central agency provides agents with some services and
cooperates with them to realize only the “Need Identification”
and the “Service and Evaluation” stages of the CBB model in
an efficient way.

The paper is organized as follows: the MAST framework
is presented in the following section. In Sect. III the AIPP
protocol is briefly illustrated and in Sect. IV the adopted func-
tionalities for customer and merchant support are described. In
Sect. V the MAST prototype and performances are discussed.
Section VI deals with some Related Work and finally, in
Sect. VII, some conclusions are drawn.

II. THE MAST FRAMEWORK

In the MAST framework, represented in Fig. 1, each cus-
tomer C and merchant M is associated to her/his personal
agent (resp., c and m) and with her/his financial institution
(FI). All agents are logged into the MAST Agency (Ag). Both
agents and agency support B2C activities managing (in terms
of insertion, deletion and updating) their respective Knowledge
profiles. In this section, agents and agency will be briefly
described by illustrating their profiles and behaviours, while
the B2C support activities in the CBB stage are exposed in
Sect. IV.

A. The MAST Agents

In the following, U denotes the generic user (a customer or a
merchant) and a represents her/his agent. Each MAST agent
manages its Agent Knowledge (AK) profile, represented in
Fig. 2 and described by the following elements:

• UD (User Data), contains the user’s name (Name)
and address (Address), login identifier (AcL), password
(AcP), real (Ac) and single-use (AcT) user’s account

76

Fig. 1. The MAST architecture

identifiers, all referred to the user’s account into FI . Note
that Ac and AcT include also FI coordinates.

• AD (Agent Data), containing the user’s agent (aI) and
Agency (AgI) identifiers and a pruning threshold (T) to
delete uninteresting information from AK.

• O (Ontology). In order to identify products of interest
for the users, in our framework as Ontology we adopt
the North America Industry Classification (NAICS) [13],
which is an official hierarchical industrial classification
used in North America, employing unified evaluation
criteria. In MAST, the 6 digits NAICS code is used to
identify a product. It is clear that other ontologies of
this kind might as well be adopted instead of the NAICS
coding.

• PD (Product Data) is a set of products, where each
product is represented by an identifier (PI) and described
by the following elements: NAICS code (N); model (M);
brand (B); price (P); currency (C); commercial unit (U);
auction flag (A) that is set to 1 if the product has a fixed
price otherwise it is set to 0; tax (X); benefits set (BSet),
eventually empty, of added values; delivery set (DSet),
that collects the delivery identifiers (see DD section)
related to the product.

• DD (Delivery Data) is a set of elements, where each
element, represented by an identifier (DI), is described
by the delivery time (DT) and by the fixed (F) and
variable (V) costs. Note that DD collects the data of the
chosen delivery for a customer, while it collects the data
of the delivery he/she makes available for a merchant.

• ADB (Agent Data Base) is a set of agent (and Agency)
data where each element, represented by its identifier aI ,
is described by its Internet address (aA) and by the date
of its update (aAU).

• UP (User Profile) is a set of data that an agent a obtains
monitoring the CBB activities in the MAST environment;
for a customer its c agent collects the data of the products
which the customer is interested in; elsewhere, for a
merchant its m agent collects the data of the CBB ac-
tivities carried out in the site by the agents of the various
customers for the products offered by the merchant. Each
element of UP is represented by the identifier PI (the
same of the PD section) and it is described by the

following elements: visit counter (V C); first visit (FV),
one before the last visit (PV) and last visit (LV) dates;
product rate (R); a set (PASet), where each element
is associated to an agent that has been interested in the
product, and that is composed by an agent identifier (aI),
the highest CBB stage reached and eventually the delivery
identifier (DI) and the auction flag (A). More in detail,
the rate R represents the interest of a customer for a
specific product and it is updated (by a) when a CBB
activity is monitored by a using the following formula:

R = φ ·
∑5

ξ=1[
CV ·(1+PV −FV)

((6−ξ)2·(1+LV −PV))]

where: ξ ∈ [1, · · · , 5] identifies one among the first five
CBB stages; φ ∈ {1;−1} describes the satisfaction of the
customer about a product (φ is usually set to 1, but it is
set to −1 by the customer only if in the last and optional
CBB stage he/she is unsatisfied of the purchased product;
for a merchant, φ is always set to 1). Furthermore, the
differences among FV , PV and LV are expressed in
days1 beginning from FV . Note that R depends on the
number of times that an activity has occurred in a CBB
stage, the relevance of the involved CBB stage and the
more recent accesses.

The information in the described structures are used by an
agent a to realize its goals, as explained in the following,
excluding the CBB support which is presented in Sect. IV.
More in detail:

• setup steps: semi-automatic procedures are activated to:
(i) set initially or update UD, AD, ADB, interacting
with Ag when it is needed as in the first a’s activation;
(ii) remove a from the system for an U ’s request to Ag.

• operational steps: a customer agent is automatically
activated (resp., deactivated) when a Web session starts
(resp., ends “per se” or for an explicit customer’s choice),
whereas a merchant agent is automatically activated
(resp., deactivated) when its site is on-line (resp., off-line
or for an explicit merchant’s choice). An agent performs
the following activities: (i) it sends periodically to Ag

its aA; (ii) it constructs its profile to support its user
updating its AK w.r.t. each agent contact and each access
for a product in one or more CBB stages; (iii) in order
to realize the first phase of the “Need Identification”
CBB stage, in MAST a customer agent periodically sends
to Ag a list (L) containing the NAICS code of those
products that meet interests and preferences of its user,
ordered on the basis of their rate R; (iv) periodically each
agent prunes its AK from some evaluated unimportant
information on the basis of the values of the rating w.r.t.
the threshold T .

B. The MAST Agency

The Agency Knowledge (AgK) profile is described by:
• AgD (Agency Data), that is composed by the Agency

Identifier (AgI) and Internet Address (AgA).

1The choice of the day as reference time unit is due to the characteristics
of the problem, given that purchases usually do not occur often in time (e.g.,
each minute or hour). However, it is possible to change the reference time
unit without influencing the generality of the model.

77

Fig. 2. The Agent Knowledge (AK)

• ADB (Agent Data Base), that is a set of agent data
where each element, represented by its identifier aI , is
described by: an Internet address (aA); the date of the aA

update (aAU); a list (L) of NAICS code referred to those
products of interest or preferences; the name (Name) and
address (Address) of the agent’s owner.

• aPT (Agent Pruning Threshold) that is exploited to
deallocate long-time inactive agents.

The behaviour of the Agency consists of:
• affiliate managing steps: The Agency carries out the fol-

lowing operations automatically: (i) when it is required,
the Agency affiliates an agent sending it its Identifier and
at this point the agent is logged and operative; (ii) the
Agency updates the agent data when it changes; (iii) the
Agency stores, for each active agent, the current address
and the list L that the agent periodically sends to Ag;
(iv) if a user requires an agent deletion to the Agency or
if an agent is inactive for a time longer than the pruning
threshold aPT , then the Agency deletes the agent and

informs the community.
• service managing steps: The Agency provides some

services to agents, namely: (i) the support to realize
some CBB stages efficiently as will be described in the
following; (ii) a broadcasting message service (e.g., to
provide an agent m offer to all agents c); (iii) a yellow
page service, where each affiliate can ask the address of
another MAST affiliate.

III. THE AGENT INTERNET PAYMENT PROTOCOL (AIPP)

Payment schemes can be assessable with subjective criteria,
as customer acceptance or trust [14], and objective criteria,
as functionality and quality parameters like transaction cost,
security, privacy, etc. The presence of a network in a payment
scheme introduces new issues, absent in traditional scenarios
[1], [16], where: (i) identities of the transaction actors need
to be authenticated and validated; (ii) payments and their
effects guaranteed; (iii) operations, frauds and legal risks
minimized. In addition, an extended use of standard protocols,
existing products and services, payer anonymity, purchases
confidentiality and low costs are desirable.

Currently, the most used e-payment system is the credit
card, but in this case a credit card number should be provided
to the merchant; this could be risky because the card num-
ber is provided over Internet and/or stored in the merchant
site. The electronic cash systems cannot be used due to
law and crime prevention regulation/legislation [1]. Recently,
centralized account schemes have grew quickly in popularity
for their aptitude to integrate usual financial instruments in
a secure Internet transaction context. This payment family,
also proposed by well known financial institutions, includes
general purpose or e-commerce specific applications and can
be realized completely either in secure software or in secure
hardware.

A centralized account approach has been proposed in 1999
by the Financial Service Technology Consortium (FSTC) with
the Financial Agents Secure Transaction (FAST) project [5].
The FAST team has developed five payment schemes for
different scenarios (without specifying any detailed protocol)
based on financial institutions that manage user’s accounts
and agent technologies to take advantage from existing infras-
tructures. The main benefits are: (i) customers and merchants
with no common authentication mechanisms (FAST is not an
authentication model) are reciprocally authenticated by their
financial institutions when they log in their on-line accounts
with the usual procedures (commonly with login and password
over an SSL connection [4]); (ii) payments occur directly via
financial institutions to guarantee effective funds availability,
funds transfer and connected effects, but also promote credit-
push; (iii) interoperability among accounts located in different
financial institutions is easy to effect (as between two banks)
choosing among different transfer modalities usually available.
On the contrary, it is hard when accounts are located into
competitor payment systems; (iv) payments are carried out
by agents that replace customers and merchants in most
uninteresting and/or complex tasks.

The risks in FAST can be further minimized by transferring
funds over interbanking networks, assigning to each message a

78

time to live and a unique identifier, managing as much sensible
information as possible off-line, etc. The problems of security
communication among financial institutions, as those related
to defense against viruses or hacker attacks, are beyond the
FAST project objectives.

In this paper, we exploit the e-payment protocol AIPP
(Agent Internet Payment Protocol) [6], complying with the
FAST “pre-negotiation” scheme [2], together with single-use
account identifiers [18]. In AIPP a low amount of information
is exchanged without any explicit encryption level. Moreover,
AIPP adopts only asynchronous agent communications with-
out multiple Internet connections (other parties connected to
the infrastructure, such as Internet providers, are considered as
external risk factors). In this way, it is proposed as a potentially
well acceptable Internet financial transaction method able to
satisfy all issues of an e-payment scheme that have been
previously described.

IV. THE MAST SUPPORT TO CBB ACTIVITIES

MAST provides a support, in accordance to the CBB
model, to customers and merchants in their EC activities. In
MAST, typical interaction between agents involves a customer
(C) with her/his agent (c) and financial institution (FIC), a
merchant (M) with her/his agent (m) and financial institution
(FIM), the Agency (Ag), a product (G) offered by a M .
The appropriate financial institution typologies are limited to
banks, card issuers or relevant financial organizations; further,
it is assumed that payers and payees can manage their on-line
accounts. In the following, the terms product and service will
be used interchangeable.

In MAST, to avoid possible attacks, single-use account iden-
tifiers (preserving also financial privacy) and a nonce (i.e., an
agent sender marker) are adopted, and a Time To Live (TTL)
is used as message deadline for each agent communication.
Moreover, to promote trust among customers and merchants,
the AIPP protocol allows the FIs to be third parties in a
financial transaction, still guaranteeing user’s privacy.

Notation and data contents of the messages used in MAST
to transfer in a consistent and efficient way the business infor-
mation are illustrated before describing the MAST protocol.
Note that the subscripts identify sender and receiver while data
is an XML document2, whose content is context sensitive (see
Table I). More in detail:

• INFx,y(data): it requires/provides commercial informa-
tion about a product;

• REQ INVc,m(data): it requires an invoice for a product
offered by M ;

• INVm,c(data): it contains the invoice required with
REQ INVc,m(data);

• POc,m(data): it is the purchase order w.r.t.
INVm,c(data);

2MAST agents employ the eXtensible Markup Language (XML) [22] to
overcome several heterogeneity problems (platforms, languages, applications
and communication modalities) and to transfer business information in a
consistent way. Note that specific agreements must be established on the tag
semantic.

TABLE I

MESSAGE SPECIFICATION

Message Message Content

INFx,y H(aSx, aRx, ncx, T TLx),
G(N, M, B, P, C, U, A, X, BSet, DD, CUR, F P)

REQ INVc,m H(aSc, aRc, ncc, T T Lc),

G(P IM , N, M, B, P, C, U, A, X, BSet, DIM , CUR, F P)

INVm,c H(aSm, aRm, ncm, T T Lm, P IIm), G(P IM , N, M, B, P,

C, U, A, X, BSet, DIM , DD, F, V, CUR, F P), F(F IIM ,

F IAM , AcTM)

P Oc,m H(aSc, aRc, ncc, T T Lc, P IIm),

F(F IIC , F IAC , AcT C , AddressC)

P Ex,y H(aSx, aRx, ncx, T TLx, P IIm)

P Ax,y H(aSx, aRx, ncx, T TLx, P IIm)

MTO
c,F IC H(aSc, aRc, ncc, T T Lc, P IIm),

F(F IIM , F IAM , AcT M , H(INVm,c))

A MTO
F IC ,c

H(aSF IC
, aRF IC

, ncF IC
, T T LF IC

, P IIm)

R MTO
F IC ,c

H(aSF IC
, aRF IC

, ncF IC
, T T LF IC

, P IIm)

ACT CODx,y H(aSx, aRx, ncx, T TLx, P IIm), F(H(INVm,c))

NEW AIx,y H(aSx, aRx, ncx, T TLx), F(AcT y)

EV ALc,m H(aSc, aRc, ncc, T T Lc, P IIm)
.

In the first three CBB stage the messages can be addressed to c agents chosen among
those listed in ADB or employing the Ag’s broadcasting messages service

• PEx,y(data) (resp., PAx,y(data)): it notifies that the
payment has been performed (resp., aborted) w.r.t.
POc,m(data);

• MTOc,FIC(data): it is an irrevocable money transfer
order w.r.t. INVm,c(data);

• A MTOc,FIC (data) (resp., R MTOc,FIC (data)): it
notifies the MTO acceptance (resp., rejection) w.r.t.
MTOc,FIC(data);

• ACT CODx,y(data): it contains the MTO activation
code w.r.t. INVm,c(data);

• NEW AIx,y(data): it contains a new single-use account
identifier to be employed in the next purchase or sell;

• EV ALc,m(data): it is an optional evaluation of a pur-
chase.

A data XML document is structured in three sections
including:

1) H (Header) that is composed by: agent identifiers of
Sender (aS) and Receiver (aR); CBB Stage (S); Nonce
(nc) that is an agent’s marker; Time To Live (TTL);
Product Invoice Identifier (PII).

2) G (Products) that encodes: Product Identifier (PI) and
the product data (N, M, B, P, C, U, A, X, BSet) previ-
ously described in Sect. II-A; one or more Delivery Iden-
tifiers (DI) with the corresponding data (DD, F, V),
previously described in Sect. II-A; Commercial Unit
Required (CUR); Final Price (FP).

3) F (Financial) is constituted by: Financial Institution
Identifier (FII); Financial Institution Internet Address
(FIA); Financial Institution Single-Use Account identi-
fier (Ac); User Address (Address).

The actions performed by agents in MAST to support
customers and merchants in their B2C activities during all
CBB stages are described below in detail for each CBB stage
and represented in Fig. 3.

a) Need Identification Support: (ξ = 1). In the first CBB
stage, customers identify their needs and merchants advertise
their offered products (G) to as more potential customers as
possible. In detail: (i) when an M wants to make an offer
about a product to potential Cs, he/she has to submit own
offer sends to Ag an INFm,c; (ii) in a first phase the Ag, on

79

the basis of the lists L provided by the c agents, takes care of
sending the offer to the potentially appropriate c agents, then
in a second phase the c agents present such offers to their
Cs only if they are fully compatible with their interests and
preferences.

b) Product Brokering Support: (ξ = 2). This stage
occurs when a customer has identified a need and looks
for a suitable product to satisfy it. In detail: (i) C can ask
information on the desired product typology to one or more
Ms by means of INFc,m; (ii) all Ms that have a product that
matches the C request, reply with a new INFm,c with all the
details of the products and commercial information.

c) Merchant Brokering Support: (ξ = 3). A customer
identifies the most suitable merchant to purchase a product
carrying out the following actions: (i) If C has sufficient
knowledge of the product details, a c’s message INFc,m is
sent to one or more merchants; (ii) if there is a product that
matches C’s request, M replies with a message that reports
a complete description of the product; in such a way c can
select the best product offer. Note that if in the previous stage
C has received a sufficient number of INFm,c it is possible
to choose a merchant without carrying out this present stage
explicitly.

d) Negotiation Support: (ξ = 4). In this stage a pair
of customer and merchant define the purchase details. They
realize suitable strategies in a multi-round session for their
respective bids and offers presented by means of messages.
This stage is closed when an agreement is reached or the
timeout TTL of the last message has elapsed.

e) Purchase and Delivery Support: (ξ = 5). In this
stage the customer purchases, pays and chooses a delivery
modality for a product offered by a merchant employing the
AIPP protocol where: payer and payee identities are authen-
ticated by their respective financial institutions during their
on-line accounts accesses (usually with login and password
over a SSL Internet session); payments occur directly among
the financial institutions; Single-use account identifiers are
adopted; No heavy protocol is needed; no sensible financial
and commercial information is exchanged to assure privacy;
financial institutions are third parties in the transaction to
guarantee customers and merchants. The actions performed
in this stage are: (i) When C wants to purchase a product
offered by M , he/she sends the message REQ INVc,m; (ii)
m replies with INVm,c (a pro-forma invoice); (iii) c logs into
FIC and then orders a Money Transfer Order (MTOc,FIC) to
FIM payee; (iv) FIC accepts/rejects the MTO on the basis
of the existence of sufficient C’s funds and notifies to c its
choice with a A MTOFIC ,c + a new single-use account

identifier (AcT) for the next purchase or with a
R MTOFIC ,c message; (v) c sends a POc,m to effect the
purchase order; (vi) m logs into FIM and sends the required
payment activation code (H(INVm,c) to FIM ; (vii) FIM pro-
vides M with a new single-use account identifier (AcT) for the
next sell and sends to FIC the payment code (H(INVm,c);
(viii) if the activation code is the same as that provided by c,
then FIC effects the payment via FIM and informs c about
the state of success (PEFIC ,c) or failure (PAFIIC ,c) of the
MTO process; (ix) if the payment has been performed by FIC ,

Fig. 3. UML of the MAST support activities

then FIM informs m with a PEFIM ,m message, otherwise
after the TTL of the ACT CODFIM ,F IC message FIM

informs m with a PAFIM ,m of the sell failure; (x) finally,
m could however accept the payment informing FIM , and
consequently FIC , or refuse it aborting the sale and returns
back the money to FIC by means of its FIM . At last FIC

will inform c whether the product has been purchased or not.
f) Service and Evaluation: (ξ = 6). It is an optional

feedback provided by a customer to express her/his dissat-
isfaction about the purchase of a product, the merchant or
both. Two kinds of actions can be carried out by the customer:
(i) if the purchased product has been evaluated negatively, the
Rate R ∈ AK will assume a negative value by setting the
φ coefficient to −1; (ii) if the merchant has been evaluated
negatively, its identifier will be deleted from PASet (w.r.t. G),

80

0 50 100 150 200 250

0

60

0

100

200

300

400

500

600

S
e

c
o

n
d

s

Network Cost (msec)

Application

Cost (%)

Time employed by the merchant server for

1000 "Purchase and Delivery" transactions

Fig. 4. The payment performances

then C might decide to inform M directly, or in an anonymous
form by means of Ag, about her/his dissatisfaction.

V. SYSTEM PROTOTYPE AND EXPERIMENTS

A complete prototype of MAST framework has been im-
plemented in JADE [10], to test its CBB support activities
simulating either single or continued sequences of CBB pro-
cesses in a small B2C scenario3. Furthermore, to realize such
experiments some EC sites have been realized in XML. In par-
ticular, in this section the results of the “Need Identification”
and “Purchase and Delivery” stages are reported.

In the “Need Identification” the experiments have been
finalized to measure the customer satisfaction degree (CSD)
computed as the number of merchants’ offers evaluated by
the customers as correctly filtered by the system. The filtering
process is carried out for each customer in two phases, the
first performed by the Agency and finalized to disregard im-
mediately all merchants’ offers clearly out from the customer’s
interests and preferences; while the second phase is performed
by the customer’s agent to realize a fine tuning of the filtering
activity on the basis of its profile. The tests have been carried
out by 19 customers, using their agent profiles previously built
on the basis of CBB activities carried out on XML EC sites.

More in detail, in the first phase on a total of 4750 merchant
offers (250 offers for each customer), randomly chosen among
the products offered in the XML EC sites, the agency has
correctly rejected 3154 of them and considered potentially
interesting 1596 offers. Then in the second phase, on the
remaining 1596 offers the customers’ agents have evaluated
surely interesting only 193 offers, but 79 of them were not
really interesting for the customers. In this way, we obtain a
global CSD equal to 0,983. Note that we have set the filtering
parameters to avoid the rejecting useful merchants offers.

About the “Purchase and Delivery” stage, it is clear that
the cost located on the customers’ client side has a minimal
impact on the computational performance, since usually only

3The simulations have been realized by employing computers based on
single CPU (Intel Pentium 4, 3 GHz), RAM 2 Gbyte and O.S. Linux.

one MAST activity runs at a time. Conversely, a merchant
agent is associated with high computational cost, given that it
has to satisfy a large volume of processes at the same time
referring to different c agents. Consider that the server has to
carry out other tasks for its EC activities that can absorb also a
significant amount of resources and that have been simulated
by assuming some different application costs as percentage of
all processes carried out by an m agent; besides, the Internet
cost can influence the global system performance and it has
been simulated by setting some delays in the communications
(tests were carried out on a 100 Mb LAN).

This procedure is surely a critical test activity, for the
necessity to coordinate more parties, sending more messages
and realizing some secure connections (SSL connections have
been adopted in the tests). In the following, we employ this
process only in order to obtain a rough estimation of the
MAST computational efficiency in this CBB stage (keeping in
mind that the MAST approach has anyway other significant
benefits provided by the authentication mechanism and pay-
ment security level). In particular, the time necessary by the
merchant’s server to complete a sequence of 1000 “Purchase
and Delivery” transactions for different application costs and
network delays is represented in Fig. 4. Note that some steps
occur using no secure connections and other occur on a
simulated reserved banking channel.

The experiments suggest some considerations about the
implemented MAST prototype and experimental results ob-
tained. Using the MAST prototype, all CBB activities have
been correctly carried out, customer and merchant profiles
have been initialized, correctly updated and all our project
goals have been meet, showing the capability of MAST to
provide proper support to customers and merchants in EC
scenarios. The experimental results obtained, even though they
have only an indicative meaning both for the initial scenario
assumption and some compulsory rough simulation show
interesting performances in terms of efficiency, effectiveness
and time employed.

VI. RELATED WORK

The various aspects connected to the B2C have been dealt
with in a very large variety of scientific works; some works
which to our knowledge come closest to the material presented
in this paper will be mentioned in this section.

The role of software agents in the EC has become very
relevant, as proved by the large number of models and
architectures proposed in literature and the state of the art
has been investigated in a significant number of surveys
[8], [9], [11], [12], [15], [19], [23]. The main opportunity
offered by multi-agent systems is to support customers and
merchants in performing their B2C activities. In the CBB
context, MASs were traditionally focused on only in a few
stages, usually “Merchant Brokering” and/or “Negotiation”
stages, but progressively their support has been extended to all
CBB stages (note that many MASs for B2C do not explicitly
use the CBB model, but their activities are easily brought back
to it). Furthermore, only a restricted number of MASs adopt
one or more existent payment schemes explicitly, while the

81

largest part of them just ignore the issue or record that a
payment has occurred. Finally, since there is a large variety of
protocols and communication languages that MASs adopt in
B2C, these will not be specifically addressed here. In particular
we propose the following three approaches:

• MAGMA [20] proposes a MAS for a free-market ar-
chitecture based on messages. In MAGMA the agents
are monitored by a central administration, only par-
tially automatized; agents provide some trading strategies,
independently by the users’ behaviour, and can form
agent alliances. Financial services for EC activities are
provided, in a secure way, by a virtual bank that manages
specific agents’ account.

• CASBA [21], resulting from a CEE ESPRIT Project, im-
plements an Internet agent-based marketplace supporting
all CBB stages, in a flexible way with different auction
types and dynamic negotiations, and some commercial
payment schemas. CASBA employs Java, JavaScript,
CORBA and XML technologies, while advertising is e-
mail based. XML eases matching the data structures of
the CASBA ontology with those of the client database.

• In [17] a model representing ontologies in a B2C scenario
is proposed and a multi-agent architecture based on such
model is described. It realizes a virtual marketplace agent-
based where customers and merchants are supported by
exploiting a representation of the concepts and behaviour
involved in their EC world. Here, an agency has a central
role as mediator in coalition formation, agent communi-
cations and in virtual auctions. No payment scheme is
supported.

This aforementioned work exploit multi-agent systems to
support B2C activities. They are explicitly CBB based or
partially consistent with it. Customer interests and behaviour
are taken into account in [17] where, similarly to CASBA,
authors exploit XML to realize a unified representation in
order to reduce the impact of heterogeneities. Payment issues
are handled in MAGMA and in CASBA differently from
MAST. Finally, MAGMA is designed to support also hetero-
geneous agents whereas CASBA, [17] and MAST deal only
with homogeneous agents.

VII. CONCLUSION

This paper describes MAST, an XML-based multi-agent
system to support customers and merchants in a suitable,
homogeneous and personalized way, taking into account their
interests on the basis of the behaviours shown during their
B2C activities, represented as in CBB model. Furthermore,
the opportunities offered by XML (for agent profiles, the
messages, the inter-catalogue representation of products and
categories and the agent communication language) are used
along with those of a secure centralized payment scheme,
based on existing financial institutions and single-use account
numbers (payments happen only among financial institutions,
over reserved communication channels, by preserving financial
anonymity and confidentiality and benefiting of an existing
authentication mechanism). Some results of experimental sim-
ulations in a small B2C scenario, carried out using a Jade-
based prototypal implementation of MAST, are presented.

As for ongoing research, a development of MAST is
planned by the introduction of different behavioural models
taking in account emerging behaviours in the B2C area, such
as formation of coalitions or the EC-site visiting.

REFERENCES

[1] Asokan N., Janson P., Steiner M. and Waidner M. The State of the Art in
Electronic Payment Systems. IEEE Computer Magazine, 30(9):28–35,
September 1997.

[2] Financial Services Technology Consortium. Financial Agent Se-
cure Transaction (FAST), Phase 1 Final Report (White Paper).
FAST Phase 1 White Paper.pdf, September 2000.

[3] Foundation for Intelligent Physical Agents (FIPA). FIPA ACL Message
Structure Specification. SC00061G.pdf, December 2005.

[4] Freier A.O., Karlton P. and Kocher P.C. The SSL Protocol version 3.
ssl-toc.html, November 1996.

[5] The Financial Services Technology Consortium (FSTC) website, 2006.
[6] Garruzzo S., Sarné G.M.L. and Palopoli L. AIPP: A FAST-Complied

E-Payment Protocol. In IADIS International Conference - Applied
Computing 2006 (IADIS’06), pages 406–410, San Sebastian, Spain,
April 2006. IADIS Press.

[7] Grosof B. and Labrou Y. An Approach to using XML and a Rule-based
Content Language with an Agent Communication Language. In Issues
in Agent Communication, number 1916 in Lecture Notes in Computer
Science, pages 96–117. Springer-Verlag, Heildeber, Germany, 2000.

[8] Guttman R.H., Moukas A.G. and Maes P. Agent-Mediated Electronic
Commerce: A Survey. The Knowledge Engineering Review, 13(2):147–
159, 1998.

[9] He M., Jennings N. R. and Leung H. On Agent-mediated Electronic
Commerce. IEEE Transaction on Knowledge and Data Engineering,
15(4):985–1003, 2003.

[10] The Java Agent DEvelopment (JADE) framework website, 2006.
[11] Jennings N.R. and Wooldrige M.J. Applying Agent Technology. Int.

Journal of Applied Artificial Intelligence, 9(4):351–361, 1995.
[12] Liu J. and Ye Y. Introduction to E-Commerce Agents: Marketplace

Solutions, Security Issues, and Supply and Demand. In Proc. of the E-
Commerce Agents: Marketplace Solutions, Security Issues and Supply
and Demand, volume 2033 of Lecture Notes in Computer Science, pages
1–6. Springer-Verlag, London, UK, 2003.

[13] The North America Industry Classifications (NAICS) website, 2006.
[14] O’Mahony D., Pierce M. and Tewari H. Electronic Payment Systems for

E-Commerce. Artech House, Norwood, MA, 2nd edition, 2001.
[15] Palopoli L., Rosaci D. and Ursino D. Agent’s roles in B2C E-commerce.

AI Communications, 1912:95–126, 2006.
[16] Pinheiro R. Preventing Identity Theft Using Trusted Authenticatorss.

Journal of Economic Crime Management, 2(1):1–16, 2004.
[17] Rosaci D. A model of agent ontologies for B2C E-Commerce. In Proc.

of the Sixth International Conference on Enterprise Information Systems
(ICEIS’04), pages 3–9, Porto, Portugal, 2004.

[18] Shamir A. SecureClick: A Web Payment System with Disposable Credit
Card Numbers. In Proc. of the 5th International Conference on Financial
Cryptography, volume 2339 of Lecture Notes in Computer Science,
pages 232–242. Springer-Verlag, London, UK, 2002.

[19] Sierra C. and Dignum F. Agent-mediated Electronic Commerce. Scien-
tific and Technological Roadmap. In Agent Mediated Electronic Com-
merce. The European AgentLink Perspective, volume 1991 of Lecture
Notes in Artificial Intelligence, pages 1–18. Springer, 2001.

[20] Tsvetovatyy M.B. and Gini M. Toward a Virtual Marketplace: Architec-
tures and Strategies. In Proc. of the First International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM’96), pages 597–613, London, United Kingdom, April 1996.

[21] Vetter M. and Pitsch S. Towards a Flexible Trading Process over
the Internet. In Agent Mediated Electronic Commerce, The European
AgentLink Perspective, volume 1991 of Lecture Notes in Computer
Science, pages 148–162. Springer-Verlag, London, UK, 2001.

[22] W3C. Extensible Markup Language (XML) 1.1, February 2004.
[23] Ye Y., Liu J. and Moukas A.G. Agents in Electronic Commerce -

Special Issue on Agents in Electronic Commerce. Electronic Commerce
Research, 1(1-2):9–14, 2001.

82

Abstract—In this paper we present J-ALINAs, a JADE-based

Architecture for LINguistic Agents.
The purpose of this architecture is to support communication

between agents whose beliefs and intentions are driven by
different, heterogeneous, knowledge models. This objective, often
referred in literature as semantic coordination, can be carried on
through the identification of specific agent roles and behaviors
dedicated to the mediation of agents’ knowledge.

In particular, such minimal hypotheses suggest an intelligent
exploitation of natural language based technologies (resources
and systems) as a necessary choice for capturing those similarities
between the different knowledge models of agents trying to
communicate, which are not in any way formally ratified.

We aim to provide a flexible framework to be adopted in open
multi-agent environments across different scenarios, providing a
further abstraction level from the underlying details related to
specific semantic coordination approaches; a high-cohesion and
low-coupling design, and an agent-interaction protocol make
possible for the architecture to face non-ideal use cases optimizing
the communications among the agents.

We discuss significant design issues, provide a prototypical
implementation based on the JADE platform and a case study –
MAPLE – integrating an ontology mapping component in the
framework, showing flexibility of the architecture in real
applications and its independence from any specific mapping
algorithm.

Finally we will look at the semantic coordination protocol we
designed from a strictly formal perspective, providing a CCS
(Milner’s Calculus for Communicating Systems) description of the
protocol itself.

Index Terms—Semantic coordination, ontology mapping,
cooperating systems, intelligent agents.

I. INTRODUCTION
Enabling communication between heterogeneous semantic
peers (agents, semantic web services etc…) is a fundamental
issue for the developing of the Semantic Web, especially in
relation to the high levels of heterogeneity, evolution,
distribution and autonomy of information which already
characterize the Web as we know it now.

For the agents to be able to carry out the tasks they were
designed for, they must impact the communication barrier
between themselves: they will have to make their services

available to the community, and recognize those of other
actors in the community (to whichever extent it is considered,
up to the Web as a whole); recognize, interpret and respond
properly to communicative acts initiated by other agents and
understand messages’ content.

Although an important effort has been done by FIPA
(Foundation for Intelligent Physical Agents) towards a
standardization of agent platforms and agent message
transport, too many dimensions of variation still are to be
taken into account.

First of all, while adherence to the FIPA message protocol
grants agents with the ability to establish a communication,
distinguish between requests and responses, and bind them to a
given subject of conversation, nothing is said about the real
content of these messages, thus making impossible for agents
belonging to different communities to actually communicate.
We still have to cope with the heterogeneities of agent
societies and, mostly, with the diversities in agent frameworks
design which are often developed for ad-hoc environments and
applications. All these aspects represent a threat against large-
scale interaction among different multi-agent systems.

If peers were able to autonomously discovery each other’s
services and to identify the specific problems which impede
their communication, it would be much easier to devise
solutions for supporting their communication, having a solid
base to address the impedance mismatch among agents’
different knowledge representations from a shared starting
point.

II. OUR APPROACH
In a scenario like the one depicted above, it appears evident

that agents cannot rely on any shared form of understanding,
their inner knowledge, as well as the functionalities they
expose, being expressed and modeled upon ruling principles
which are not known a-priori.

Our approach aims to:
- identify the fundamental actors and roles involved in the

semantic coordination activity
- define agent-based mediation paradigms,
- design an agent-interaction protocol to support semantic

coordination in a flexible fashion, and
- model the semantic coordination process giving the

designed framework a high abstraction level from the

J-ALINAs: A JADE-based Architecture for
Linguistic Agents

Savino Sguera, Armando Stellato, Donato Griesi, Maria Teresa Pazienza
DISP, Università di Roma “Tor Vergata”

s.sguera@ieee.org, {stellato, griesi, pazienza}@info.uniroma2.it

83

specific instance of the process itself.
Following these guidelines, we designed and developed
J-ALINAs1, a (JADE based) Architecture for LINguistic
Agents: an agent framework for supporting semantic
coordination between heterogeneous semantic peers. Main
feature of this architecture is the abstraction from the way
actually semantic coordination is carried out by a specific
instance of an agent system, still considering it the main shared
goal for the community. While abstraction from the techniques
is maintained, on the contrary, it is important to identify the
different kind of resources which may play a role in the
process, in order to make them available when their
contributions is required. In particular, we consider as
necessary an intelligent exploitation of natural language (from
which the name J-ALINAs arises) resources and processors, as
language is the sole form of shared knowledge which is
inherently adopted when expressing (through label descriptors,
concept documentation etc..) the formal content of knowledge
models and resources.

Moreover, we achieved a clear distinction between decision-
making and service-providing competences, realizing a crucial
separation between specific problem-solving skills and
strategic knowledge about their composition to address a
complex target, shared among the system’s agents.

This allows to analyze new problems simply rearranging
existing elements, and to improve or add functionalities
without necessarily modifying the entire system.

III. PREVIOUS WORKS

A. State-of-the-art
A lot of work has been done by researchers towards flexible

architectures to support semantic coordination in open multi-
agent systems.

In [5] a three-layered peer-to-peer approach to ontology
integration in a multi-agent system is described, to manage and
deploy ontologies in a broad range of dynamic environments.

Within a multi-agent system however each agent expresses
its own conceptualization, and in open systems interoperation
between agents has to take into account their heterogeneous
nature and background, that will likely take them not to fully
understand each other, because of semantic misalignments
which can easily arise.

A major requirement for agents interoperability [3] is for the
semantic integration to be dynamic, that is, computed on-the-
fly and not on the basis of pre-engineered mapping documents
(which, even if considerable, may not always be available for
any two given knowledge models). Agents shall have to be
self-describing, and be able to characterize themselves, thus
putting other agents in the condition of identifying the ones
they need to cooperate with, in order to successfully
communicate and exchange information towards a shared goal
– that is in our case the agents’ ontologies mediation.

To put it in Burstein’s and Uschold’s words [3], “every agent

1 http://ai-nlp.info.uniroma2.it/software/J-ALINAs

must, in effect, wear its description ‘on its sleeve’”.
Moreover, some interesting links between multi-agent

systems and grid computing are given in [7], the formers
complementing the latter for efficient services management
without a-priori agreements, standing that multi-agent systems
are groups of agents interacting and autonomously
coordinating to satisfy a set of shared goals.

B. ALINAs: an open interacting-agent architecture
ALINAs [8], an Architecture for LINguistic Agents,

developed by the Artificial Intelligence group of Tor Vergata,
and former incarnation of the architecture which is presented
in this paper, provided a set of three different classes of
intelligent agents dedicated to supporting linguistic
communication, each of which exhibits specific features
related to the particular task it has been designed for:

- resource agents, which represent the beneficiaries of
the communicative process, bearing some form of
knowledge which need to be mediated against the one of
other resource agents in the community

- service agents, providing support functionalities and
holding responsibilities for some complex tasks
occurring in the process

- control agents, having thorough knowledge of the
problem to solve, control functionalities and decisional
power in the agent society

This classification provides enough abstraction to ensure an
incremental approach to systems development, whereas
developers can focus on informative sources and resource
agents and start to use available information before they design
more advanced components in the system.

C. Linguistic Watermark and Semantic Coordination
As stated in [10], in order to make ontologies more prone to

be mapped in distributed contexts, we believe it is necessary to
revise the ontology development process to include, as a
necessary part of this activity, the enrichment of ontology
content with proper lexical expressions in natural language,
such as synonyms and free natural language documentation,
possibly in different languages.

Linguistic enrichment of ontologies (this is the name we
gave to the process here described) requires a proper
exploitation of several linguistic resources, which, due to the
lack of defined standards for representation of linguistic
knowledge, often differentiate upon many aspects, like
structure, semantics, granularity of their content and
representation. This strong heterogeneity led us to the
development of the Linguistic Watermark [1], which is both a
package providing generic abstract classes and interfaces for
allowing uniform access to different linguistic resources, as
well as a set of descriptors for identifying the characteristics of
the accessed resources. These descriptors are important in our
environment, as they allow agents to choose the linguistic
resources (and thus contact the agents which grant access to
their content) which are more appropriate for supporting a
given communication.

Following the same intuition, it is also important, should an

84

ontology have been already linguistically enriched, to know in
advance to which extent and through which modalities this
enrichment process has been conducted. In our framework, this
information is represented by the Ontological Linguistic
Watermark [10], a collection of meta-data descriptors (see
Figure 1) which expresses information about the (natural)
language(s) adopted in describing ontology contents, and
(eventually) about the linguistic resources which have been
used to do that. These metadata play a central role in the
semantic coordination phase we will describe extensively in
section V.

Figure 1: Specification of the Ontological Linguistic

Watermark

D. MAPLE
MAPLE is a plug-in for the Ontology Editor Protégé [4],

developed at the Artificial Intelligence research group of
University of Rome, Tor Vergata, aimed to integrate ontology
mapping facilities into the Protégé [4] Ontology Editing Suite.

It relies upon external linguistic resources – compliant to the
Linguistic Watermark package – to obtain further information
useful to find semantic correspondences between ontologies.
The mapping process, before a deep inspection of the semantic
characteristics of the two ontologies, preliminarily requires, at
the linguistic level, to search for alternate expressions
(synonyms) and/or glosses for the labels which describe
ontology content, and also to identify proper translations in the
more complex situation occurring when ontologies are labeled
using different (natural) languages.

IV. J-ALINAS’ ARCHITECTURE

A. The big picture
The generic meaning negotiation process between semantic

peers usually has to start with a first hand-shake, in which
information about the peers’ respective knowledge is
exchanged (in the form of ontology namespaces, as an
example). Should the two agents find that they are not able to
communicate due to any form of incompatibility between their
form of knowledge, they will first try to coordinate in order to
invoke the figures which can support their communication.

Suppose an agent wants to query a search engine, to obtain a
link to a remote document; so far the scenario is particularly
known (Figure 2). We then introduce this situation in the
Semantic Web context, whereas documents will be expressed
against a formal description of the content they describe: an
ontology.

The agent, to effectively understand the document’s content,
will likely have the need to find mappings between its set of
beliefs and conceptualization (its ontology), and the ontology
the document is referred from.

To carry out the meaning negotiation and reach a knowledge
model which is acceptable for both peers, the agent will
request mapping service to a dedicated agent; the latter will
take control of the whole negotiation process and will
eventually need to request other agents’ support or information
regarding involved ontologies.

However, it is particularly interesting, again, to notice how
this scenario is independent from the mapping techniques the
dedicated coordinating agent will implement, whether they be
based upon finding lexical anchors upon mapping documents
or aimed to spot schema-level similarities, or to perform a
combination of both.

The JADE2 platform has been adopted to provide a
prototypical implementation of the framework, in order to
obtain a fully platform-independent prototype. JADE actually
simplifies the development of agent platforms through a
middleware complying to FIPA standards, implementing some
of the required agents for the platform to be FIPA-compliant,
and allowing agents to be movable from one machine to
another.

Figure 2: A generic application scenario

B. Agents and roles
J-ALINAs maintains much the same classification of agent

roles which has been presented in section III.B, and more in
details in [8] and [9]. Yet this approach is not to be intended as
a rigid one: indeed the boundary between – for instance –
service and resource agents will sometimes be not so clear, and
will be possible for an agent to behave on both sides.

For this reason we believe it will be – in certain
circumstances – more correct referring to resource, service or
control roles rather than agents, since an agent could embody
more than one role in the mediation process.

In other words it will not necessarily exist a straight 1-to-1
relation between an agent and the role it assumes in the

2 http://jade.tilab.com

85

society, even though in the following paragraphs we will
suppose it to exist, merely to have a distinct view of the
identified competences. Here follows a more detailed
description of the roles we have mentioned so far.

Linguistic agent
Linguistic agents encapsulate one or more linguistic

resources, and provide an interface to access their content,
through different kind of services.

The agent registers itself at a Directory Facilitator (DF)
living in the agent platform, and publishes its services and the
resources’ URIs.

Ontological agent

An ontological agent is – together with the mapper agent –
one of the fundamental actors of the process: usually it is such
an agent to start the semantic coordination procedure and to
request a conceptual mediation against another agent’s
ontology. He shall then assume the requester role (with this
name we will refer to the ontological agent requesting the
meaning negotiation), and choose the responder (the
ontological agent holding the destination ontology); after that
he will query the DF to search agents providing mediation
services. We will discuss the handshaking phase in details in
section V.

For the semantic coordination to take part in an effective
way, each of the ontological agents willing to communicate
publish a fingerprint of the conceptualizations they
encapsulate (the Ontological Linguistic Watermark, OLW),
containing information about the linguistic enrichment
processes (as described in section III.C) which contributed to
describe their knowledge content. As the ontology may have
not been subject to any linguistic enrichment process at all, the
OLW may even be reduced to the sole information about the
idiom used to represent its concept identifiers. By comparing
ontologies’ watermarks, the mapper agent will then be able to
easily decide which supporting agents are likely to be
contacted, and negotiate the (natural) language(s) to be used
throughout the whole mapping process.

Mapper agent

The only agent in the society to have the needed intelligence
and a thorough knowledge of the problem, of the actors and of
the methodologies to be applied to carry on a meaning
negotiation activity, is the mapper agent.

We first need to distinguish between two different kinds of
mapper agents: those which provide semantic coordination
facilities by inspecting available ontology mapping documents,
that is, resources available on the web which state conceptual
correspondences between ontology resources, and those which
offer the same service by computing those correspondences
on-the-fly.

The first agent will mostly carry on basic look-up over
available mapping documents (even more than one, as agent
ontologies may have been built compositionally from several
available smaller ones), supported by inferential abilities to

entail new mappings other than those which are explicitly
declared.

For those cases where mapping documents are not available
(or they do not cover completely the addressed
conceptualizations) – presumably not a small fraction of real
world situations – the second kind of mapping agent is
invoked to try to individuate and establish possible semantic
similarities by inspecting the structure of the two ontologies
and by exploiting information provided by linguistic agents.

C. The agents’ behaviors
We designed a set of JADE behaviors, realizing the

system’s reactive layers hierarchy. In the following paragraphs
we will describe the most significant ones, moving our
perspective from one agent to another.

1) Linguistic support to ontology mapping

The behavior encapsulating access to linguistic resources
and providing linguistic support to the ontology mapping
process is a cyclic one, enabling the linguistic agent to react to
mapper agent’s stimuli. In other words it models a simple
reactive behavior, implementing a reactive agent paradigm.

A linguistic agent in the setup procedure will add an
instance of such behavior to its execution queue; it will
eventually reply to queries originated by the mapper agent with
semantic anchors for the particular term, or with a
NOT_UNDERSTOOD FIPA message performative in such
cases where the query is malformed (or, more simply, out of its
comprehension).

Queries are matched by the agent against an application-
defined message template, providing developers with high
freedom of choice with respect to the type and number of
linguistic services the agent publishes in the system.

The linguistic-querying task is delegated to a specific
behavior residing in the mapper agent (Figure 3), which is
responsible for persisting anchors upon the agent itself;
however the concept of persisting anchors is absolutely
abstract for the framework, and it is responsibility of the
application developer to implement the persist and retrieval
functions.

Figure 3: Interaction between mapper agent and linguistic
resources

2) The twofold ontological agent behaviour
The provided ontological agent paradigm has been designed

to act indifferently as requester or responder in the mapping
process. We actually reckon this has positive implications

86

whether towards bidirectional knowledge mediation between
agents, and the integration of the application-specific
ontological agent into the surrounding environment, reducing
the number of different actors for the developers to take into
account.

If the agent is required to act as requester in the process it
will start discovering the surrounding environment, contacting
agents and handshaking them.

Otherwise, if the stimulus is a PROPOSE FIPA message
performative, the agent will eventually accept to participate in
a mediation and wait for a mapper agent to ask for its
ontological linguistic watermark or information about its
ontology’s concepts and relations among them.

3) The ontological agent’s introspection

Concurrently, the ontological agent runs an instance of a
simple reflex behaviour aimed to answer specific queries about
ontology’s instances, properties or relations among concepts.
This behaviour can be exploited by developers to fit messages
exchange among agents to support the specific mapping
algorithms, and does not affect the handshaking procedure at
all.

4) The generic ontology mapping process’ instance

Modules providing ontology mediation based upon external
linguistic resources have been designed to give the
handshaking procedure a well-known form, and at the same
time to give developers using the framework the chance to
easily extend the system with custom behaviours encapsulating
application-specific mapping algorithms.

Indeed, after the handshaking phase took place the mapper
agent shall own all the elements needed to conduct a generic
ontology mediation, and to effectively decide which other
agents in the society are likely to be involved in the process; in
other words we provide developers embracing J-ALINAs
architecture a solid and shared base to design their application
on, building a further abstraction level from the underlying
environment.

The abstraction itself comes to evidence even from a strictly
sequential perspective: because every mapping process starts
with a communication among agents and the system’s
facilitator whereas the agents discovery the surrounding
environment, we reckon it is convenient to let developers the
chance not to care – to some extent – about the coordination
and synchronization layer, focusing on their system’s peculiar
aspects.

V. SEMANTIC COORDINATION:
THE AGENT-INTERACTION PROTOCOL

The interaction protocol for the semantic coordination is
intended to be the whole project’s keystone, designed to adapt
itself to different situations, minimizing the number of
messages the agents must exchange – as it is normal to expect
in a distributed environment – to achieve their
communication’s main purpose: the mapping of agents’
ontologies (or, more specifically, of the concepts they need to

express in their communication).
Throughout the protocol requisite elicitation and analysis

phases, the chance for an agent to embody more than one role
in the mediation process initially emerged as a problem:
indeed, this implies the agent to be aware of its manifold
functions while interacting, discovering and choosing which
other agent to query. For instance, an agent implementing both
the mapper and the ontological paradigm could prefer to rely
upon its own mapping skills instead of contacting a third-party.

This brought the need for the protocol to adapt itself to
variations in the system’s topology (Figure 4) and in the
message flow among agents, and at the same time to ensure
developers freedom of choice in deploying functionalities on
application-specific agents.

Figure 4: J-ALINAs use case diagram

After the setup phase, the agents are in a stand-by state.
Whenever the requester receives the stimulus to initiate the
process, an handshaking activity (Figure 5) introduces the
communication. The DF will be queried to discover which
other ontological agents are living on the platform. The
requester agent will then elaborate the search results, and
choose the passive agent (responder) in respect to fully
application-defined criteria.

The mapping proposal is sent to the chosen responder agent,
who will eventually accept the proposal, notifying the
requester with an ACCEPT_PROPOSAL FIPA message
performative including its ontology URI.

The requester will then query the DF asking for the presence
of formal-model based mapper agents providing mappings
between its ontology and the requester’s one.

Whether such an agent exists in the platform, the
handshaking phase stops here, and comes the time for the
requester to start querying the mapper with concept-mapping
requests.

In the other case, another query is submitted to the DF, this
time looking for the existence of a mapper agent based upon

87

external linguistic resources exploitation. If the query is
successful, the requester shall choose which mapper agent to
contact and send out a PROPOSE message performative,
waiting for the eventual acceptance from the counterpart. The
proposal message will include the agent’s ontological
linguistic watermark and the responder unique identifier.

Figure 5: Handshaking - sequence diagram

The semantic coordination is now complete: the mapper
agent has all the information needed to negotiate the natural
language to use throughout the mediation, and choose which
other agents to contact; the actual ontology mapping process
can now start. Whilst no other agent was holding control of
each others’ actions and of message flow in the system so far,
now the decisional power goes completely to the mapper
agent.
The adoption of such a protocol does not violate the dynamics
of the process and the heterogeneous nature of actors which
are typically associated to the idea of Semantic Coordination.
On the mere perspective of ontological agents (which could be
considered as the end users of Semantic Coordination), they
just need to be aware of the existence of Mapping Agents
willing to help them in the process of communicating with
other agents based on different kind of knowledge, and
implement (as they are expected to do in whatsoever scenario)
basic speech acts for requesting their help. Knowledge of an
ontological agent’s own linguistic expressivity is also
requested in our paradigm, but this in line with recent trends in
the Semantic Web area, where ontologies need to be expressed
in a linguistically motivated fashion [2,7], possibly considering
integration with existing linguistic resources [1]. The core of
the mapping process is then delegated to service agents and
resource agents, thus not requiring any strict protocol to be
followed by ontological agents.

VI. A CASE STUDY: MAPLE
As anticipated in III.D, MAPLE is a Protégé plug-in

integrating ontology mapping functionalities in the Protégé
ontology editing tool. MAPLE also provides ontology
mapping as a standalone process, though it is not conceived
for a distributed environment.

We succeeded in abstracting MAPLE’s algorithms and their
relations with linguistic resources from its original scope, and
provided an implementation for a mapping agent which fits in
a distributed environment according to the described
framework.

From MAPLE’s algorithms’ analysis what soon emerged is
a linear relation between the cardinality of the target ontology
and the number of queries the mapper agent is supposed to
submit to linguistic resources (especially for the resource
which is expressed in the natural language adopted for the
communication). Standing on MAPLE mapping algorithms,
not all the queries can be estimated in advance and sent as a
unique request to a linguistic agent, thus requiring an heavy
communication load between the mapper and the linguistic
agents. This makes unacceptable the approach with
autonomous linguistic agents to hold information sources,
because the size of the involved ontologies is obviously not
estimable in advance.

So we looked for a trade-off between the mapping process’
distribution and the communicational complexity among
agents: this resulted in one single agent implementing both the
mapper and the linguistic agent paradigms. This way we kept
constant and independent from ontologies’ size the number of
messages to be exchanged in the system, encapsulating in a
single agent – thus in a single physical host – mapping
algorithms and linguistic resources accesses.

The eventual need for a translation phase can easily be
delegated to an external agent: the label(s) associated to the
concept to map can be sent to a linguistic agent providing the
translation services which will then send back to the mapped
the translated terms; the mapper will then try to individuate the
right translations among those provide by the translator, and
then start to work in the language it is specialized in. This
particular framework individuates a specific figure for
mediation, given by a mapper agent which is particularly
proficient in one (or more) idiom and which must be contacted
only when its idiom pertains to at least one of the
communicating ontological agents’ OLWs.

VII. CONCLUSIONS
One of the most interesting perspective to look at JADE –

and obviously at JADE-based systems – is the possibility to
easily design – through extremely interesting extensions such
as JADE-LEAP (Light Extensible Agent Platform) – agents
living in mobile platform and devices.

Looking at the Semantic Web evolution together with the
proliferation of wireless devices – PDAs and mobile phones –
it becomes quite clear what the web is likely to become in the
next years: a dense and highly dynamic network, populated by
a multitude of nomadic elaboration nodes able to understand
information sense, communicating in a more effective and
intelligent way.

88

We believe it is natural – to some extent – to look at these
nodes as autonomous entities communicating in a peer-to-peer
fashion, living in an heterogeneous environment, providing
and asking services one to each other; that is, actually, as
agents.

As we already discussed, semantic coordination will be an
essential and binding part of this communicative process:
when most of the information will be expressed with respect to
these specifications; knowledge mediation will be a very
frequent runtime process, providing the base for mutual
comprehension between systems.

Also, we believe a distributed approach has to be considered
fundamental. This is one of the most interesting perspective to
look at our work, which is actually providing a flexible
framework for multi-agent systems development in response to
the different needs coming from several backgrounds and
practical applications.

We took into account the communicational effectiveness and
efficiency, providing the framework with enough granularity
to let developers easily control and keep constant the number
of messages exchanged by the agents living in the particular
instance of the system, leaving open the road to developments
in scenarios with very specific constraints like those expressed
in the mobile computing area.

APPENDIX

The handshaking procedure: a formal review
In this paragraph we will give a – simple – formal

description of the handshaking phase and the coordination
protocol we designed, through Robin Milner’s Calculus for
Communicating Systems (CCS), [6]. More specifically, what
we will do is looking at each agent of the society as an
independent process, and model its behaviour in terms of
others’.

We first define the generic Directory Facilitator as a
recursive process:

DF = (search + searchFederated) . result . DF

We then define the twofold ontological agent behaviour as
follows:

1

2

Req

Prop

OA OA

OA OA

→
→

where Req stands for the receiving of a REQUEST FIPA
performative, and Prop for the receiving of a PROPOSAL
FIPA performative, and specify that:

OA1 = (search .result.chooseP. proposeP . search .result).

(chooseFM + search . chooseM . proposeWM)

where chooseP and proposeP indicate respectively the actions
of choosing the passive ontological agent and notifying it with
the proposal to collaborate in the mediation process, and
chooseFM and chooseM indicate the action of choosing the

Formal Mapper agent, where available, and

OA2 = proposeP . watermark .

The mapper agent will behave as follows:

MA = proposeWM . storeWM . watermark . storeWM

where WM stands for Watermark
Now we can define the whole handshaking process as

processes above running concurrently and stimulating each
other, limiting each process’ interface to allowed
communication channels:

Handshake = (OA1 | DF | MA | OA2) \chooseP \chooseFM
 \chooseM \storeWM.\searchFederated

REFERENCES
[1] Benjamins, V. R.; Contreras, J.; Corcho, O.; and Gómez-Pérez,

A. 2002. Six Challenges for the Semantic Web. In Proceedings
of SemWeb@KR2002 Workshop, 19-20 April 2002, Toulose.

[2] P. Buitelaar, T. Declerck, A. Frank, S. Racioppa, M. Kiesel, M.
Sintek, R. Engel, M. Romanelli, D. Sonntag, B. Loos, V.
Micelli, R. Porzel, P. Cimiano. LingInfo: Design and
Applications of a Model for the Integration of Linguistic
Information in Ontologies In Proceedings of the OntoLex
Workshop at LREC, pp. 28-32. May 2006.

[3] M. Burstein, M. Uschold: “Infrastructure for Semantic
Interoperability and Integration: breakout discussion summary”,
Dagstuhl Seminar Proceedings: Semantic Interoperability and
Integration 2005

[4] Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M.,
Eriksson, H., Noy, N., and Tu, S.: The evolution of Protégé-
2000: An environment for knowledge-based systems
development. International Journal of Human-Computer
Studies, 58(1):89–123, 2003.

[5] L. Li, B. Wu, Y. Yang: “Semantic mapping with multi-agent
systems”, 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE'05)

[6] R. Milner: “Communication and Concurrency”, Prentice-Hall
International, Englewood Cliffs, 1989.

[7] A. Oltramari, C. Huang, A. Lenci, P. Buitelaar, C. Fellbaum.
OntoLex2006: Second Workshop on Interfacing Ontologies and
Lexical Resources for Semantic Web Technologies, held jointly
with LREC2006, Magazzini del Cotone Conference Center,
Genoa, Italy

[8] M. T. Pazienza, A. Stellato, M. Vindigni: “ALINAs:
un'architettura multi-layer ad agenti per il supporto alla
comunicazione linguistica”, WOA2002, Milano (Italy), 18
November 2002

[9] M. T. Pazienza, M. Vindigni: “Agent based ontological
mediation in IE systems”, LNAI 2700, Summer Convention on
Information Extraction 2002, Information Extraction in the Web
Era, pp. 92-128

[10] M. T. Pazienza, A. Stellato: “Linguistically motivated Ontology
Mapping for the Semantic Web”, SWAP 2005, the 2nd Italian
Semantic Web Workshop Trento, Italy, December 14-16, 2005

[11] M. T. Pazienza, A. Stellato An Environment for Semi-automatic
Annotation of Ontological Knowledge with Linguistic Content
3rd European Semantic Web Conference (ESWC 2006) Budva,
Montenegro, June 11-14, 2006

89

Software Agents for Autonomous Robots:
the Eurobot 2006 Experience

Vincenzo Nicosia1, Concetto Spampinato1 and Corrado Santoro2 for the Eurobot DIIT Team
Università di Catania

1Facoltà di Ingegneria - Dipartimento di Ingegneria Informatica e delle Telecomunicazioni
2Facoltà di Informatica - Dipartimento di Matematica e Informatica

Viale A. Doria, 6 - 95125, Catania, Italy

Abstract— Agent-based software architectures have been used
and exploited in many application fields. In this paper, we report
our experience about using intelligent agents for an unusual
task: controlling an autonomous robot playing a kind of “golf”
game in an international robotic competition. Driving a real
robot is a practical application field for software agents, because
different subsystems need to be controlled and synchronised
in order to realize a global game strategy: cooperating agents
can easily fit the target. Since this application requires a soft
real-time platform to guarantee fast and reliable actions, and
also a valuable communication system to gain feedback from
sensors and to issue commands to actuators, we chose Erlang
as programming language. A two-layer multi-agent system was
thus designed and realized, composed of a lower layer, hosting
agents taking care of the interface with sensors and actuators,
and a higher layer, where agents are in charge of “intelligent”
activities related to game strategy.

Keywords— Mobile and Autonomous Robots, Computer Vision,
Autonomous Agents, Real-Time Systems, Erlang.

I. INTRODUCTION

Software agents are autonomous entities that, living in a
virtual world, are in charge of accomplishing the goal they
are programmed for. In doing so, agents interact with the
environment where they live in, by sensing its state and acting
onto it, in order to achieve their goal. For these reasons, they
are often called “software robots”.

In spite of this similarity between (software) agents and
(real) robots, agents, and above all multi-agent systems, are
mainly exploited in realizing complex software systems and
applications requiring intelligence, flexibility, interoperability,
etc., while the area of robotics is often a matter of research on
real-time and control systems. However, when a (autonomous)
robot needs some intelligence to perform its activities in a
more efficient and effective manner, the use of agent technol-
ogy seems a natural choice [17].

The issue is that, in these cases, agents have to face the
problems related to the interface to physical sensors and
actuators, which connect the computer system with a physical
environment that also changes during time. Therefore, an
agent–enabled robot has not only to tackle the problems related
to direct use of input/output ports, acquisition and driving
boards, serial ports etc., but it should also take in account
the fact that the scenario is time-constrained. In fact, as it is
known, an information acquired from sensors (e.g. the position
of the robot or of its arm) has a deadline after which the

data become stale and no more useful, unless a fresh value
is obtained. These problems are quite known in the area of
real-time systems and their solution is achieved by means
of platforms and/or operating systems that regulate program
execution—in terms of process/task scheduling, race condition
and delay control—in order to guarantee that deadlines are
met.

Since such a real-time support is needed also in the case of
the use of an agent-based system to control robot activities, the
traditional and well-known agent platforms, which are mainly
based on Java, cannot be employed at all: at it is known,
the main problem of Java is the garbage collector, which
introduces unpredictable latencies that prevent any attempt
to build a time-constrained system. Indeed, RTSJ specifica-
tion [6] provides a set of classes and some programming rules
that allow the realization of real-time Java systems, but the
specification introduces hard constraints in object allocation
and reference that require an existing Java program (and thus
an agent platform) to be rewritten in order to make it RTSJ-
compliant [22], [16], [8].

In the context of agents and real-time systems, a language
that features some interesting characteristics is Erlang [5], [4],
[1]. It is a functional and symbolic programming language
that has been proved to be suitable for the implementation of
multi-agent and intelligent systems [21], [10], [12], [11], [13],
[15], [14], [9]; moreover, since the Erlang runtime system
is able to provide soft real-time1 capabilities [18], [3], it
seems also quite useful for the realization of an autonomous
robot controlled by autonomous agents. In this context, this
paper describes the authors’ experience in designing and
implementing an autonomous robot, for the Eurobot 2006
competition2,3, by means of a multi-agent system written
using the Erlang programming language. A layered multi-
agent system has been designed, composed of two layers:
a back-end (lower layer), comprising agents performing the
interface with robot’s physical sensors and actuators, and
handling low-level control activities; and a front-end (upper
layer), hosting agents dealing with the game strategy. Thanks
to this layered architecture, hardware-level interactions and

1A system is called soft real-time if it is able to take into account deadlines,
but if a deadline is not met, it has no particular consequences [19], [20].

2http://www.eurobot.org
3http://pciso.diit.unict.it/~eurobot

90

intelligent activities are clearly decoupled, making the design
and implementation of the software system more easy, and also
allowing the programmer to easily reuse some parts and/or to
improve or change the functionalities of the system.

The paper is structured as follows. Section II describes the
game that robots have to play at Eurobot 2006. Section III
illustrates the basic hardware and mechanical structure of
the robot developed. Section IV deals with the software
architecture of the control system of the robot, describing the
agents composing the system, their role and their activities.
Section V discusses some implementation issues. Section VI
reports our conclusions.

II. THE GAME AT EUROBOT 2006

Eurobot is an international robotics competition which in-
volves students and amateurs in challenging and amazing robot
games. The main target of the event is to encourage sharing of
technical knowledge and creativity among students and young
people from Europe and, in the last two editions, from all
around the world.

Every year a different robotic game is chosen, so that all
teams start from the same initial status and new teams are
stimulated to participate. Here we report an overview of the
rules for the 2006 edition of Eurobot4, when the selected game
was “Funny Golf”, a simplified version of a golf game where
robots had to search balls in the play-field and to put them
into holes of a predefined colour.

A. Field and Game Concepts

As Figure 1 shows, the play-field is a green rectangle of
210x300 mm, surrounded by a wooden border. Borders on the
short sides of the field have a red (resp. blue) central stripe
which delimits the starting area for each robot. The field has
28 holes, 14 of them encircled by red rings and the other by
blue rings. A total amount of 31 white balls and 10 black
balls are available during the game. Fifteen white balls and
two black balls are placed into the playing area at predefined
positions, while four more black balls are randomly positioned
into holes, two for each colour. The remaining balls (sixteen
white and four black) could be released by automatic ejection
mechanisms positioned at each corner of the field. Finally,
four yellow “totems” are positioned into the field and are
both obstacles for robots and switches for the ball–ejection
mechanisms.

Robots must be absolutely autonomous: any kind of com-
munication with the robot, both wired or wireless, is not
allowed during matches. Robots have spatial limits, in terms of
height, perimeter and so on, and have to pass a homologation
test before being accepted for the competition. Each robot
can also use any kind of positioning and obstacle-avoidance
system, and supports are provided at the borders of the playing
area to place (homologated) beacons, if needed.

4This edition took place in Catania, Italy.

Fig. 1. The playing area

B. Playing Funny Golf

Before starting, each robot is assigned a colour, either red
or blue. Robots start from the border opposite to their playing
area, i.e. in the opponent’s field, and at least one side of
the robot must touch the starting area (short border of the
play-field). After robots are placed into the field and all setup
procedures by team members are over, the referees choose the
positions of totems and black balls, by means of a random
selection. When all the components in the play-field are set
up, one of the referees gives the start signal and robots can
play. Each robot has to put as many white balls as possible into
its holes in a time of 90 seconds. Robots can also put black
balls into opponent’s holes, suck them out of their holes, or
even suck white balls out of opponent’s holes. There is no
restriction about strategies or techniques adopted in order to
search, catch, release and suck out balls. It is not allowed to
hurt the other robot or to obstacle or damage it in any way.
It is neither permitted to damage the playing area or playing
objects (such as balls, holes, totems or ejecting mechanisms).
The ejecting mechanisms can be triggered by touching a totem
for a given amount of time: this closes a simple electric circuit
and allow balls into the ejector to be released. At the end of
the match, each white ball in the right hole is considered as a
point, and the robots which has the highest score is the winner.

III. THE DIIT TEAM ROBOT

Building an autonomous robot to play “Funny Golf” is not
a trivial task, since different subsystems are needed to perform
ball searching, catching and putting, and many physical con-
straints are imposed by game rules themselves. The following
subsections describe the robot realized by the DIIT Team5,
which participates (for the first time) to the 2006 Eurobot
edition.

A. The Core

An embedded VIA 900Mhz CPU is the core of the robot.
We used a motherboard produced by AXIOM Inc. which
incorporates Ethernet, parallel port, 4 serial ports, USB, IDE

5“DIIT” means Dipartimento di Ingegneria Informatica e delle Telecomu-
nicazioni.

91

controller and other amenities (such as PC/104 bus, not
used in our configuration). The operating system used is
a Debian GNU/Linux (Etch), with kernel 2.6.12 and glibc
2.3.5. GNU/Linux was selected because of its stability and
robustness, that are important features when driving a robot.

B. Locomotion System

In order to guarantee fast movements, we decided to use a
locomotion system based on two independent double-wheels,
driven by DC motors. Wheels diameter is small enough to
allow fast rotation and large enough to avoid holes. DC motors
are directly connected to a motor-controller, driven by a RS232
serial line. The controller allows to set different speeds for
each wheel, both for forward and backward directions. Each
wheel is connected to an optical encoder, driven by a serial
mouse circuitry, which feeds back to the software system
information about real rotation speed and position of the
wheel. This information is then used by the Motion Control
agent to adjust the speed and the trajectory.

C. Vision

Searching balls in the playing area requires a kind of vision
system to find them. We chose to use a simple USB webcam
to capture video frames at a rate of about 4 frames/sec, still
enough to guarantee an accurate and fast analysis of objects
in the field. The webcam is able to “view” the field from 30
to 160 centimetres in front of the robot, with a visual angle
of about 100 degrees in total. Frame grabbed by the webcam
are passed to the “Object Detector” agent, which filters them
to find balls (both black and white) and holes (both red and
blue).

D. Catching and putting balls

Once balls are detected, it is necessary to put them, some-
how, into the right hole. We decided to suck balls using a fan,
and to choose where to put them using a simple selector, driven
by a servo-motor. Balls are saved into a small buffer if they are
white and the buffer has enough space, or ejected out if they
are black or if the buffer is full. The fan is powerful enough to
suck balls at a distance of about 12 centimetres from the front
side of the robot, and it is also able to suck balls out of holes
when a special small bulkhead on the front side is closed. A
simple release mechanism, which uses a servo-motor, allows
balls to be dropped down to the final piece of the buffer and
to fall into a hole.

E. Sensors and Positioning

Many sensors have been used onto the robot. First of all,
a colour sensor for balls is installed into the ball selector,
to recognise if a sucked ball is white or black. A complex
system of proximity sensors is installed in the bottom side
of the robot to recognise holes when the robot walks over
them, and to allow a smart and fine positioning during the
ball putting phase. A presence sensor (made by a simple LED–
photo-resistor couple) is placed in the final part of the buffer,
to reveal the presence of a ball ready to be dropped into a

Fig. 2. The Robot in the playing area

Hole
DetectorControl

Start/Stop
Control

Ball

Driver
Motion RS485

Management

Control
Motion

Ball color
detection

Hole position
detection

Start/Stop
buttons

RS232−Driver

whell motors
and optical encoders

feedback

optical

commands

motion

Servo Controller

Digital I/O

servo−motors
Camera

Strategy Object
Detector

back−end

front−end

so
ft

w
ar

e

Digital I/O Lines

ha
rd

w
ar

e

Fig. 3. Hardware/Software Architecture

hole. The same sensor is used to detect when the ball has
been successfully put into a hole.

IV. THE ROBOT’S SOFTWARE ARCHITECTURE

Given the robot structure illustrated in the previous Section,
it is clear that the implementation of the system to control it
has to face some problems that are not present in traditional
(only software) multi-agent systems: the interface with phys-
ical sensors and actuators. For this reason, the basic software
architecture of the robot, which is sketched in Figure 3, is
composed of two layers, (i) a lower one, called the back-
end, including reactive-only agents, responsible for a direct
interaction with the hardware, and (ii) a higher layer, called the
front-end, hosting the “robot’s intelligence” by means of a set
of agents implementing the artificial vision system, the game
strategy, the motion control, etc., and interacting with back-
end’s agents in order to sense and act onto the environment.
All of these agents comply with an ad-hoc model which,
together with the details on functionality of the overall system,
is described in the following Subsections.

92

A. Agent Model

As reported in Section I, due to real time requirements
and other peculiarities of a robotic application, well-know
Java-based agent platforms cannot be employed; therefore,
according to authors’ past research work [21], [10], [12], [11],
[13], [15], [14], [9], we decided to use the Erlang language [5],
[4], [1] for the development of the robot’s software system. In
addition to its soft-real time features, Erlang has a concurrent
and distributed programming model that perfectly fit the
model of multi-agent systems: an Erlang application is in fact
composed by a set of independent processes, each having a
state, sharing nothing with other processes and communicating
only by means of message passing. Such processes can be all
local (i.e. in the same PC) or spread over a computer network;
this is transparent to the application because the language
constructs for sending and receiving messages do not change
should the interacting processes be local or remote.

Given these features and the requirements for the robot
control application, a suited agent model has been developed,
which is based on two abstractions called BasicFSM and
PeriodicFSM. The former, BasicFSM, is essentially a finite-
state machine model, in which transitions are triggered by
either the arrival of a message or the elapsing of a given
timeout, and a specified per-state activity is executed (one-
shot) when a new state is reached. The latter, PeriodicFSM, is
instead a finite-state machine in which transitions are activated
only by the arrival of a message, while the per-state activity
is executed, when a state is reached, periodically, according
to a fixed time period and within a deadline, which is equal
to the period itself.

As it will be illustrated in the following, BasicFSM model
is used for front-end agents, while the PeriodicFSM model
is essentially exploited for those interacting with sensors and
actuators and thus running in the back-end.

B. The Back-End

As Figure 3 illustrates, the back-end layer is composed
by the following agents: Motion Driver, RS485 Management,
Start/Stop Control, Ball Control and Hole Detector. All of
these agents use the PeriodicFSM model but only the first
two are directly connected with hardware resources.

The Motion Driver agent is in charge of driving wheel
motors and gathering feedback from optical encoders. It basi-
cally handles messages (sent by front-end agents) specifying
the speed to set for the left and right wheel, forwarding it
(after measurement unit conversion) to the motor controller
connected through the RS232 line. On the other hand, its
periodic activity entails receiving the feedback from optical
encoders (i.e. tick count), acquired through another RS232
line, and then computing tick frequency, thus evaluating the
real speed of the wheels: the obtained value is used to adjust
the value(s) sent to motor controller in order to make each
wheel to reach the desired speed6.

6This is obtained by means of a proportional-integrative-derivative software
controller.

The RS485 Management agent is responsible for driving two
external boards connected, to the PC, through the same RS485
serial bus: a controller for servo-motors and a board offering
a certain number of I/O digital lines. Since each servo-motor
and each I/O line is then used by different agents, the RS485
Management acts as a de-/multiplexer for actions and sensed
data. Its periodic activity is the sampling of digital inputs, by
means of a request/reply transaction through serial messages
exchanged with the I/O board; polled data are thus stored in
the agent’s state in order to make them available for requests
coming from other agents. In addition, the RS485 Management
is able to receive messages containing commands to be sent to
servo-motor, through the servo-controller; in particular, each
command specifies the servo-motor to drive and the rotation
angle to be set.

The Start/Stop Control agent is a reactive one that period-
ically queries the RS485 Management in order to check if
the “start” or “stop” buttons have been pushed. On this basis,
it sends appropriate start/stop messages to the Strategy agent
(see below) in order activate (resp. block) its behaviour when
a match begins (resp. ends). Since the duration of a match is
fixed (90 seconds), this agent embeds also a timer that, armed
after a start, automatically sends a stop message when the 90
seconds are due.

The Ball Control agent is responsible for managing the
ball sucking system, the buffer and the ball release system.
During its periodic activity, it queries the RS485 Management
agent in order to check the input lines signalling that a new
ball has been sucked: if this event occurs, on the basis of
the colour of the ball7, it drives the sucking system’s arm
servo-motor in order to put the ball in the buffer—if the
ball is white and the buffer is not full—or to throw the ball
away—if the ball is black or the buffer is full. This agent
also holds the number of balls in the buffer, information that,
queried by the Strategy agent, is used by the latter to control
robot behaviour. As for ball release, the Ball Control agent,
following a proper command message, is able to interact with
the RS485 Management agent and thus drive the servo-motor
controlling the release of a ball. Finally, by checking the status
of another input digital line, the Ball Control agent is able to
understand if a released ball has been successfully put into a
hole.

The last agent of the back-end, the Hole Detector, reads,
through a proper interaction with the RS485 Management
agent, the data coming from proximity sensors placed under
the robot for hole detection and positioning. It is able to
understand the position of the robot, with respect to the hole
to catch, and can thus forward this information to the Strategy
agent, which, in turn, will drive the wheels to centre the hole
and put the ball into it.

C. The Front-End

The front-end layer implements the high-level activities that
drive the robot to reach its goal, i.e. placing the most quantity

7The colour is detected through a sensor connected to another digital input
line.

93

(a) (b) (c) (d)
Fig. 4. Recognition by Object Detector agent

of balls into its holes. This layer is composed of three agents:
Object Detector, Motion Control and Strategy.

The Object Detector has the task of observing the playing
area, by means of a USB camera, detecting the objects
needed for the game, i.e. balls and holes, and computing their
coordinates with respect to the robot position. Since it uses
a computation-intensive image manipulation algorithm, this is
the sole agent written in C and not in Erlang8. This algorithm,
whose execution is triggered by a suited message sent by
the Strategy agent, exploits artificial vision techniques and
performs a series of transformation (i.e. filtering, threshold,
binarisation) on RGB planes of each frame acquired in order
to isolate and recognise the required objects. Figure 4 reports
some screen-shots of the functioning of the Object Detector.
In particular, Figures 4a and 4c show two acquired frames,
while Figures 4b and 4d illustrate the filtered images with the
objects (respectively a white ball and two blue holes) detected
by the agent.

The Motion Control agent, which is the only PeriodicFSM
type, has the task of controlling the robot’s path: it receives,
from the Strategy agent, messages containing commands for
robot positioning, such as go to X,Y or rotate T, computes
the speed of the wheels needed to reach the target, and sends
such speeds to the Motion Driver agents. Moreover, in order
to ensure that the target is reached, the Motion Control agent
periodically requests to Motion Driver the tick count of optical
encoders and calculates the absolute position and orientation of
the robot [7]. These values are thus compared with the target,
making subsequent speed adjustment, if necessary9. Another
task of the Motion Control agent is obstacle detection. Since
the robot has no sensors to detect if an obstacle (e.g. the
opponent’s robot, a totem, etc.) is in front of it, the Motion
Control agent checks if there is no wheel movement within
a certain time window (given that wheel’s speeds are greater
than zero); if this is the case, an obstacle exiting algorithm is
started, which entails to move the robot backwards and then
rotate it.

The last agent, Strategy, is the “brain” of the robot. Being
a BasicFSM agent, it is responsible of collecting and putting

8It uses the OpenCV library [2], which provides a set of fast and optimised
image manipulation functions. Proper Erlang-to-C library functions allows this
agent to interact with Erlang processes.

9Also in this case, a proportional-integrative-derivative software controller
is employed.

Search and gather

white balls

Move robot beyond

the black line

Search for my hole

Hole detected

try to reach the hole

Release the ball and

Ball in hole and
no more balls

Ball in hole and
more balls in buffer

At least one ball
in the buffer

60 seconds after start

and remove the balls

Search for opponent’s holes

90 seconds after start

in buffer

Fig. 5. Strategy Agent Behaviour

together information about environment and robot subsystems
to obtain a valuable and effective playing strategy. Even if the
field is mostly immutable (except for the position of totems,
which are set before each match) and many of the balls
involved are still in fixed position, we chose to implements an
intelligent and adaptive strategy instead of a simple “fixed–
path” one. For this reason the Strategy agent has to adaptively
choose the right action to perform at each time, elaborating
data coming from other agents. As Figure 5 illustrates, the
very first step of the implemented strategy is “move beyond
the first black line”, since this guarantees the collection of
at least one point10. This is performed by suitable commands
sent to Motion Control agent. When the black line has been
passed, the main strategy loop begins. First the robot looks
for white balls and suck them into the buffer: if any white
ball is seen by the Object Detector, then the Motion Control
agent is issued the commands needed to reach the ball; on the
other hand, if no ball has been detected, the Strategy agent
tries to search elsewhere, by rotating of a random angle in
order to look at other zones of the field. When a ball has been
sucked and the Ball Control agent reports the presence of at
least one white ball into the buffer, the Strategy agent starts
to search a right hole to drop it into (i.e. a hole of the colour
assigned to the team, either red or blue), looking at messages
from Detector and moving toward a hole as soon as it has been
found. When the selected hole is no more visible (i.e. outside
the camera scope) a ball is released and, by means of messages
coming from Hole Detector, a sequence of commands for fine
positioning are sent to Motion Control. If the hole is centred

10If the robot does not pass the first black line, then it obtains no points at
the end of the match.

94

and the ball goes into it, the Ball Control agent sends a “Ball
Successfully Dropped” message, so the Strategy agent decides
to search another hole, if more white balls are present into
the buffer, or to look for more white balls. If the ball is not
dropped into a given amount of time (for example because of
errors in fine positioning) the Strategy agent searches another
hole and tries to drop the ball into it. Finally, in the last 30
seconds of game, the Strategy agent tries to find opponent’s
holes to suck white balls out of them.

V. IMPLEMENTATION ISSUES

As it has been previously said in the paper, with the excep-
tion of the Object Detector, the system has been implemented
using the Erlang language. However, even if our research
group has realized a FIPA-compliant Erlang agent platform
(called eXAT [10], [12], [11], [13], [15], [14]), we did not
use it in order to avoid overhead introduced by platform’s
components for inference, behaviour handling, standard FIPA
messaging, etc. This is required in order to have a fast and
effective support for agents, rather than the possibility of
interacting with other external agents (according to Eurobot
rules, the robot must be autonomous and not connected to
any network). To this aim, each agent of the robot has been
encapsulated in an Erlang process and a suitable library has
been developed to support the BasicFSM and PeriodicFSM
deadline-aware abstractions. Message passing has been real-
ized by means of the native Erlang constructs to perform inter-
process communication (which are designed to be very fast):
this resulted in an optimised code able to meet to real-time
requirements of the target application.

VI. CONCLUSIONS

This paper described the architecture of an autonomous
mobile robot, developed by the DIIT Team of the University
of Catania to participate to the Eurobot competition. A multi-
agent system has been employed for this purpose, composed
of several agents in charge of both interacting with physi-
cal sensors and actuators, and supporting the game strategy
for the robot. A layered architecture has been designed to
clearly separate the aspects above—physical world interface
and intelligence—and to favour design, modularity and reuse.
Due to real time constraints, the system has been implemented
using the Erlang language by means of a proper library to
support the abstraction needed for using agents in a robotic
environment. This allowed us to develop a fast code able to
effectively support robot’s activities.

VII. ACKNOWLEDGEMENTS

The authors wish to thank so much all the other components
of the Eurobot DIIT Team, who gave a terrific and fundamental
contribution in the realization of the robot described in this
paper and made this experience not only very useful but also
very funny.

These people are Roberto Di Salvo, Andrea Nicotra, Luca
Nicotra, Massimiliano Nicotra, Stefano Palmeri, Francesco

Pellegrino, Matteo Pietro Russo, Carmelo Sciuto, Danilo
Treffiletti and Carmelo Zampaglione.

Moreover, the authors wish to thank also the official spon-
sors of the Eurobot DIIT Team, which are Siatel Srl (from
Catania, Italy) and Erlang Training & Consulting Ltd11

(from London, UK), that, with their support, contributed to
make our dream real.

REFERENCES

[1] “http://www.erlang.org. Erlang Language Home Page,” 2004.
[2] “http://opencvlibrary.sourceforge.net/,” 2006.
[3] J. Armstrong, B. Dacker, R. Virding, and M. Williams, “Implementing a

Functional Language for Highly Parallel Real Time Applications,” 1992.
[4] J. L. Armstrong, “The development of Erlang,” in Proceedings of the

ACM SIGPLAN International Conference on Functional Programming,
A. Press, Ed., 1997, pp. 196–203.

[5] J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. C. Virding,
Concurrent Programming in Erlang, 2nd Edition. Prentice-Hall, 1995.

[6] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull, The Real-
Time Specification for Java. Addison-Wesley, 2000.

[7] J. Borenstein, H. R. Everett, and L. Feng, Where am I? — Systems
and Methods for Mobile Robot Positioning. WWW, University
of Michigan, USA, http://www-personal.engin.umich.edu/∼johannb/
position.htm, 1996.

[8] A. Corsaro and C. Santoro, “Design Patterns for RTSJ Application
Development,” in Proceedings of 2

nd JTRES 2004 Workshop, OTM’04
Federated Conferences. LNCS 3292, Springer, Oct. 25-29 2004, pp.
394–405.

[9] A. Di Stefano, F. Gangemi, and C. Santoro, “ERESYE: Artificial
Intelligence in Erlang Programs,” in Erlang Workshop at 2005 Intl. ACM
Conference on Functional Programming (ICFP 2005), Tallinn, Estonia,
25 Sept. 2005.

[10] A. Di Stefano and C. Santoro, “eXAT: an Experimental Tool for
Programming Multi-Agent Systems in Erlang,” in AI*IA/TABOO Joint
Workshop on Objects and Agents (WOA 2003), Villasimius, CA, Italy,
10–11 Sept. 2003.

[11] ——, “eXAT: A Platform to Develop Erlang Agents,” in Agent Exhibi-
tion Workshop at Net.ObjectDays 2004, Erfurt, Germany, 27–30 Sept.
2004.

[12] ——, “Designing Collaborative Agents with eXAT,” in ACEC 2004
Workshop at WETICE 2004, Modena, Italy, 14–16 June 2004.

[13] ——, “On the use of Erlang as a Promising Language to Develop Agent
Systems,” in AI*IA/TABOO Joint Workshop on Objects and Agents
(WOA 2004), Torino, Italy, 29–30 Nov. 2004.

[14] ——, “Supporting Agent Development in Erlang through the eXAT
Platform,” in Software Agent-Based Applications, Platforms and De-
velopment Kits. Whitestein Technologies, 2005.

[15] ——, “Using the Erlang Language for Multi-Agent Systems Implemen-
tation,” in 2005 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT’05), Compiégne, France, 19–22 Sept. 2005.

[16] P. Dibble, Real-Time Java Platform Programming. Prentice Hall PTR,
2002.

[17] I. Infantino, M. Cossentino, and A. Chella, “An agent based multilevel
architecture for robotics vision systems.” in Proceedings of the Inter-
national Conference on Artificial Intelligence, IC-AI ’02, June 24 - 27,
2002, Las Vegas, Nevada, USA, Volume 1, 2002, pp. 386–390.

[18] E. Johansson, M. Pettersson, and K. Sagonas, “A High Performance
Erlang System,” in 2 nd International Conference on Principles and
Practice of Declarative Programming (PPDP 2000), Sept. 20–22 2000.

[19] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” JACM, vol. 20, no. 1,
pp. 46–61, Jan. 1973.

[20] Liu, J. W. S., Real-Time Systems. Prentice Hall, 2000.
[21] C. Varela, C. Abalde, L. Castro, and J. Gulias, “On Modelling Agent

Systems with Erlang,” in 3
rd ACM SIGPLAN Erlang Workshop, Snow-

bird, Utah, USA, 22 Sept. 2004.
[22] A. Wellings, Concurrent and Real-Time Programming in Java. Wiley,

2004.

11http://www.erlang-consulting.com

95

Building a MultiAgent System from a User

Workflow Specification

Ezio Bartocci∗, Flavio Corradini∗, Emanuela Merelli∗

∗ Dipartimento di Matematica e Informatica,

Università di Camerino,

Via Madonna delle Carceri, 62032 Camerino, Italy

{name.surname}@unicam.it

Abstract— This paper provides a methodology to build
a MultiAgent System (MAS) described in terms of inter-
active components from a domain-specific User Workflow
Specification (UWS). We use a Petri nets-based notation
to describe workflow specifications. This, besides using a
familiar and well-studied notation, guarantees an high-
level of description and independence with more concrete
vendor-specific process definition languages. In order to
bridge the gap between workflow specifications and MASs,
we exploit other intermediate Petri nets-based notations.
Transformation rules are given to translate a notation to
another. The generated agent-based application implements
the original workflow specification. Run-time support is
provided by a middleware suitable for the execution of the
generated code.

I. INTRODUCTION

Nowadays open distributed systems, characterized by

independent components that cooperate to achieve indi-

vidual and shared goals, are becoming essential in several

contexts, from large scientific collaborations to enterprise

information systems. The Grid and agent communities

are both developing concepts and mechanisms for open

distributed systems, but with different perspectives [10].

Grid community has focused on the main prominent

cyberinfrastructures [12] for large-scale resource shar-

ing and distributed system integration, providing tools

for secure and reliable resource sharing within dynamic

and geographically distributed virtual organizations. Grid

computing [9] promises users the ability to harness the

power of large numbers of heterogeneous, distributed

resources such as computing resources, data sources,

instruments and application services. Agent community

instead is working on the development of methodologies

and algorithms for autonomous problem solvers that can

act flexibly in uncertain and dynamic environments in

order to achieve their goals [13]. As referred in [10],

Grid and Agents need each other and are respectively

considered the “brawn” and the “brain” of open dis-

tributed systems. With the advent of Grid and Agent-

based technologies, scientists and engineers are building

more and more complex applications to manage and

process large data sets, and execute scientific experiments

on distributed grid resources. These applications are gen-

erally characterized by the execution of a set of distinct,

sometimes repetitive, domain-specific activities. Automat-

ing such processes requires a model that describes the

coordination of the activities to be executed, the roles

Fig. 1. A two steps methodology

involved in the organization and the needed resources.

For this reason, during the last decade, the workflow

technology has became very important. In fact the Work-

flow Management Coalition (WfMC) defines a workflow

“the automation of a business process, in whole or part,

during which documents, information or tasks are passed

from one partecipant to another for action, according

to a set of procedural rules.” [21]. In order to provide

a proper workflow specification language each standard

organization -i.e WfMC, BPMI and OMG- has defined its

own process definition language. Our aim is to provide a

methodology to translate a User Workflow Specification

(UWS) into a MultiAgent System described in terms of

Interactive Components [8] (ICs). We have based our

approach to describe a MAS with the help of components

on that proposed by Ferber in [9] for modelling of MAS

in BRIC. Figure 1 shows the two steps of the proposed

methodology. In the first step, UWS is translated to

a Role-based Workflow Specification (RWS). The user,

whose primary expertise is in the application domain, can

focus on coordinating domain activities rather than being

concerned with the resources involved in the distributed

environment. The first translation assigns the resources or

roles needed to execute each task. We have chosen Wf-net

as high-level specification language suitable to represent

the main workflow patterns provided by the most used

workflow specification languages -i.e XPDL [22], and

BPEL [2]. Wf-net is a well-known extension of classical

Petri net [16] notation and it has been introduced in [18].

The second step of the proposed methodology translates

RWS into Interactive Components. To describe behavioral

aspect of each component we have used BRICs [8]

notation; another extension of classical Petri net. We have

defined transformation rules to map Wf-net specification

patterns into BRICs. This paper is organized as follows.

96

Section 2 describes the background of the work. Section

3 and 4 explain the two steps of our methodology. In

Section 5, we present a case study that applies this

methodology in Hermes [7] middleware. We conclude in

Section 6.

II. BACKGROUND

This section provides some background on Workflow

Management System (WMS), Petri nets, High level Petri

nets and their application to Workflow Management [18].

A. Workflow Management System

Workflow Management Systems (WMSs) provide an

automated framework for managing intra- and interprise

business processes. A WMS is defined by WfMC

as:“A system that defines, creates and manages the

execution of workflows through the use of software,

running on one or more workflow engines, which is

able to interpret the process definition, interact with

workflow partecipants and, where required, invoke the

use of IT tools and applications.” [21]. The most part

of implemented WMS are based on a client/server

architectural style. In these systems, the workflow

enactment is entrusted to a central component, that acts

as a server and is responsible for the correct execution.

These systems lack the flexibility, scalability and fault

tolerance required for a distributed cross-organizational

workflow; in fact a monolithic architecture does not

allow the execution of workflow or parts of it over

distributed and heterogeneous systems. To overcome

these limitations, agent-based technology promises to

alleviate many of these problems [20] and hence enable

adaptive workflow. Moreover, using agent mobility,

instances of a workflow or parts of it can migrate; i.e., it

is possible to transfer the code and the whole execution

state, including all data gathered during the execution,

between sites participating in workflow’s execution.

Agent mobility provides two main benefits. First,

migrating workflow decreases efficiently traffic network;

usually code implementing workflow specification is less

heavy to transfer than the amount of data needed during

its execution. The second asset concerns the possibility

for the workflow to be executed even in mobile and

weekly network connected devices. This model requires

a suitable middleware to guarantee code mobility support.

B. Petri nets

A Petri net [16] is a directed bipartite graph with

two node types called places and transitions. The nodes

are connected via directed arcs. Connections between

two nodes of the same type are not allowed. Places are

represented by circles and transitions by boxes or bars.

According to [15], an ordinary Petri net can be defined

as a 4-tuple, PN = (P, T, F, M0) where:

1) P = {p1, p2, · · · , pm} is a finite set of places,

2) T = {t1, t2, · · · , tn} is a finite set of transitions,

3) F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow

relation),

Fig. 2. A subprocess

4) M0 : P → N is the initial marking function,

5) P ∩ T = ® and P ∪ T 6= ®.

Ordinary means that all arcs have weight 1.

A place p is called an input place of a transition t

if and only if there exists a directed arc from t to p.

Place p is called an output place of transition t if and

only if there exists a directed arc from p to t. We use •t,
t• to denote respectively the set of input places and the

set of output places a transition t. The notation •p and

p• identifies instead the set of transitions sharing p as

input place and as output place respectively.

At any time a place contains zero or more tokens,

drawn as black dots. A marking function M ∈ P → N is

the distribution of tokens over places and represents the

state of PN . In this definition we do not consider any

capacity restrictions for places. The number of tokens

may change during the execution of the net.

Transitions are the active components in a Petri

net: they change the state of the net according to the

following firing rule:

1) A transition t is said to be enabled if and only if

each input place p is marked with at least one token.

2) An enabled transition may fire. If transition t fires,

then t consumes one token from each input place

p of t and produces one token in each output place

p of t.

C. High level Petri nets

A High-level Petri Net (HLPN) [1] is a PN with three

main extensions:

• Extension with color - in Coloured Petri Net

(CPN) [14] tokens are typed and each token has a

value often referred as color. Transitions determine

the values of the produced tokens on the basis

of the values of the consumed tokens. Moreover

preconditions can be specified taking into account

the color of tokens.

• Extension with time - using time extension, tokens

receive a timestamp value that indicates the time

from which the token is available. A token with

timestamp 10 is available for the consumption by

a transition only from moment 10. A transition is

enabled only at the moment when each of the tokens

97

Fig. 3. Special transitions and their translation

to be consumed has a timestamp equal or subsequent

to the current time.

• Extension with hierarchy - hierarchical extension

allows to model complex processes more easily by

dividing the main process into ever-smaller subpro-

cesses to overcome the complexity. In this paper, we

use the notation proposed by Wil van der Aalst [23],

where a subprocess is a transition represented by

double-border square as Figure 2 shows.

D. Workflow Nets

Workflow Nets (WF-nets) [23] are a subclass of HLPN

where tasks are represented by transitions and conditions

by places. A WF-net satisfies two requirements. First of

all, it must contain at least two special places: i and o.

Place i is a source place with •i = ®. Place o is a

sink place with o• = ®. Secondly, it must hold that if

we add a transition t∗ which connect place o with i -

i.e. •t∗ = {o} and t∗• = {i} - then the resulting Petri

net is strongly connected -from each node there exists

a directed path to every other node-. This requirement

avoids dangling tasks and/or conditions. In order to make

the WF-net suitable for workflow process modelling a set

of notational extensions was applied to the standard Petri

net definition. In particular, as referred [23], the author

of WF-net added to the classical Petri net transition a

set of special transitions (AND split, AND join, XOR

split, XOR join, AND/OR split), shown in Figure 3 with

their translations, to express branching decisions in a more

compact and user friendly way.

In the workflow theory [19], routing primitives are defined

as a set possible basic patterns that determine which tasks

need to be performed and in which order. Using the

prevoius defined special transitions as control flow, a set

of four basic routing primitives can be obtained as Figure

4 shows:

1) Sequential routing - task A is executed before task

B,

2) Alternative routing - either task A or task B are

executed non deterministically,

3) Concurrent routing - task A and task B are executed

concurrently,

4) Iterative routing - task B is repeated

In order to model dependencies between the workflow

process and its operative environment three different

constructs named “triggers” were added to the standard

Petri net -resource, message and time trigger. In this

paper we will consider only the resource trigger. In

this particular case, a trigger is associated to a specific

resource needed to execute a task. As Figure 5 we

can consider a trigger as special place linked with the

transition representing a task. When the needed resource

is not available this place is empty and the transition is

not enabled, while if it contains a token it means that the

resource is available and the task related to the linked

transition could be executed. In the following sections we

will consider interactive components as computational

resources able to execute tasks under particular cases.

The resource trigger can be assigned to every transition

and is represented by a small, self-explaining icon (⇓)

near the associated transition symbol as Figure 5 shows.

III. ADDING ROLES TO WORKFLOW SPECIFICATION

A workflow process specification defines which tasks

need to be executed and in what order. A set of cases,

identified by pre- and postcondition, are handled by

executing tasks in a specific order. A task which needs to

be executed for a specific case is called work item [18].

A workflow specification is the composition of both

primitive and complex work items. A primitive work item

can be directly executed. A complex work item -called

subprocess in [18]- must be specified before it can be

used; the specification of a subprocess is a workflow of

complex and primitive work items. By using subprocesses

the specification of workflows is simplified because they

enhance both hierarchical specification and reuse: we can

use an already existing subprocess without having care

of its specification. Work items are generally executed by

a resource that can be either a machine -i.e. printer or a

fax-, a computational entity -i.e. an agent- or a person.

Resources are allowed to deal with specific work items.

Grouping resources into classes facilitates the allocation

of work items to resources. A resource class based on

the capabilities of its members is called role. A work

item which is being executed by a specific resource is

called an activity. A workflow designer, whose primary

expertise is generally in the application domain, should be

free to focus on coordinating domain specific activities

rather than being concerned with the complexity of a

domain specific activity or resources involved to execute

it. Users in fact may ignore the topological organization of

the distributed environment and resource classes available.

The first step of the proposed methodology translates

a user workflow specification to a role-based workflow

specification. During this step each work item is assigned

to a role able to perform it. This operation could be made

manually or automatically. In the first case an expert user

can assign role by itself, while in the second case an

activity repository store all informations about complex

activities and the user knows only there is an automatic

mapping from domain specific work items and activities.

This resource allocation is applied recursively in all work

items of each subprocess. Figure 6 shows an example in

98

Fig. 4. Routing primitives

bioinformatics. In this case a bioscientist has designed an

in-silico experiment -shown on the top of the Figure 6-

to globally align some omologous sequences to a given

one. This workflow involves five main work items:

1) get gene seq - given a gene id, retrieve the gene

DNA sequence,

2) search genbank omologous - given a DNA se-

quence, retrieve a set of DNA sequence omologous

from NCBI Genbank [3],

3) search PDB omologous - given a DNA sequence,

retrieve a set of DNA sequence omologous from

the Protein Data Bank (PDB)[4],

4) merge seqs - merge two or more set of sequences

in a set of sequences,

5) global alignment - given a set of DNA sequences

calculate the global alignment

In the Role-based Workflow Specification -

shown on the bottom of Figure 6- subprocesses

search genbank omologous, search PDB omologous and

merge seqs are substituted with the corresponding set

of primitive work items. Each primitive work item is

assigned to a specific role. In this case we have three

roles A, B and C. Roles are translated into Interactive

Components in the next step.

IV. INTERACTIVE COMPONENTS SPECIFICATION

In the second step the Role-based Specification is

translated into Interactive Components. In order to specify

the behaviour of each component indipendently from the

corresponding generated code, we use BRICs [8], another

Petri nets-based notation. In this section we provide trans-

formation rules to translate Wf-net to BRICs notation.

A. BRICs notation

Block Representation of Interactive Components

(BRICs) [8] is an high-level language for the design of

MultiAgent systems based on a modular approach. A

Fig. 5. Resource trigger

BRIC component -see Figure 7 (a)- is a software structure

characterized externally by a certain number of input and

output terminals and internally by a set of components.

Every component is an instance of a class, which de-

scribes its internal structure. A structured component is

defined by the assembly of the its subcomponents. The

input terminals of the structured components are linked

to the input terminals of the the sub-components and

is also possible to combine terminals of the composite

components with sub-components as showed in Figure 7

(b). The behaviour of elementary components is described

in terms of a Petri net based formalism. The default net

formalism normally used in BRIC is coloured Petri nets

with inhibitor arcs. Figure 7 (c) represents the general

form of a transition. A transition is defined by entry arcs,

exit arcs and pre-condition of activation. Entry arcs are

carriers of a condition, in the form of the description

of a token including variables. When the place contains

a token corresponding to this description, the arc is

validated. There are three categories of entry arcs:

1) Standard arcs, denoted a1, · · · , an, trigger the tran-

sition only if they are all validated consuming

tokens which act as triggers and deleting them from

input places.

2) Inhibitor arcs, denoted i1, · · · , im, inhibit the trig-

gering of the transition if they are enabled without

deleting tokens from the input place.

3) Non-consumer arcs, denoted b1, · · · , bk, work as

standard arcs, but they don’t delete the input tokens.

Fig. 7. BRICs notation

An exit arc associate a transition with an output place

producing in this position new tokens that depend on

the tokens used for triggering the transition. The pre-

condition associated with a transition relates to the ex-

ternal conditions. The components communicate by ex-

changing information along communication links which

connect output terminals to the input terminals. Informa-

tion is transported through the net in the form of tokens. A

token is either an elementary piece of information whose

value is a mere presence or absence, or a predicate in the

form p(l1, · · · , ln), where each li represents a number or

a symbol in a finite alphabet. Other importart assumptions

concerning this notation are:

99

Fig. 6. From User to Role-Based Workflow Specification

1) Input terminals are considered as places, thus names

of input terminals are taken to be place identifiers.

2) Any direct link between an input terminal of an

incorporating component and an input terminal of

incorporated component is assumed to comprise a

transition, in accordance with Petri net design rules.

B. Mapping roles with structured components

The translation from a role-based workflow to inter-

active components specification requires the definition of

a structured component skeleton that represents a role-

specific implementation. As Figure 8 shows, the basic

skeleton has two essential capabilities. First, since it

must be able to receive messages from the other external

components asynchronously, we specify a subcomponent

called MessagesQueue that stores messages as coloured

tokens following a First In First Out (FIFO) approach.

Each message is defined in the form:

<sender>: <address> << <Act, Pre, Pa>

where sender is the identifier of the component sending

the message, address is the identifier of the compo-

Fig. 8. Basic skeleton component

Fig. 9. Scheduler component

nent to which the message is addressed. Act and Pre

are respectively the activity to be chosen and the pre-

condition to be set, Pa is a possible input parameter

for the activity -null value means no parameters. In the

basic skeleton we specify a second subcomponent, called

Scheduler, providing, as Figure 9 shows, a set of places

and transitions to receive tokens from MessagesQueue

and to schedule the execution of a set of tasks following

the order and cases defined by the role-based workflow

specification. Scheduler component has four main places:

1) Scheduler Input (SI) - a token in this place means

a new message for the scheduler.

2) Schedule Place (SP) - after tA firing produces a

coloured token in SP in the form:

<Act, Pre, Pa>

Each Scheduler component contains a set of n Act

components and ∀tBi,ki
we define an entry arc ei,ki

with the description:

<i, k, Pa>

where 1 < i < n, 1 < ki < mi and mi is number

100

Fig. 11. From Role-Based Workflow to Interactive Components Specification

Fig. 10. Mapping activities

of pre-conditions for Acti. A token in SP matching

with a description of an entry arc ei,ki
enables

the corresponding transition tBi,ki
. The entry arc

description for the transition tD is defined as:

<null, null, null>

3) Idle Place (IP) - when this place contains a token

the Scheduler is waiting for a new message.

4) Dead Place (SP) - the transition tD when is enabled

produce a token in SP inhibiting the transition tA.

Consequently the Scheduler can’t receive any token

in SP place. This place is called dead, because a

token here stops the behaviour of this component.

When this happens tD can produce also a token for

the external components to stop their behaviour too:

<me>: <All> << <null, null, null>

C. Mapping activities

An Interactive Component (IC) is an executor of a

piece of workflow specification. The final behaviour

of an IC is obtained by plugging the activities of the

corresponding role into the basic skeleton previously

defined. Each primitive activity defined in the Role-based

specification is associated with an Act component in

ICs specification. Figure 10 shows how the routing

constructs in Figure 4 are mapped into Act components.

A component Acti contains an input terminal for each

pre-condition of the mapped activities, which are labelled

pi,1, · · · , pi,mi
where mi is the number of the activity

pre-conditions. When the routing transition tRi
fires the

token produced in pRi
enable the task transition tTi

-representing a task to be execute by an IC- is enabled

iff IP is not empty. The coloured token produced by tTi

is a message -as previously defined- for its and/or other

ICs MessageQueue.

101

D. An example

Figure 11 shows, on the top a Role-based specification

using all possibile routing primitives and on the bottom

the translation in ICs specification. For each role in the

first corresponds to an IC in the second. All pre-conditions

and activities are mapped into Act components adding the

right routing transitions and are plugged in the Scheduler

of the IC basic skeleton. An Act component produce at

least a message describing which are the next IC, Act

component and input terminal to be reach and an optional

parameter for the task transition. The field address in the

message specifies which are the receiver IC and an entry

arc is assumed from this output teminal and the external

input terminal of the IC specified.

V. A CASE STUDY

In the previous sections we have defined a Petri nets-

based methodology showing how a user workflow-based

application specification can be translated into Interac-

tive Components. As a case study we have applied this

methodology in Hermes [7], an agent-based middleware,

for the design and the execution of activity-based appli-

cations in distributed environment. Hermes is structured

as a component-based, agent-oriented system with 3-

layer -user, system and run-time- software architecture.

Due to the lack of space, middleware architecture is not

discussed here and we refer to [7] for further details. In

this section, we focus instead on its workflow compiler

architecture implementing the methodology previously

defined. This component, infact, allows to translate a user

domain-specific workflow specification into mobile code

supported by Hermes middleware.

A. Workflow compilation process

As Figure 12 shows, workflow compilation process in

Hermes requires three main components:

1) WebWFlow - allows the user to define graphically a

workflow of domain-specific activities. A repository

provides a set of complex or primitive activities

available for selecting. At this level activity imple-

mentation details are hidden to user.

2) XPDLCompiler - translates the Role-based work-

flow specification into Interactive Components

specification and generates the code to be executed

on Hermes middleware. In this case another repos-

itory provides the implementation of each activity

as a code template.

3) Hermes middleware - supports the generated code

execution and mobility.

In the follow sections we focus on the first two

components details.

B. WebWFlow

WebWFlow is a web-based workflow editor supporting

the workflows specification by composing activities in a

graphical environment. The graphical notation provided is

mapped by WebWFlow into an XML Process Definition

Fig. 12. Workflow compilation process

Language (XPDL) [22] document. WebWFlow allows to

import complex activities from the User Activity Repos-

itory (UAR). This repository contains the role-based def-

inition of domain-specific activities. The implementation

of each activity in UAR is provided instead by the User

Implementation Activity Repository (UAIR) and corre-

sponds to a piece of Java code extended with Velocity

Template Language(VTL)[11]. The XPDL produced by

WebWFlow is a Role-based workflow specification.

C. XPDLCompiler

XPDLCompiler receives an XPDL document and

generates the Java bytecode implementing Interactive

Components. A lexical and syntax analyzer performs

the validation and the parsing of the XPDL document

using the Java Architecture XML Binding [17]. After

this first phase, the compiler checks if the activities

used in the workflow specification have a corresponding

implementation in UAIR. Each role is translated in an

Agent skeleton, an extension of Hermes UserAgent Java

class. As Figure 13 shows, a UserAgent provides the

needed communication methods to interact with other

UserAgents. Then, for each activity, the corresponding

102

Fig. 13. UserAgent and Agent main methods

implementation code in UAIR is plugged into an Agent

skeleton and each internal scheduler is set. The Java

code generation is performed using Apache Velocity

(http://jakarta.apache.org/velocity/) template engine.

Finally, using the Java compiler, the generated bytecode

can be loaded into Hermes middleware.

ACKNOWLEDGMENT

This work is supported by the Investment Funds for

Basic Research (MIUR-FIRB) project Laboratory of In-

terdisciplinary Technologies in Bioinformatics (LITBIO).

We would also like to thank Luca Tesei for his valuable

remarks and suggestions.

VI. CONCLUSION

This paper presents a methodology to build a MultiA-

gent System described in terms of Interactive Components

from a domain-specific User Workflow Specification. The

whole approach is described using Petri nets-based nota-

tion. This provides many benefits. Petri nets are well-

studied formalisms and there are many tools available

for verification. The high-level of description provided by

Petri Nets guarantees independence with vendor-specific

process definition languages. Behaviour of agents can

also be described using BRICs, another Petri nets-based

notation. In this case it is possible to describe components

independently from the their implementing code. Using

transformation rules from a notation to another we reduce

the gap between workflow specifications and MultiAgent

System. Our approach currently supports the building of

a MAS based on message passing communication, its

extension towards uncoupled communication will be next

considered. As future work we also aim to use the ap-

proach proposed in [5], [6] to validate the implementation

starting from the model.

REFERENCES

[1] W. Aalst. Putting Petri nets to work in industry. Computers in

Industry, 25(1):45–54, 1994.

[2] T. Andrew, F. Curbera, H. Dholakia, Y. Goland, and et al. Business
process execution language (bpel) for web services version 1.1.
Technical report, IBM, 2003.

[3] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, and
D. Wheeler. Genbank. Nucleic Acids Res., 34:D16–20, 2006.

[4] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, W. H.,
S. I.N., and B. P.E. Wildfire: distributed, grid-enabled workflow
construction and execution. Nucleic Acids Res., 28(1):235–42,
2000.

[5] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini. Deriving
test plans from architectural descriptions. In ICSE, pages 220–229,
2000.

[6] A. Bertolino, P. Inverardi, and H. Muccini. An explorative journey
from architectural tests definition downto code tests execution. In
ICSE, pages 211–220. IEEE Computer Society, 2001.

[7] F. Corradini and E. Merelli. Hermes: agent-based middleware for
mobile computing. In Mobile Computing, volume 3465, pages
234–270. LNCS, 2005.

[8] J. Ferber. Multi-Agent System: An Introduction to Distributed

Artificial Intelligence. Addison-Wesley, 1999.
[9] I. Foster and C. Kesselman. The Grid: Blueprint for a Future

Computing Infrastructure. Morgan Kaufmann Publishers, San
Francisco, CA, 1998.

[10] I. T. Foster, N. R. Jennings, and C. Kesselman. Brain meets brawn:
Why grid and agents need each other. In AAMAS, pages 8–15.
IEEE Computer Society, 2004.

[11] A. Group. Vtl reference guide.
http://jakarta.apache.org/velocity/docs/vtl-reference-guide.html.

[12] T. Hey and A. E. Trefethen. Cyberinfrastructure for e-Science.
Science, 308(5723):817–821, 2005.

[13] N. R. Jennings. An agent-based approach for building complex
software systems. Commun. ACM, 44(4):35–41, 2001.

[14] K. Jensen. Coloured Petri Nets. Basic concept, analysis methods

and practical use. EATCS monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1996.

[15] T. Murata. Petri nets: Properties, analysis and applications. In
Proceedings of the IEEE, volume 77, pages 541–580, April 1989.

[16] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut
für instrumentelle Matematik, Bonn, 1962.

[17] Sun. Java architecture for xml binding (jaxb).
http://java.sun.com/webservices/jaxb/.

[18] W. van der Aalst. The application of petri nets to workflow
management. The Journal of Circuits, Systems and Computers,
8(1):21–66, 1998.

[19] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,
and A. P. Barros. Workflow patterns. Distributed and Parallel

Databases, 14(1):5–51, 2003.
[20] J. M. Vidal, P. A. Buhler, and C. Stahl. Multiagent systems with

workflows. IEEE Internet Computing, 8(1):76–82, 2004.
[21] WfMC. Workflow management coalition terminology and glos-

sary. Technical Report WFMC-TC-1011, Workflow Management
Coalition, 1999.

[22] WfMC. Xml process definition language (xpdl). WfMC standard,
W3C, October 2005.

[23] K. v. H. W.M.P. van der Aalst. Workflow Management - Models,

Methods and Systems. MIT Press, Cambridge, 2002.

103

Agent-Based Virtual Communities for Interactive Digital Television

Federico Bergenti, Lorenzo Lazzari, Agostino Poggi
Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma
Parco Area delle Scienze 181/A, 43100 Parma, Italy

{bergenti, lazzari, poggi}@ce.unipr.it

Abstract

This paper describes a multi-agent framework

designed to support the creation and effective
management of virtual communities in an Interactive
Digital Television (IDTV) scenario. The possibilities
that this framework offers are demonstrated by means
of two sample applications: a real-time community
game and an asynchronous auction. For the sake of
completeness, the paper also presents an overview of
IDTV technologies.

1. Introduction

Nowadays, a migration from analogue to digital TV
is taking place in TV. This change has two main
implications: the capability to broadcast more channels
in the same bandwidth, and the possibility to send
software applications mixed with audiovisual contents.
These two great advantages have permitted the great
diffusion of this new technology, which is becoming a
new power means to develop new types of services.

In this paper we present our multi-agent framework,
developed starting from the idea to integrate the
technology of Interactive Digital Television (IDTV)
with the concept of virtual community, which we can
define as a technology-supported cyberspace, centered
upon communication and interaction of participants,
resulting in a relationship being built up. So, with this
type of integration, our aim is to offer to IDTV users, a
range of services (such as multiplayer games, on-line
auctions, etc.) which are very common if we think to
the idea of virtual community related to the Web.

In this way, the potentialities of interactive DVT can
enormously grow allowing its users to take advantage
of a new number of useful applications and moving the
concept of interactivity from the simple interaction
user-application to a new type based on the cooperation
among a wide number of users.

2. IDTV

Interactive TV is a technology which combines
broadcast video, broadcast radio, computing power and
the Internet. This combination of different mediums
and services provides the viewer with a new
experience. This is possible because of an ongoing
transition from analogue TV to digital TV.

We can clearly say that the digital technology is
driving television towards a new world of amazing
possibilities, where spectator is no longer limited to
observe contents selected by the operator. More and
more, new dynamic and interactive services are being
introduced in everyday digital TV: complementary
information to audio-visual contents, electronic
program guides, selection of properties in configurable
contents (language, camera angle or particularized
advertisement), pay-per-view, etc. So we can consider
the term “interactivity” as the possibility for the
consumer to actively influence the behavior of
broadcasted television, services and applications. This
can be accomplished, for example, by means of a
remote control for channel hopping, by fetching
information via teletext or by sending data via an
interaction channel. This all creates a context, which
allows to have a mutual influence between the viewer,
broadcaster and application provider.

The interactive TV technology, as we will see in
next section, is based on the broadcasting of a digital
transport stream which permits operators to mix
traditional audio-visual contents with binary data, so
making possible to deliver multimedia applications to
be executed in a digital TV or in a set-top box. These
applications, synchronized with audio-visual contents,
adapt themselves to spectator characteristics,
implement interaction with users and provide return
channels for communication with content providers.

104

The Multimedia Home Platform [1] is a standard
published by the DVB (Digital Video Broadcasting)
consortium in 2001, which consists of a combination of
broadcast and Internet, offering a common Application
Programming Interface (API) accessible for everyone
who wants to develop applications, set-top boxes,
television devices or the combination of all.

Fundamentally the MHP standard defines a generic
interface between interactive digital applications and
the terminals on which those applications execute. This
interface decouples different provider’s applications
from the specific hardware and software details of
different MHP terminal implementations.

The MHP extends the existing, successful DVB
open standards for broadcast and interactive services in
all transmission networks including satellite, cable,
terrestrial, and microwave systems.

The applications downloaded to the MHP terminals,
typically set-top boxes, are Java applications called
Xlet, built on a suite of APIs tailored specifically for
the interactive TV environment: Java TV APIs [2],
HAVi (user interface) [5], DAVIC APIs [4] and DVB
APIs [3].

The 1.1 version of the standard defines three
profiles:
1. Enhanced Broadcast: it is the basic profile which

only allows the enrichment of the audio-video
contents with information and images which can
be viewed and navigated by users on the TV
screen:

2. Interactive Broadcast: it is the intermediate profile
that uses the set-top box return channel to supply
services with a higher level of interactivity. In fact
this profile supports the loading of MHP
applications not only through the broadcast
channel but also through the return channel;

3. Internet Access: this profile, using the return
channel, allows the user to access to the Internet
contents.

As we can understand from the previous description
of the MHP levels, the interactive TV paradigm is
based on two different channels: a broadcast channel
from the application/contents provider to the set-top
box and a return channel (dial-up, GPRS, ADSL,
Ethernet, etc.) from the set-top box to the provider.

Figure 1 shows the use of a carousel to continue
play-out a Java application. The application and the
corresponding audio-visual material are then
multiplexed to form a single MPEG-2 transport stream.

Figure 1. The interactive broadcasting chain
The resulting broadcast is received and decoded by

the set-top box, the audio-visual content played and the
Java application run.

Subsequent user interactions with the application
lead to information being sent via the return channel to
a back-end server. Depending on the application, this
information may result in modifications to the current
application content (i.e. voting information) or stored
for later processing in a database present on the server
(i.e. for an online shopping application).

About the transport, in digital TV MPEG-2 is not
only a standard for encoding audio and video, but it is
also used as the means by which raw data and
applications are transported in the broadcast stream. In
particular, DVB has extended the traditional scheme
and way to use MPEG-2 for MHP by specifying how to
embed a Java application within the stream, this
includes information on how to specify the main class,
class search path and the application argument list etc.

Although MPEG-2 provides a means of transporting
the Java applications along the audio-visual content, to
support the possibility that the user may change
channel and select the Java program at any point of the
transmission, the same application has to be
broadcasted in loop. This is exactly what a broadcast
carousel does: it keeps playing the same application
around and around. The application is continuously
multiplexed with the audio-visual content for the
transmission, to allow the viewer to access to the
interactive TV application whenever he wants.

About the applications, as we said previously, we
have Java applications, but they are not complete Java
applications in the normal sense. These applications are
much more like applets in that they are loaded and run
by a life cycle manager residing on the set-top box.

105

3. MHP-based Virtual Communities

In spite of the great research interest collected in the
last years and the high number of functionalities
already supported, in these days the research groups
that work on the IDTV MHP standard are focusing
their interest especially on the personalization of the
IDTV contents on the base of the analysis of the user
profile and preferences.

In accordance with our point of view, at the moment
what is totally absent it is the collaborative aspect, that
is the integration, in the digital television technology,
of particular types of services to support groups of
users joined by particular types of interests or
necessities. These types of services are very common
on the Web, we can think about the enormous number
of forums, of blogs or of general services which allow a
direct interaction among their users (on-line auctions,
multiplayer games, etc.).

So the starting point from which our project has
risen has been the aim to enrich the IDTV paradigm
based on MHP and described in the previous sections
with the introduction of the concept of “virtual
community” very common on the Internet network.

A generally agreed upon definition of a virtual
community would be a good starting point. What we
need is a working definition of the virtual community, a
consensus found in the major stream of literature, a
definition that understood by most of people.

In his definition of a virtual community, Howard
[6], the primary early advocator of virtual communities
and often quoted in the literature, includes factors that
describe a virtual community as a social aggregations
that emerge from the Net when enough people carry on
those public discussions long enough, with sufficient
human feeling, to form webs of personal relationships
in cyber-space. Hagel and Armstrong [7] focus on the
content and communication aspects with special
emphasis on member generated content: for them
virtual communities are computer-mediated spaces
where there is a potential for an integration of content
and communication with an emphasis on member-
generated content. The definition from Jones and
Rafaeli [8] uses the term “virtual public” instead of
virtual community. In particular, they say that virtual
publics are symbolically delineated computer mediated
spaces, whose existence is relatively transparent and
open, that allow groups of individuals to attend and
contribute to a similar set of computer-mediated
interpersonal interactions. Another interesting point of
view is the Romm and Clarke’s [9] definition, which
points out only the aspect of communication, that is via
electronic media: virtual communities are groups of

people who communicate with each other via electronic
media, rather than face to face.

In literature we can find a lot of other definitions,
but we can find some common aspects. The first similar
point is cyberspace. All of the definitions state that the
virtual community should be on the net, use computer-
mediated spaces, or cyberspace. This point
differentiates the virtual community from a real
community. The second aspect in common is the usage
of technology to support the activities in the virtual
community. The different definitions directly or
indirectly emphasize that access to the virtual
community is through the computer or electronic
media, i.e., technology. The third similar aspect is that
the content or topics of the virtual community are
driven by the participants. As mentioned, the
participant driven community, not the web site
coordinators, clearly distinguishes the virtual
community from online information services. The final
shared aspect is the successful virtual community
relationship culminating after a certain period of
communicating together.

To sum up, a working definition of a virtual
community could be: a technology-supported
cyberspace, centered upon communication and
interaction of participants, resulting in a relationship
being built up.

With our framework, in which the idea of virtual
community is integrated with the interactive digital TV
technology, we focus our interest especially on the
second of the common aspects that define the virtual
community concept: the support technology. In fact, we
increase the horizons and the possibilities of the virtual
communities by giving new types of services based on
a new and more user-friendly technology like the
IDTV.

In fact, the possibility to integrate the increasing
IDTV technology with the idea of virtual community
can give two great profits: on one hand we have a large
increase of the digital television potentialities, opening
new ways of communication and new types of services
for the IDTV users; on the other hand, consequently,
we give the possibility to enter in a virtual community
taking advantage of his services also to a user range,
the IDTV users, that sometimes can have not enough
ability to surf the Web.

We can say that the integration of the digital
television with the paradigm of virtual communities can
extend the basic concept of interactivity, moving it
from a simple logic user-TV to a more interesting logic
based on the interaction user-user or user-community
of users.

106

In particular, the ideas at the base of the
development of our framework have been principally
two: the support for community games and a more wide
support for virtual communities involved in
cooperative activities such as on-line auctions.

The technology used is a multi-agent technology,
this because the intrinsic characteristics of multi-agents
systems and of the agents themselves, such as
proactivity, make them very proper to our scope.

4. The Framework

Agents need resources to act and to communicate.
In FIPA [10] specifications, the run-time support
providing such resources is the agent platform. Agents
can run only in the scope of an agent platform
providing the basic services to support interoperability:
a means for sending and receiving messages and a
means for finding agents, i.e., white pages and yellow
pages. We do not request the platform to provide any
support for concepts from agent-oriented software
engineering such as autonomy or service-level
interoperability. Basically, the platform is only meant
to support the typed-message agent model.

Agents communicate explicitly sending messages
and such messages may reach either agents within the
same platform or agents on different platforms. This
difference must be transparent to the developer and a
fundamental characteristic of agent platforms is
enabling this to support open societies where agents
running on different platforms can join and leave
dynamically.

The distribution and cooperation of agents residing
on different platforms implies the conformance to a
standard. At the moment, only FIPA is producing
specifications for agent platforms.

At the moment, a number of FIPA platforms are
available [11, 12, 13, 14], our middleware is
developing the enabling technology for allowing the
seamless deployment of agents to the Java-enabled
IDTV devices such MHP-compliant set-top boxes.

Figure 2. Client side architecture

Our framework is deployed as a multi-agent
platform which we can split in two main sides: a server
and a client side. The server side is set on a web server
and it is deployed using the standard FIPA
specifications, instead the client side is the more
innovative one, because, since it is set on the set-top
box, it requires to enable FIPA Agents on these types
of devices.

In the next sections we give a first description of the
platform architecture, starting from the client side, and
then we will talk about the behaviour of the global
platform, giving some example of virtual communities
support.

4.1. Client side

The agent container set on the client side must be
flexible enough to allow the integration of new services
for the virtual community users. For this reason, we
think that the best choice is to conceive the client-side
of our framework as a MHP interactive application.

In the DVB MHP standard, applications are
executed in the context of concrete services or events
in a service, and, usually, they do not survive after
finishing that context. In order to support services for
virtual communities, we have to take into account that
our system needs to store all the viewers’ preferences
about a particular topic (i.e. the user profile in a
community game). So our approach integrates a special
agent, named User Agent, which has the basic roles to
work as an interface between the user and the rest of
the system and to store the user preferences.

The User Agent is responsible of building the user
profile, maintaining it when its user is on-line and
notify to the system when his related user is active. The
communication UA-user is performed by a standard
GUI by which the user can manage his profile and the
different services. Clearly, on the other side, the
communication between the UA and other agents is
based on FIPA specifications.

In order to support particular services for virtual
communities, such as the possibility for a user to
delegate to her/his personal agent the negotiation of a
price in an on-line auction, this basic type of agent is
always active on the user device.

The framework allows the development of other
types of agents to guarantee other particular types of
services, but for the moment our idea of the client side
is that it must be based on “thin” software, so the
reasoning mechanisms for the moment are delegated to
the server side agent platform.

107

4.2. Server side

The server side of our framework consists in an
agent container set on a standard Web server connected
with the clients through the return channel of the set-
top boxes.

In order to support services for virtual communities,
the server side of the system has to include at least five
different types of agents: a SP Agent (Set-top box
Proxy Agent), a MP Agent (Mux Proxy Agent), a User
Profile Manager, one or more Service Agent and a
Directory Facilitator.

The SP Agent represents the interface between the
server side multi-agent architecture and the client-side
device: this agent receives the requests which came
from the User Agent set on the user set-top box and
manages them interacting with other kinds of agents.

On the other side, we have another proxy agent,
called MP Agent, which is responsible to update the
state of the application and to notify it to the
Multiplexer, in order to update the raw data related to
the Xlet embedded in the MPEG-2 stream and,
consequently, the state of the interactive application
displayed on the user’s TV screen.

Between the two proxy agents have a specific kind
of agent, named Service Agent, which is responsible of
a particular type of service offered by the framework to
the virtual organization. In example, if we think to a
multi-player game, the Service Manager related to this
type of service will be responsible to manage the state
of the game, to find one or more appropriate partners to
play, etc.

The User Profile Manager agent is responsible of
maintaining the profile of the users and the
information/preferences of the users themselves in
relation to the particular types of services offered by
the system (i.e. game preferences, skill level, etc.).

In the end, the Directory Facilitator is responsible to
inform an agent about the address of the other agents of
the system.

Figure 3 gives a graphical representation of the
architecture of the system, focusing both on the
interactions between agents and between the different
devices. In figure 3 groups of three agents means that
there can be one or more agents of that type.

5. Sample Services

In this last section we give some example of
services supported by our system. In particular, as we
said when we introduced our framework, the ideas at
the base of the development of our system have been
principally two: the support for community games and

a more wide support for virtual communities involved
in cooperative activities such as on-line auctions.

Figure 3. Architecture of the system

5.1. Community games

The idea to play a game in a virtual way with other
people connected by a network or, in general, by a
technology supporting the real-time interaction
between the game participants is very common and
diffuse on Internet. With our system we match this idea
with the TDV interactive television, allowing IDTV
users to play a community game without using any type
of computer and of network, but through their IDTV
device.

To describe quickly the system behavior relatively
to such type of service, we can consider a simple type
of game like “Othello”, which requires two players.
When an IDTV user wants to play an Othello match
versus another user he has fundamentally to complete
two steps before starting the match: the service
configuration and the choice of the opponent. The
service configuration is a task that the user has to
perform only the first time she/he uses the application:
the user has to insert some information like the game
preferences, the skill level, etc. Once the game has
been configured, the User Agent communicates them to
the server side of the system to update the user profile
managed by the User Profile Manager agent.

At this point the user is able to play: when she/he
run the game by his set-top box, the User Agent
notifies the server-side that his associated user wants to
play. At this point the Service Agent related to that
game creates a new game instance and the User Profile
Manager agent find a possible opponent (the other user

108

has to be “on-line” and has to be a compatible skill
level).

Once the opponent has been chosen, the match can
start: the system, e.g. the Service Agent, continuously
updates the state of the application in relation to the
moves made, one after the other, by the participants
until the end of the match. Obviously, in relation to the
result, the system updates users’ profiles.

5.2. Online auctions

Also the paradigm of the on-line auctions is very

common for the Web users, we can think about the
famous eBay Web site to quickly understand the
enormous success that these types of services have
collected in the last years. The behavior of the system
is very similar to the previous case, in the sense that
also for this type of service the user has to make an
initial configuration of the application inserting her/his
data which are used to update his profile.

Differently from the community game, in this type
of service we have not a real-time interactions among
the involved users but we have an asynchronous
communication. When a user wants to sell something
she/he opens a new auction inserting the initial price,
the deadline, etc., then the User Agent notify the server
side of the system and the Service Agent related to this
type of service creates a new auction instance. From
this moment all the users using this type of service can
participate to the auction making their offers or
selecting a maximum budget and delegating to their
related User Agent the task. Once the auction has
expired, the Service Agent deletes the related auction
instance and the User Profile Manager agent updates
the user profiles related to the involved users.

6. Conclusions

This paper presents a multi-agent framework that we
realized to support the effective and fruitful
implementation of virtual communities in an Interactive
Digital Television scenario. Our framework gives
IDTV application developers and service providers the
possibility of running virtual communities to support
the realization of interactive end-users applications,
e.g., real-time multiplayer games and on-line auctions.

We strongly believe that the tight integration
between IDTV and virtual communities that our
framework provides can put a new perspective on
IDTV. On the one hand, our framework opens new
ways of communication and new types of services for
the IDTV users and, on the other hand, it expands

enormously the range of users that are possibly reached
by everyday Internet-based virtual communities.

At the moment, our framework is under
development. For the server-side of our multi-agent
system we are using JADE (Java Agent DEvelopment
Framework) [11, 15], which is a software framework to
aid the realization of agent applications in compliance
with the FIPA specifications for interoperable
intelligent multi-agent systems. Client-side is based on
new, yet somehow consolidated, IDTV technologies,
e.g., MHP.

Our future work is related to the development of
new types of applications and services expanding the
functionalities and the multi-agent architecture of the
framework.

References

[1] MHP Site http://www.mhp.org

[2] JavaTV Site http://java.sun.com/products/javatv

[3] DVB Site http://www.dvb.org

[4] DAVIC Site http://www.davic.org

[5] HAVi Site http://www.havi.org

[6] R. Howard. The Virtual Community: Homesteading on the
Electronic Frontier. Addison Wesley, 1993.

[7] J. Hagel, A. Armstrong. Net Gain: Expanding Markets

through Virtual Communities. Harvard Business School
Press, 1997.

[8] Q. Jones, S. Rafaeli. “Time to Split, Virtually: ‘Discourse
Architecture’ and ‘Community Building’ as means to Creating
Vibrant Virtual Metropolises”. Int’l J. Electronic Commerce
& Business Media, 10(4), 2000.

[9] C. Romm, R. J. Clarke. “Virtual Community Research
Themes: A Preliminary Draft for A Comprehensive Model”.
Procs. 6th Australasian Conference on Information Systems,
1995.

[10] FIPA Site http://www.fipa.org

[11] F. Bellifemine, A. Poggi, G. Rimassa. “Developing Multi-
agent Systems with a FIPA-compliant Agent Framework”.
Software Practice and Experience, 31:103-128, 2001.

[12] J. Heecheol, C. Petrie, M. R. Cutkosky. “JATLite: A Java
Agent Infrastructure with Message Routing”, IEEE Internet

Computing, Mar./Apr., 2000.

[13] C. Petrie. “Agent-based Engineering, the Web, and
Intelligence”, IEEE Expert, 11(6), 1996.

[14] F. Bergenti, A. Poggi, B. Burg, G. Caire. “Deploying FIPA-
compliant Systems on Handheld Devices”. IEEE Internet

Computing, 5(4):20-25, 2001.

[15] JADE Site http://jade.tilab.com

109

�
Abstract—This paper describes the design and the

implementation of an Agent-based Work flow Enactment
Framework (AWEF) which can be instantiated on the basis of a
work flow schema for obtaining a specific workflow enactment
engine. A work flow engine therefore is a MAS capable of
managing instances of the workflow schema used for the
instantiation of AWEF. Each MAS adopts a hierarchical
organizational structure composed by an EnacterAgent, which is
responsible of the activation and monitorin g of the workflow , one
or more ManagerAgents, which are responsible of the execution
and control of the workflow /subworkflow s according to a
parent/child model, and one or more TaskAgents, which are
responsible of the execution of internal tasks and/or of the
wrapping of external tasks or services. The hierarchical
distribut ion of the workflow execution control between the
ManagerAgents and the distr ibution of the computation among
the TaskAgents allow for more flexible, efficient, and robust
enactment services.

Index Terms—Mul ti-Agent Systems, Distribut ed Workf low
Enactment, Workfl ow Patterns, Agent-based Appli cations.

I. INTRODUCTION

ORKFLOW Management Systems (WFMS) are
systems designed to automate complex activities

consisting of many dependent tasks [26]. In the last decades
WFMS have been developed to provide support to the
modeling, improvement and automation of business
management, industrial engineering, and data-intensive
scientific processes [25,10]. Since each business area can
benefit from workflow management it is possible to
distinguish different kind of workflows and related workflow
management techniques specifically conceived for meeting the
requirements of a specific business area and fully supporting
the associated business processes. A main distinction that can
be done is between Collaborative and Production-oriented
workflows. The former are information centric: human
interactions drive the execution of workflows in a loosely
structured manner. In this case WFMS are Computer

G. Fortino is with the Department of Electronics, Informatics and Systems

(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
giancarlo.fortino@unical.it).

A. Garro is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail:
alfredo.garro @unical.it).

W. Russo is with the Department of Electronics, Informatics and Systems
(DEIS), University of Calabria, Rende (CS), 87036 Italy. (e-mail: wilma.russo
@unical.it).

Supported Cooperative Work (CSCW) systems that offer
groupware applications and other shared workspace tools for
supporting human interactions [4]. Instead, Production
workflows are process-driven due to their highly repetitive
nature [7]. In this case the processes are highly structured and
the adopted WFMS are based on workflow enactment services
able to offer an efficient and accurate control about the flow
of the processes. Moreover, in a Production workflow, most
of the tasks are executed automatically by software programs
and applications without interacting with human users. Such a
kind of workflows can be modeled as a set of interrelated
services (Service Workflow) [29]. In the context of Internet-
based workflows [19], such services are distributed and
owned by different organizations so that they could become
unavailable due to the lack of network service guarantees. To
deal with this important issue, a dynamic service allocation of
services is often required as well as the negotiation of service
level agreements (SLA). Due to these reasons the enactment
of Internet-based workflows requires more flexible enactment
engines based on more adequate coordination mechanisms.

To effectively fulfill such requirements the Agents
paradigm and technology are being used since Agents are
widely considered very suitable for the modeling and
implementation of complex software systems in open
distributed environments [18]. In particular, in the context of
workflow management, the use of the Agents paradigm allows
for transforming a workflow from a sequence of activities,
that are often modeled and consist of (Web) services
invocation, in a society of proactive, autonomous and
coordinable entities (or multi-agent system) whose
coordinated interactions drive the workflow execution
[20,17].

This paper proposes an agent-based approach for the
distributed enactment of workflows. The workflow enactment
is enabled by an Agent-based Workflow Enactment
Framework (AWEF) which is instantiated on the basis of the
schemas of the workflows to be enacted so obtaining specific
workflow engines. A workflow schema can be defined by
using the Workflow Patterns identified and proposed by van
der Aalst [25] and can be represented using YAWL (Yet
Another Workflow Language) [24]. A workflow engine
therefore consists of a MAS capable of managing instances of
the workflow schema used for the instantiation of the
workflow engine. The framework provides the base agents for
workflow enactment (EnacterAgent, which is responsible of
the activation and monitoring of the workflow,

Distributed Workflow Enactment:
an Agent-based Framework

Giancarlo Fortino, Alfredo Garro, and Wilma Russo

W

110

ManagerAgent, which is responsible of the execution and
control of the workflow, and TaskAgent, which is responsible
of the execution of internal tasks and/or of the wrapping of
external tasks or services), their interaction protocols and a set
of control-flow classes which are associated to the behavior of
the ManagerAgent and implement the Workflow Patterns. The
framework is implemented by using JADE [3,16], a FIPA-
compliant [13] Java-based agent development environment
which basically offers a distributed agent platform and an API
for agent programming.

The remainder of the paper is organized as follows. Section
2 introduces some background concepts about workflow
enactment, presents our agent-based approach enabled by
AWEF and reports some related works. Section 3 and Section
4 describe the design and the JADE-based implementation of
AWEF respectively. Finally conclusions are drawn and
directions of further work delineated.

II . DISTRIBUTED WORKFLOW ENACTMENT

The Workflow Reference Model, proposed by the
Workflow Management Coalition (WfMC) [28], describes a
generic architecture for workflow management consisting of
several functional components interfaced with a Workflow
Enactment Service (see Figure 1). The Process Definition
Tools allow a process designer to define business processes
often adopting a diagrammatic representation. The diagrams
(or workflow schemas), represented in a Process Description
Language (PDL), are received by the Workflow Enactment
Service via Interface 1. The Workflow Client Application is
usually the application which requests the enactment of a
workflow to the Workflow Enactment Service by specifying
the workflow schema to be enacted and passing the
parameters (Case Activation Record) needed for the activation
and execution of a specific workflow instance. During its
enactment a workflow can be administered and monitored
(Interface 5) and it may interact with other automated business
processes (Interface 4), with human participants (Interface 2)
and with other applications without human intervention
(Interface 3).

Fig. 1. The reference model for WFMS proposed by the WfMC.

TABLE I
THE WORKFLOW PATTERNS

PATTERN

TYPE
PATTERN NAME

(SYNONYMS)
DEFINI TION

Sequence
(Sequential routing, serial
routing)

An activity is enabled after the
completion of another activity .

Parallel Split
(AND-split, parallel routing,
fork)

A point in the workflow where a single
thread of control splits into multiple
threads of control which can be executed
in parallel, thus allowing activities to be
executed simultaneously or in any order.

Synchronization
(AND-join, rendezvous,
synchronizer)

A point in the workflow where multiple
parallel subprocesses/activities converge
into one single thread of control, thus
synchronizing multiple threads.

Exclusive Choice
(XOR-split, conditional
routing, switch, decision)

A point in the workflow where, based on
a condition, one of several branches is
chosen.

B
as

ic
 C

on
tr

ol
 F

lo
w

Simple Merge
(XOR-join, asynchronous
join, merge)

A point in the workflow where two or
more alternative branches merge without
synchronization.

Multi-choice
(Conditional routing,
selection, OR-split)

A point in the workflow where, based on
a condition, a number of branches are
chosen.

Synchronizing Merge
(Synchronizing join, OR-join)

A point in the workflow where multiple
paths converge into one single thread.

Multi-merge

A point in a workflow where two or
more branches reconverge without
synchronization. If more than one branch
gets activated the activity following the
merge is started for every activation of
every incoming branch.

A
dv

an
ce

d
B

ra
nc

hi
ng

 a
nd

Sy

nc
hr

on
iz

at
io

n

Discriminator
(N/M or partial join)

A point in a workflow that waits for a
number of the incoming branches to
complete before activating the
subsequent activity; then it waits for the
remaining branches to complete and
“ ignores” them. Then it resets itself.

Arbitrary Cycles
 (Loop, iteration, cycle)

A point in a workflow where one or
more activiti es can be done repeatedly.

St
ru

ct
ur

al

Implicit Termination
A given sub-workflow should be
terminated when there is nothing else to
be done.

Multiple Instances
without synchronization
(Multi-threading without
synchronization, spawn off
facility)

Multiple instances of an activity can be
created with no need to synchronize
them.

Multiple Instances with a
priori design time
knowledge

An activity is enabled a number of times
known at design time. Once all instances
are completed some other activity needs
to be started.

Multiple Instances with a
priori run-time knowledge

An activity is enabled a number of times
known at run time. Once all instances are
completed some other activity needs to
be started.

M
ul

ti
pl

e
In

st
an

ce
s

Multiple Instances
without a priori run-time
knowledge

An activity is enabled a number of times
known neither at design time nor at run-
time. Once all instances are completed
some other activity needs to be started.

Deferred Choice
(External choice, implicit
choice, deferred XOR-split)

It is similar to the exclusive choice but
the choice is not made explicitl y and the
run-time environment decides what
branch to take.

Interleaved Parallel
Routing
(Unordered sequence)

A set of activities is executed in an
arbitrary order decided at run-time; no
two activities are active at the same time.

St
at

e-
ba

se
d

Milestone
(Test arc, deadline, state
condition, withdraw
message)

The enabling of an activity depends on
the workflow being in a given state, i.e.
the activity is only enabled if a certain
milestone has been reached which did
not expire yet.

Cancel Activity
(Withdraw activity)

An enabled activity is disabled, i.e. a
thread waiting for the execution of an
activity is removed.

C
an

ce
ll

at
io

n

Cancel Case
(Withdraw case)

A workflow instance is removed
completely.

111

As described above, the Process Definition component
provides the process designer with a workflow language able
to specify a workflow schema which can be successively
instantiated by means of the Enactment Service based on a
workflow API and on one or more workflow engines. The
workflow definition language is to be expressive and powerful
to specify complex workflows from several perspectives:
control-flow, data-flow, resource and operational [25].

The control-f low perspective describes activities and their
execution ordering through different constructors, which
permit to control the flow of execution, and provides an
essential insight into the effectiveness of a workflow
specification. The data flow perspective rests on control-flow
perspective, while the resource and operational perspectives
are ancillary.

An expressive and powerful set of control-flow constructs
for the specification of workflow schemas (WF Schemas) is
the set of the Workflow Patterns proposed by van der Aalst
[25]. In Table I the Workflow Patterns, identified by
examining the most known contemporary workflow
management systems, are enumerated along with their
synonyms and a brief definition.

An example WF Schema based on the WF Patterns and
drawn by using YAWL [24] is given in Figure 2. After the
task A is carried out (sequence pattern), the tasks B, C, and D
are executed in parallel (parallel split pattern). When B or C
complete (synchronizing merge pattern), the task E is
executed an arbitrary number of times (arbitrary cycles
pattern). When D completes (sequence pattern), either the task
F or the task G (exclusive choice pattern) is executed. When
either F or G complete (simple merge pattern), depending on
the precedent choice, the task H is executed (sequence
pattern). When the iterative execution of E completes and also
H terminates (synchronization pattern), the task I is executed
and, after its completion (sequence pattern), the workflow
terminates.

G

A

B

C

D

F

H

I

Done?

No

E

yes

G

A

B

C

D

F

H

I

Done?

No

E

yes

Fig. 2. An example WF Schema based on the WF Patterns.

A generic Workflow Enactment Service (WFES) receives

from the user the indication about which workflow is to be
enacted (WF Type param) and the Case Activation Record
(CAR) for the specific workflow instance; then, on the basis
of the WF Schema corresponding to the selected WF Type,
the WFES enacts the workflow by means of a specific WF
Engine. If the WF Engine is of the distributed type the user
indicates also a set of params for specifying some
requirements related to the distribution of control,

computation and/or data during the workflow enactment
(Figure 3).

WF Enactment Service

WF Schemas

WF Enactment

WF Activation Params
• WF Type
• CAR

WF
Distribution Params WF Engines

WF Enactment Service

WF Schemas

WF Enactment

WF Activation Params
• WF Type
• CAR

WF
Distribution Params WF Engines

Fig. 3. An A Workflow Enactment Service.

More in details, in order to enact a workflow the WFES

selects a suitable WF Engine, from the WF Engines
repository, on the basis of the schema of the workflow to be
enacted. If the required WF Engine is not available the WFES
creates it. The creation is driven by the WF Schema which is
used to properly instantiate a Workflow Enactment
Framework so building a WF Engine able to enact that
specific WF Schema. In building the specific WF Engine the
distribution params specified by the user are also considered.
Finally, the WF Engine will enact the workflow on the basis
of the given CAR and the possible distribution params (Figure
4). The created WF Engine is stored in the WF Engines
repository so that it can be reused for enacting future
workflows of the same type.

WF Engine

W
F

 E
n

actm
en

t

WFE
Framework

WF Schema Distribution
Params

CAR WF Engine

W
F

 E
n

actm
en

t

WFE
Framework

WF Schema Distribution
Params

CAR

Fig. 4. The construction of a WF Engine.

A. The proposed agent-based approach

In our approach for the distributed workflow enactment a
WF Engine is a MAS built by properly instantiating the
Agent-based Workflow Enactment Framework (AWEF) on
the basis of a WF Schema defined by using the WF Patterns.
In particular, a WF Engine consists of tree different agent
types:
- EnacterAgent, which represents the interface between the

MAS constituting the WF Engine and the Workflow

112

Enactment Service and is responsible for the activation and
monitoring of the workflow.

- ManagerAgent, which is responsible of the execution and
control of the workflow. A single ManagerAgent allows for
flat workflow management whereas a hierarchical structure
of ManagerAgents, formed according to the parent/child
model, allows for a hierarchical workflow management.
The behavior of a ManagerAgent is defined on the basis of
the WF Schema it has to enact.

- TaskAgent, which is responsible for the execution of
internal tasks and/or for the wrapping of external tasks or
services. The behavior of a TaskAgent is defined on the
basis of the activities composing the task it has to carry out.
A WF Engine is, therefore, a MAS with a hierarchical

organizational structure in which the control of the workflow
execution is hierarchically distributed between the
ManagerAgents and the computation is distributed among the
TaskAgents.

A WF Schema can be specified by using YAWL [24]
which is based on the WF Patterns and offers also an XML
based representation of the WF Schema

The design and the implementation of the AWEF, on which
the WF Engines are based, are presented in details in sections
3 and 4.

B. Other related approaches

In the literature it is possible to find different proposals of
distributed workflow enactment mechanisms based on the
Agent paradigm and technologies which aim to support more
flexible, dynamic and adaptive workflow from the process,
resource and activity perspective [8].

Such approaches differ from each other in the supported
dimensions of distribution (computation, control and data), in
the adopted coordination model (control-driven, data-driven)
and in the exploited MAS organizational structure
(hierarchical, peer-to-peer).

In [10,23,21] the authors present an agent-based workflow
engine centered on a hierarchical organizational structure in
which a ProcessAgent executes a workflow instance by
requesting the execution of the tasks composing the workflow
to a set of ResourceAgents. ResourceAgents can be seen as
representing web services and can be dynamically discovered
and allocated to a ProcessAgent by a ResourceBrokerAgent.
In this control-driven approach the control about the state of
the workflow execution is hierarchically distributed between
the ProcessAgents and the computation whereas data are
distributed among the ResourceAgents which are responsible
of the task execution.

In [1] the authors propose a software environment to
dynamically generate agent-based workflow engines. A
workflow engine is generated by a compiler that translates an
XPDL workflow definition to a MAS ready to be executed in
the Hermes middleware. The translation process is a two step
procedure. In the first step the user-level workflow definition
is mapped to an Agent Level Workflow (ALW) specification.
In the second step, the compiler concretely generates agents,

called Workflow Executors, from the ALW specification by
plugging the implementation of the required workflow
activities, that are available in a repository, into “empty”
agents (skeletons). A workflow engine is, therefore, a MAS
having a peer-to-peer organizational structure in which the
workflow execution is driven by the interactions among the
Workflow Executors.

A similar approach can be found in [22] which presents a
methodology for translating a workflow specification into a
MAS architecture specifying formalized rules for modeling
agents’ behaviors. The MAS is not generated automatically by
a compiler like in [1] but by the developer adopting a tool
called Agent Developer Studio (ADS).

In [7,8,9] the authors present an agent-based approach for
enacting BPEL4WS (Business Process Execution Language
for Web Services) [6] workflow specifications. BPEL4WS is
an XML-based language that allows for the specification of
workflows where the activities are defined by Web service
invocations. The proposed distributed enactment mechanisms
combine data-centered and control-centered coordination
mechanisms. Data are managed via a shared XML repository
while the control of the workflow activities is driven by
asynchronous messages exchanged between the agents that
enact the workflow. The message exchange pattern for the
control messages is derived from a Colored Petri Net model of
the workflow. The agents’ behaviors are configured and
instantiated at run time on the basis of the BPEL4WS
specification of the specific workflow to be enacted. The
organizational MAS structure is based on a RequestorAgent
that orchestrates a set of Distributed Workflow Agents
according to the workflow specification. The system has been
implemented in JADE.

Another agent-based approach for enacting workflows
specified in BPEL4WS is proposed in [14]. The novelty of the
approach is that the enactment of the workflows is carried out
by peer agents that can be associated with web services. The
control flow is coded in an interaction protocol that is not
defined at the development time like in [1,22] but which is
passed at run time between the agents together with the
messages so informing each agent what to do next to keep the
workflow executing.

Another peer-to-peer agent-based enactment approach is
presented in [29]. In this approach the workflow to be enacted
is decomposed into a set of interrelated task partitions. Each
task partition represents a service and its position, i.e., the
interaction and dependency with the other services in the
process. Then, each task partition is distributed to an agent
which represents a service provider offering a service required
by the specific workflow instance. Each agent autonomously
manages the enactment of the represented service and the
interactions between this service and the others only on the
basis of the assigned task partition; agents are not conscious of
the whole process in which they are involved. Such adopted
coordination model is known as a choreography coordination
model.

113

II I. THE DESIGN OF AWEF

The design of AWEF was carried out by exploiting an
agent-oriented development process [11] in which the
requirements capture phase is supported by the Tropos
methodology [5], the analysis and design phases are supported
by the Gaia methodology [27] and the detailed design phase is
supported by the Agent-UML [2] and the Distilled StateCharts
(DSC) [12].

The requirements, captured using the Tropos goal-oriented
approach, were reported in a Requirements Statements
document. On the basis of the requirements the following key
roles were identified:
� Enacter, which manages the activation and monitoring of

workflows and represents the interface between the WF
Engine and the Workflow Enactment Service;

� Manager, which manages the execution and control of
workflows;

� Executor, which executes the internal workflow tasks;
� Wrapper, which interacts with the external tasks or

services.
Each of these roles was fully described by using a Role

Schema according to the Gaia methodology. The protocols
associated with each role were identified and documented by
an Interactions Model. Then, the identified Roles were
aggregated into Agent Types also specifying the agent types
hierarchy (Agent Model); the main services required to
realize each role were specified (Services Model) and the
relationships of communication between the Agent Types
documented (Acquaintance Model).

The identified Agent Types are:
� EnacterAgent, which derives from the Enacter role.
� ManagerAgent, which derives from the Manager role. A

single ManagerAgent allows for flat workflow management
whereas a hierarchical structure of ManagerAgents, formed
according to the parent/child model, allows for a
hierarchical workflow management.

� TaskAgent, which derives from both the Executor and
Wrapper role.
The detailed design phase allowed for obtaining a detailed

specification of the behaviors of the Agent Types which have
been defined in the Agent Model. The work products of this
phase were the Agent Interactions Model and the Agent
Behaviors Model. The former consists of a set of Agent-UML
interaction diagrams [2] which thoroughly specify the patterns
of interaction between the Agent Types; the Agent Behaviors
Model specifies the dynamic behavior of each Agent Type by
means of the Distilled StateCharts (DSC) formalism [12].

The main interaction patterns documented by the Agent
Interactions Model are:
� EnacterAgent/ManagerAgent, which is enabled by the

Enacter/Manager Interaction Protocol (EMIP);
� ManagerAgent/ManagerAgent, which is enabled by the

Manager(parent)/Manager(child) Interaction Protocol
(MMIP);

� ManagerAgent/TaskAgent, which is enabled by the

Manager/Task Interaction Protocol (MTIP).
In the Agent Behaviors Model the basic behaviors of the

EnacterAgent, ManagerAgent and TaskAgent are defined. In
particular, the defined ManagerAgent behavior (or
ManagerBehavior) is composed of:
� An InitialPseudoActivity, which represents the starting

point of the workflow execution in the WF Schema.
� One or more FinalPseudoActivity, which represent points in

the WF Schema at which the workflow or a part of it ends.
A FinalPseudoActivity uses a parent ManagerAgent for
notification purposes.

� One or more WFPattern, which represent the control-f low
activities. A WFPattern, which can be any of the available
WF Patterns [25] (sequence, and-spli t, and-join, xor-spli t,
xor-join, or-split, multi-merge, discriminator, loop, multiple
instances, deferred choice, milestone, etc) uses one or more
TaskAgents and one or more child ManagerAgents for
activation purposes and a parent ManagerAgent for
notification purposes.
In order to model a WF Schema, InitialPseudoActivity,

FinalPseudoActivity, and WFPattern are linked through
source/target control-flow associations.

Figure 5 shows a Statecharts-based representation [15] of
the ManagerBehavior.

ControlFlow

ControlAction
Executed

/ executeNextControlAction()

ExecuteNextControlAction/ executeNextControlAction()

TerminateControl/ sendEndNotification()

S
tateC

hangeN
otification/handleN

otification()

Fig. 5. The generic behavior of a ManagerAgent.

According to the WF Schema to enact, the ManagerAgent

enters the ControlFlow superstate executing the
executeFirstControlAction() method. In this superstate, every
times that an ExecuteNextControlEvent is received the
ManagerAgent executes the next control-flow action by
invoking the executeNextControlAction() method which
fetches the next WFPattern and executes it. Upon completion
of a WFPattern execution, two events are generated: (i)
ExecuteNextControlAction which allows the
ManagerBehavior to invoke the executeNextControlAction()
method; (ii) StateChangeNotification which allows notifying
the upper-level ManagerAgent or the EnacterAgent about the
control-flow state change of the workflow. If there are no
more WFPatterns to execute, the TerminateControl event is
generated which drives the termination of the
ManagerBehavior and the transmission of the related
EndNotification to the upper-level ManagerAgent or to the
EnacterAgent. A WFPattern execution can involve: (i) the

114

detection of the completion of a task through the reception of
a FIPA ACL message which can also carry the data produced
by the completed task; (ii) the creation and/or activation of
TaskAgents or ManagerAgents.

The interaction diagrams composing the Agent Interactions
Model and the behavioral specifications of the Agent
Behaviors Model are to be intended as basic schemas that will
be coded into the basic classes of AWEF. A WF Engine wil l
be obtained by instantiating such basic classes according to
the schema of the workflow to be enacted and using the
concrete implementations of the tasks required for the
workflow execution.

Fig. 6. Class diagram of the AWEF Framework.

In Figure 6 the classes which compose AWEF are reported.

In particular, AWEF provides the base agents for workflow
enactment (EnacterAgent, ManagerAgent and TaskAgent),
their interaction protocols and a set of control-f low classes
which are associated to the behavior of the ManagerAgent and
implement the WF Patterns.

IV. THE JADE-BASED IMPLEMENTATION OF AWEF

The JADE-based classes of AWEF were straightforwardly
derived from the class diagram reported in Figure 6. In
particular:
� EnacterAgent, ManagerAgent and TaskAgent extend the

Agent class of JADE [16];
� EnacterBehavior, TaskBehavior and WFPattern extend

Behaviour class of JADE which represents a generic
behavior terminating when the end-of-activity condition is
met;

� ManagerBehavior extends FSMBehaviour class of JADE

which models a complex task whose sub-tasks correspond
to the activities performed in the states of a finite state
machine. In particular, the states of ManagerBehavior
correspond to the control-flow states of the workflow (or
sub-workflow) that the ManagerAgent is controlling; each
state is associated to a WFPattern which is activated when
the state becomes active. EMIP, MMIP, and MTIP are
appositely defined through sequences of ACL messages
instances of the ACLMessage class of JADE.

In the following subsection a hierarchical WF Engine based
on AWEF and capable of enacting the WF Schema reported in
Figure 2 is presented.

A. A hierarchical WF Engine based on AWEF

The hierarchical workflow management is enabled by a set
of ManagerAgents each of which embodies a sub-schema of a
WF Schema according to a hierarchical model. With reference
to the WF Schema of Figure 2, the WF Engine able to enact
such a WF Schema is obtained through:

1. The partitioning of the WF Schema into a set of
hierarchically arranged workflow schemas: WF Schema 1,
WF Schema 1.1, WF Schema 1.2 (see Figure 7);

2. The instantiation of AWEF with respect to the obtained
workflow schemas (see Figure 8 for the resulting class
diagram).

A

SM1

I

SM2

WF Schema 1 Top Manager Agent

B

C
Done?

No

E

Yes

WF Schema 1.1
SubManagerAgent1

D

F

H

WF Schema 1.2
SubManagerAgent2

A

SM1

I

SM2

WF Schema 1 Top Manager Agent

B

C
Done?

No

E

Yes

WF Schema 1.1
SubManagerAgent1

D

F

H

WF Schema 1.2
SubManagerAgent2

Fig. 7. Partitioned WF Schema.

With reference to Figure 8a the EnacterAgent is linked to
the top-level ManagerAgent which is, in turn, linked to the
TaskAgents related to the WF Schema 1, and to the
SubManagerAgents1and SubManagerAgents2 which control
the WF Schemas 1.1 and 1.2 respectively. Each
SubManagerAgent is, in turn, linked to the TaskAgents
associated to its schema.

With reference to Figures 8b-d each ManagerBehavior is
obtained by translating its associated WF Schema in a set of
classes consisting of one InitialPseudoActivity, one or more
FinalPseudoActivity, and one or more WFPattern which are
appositely interconnected.

115

(a) (b)

(c) (d)
Fig. 8. WF Engine class diagram: (a) MAS structure; (b-d) behaviors of the ManagerAgents (b-d)

V. CONCLUSIONS

This paper has described an Agent-based Workflow
Enactment Framework (AWEF) which can be instantiated on
the basis of a WF Schema for obtaining a specific WF Engine
which mainly consists of a hierarchy of ManagerAgents.
Each ManagerAgent has in charge the enactment of a sub-
schema of the WF Schema used for the instantiation of AWEF
and exploits a set of TaskAgents for the execution of the
specific workflow tasks associated to its sub-schema. This
MAS organization allows for the hierarchical distribution of
the workflow execution control between the ManagerAgents
and for the distribution of the computation among the
TaskAgents. Due to these features AWEF constitutes a basic
component for the construction of more flexible, efficient, and
robust Workflow Enactment Services.

The JADE-based implementation of AWEF has been
applied to the development of a workflow system for the
monitoring of distributed agro-industrial productive processes.
The developed workflow system is a component of a larger
system which was buil t in the context of the M.ENTE
(Management of integrated ENTErprise) project which aims at
developing a pervasive system for the control and
management of productive, organizational, and business
processes of companies working in the agro-alimentary
industry of Calabria. The current experimentation of the
system provides support to a consortium of agro-industrial
greenhouses.

Efforts are currently underway to develop an enactment
service which is able to automatically instantiate AWEF on

the basis of WF Schemas defined in YAWL.

ACKNOWLEDGMENT

This work was partially supported by the Italian Ministry of
Education, University and Research in the framework of the
M.ENTE (Management of integrated ENTErprise) research
project PON (N°12970-Mis.1.3). The authors also wish to
thank Serena Martino and Giuseppe Agapito for their
contribution to the JADE-based implementation of the AWEF
framework.

REFERENCES
[1] E. Bartocci, F. Corradini, E. Merelli, Enacting proactive workflows

engine in e-Science, In proceedings of the 6th International Conference
on Computational Science (ICCS 2006), University of Reading, UK,
May 28-31, 2006, pp. 1012-1015, volume 3993/2006, Springer-Verlag,
Berlin.

[2] B. Bauer, J.P. Muller, and J. Odell. Agent UML: A Formalism for
Specifying Multiagent Interaction. In Paolo Ciancarini and Michael
Wooldridge, editors, Agent-Oriented Software Engineering, pages 91-
103. Springer-Verlag, Berlin, 2001.

[3] F. Bellif emine, A. Poggi, and G. Rimassa, Developing multi-agent
systems with a FIPA-compliant agent framework, Software Practice and
Experience, 31, pp. 103-128, 2001.

[4] U. M. Borghoff, J. H. Schlichter. Computer-Supported Cooperative
Work: Introduction to Distributed Applications. Springer-Verlag. 2000.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An Agent-Oriented Software Development Methodology,
Journal of Autonomous Agents and Multi-Agent Systems, 8(3):203-236,
2004.

[6] Business Process Execution Language for Web Services version 1.1.
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

[7] P. Buhler, J.M. Vidal, Towards AdaptiveWorkflow Enactment Using
Multiagent Systems, Journal of Information Technology and
Management, vol. 6, pp. 61–87, 2005, Springer-Verlag, Berlin.

116

[8] P. Buhler, J.M. Vidal, Enacting BPEL4WS specified workflows with
multiagent systems, In Proceedings of the Workshop on Web Services
and Agent-Based Engineering, 2004.

[9] P. Buhler, J.M. Vidal and H. Verhagen, Adaptive Workflow = web
services + agents, In Proceedings of the First International Conference
on Web Services, 131-137, 2003.

[10] L. Ehrler, M. Fleurke, M. A. Purvis, and B.T.R. Savarimuthu, Agent-
Based Workflow Management Systems(Wfmss): JBees - A Distributed
and Adaptive WFMS with Monitoring and Controlling Capabilities,
Journal of Information Systems and e-Business Management, Volume 4,
Issue 1, Jan 2006, Pages 5-23, Springer-Verlag, Berlin.

[11] G. Fortino, A. Garro, and W. Russo, An Integrated Approach for the
Development and Validation of Multi Agent Systems, Computer Systems
Science & Engineering, 20(4), pp.259-271, Jul. 2005.

[12] G. Fortino, W. Russo, and E. Zimeo, A Statecharts-based Software
Development Process for Mobile Agents, Information and Software
Technology, 46(13), pp. 907-921, Oct. 2004.

[13] Foundation of Intelligent and Physical Agents, http://www.fipa.org.
[14] L. Guo, Y. Chen-Burger, and D. Robertson Dave, Enacting the

Distributed Business Workflows Using BPEL4WS on the Multi-Agent
Platform. In Proceedings of the Third German Conference on Multi-
agent System Technologies (MATES2005), LNAI 3550, pp. 35-47,
Koblenz Germany, Springer-Verlag.

[15] D. Harel and E. Gery. Executable Object Modelling with Statecharts.
IEEE Computer, 30(7): 31-42, 1997.

[16] Java-based Agent Development Environment (JADE), documentation
and software at the world wide web: http://jade.tilab.com.

[17] N.R. Jennings, P. Faratin, T.J. Norman, P. O’Brien, and B. Odgers,
Autonomous Agents for Business Process Management, Journal of
Applied Artificial Intelligence, 14(2), pp. 145–189, 2000.

[18] M. Luck, P. McBurney, and C. Preist, A Manifesto for Agent
technology: Towards Next Generation Computing, Autonomous Agents
and Multi-Agent Systems, 9(3), pp. 203-252, 2004.

[19] D.C. Marinescu, Internet-based Workflow Management, John Wiley &
Sons, Inc., New York, 2002.

[20] P.D. O’Brien and M.E. Wiegand, Agent-based process management:
applying intelligent agents to workflow, Knowledge Engineering
Review, 13(2), pp. 1-14, 1998.

[21] M. A. Purvis, B.T.R Savarimuthu, and M.K Purvis, A Multi-agent Based
Workflow System Embedded with Web Services, In proceedings of the
second international workshop on Collaboration Agents: Autonomous
Agents for Collaborative Environments (COLA 2004), Beijing, China,
September 2004, pp 55-62, IEEE/WIC Press.

[22] M. Repetto, M. Paolucci, A. Boccalatte, A Design Tool to Develop
Agent-Based Workflow Management Systems, In Proc. of the 4th
AI* IA/TABOO Joint Workshop "From Objects to Agents": Intelligent
Systems and Pervasive Computing, 10-11 September 2003, Villasimius,
CA, Italy, pp. 100-107, Pitagora Editrice Bologna.

[23] B.T.R. Savarimuthu, M.A. Purvis, M.K. Purvis, and S. Cranefield,
Agent-Based Integration of Web Services with Workflow Management
Systems, Information Science Discussion Paper Series, Number
2005/05, ISSN 1172-6024, University of Otago, Dunedin, New Zealand.

[24] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245-275, 2005.

[25] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros, Workflow Patterns, Distributed and Parallel Databases, 14(3),
pp. 5-51, July 2003.

[26] W.M.P. van der Aalst and K. van Hee, Workflow Management: Models,
Methods, and Systems, The MIT Press, Cambridge (MA), 2002.

[27] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology
for agent-oriented analysis and design. Journal of Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.

[28] Workflow Management Coalition, http://www.wfmc.org.
[29] J. Yan, Y. Yang, R. Kowalczyk, and X. T. Nguyen, A service workflow

management framework based on peer-to-peer and agent technologies,
In Proc. of the International Workshop on Grid and Peer-to-Peer based
Workflows co-hosted with the 5th International Conference on Quality
Software, Melbourne, Australia, September 19 -21, 2005.

117

A Lightweight Architecture for RSS Polling of
Arbitrary Web sources

Sergio Bossa, Giacomo Fiumara and Alessandro Provetti
Dip. di Fisica, Universit̀a degli Studi di Messina

Sal. Sperone 31, I-98166 Messina, Italy
sergio.bossa@gmail.com,{fiumara,ale}@unime.it

Abstract— We describe a new Web service architecture de-
signed to make it possible to collect data from traditional plain
HTML Web sites, aggregate and serve them in more advanced
formats, e.g. as RSS feeds. To locate the relevant data in the
plain HTML pages, the architecture requires the insertion of
some meta tags in the commented text. Hence, the extra mark-
up remains totally transparent to users and programs. Such
annotated HTML documents are then routinely pulled by our
Web service, which then aggregates the data and serves them
over several channels, e.g. RSS 1.0 or 2.0. Also, a REST-style
Web Service allows users to submit XQuery queries to the
feeds database. Finally, we discuss scalability issues w.r.t. polling
frequencies.

I. I NTRODUCTION

This article describes a new, experimental architecture for
automated data collection and RSS delivery of data from
traditional HTML Web sites. Our solution requires minimal
and totally transparent changes on their HTML pages. The
data of interest will be routinelypolled from the actual sources
by standard HTTP querying. Subsequently, the so-created Web
service can be queried with REST-style sessions that extract
the aggregated data at their wish. As a result, we provide a
complete layout for the implementation of RSS Web services
that interact with the traditional Web in an almost seamless
way.

Even though this research project is only at the beginning,
and only a proof-of-concept implementation is available, we
believe that there is room for the application of this type of
approach to bridging Web services and the traditional Web. Let
us discuss why. Today we find on the Web several interesting,
popular news sites that consist, essentially, of plain old HTML
pages. Even though the content is continuously updated, the
site layout and organization is not changing much. Several ad-
vanced techniques for news broadcasting and syndication are
now available, the main one being RSS feeds, yet it seems that
a large set of relevant news sources will carry onby inertia,
with their existing Web architecture. Our architecture enables
extracting the relevant data from plain HTML and makes it
available to the contemporary Web service techniques.

Indeed, today Web portals are publishing, along with tradi-
tional HTML pages, RSS documents, mostly known as RSS
feeds [1], [2].

Inasmuch as HTML is aimed at content visualization for
end user experience, RSS is an XML format aimed at cap-
turing channels of data items, thus enabling automated data

processing. RSS today is used mainly for content syndication;
it organizes the semantics in achannel element, containing
overall information regarding the resource, and a set ofitem
elements, each containing logically related pieces of informa-
tion. Moreover, every channel or item contains atitle element,
a link element and adescription element.

Even though it has been developed for syndication purposes,
RSS can be applied to realize sophisticated forms of content
manipulation, like aggregation or advanced querying. Using
RSS feeds is indeed simple: Web portals must publish, to-
gether with HTML documents, the related feeds. Users can
then consumethese feeds by a particular client, called RSS
aggregator, by which they can read, query oraggregatefeeds.

However, this simple process has some limitations: Web
masters have to create their RSS feeds by some RSS genera-
tion tool, which are often proprietary and may limit interoper-
ability. Moreover, users may not be able to view older feeds,
nor to query feedson the fly,directly on the server.

The architecture described here1 overcomes these limita-
tions by proposing apull-basedWeb service to generate, store,
aggregate and query contents using RSS standards. With this
application it is possible to:

• Automatically and dynamically generate RSS feeds start-
ing from HTML Web pages

• Store them in chronological order
• Query and aggregate them thanks to REST [4], [5] Web

services acting as software agents

Clearly, there are scalability issues involved in our archi-
tecture, and the pulling policy for each site must be carefully
considered. Section VI-B below describes a common structure
for pulling policies.

II. A DDING META-TAGS TO EXISTINGHTML PAGES

HTML documents contain a mixture of information to be
published, i.e., meaningful to humans, and of directives, in
the form of tags, for graphical formatting, i.e. intended for
browsers interpretation. Moreover, since the HTML format is
designed for visualization purposes only, its tags do not allow
sophisticated machine processing of the information contained
therein.

1The architecture was first outlined in the first author’s graduation project
[3].

118

Among other things, one factor preventing the spread of the
Semantic Web is the complexity of extracting, from existing,
heterogeneous HTML documents machine-readable informa-
tion. Although our project addresses only a fraction of the
Semantic Web vision, our management of HTML documents
needs some technique to locate and extract some valuable and
meaningful content.

Therefore, we define a set of annotations in form of meta-
tags, which can be inserted inside an HTML document in
order give it semantic structure and highlight informational
content. In our application, meta-tags are used as annotations,
to describe and mark all interesting information, in order
to help in the extraction and so-calledXML-ization phases.
The set of meta-tags we defined (and recognizable by our
application) is listed in Table I below. The meta-tags are
enclosed in HTML comment tags, so they remain transparent
to Web browsers and do not alter the original HTML structure
of the document.

The conceptual model of the meta-tags described above is
rather straightforward and remains orthogonal to the object
tags found in the page.

A. Meta tags vs. dynamic XSLT transformations

An obvious alternative to our approach to the treatment of
existing HTML structures is that of applying, after the polling
phase, some clever XSLT transformation [6] to the HTML
file. It should be considered, however, that applying such
type of XSLT transformations is possible (or at least greatly
facilitated) only when the [X]HTML document is well-formed.
This, regrettably, seems rather unrealistic to us, exp. forold
documents. Viceversa, our solution relieves the webmasters
from any time-consuming translation of her HTML documents
into well-formed XHTML ones, which would then make a
subsequent XSLT transformation successful.

III. STRUCTURE OF THEXML OUTPUT

Once HTML documents are processed by our application,
annotated semantic structures are extracted and organizedinto
a simple XML format which will be stored and used as a
starting point for document querying and transformation. This
XML format has been simply calledXMLData. This neutral
format has also been introduced in order to avoid storing the
same information in both RSS 1.0 and 2.0 formats. Indeed,
we found more economic for our application to create RSS
feeds on the fly rather than store them. This approach is
also more flexible as the support of new syndication formats
(see for example, the Atom format) does not require the re-
design of the lower levels of the application (see further).The
structure of the XML output resembles the structure of meta-
tags previously defined and the RSS XML structure, in order
to facilitate transformations from the former to the latter. It is
defined by the following XML Schema Definition [7]:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="unqualified">

<xsd:complexType name="imageType">
<xsd:all>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="link" type="xsd:anyUri"/>
<xsd:element name="url" type="xsd:anyUri"/>

</xsd:all>
</xsd:complexType>

<xsd:complexType name="extensionsType">
<xsd:sequence>

<xsd:any namespace="##any"
processContents="skip"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="channelType">
<xsd:all>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="link" type="xsd:anyUri"/>
<xsd:element name="description"
type="xsd:string"/>
<xsd:element name="image" type="imageType"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="extensions"
type="extensionsType"
minOccurs="0" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

<xsd:complexType name="itemType">
<xsd:all>

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="link" type="xsd:anyUri"/>
<xsd:element name="description"
type="xsd:string"/>
<xsd:element name="image" type="imageType"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="extensions"
type="extensionsType"

minOccurs="0" maxOccurs="1"/>
</xsd:all>
<xsd:attribute name="index" type="xsd:integer"
use="required"/>

<xsd:attribute name="id" type="xsd:string"
use="required"/>

</xsd:complexType>

<xsd:complexType name="resourceType">
<xsd:sequence>

<xsd:element
name="channel" type="channelType"/>
<xsd:element
name="item" type="itemType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="url" type="xsd:anyUri"
use="required"/>

<xsd:attribute name="rssId"
type="xsd:string" use="required"/>

<xsd:attribute name="timestamp"
type="xsd:dateTime" use="required"/>

</xsd:complexType>

<xsd:element name="resource" type="resourceType">
<xsd:key name="itemId">

<xsd:selector xpath="item"/>
<xsd:field xpath="@id"/>

</xsd:key>
<xsd:key name="itemIndex">

<xsd:selector xpath="item"/>
<xsd:field xpath="@index"/>

</xsd:key>

119

Meta-tag Description
<channel:title> . . .</channel:title> Channel title
<channel:description> . . .< /channel:description> Channel description
<channel:image url=” link=” title=” /> URL, link and title of an image associated to the channel
<channel:extension uri=” prefix=”> . . .</channel:extension> Channel extension (e.g., publication date)
<item:link index=”> . . .</item:link > item link
<item:description index=”> . . .</item:description> item description
<item:extension uri=” prefix=”> . . .</item:extension> item extension (e.g., item publication date)

TABLE I

THE SET OF META-TAGS

Fig. 1. The general schema

</xsd:element>

</xsd:schema>

IV. T HE OVERALL APPLICATION ARCHITECTURE

Figure 1 shows the overall architecture of the application.
Our application is based on a modular structure, for maximiz-
ing the flexibility and the extensibility of configuration. Three
levels can be distinguished:

• Physical Data Storage Level It is the lowermost level,
which stores resources, and provides a means for retriev-
ing and querying them. It can be implemented in various
ways, using also established technologies like relational
or XML database[8].

• Core Level. It holds the core part of the entire architec-
ture, including the software components which implement
the logic of information management and processing;
each component can be implemented using different
strategies or algorithms, and plugged into the system

without affecting other components, i.e., by simply tuning
the application configuration files.

• Service Level. It is the highest level, interacting with Web
clients by means of REST Web services.

A more detailed explanation follows, starting from the Core
level, the foundation over which our application is based.

A. The Core Level

The Core level is composed by several components defining
how the application i) retrieves HTML resources, ii) processes
to extract information about channeling, iii) manages thisnew
piece of information and finally iv)transforms and preparesit
for client consumption:

• engine: the code that routinely invokes the Retriever and
thus the whole polling process.

• Poller: it monitors changes in a set of HTML resources
configured in a particular file, using some polling policy
(see next section). Moreover, the poller has the important
task of coordinating other components in the retrieving,
extraction, and storing phases.

• Retriever: when invoked by the Poller, it captures the
Web resource from its URL and makes it available to
other components.

• Wrapper : it takes care of extracting the annotated seman-
tic structures from the retrieved HTML resources, wrap-
ping them in a new one, that is, assembling the extracted
structures in a fresh, pure XML format, containing the
desired informational content: the previously-described
XMLData format. So, this component must produce a
well formed XML document, ready to be stored by the
Physical Data Storage level.

• DataManager: it acts as a gateway to the Physical Data
Storage level, taking care of managing information in
the form of the new XML documents previously created,
storing them and permitting client components to query
their contents.

• Transformer : it finally takes care of transforming the
stored XML documents into the RSS format requested
by clients, using XSLT transformations.

Typical parameters of this level can be changed simply
modifying the corresponding parameters which are listed in
some configuration files, in XML format. The configuration
file of the Engine Component, for example, allows to set the
type of polling policy of the Web resources. Currently, the
choice is betweenflat, i.e, constant over time, orsmart, i.e.,

120

depending on the recent rate of updates. Other parameters
are: the type of data manager (currently, the Exist native-
XML database together with its connection parameters) and
the format of the RSSs sent to Dynamo subscribers (currently
RSS1 and RSS2).

B. The Physical Data Storage Level

The Physical Data Storage level can be implemented with
various technologies: our choice has been to implement it
using a native XML database. This choice allows us to
store and manage XML documents produced by the Wrapper
software component in their native format, and to use the
powerful XQuery language for advanced content querying
and aggregation. The native XML database is organized as
a set of collections of XML resources, where the nesting
of collections is allowed. In our application, we store XML
resources as provided by the Wrapper software component,
one collection for each resource. Each collection holds the
various chronological versions of the resource: so, each col-
lection effectively contains the history of the resource, all its
informational content and a changelog.

When a new resource is to be stored, a check is done by the
DataManager software component, in order to avoid duplicate
resources. Two resources are considered to be different if their
informational content changes. More precisely, they are differ-
ent if changes to titles, links or descriptions of the resource
channel or items are detected. Once stored, the resource is
chronologically archived and ready for later retrieving and
querying.

C. The Service Level

The Service level lets Web clients access the RSS feeds
through the use of REST Web Services [9]. REST, an acronym
for Representational State Transfer,is an architectural style
which conceives everything as a resource identified by a
URI. In particular, it imposes a restriction about of the URL
defining the page info, that, in the REST view, are considered
resources. Each resource on the Web, such as a particular part
specification file, must have a unique URL (without GET fields
after it), that totally represents it.

With respect to the well-known SOAP architecture2, in
REST we never access a method on a service, but rather
a resource on the Web, directly using the standard HTTP
protocol and its methods, To put it differently, in REST the
hypertext linking controls the application state. This feature of
REST allows greater simplicity and maximum interoperability
with any Web client, eitherthick, like a desktop application,
or thin, like a Web browser.

D. Accessing REST Web Services and resources

Adhering to the REST architecture and vision, everything
is a resource and so any request and any search returns to the
client an RSS resource, actually in the format of RSS 1.0 or
2.0, depending on the client choice.

2Please refer to [10] for an introduction to SOAP

In our application, these RSS resources are accessed through
HTTP requests, using the GET method of HTTP 1.1 protocol;
clients can ask for:

• A list of collections of RSS resources, each representing
the chronological history of a resource.

• A list of RSS resources contained in a given collection.
• An RSS resource, identified by an index.
• An RSS resource containing only up to a given number

of items, starting from the most recent one.
• An RSS resource obtained by querying a collection

of resources, searching for keywords in titles, links or
descriptions of items.

The GET method, in principle, should not modify the original
resource. A detailed description of how REST Web Services
and resources are accessed follows.

a) /resources[?type=rssType]:Accesses an RSS re-
source listing all collections of resources that clients can
request and query. The optionaltype parameter identifies the
RSS type of the requested resource.

b) /resources/rssId[?type=rssType]:Accesses an RSS
resource listing all resources contained in the collectioniden-
tified by the resource id, therssId URL section. The optional
type parameter identifies the RSS type of the requested re-
source.

c) /resources/rssId?index=n & [type=rssType]:Ac-
cesses an RSS resource identified by itsrssId and theindex
parameter, that is the index number into the chronological
history: use ”1” for the first resource (the most recent one),
”2” for the second and so on. The optionaltype parameter
identifies the RSS type of the requested resource.

d) /resources/rssId?max=n & [type=rssType]:Accesses
an RSS resource identified by itsrssId, containing only up
to max items. The optionaltypeparameter identifies the RSS
type of the requested resource.

e) Complex queries:The following query:

/resources/rssId?max=n & [type=rssType]
& [(title | link | description| desc)=value]
& [op=(and| or)]
& [(title | link | description| desc)=value]
& . . .

is intended to query all resources identified by the givenrssId,
requesting only up tomax items and combining, using logical
”and/or” operators, searches for title, link, or description of items.
The optionaltypeparameter identifies the RSS type of the requested
resource.

V. THE APPLICATION AT WORK

To illustrate how our application works we consider a frag-
ment of a HTML document taken from the reference Web site
www.theserverside.com.After the insertion of the meta-tags, the
fragment looks as in Figure 2. Then the fragment is converted in
XML format and, if not already present in the database, is stored
in the appropriate collection of the database. Upon request from the
client, the XML file is extracted and converted into one of the two
formats currently supported by our application, that is to say RSS
1.0 or RSS 2.0. For sake of brevity we present here only the RSS2
version of the output (see Figure 3). It should be noted that in order
to work properly our application strongly relies upon the insertion of

121

Collection path Description
/db/resources Root collection
/db/resources/headlines.rss Collection holding XML resources related to the headlines.rss resource, that is, its history
/db/resources/headlines.rss/123XML resource identified by its time-stamp (123)

TABLE II

COLLECTION EXAMPLES

Fig. 2. An HTML fragment after the insertion of meta-tags

meta-tags, which can be accomplished with a very little effort and/or
change in currently available content management and publishing
systems. It is beyond the scope of our application to be able to
discover the appropriate patterns inside the HTML documents and
automatically insert the meta-tags, which can be successfully done
by our application only if the HTML document never changes in its
internal structure.

Let us now see how a user interacts with the application. First
of all, a user can verify the available RSS resources through his
Web browser. She obtains a list of the available resources which can
be formatted in one of the two currently supported formats, namely
RSS 1.0 or 2.0. Following the link, the user gets the archive of the
resource, chronologically ordered from the newest to the oldest. Our
application allows also to aggregate RSS items and to query them.
It is then possible to keep up-to-date by requesting a fixed number
of the newest items. It is also possible to request the newest items
containing a certain keyword in the title or in the description.

VI. A PPLICATION EXPERIENCE

A. The proof-of-concept: dynamo.dynalias.org
We made a working prototype of our architecture, that we called

Dynamo, available at http://dynamo.dynalias.org. By now Dynamo
publishes the news feeds, in both RSS1 and RSS2 formats, taken
from the Web portals www.serverside.com and www.java.net, each

Fig. 3. The fragment in RSS 2.0 format

of which produces about 4-5 news (in plain HTML format) every
day. In order to avoid any interaction with the portals we resorted to
download the HTML pages containing the news, insert the meta-tags
we defined and submit them to the entire procedure of extraction,
storing and publishing.

B. Scalability issues
A typical problem in the design of an architecture like ours consists

in the forecast of all possible critical elements that can raise as work
loads become bigger and bigger. First of all it must be considered that
an instance of Dynamo can be installed for each Web server. In those
cases in which we have a very frequent production of news coming
from different sources of information, it is possible to install a ”copy”
of Dynamo for each source so to distribute and even balance the load.
Another, even more severe, possible limitation to the performance of
the proposed architecture is represented from the bandwidth required
to forward the requests for updates, because in those cases of non
regular updates a lot of requests would be useless thus resulting in
wasting bandwidth. This is the reason of an improvement we are
studying, that is a polling policy able to fit the frequency of the
updates of the news from the Web servers: this policy, we called
smart polling policy, adjusts the frequency of the requests for updates
to the frequency with which Web portals generate new information.

122

Another factor that may affect the overall performances of Dy-
namoNews is the host database management system, which is in
our implementation iseXist, an Open Source native XML database
whose performance seems not up to those of the DBMSs normally
adopted to service Web portals. To avoid long response times even
for simple queries, we have implemented a cache engine where the
most frequently requested queries are stored.

We introduced two different polling policies, which can be chosen
and plugged in our application independently from each other. The
first is called ”flat” polling policy, as it does not depend from update
frequency, while the second is called ”smart”, as it tries to fit the
update frequency of each Web portal. It is possible to reconfigure
at run-time the Poller component of the application (see further), in
order to switch policy at runtime. It must however be considered that
the smart polling converges asymptotically to the flat one.

With the flat polling policy, Web resources are queried for updates
at regular time intervals which can be modified. It is the simplest
strategy and it well applies to regularly updated information. The
first improvement one can make over flat polling is to compute the
frequency of the requests of updated Web documents as an estimate of
the frequency. Then such estimate is compared to thereal frequency
with which Web documents are updated or newly generated. Both
the estimate and thereal times are used to compute a new estimate.
That is:

τn+1 = ατn + (1 − α)tn (1)

where τn+1 is the estimate at the(n + 1)-th iteration, τn the
estimate at then-th iteration, tn the real frequency at then-th
iteration. The parameterα, whose value stands in the interval between
0 and1, represents the relative weight of the previous estimate w.r.t.
thereal frequency. Asτn+1 takes into account the previous iterations,
α represents the importance given to previous iterations.

Some considerations about the parameterα. Its value, comprised
between0 and 1, influences the velocity with which the frequency
of polling equals the frequency with which Web portals publish new
information. We found, on the other side, that its value does not
influence theconvergenceof the frequency of polling to the frequency
of publication, but only its velocity. Analogous results can be found
in literature, even if in rather different situations. See, for example,
the algorithm of processes scheduling known asshortest job first[11],
as well as the weighed mean frequently used in iterative calculations
typical of the Self-Consistent Integral Theories in Statistical Many-
Body Thermodynamics. Please refer to the survey in

VII. R ELATIONSHIP WITH LITERATURE

The amount of information currently available in HTML format is
really huge, but the main limitation in its fruition consists in its poor
machine-readability, that is, in its lack ofstructure. Such problem
can be solved, vis-a-vis the size of the Web and of individual Web
portals, by making the extraction and annotation phase automated at
least to some extent. To the best of our knowledge, the most advanced
example of this approach is the LiXto [12] suite. LiXto supports the
semi-automated creation of extraction programs, called filters, which,
thanks to some clever logic-based representation of the HTML/XML
structure [13], [14] of the document, is tolerant to some degree of
elaboration of the source. We are planning to experiment with LiXto
to make our extraction function capable of re-arranging the meta-tags
annotation to adapt to changes in the HTML source.

VIII. F INAL CONSIDERATIONS

We have described a Web application that generates and manages
the RSS feeds extracted from HTML Web documents. The proposed
architecture is intended to be applicable to arbitrary Web sites,
provided that the Web administrator decides to start the service by
adding the proposed meta-tags to the commented part of each page.

In order to collect the information relevant for the generation of
a RSS feed we have defined a set of XML-like annotations which
have to be inserted inside the HTML documents that contain the
information we want to convert. The information is then extracted and
organized into an XML format for storing. Typical actions which can
be made include aggregation, query and conversion to RSS formats
for syndication.

The most contemporary Web Content Management Systems
(CMS) can handle news publishing and channeling by dynamic
procedures which, upon user’s request, retrieve data from the DBMS,
the insertion of Dynamo meta-tags is accomplish just by some slight
modification of those procedures (usually coded in PHP, JSP or ASP).
Although content management systems of the last generation allow
the publication of news in RSS format, Dynamo has the advantage
of preparing and storing XML news and querying the database in a
moresemantics-drivenway than with the relational databases which
normally underlie CMSs.

We believe that there is room in the current landscape of the Web
for this solution as it allows upgrading existing Web portals with
minimal effort. As an instance, our recent work [15] describes how
to bring a legacy system for the managing of community Web pages
up to RSS news channeling. By hosting hundreds of discussion lists,
accessed daily by thousands of users, the considered application is a
good, and successful testbed for Dynamo.

REFERENCES

[1] WC, “Rdf site summary (rss) 1.0.” [Online]. Available: http:
//web.resource.org/rss/1.0/spec

[2] “Rss 2.0 specification.” [Online]. Available: http://blogs.law.harvard.
edu/tech/rss

[3] S. Bossa, Towards the Semantic Web: a platform for dynamic
generation, query and archival of RSS contents (In Italian).
http://informatica.unime.it/: Graduation Project in Computer Science,
Univ. of Messina, 2005.

[4] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. Dissertation, 2000.

[5] R. L. Costello, “Building web services the rest way.” [Online].
Available: http://www.xfront.com/REST-Web-Services.html

[6] W3C, “Xsl transformations (xslt) version 1.0,” 11 1999.
[7] ——, “Xml schema part 0: Primer version 2.0,” 10 2004. [Online].

Available: http://www.w3.org/TR/xmlschema-0
[8] R. Bourret, “Xml and databases.” [Online]. Available: http://www.

rpbourret.com/xml/XMLAndDatabases.htm
[9] J. M. Snell, “Resource-oriented vs. activity-orientedweb services.”

[Online]. Available: ftp://www6.software.ibm.com/software/developer/
library/ws-restvsoap.pdf

[10] W3C, “Soap version 1.2 part 0: Primer,” 06 2003. [Online].Available:
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

[11] G. G. Abraham Silberschatz, Peter Galvin,Operating System Concepts
VI Edition. John Wiley & Sons, 2002.

[12] G. Gottlob, R. Baumgartner, and S. Flesca, “Visual web information
extraction with lixto,” Proc. of VLDB Conference, 2001.

[13] G. Gottlob and C. Koch, “Monadic datalog and the expressive power of
languages for web information extraction.”Journal of the ACM, vol. 51,
2004.

[14] G. Gottlob and et Al., “The lixto data extraction project – back and forth
between theory and practice.”Proc. of PODS, Principles of Database
Systems, 2004.

[15] F. DeCindio, G. Fiumara, M. Marchi, A. Provetti, L. Ripamonti, and
L. Sonnante, “Aggregating information and enforcing awareness across
communities: the dynamo rss feeds creation engine,” inProc. of COM-
INF06 Workshop. Springer LNCS, 2006.

123

Building Agents with Agents and Patterns

L. Sabatucci (1), M. Cossentino (2,3), S. Gaglio (1,2)

(1) DINFO - Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo - Viale delle Scienze, 90128 Palermo, Italy
 (2) Istituto di Calcolo delle Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche;

(3) SET - Université de Technologie Belfort-Montbéliard - 90010 Belfort cedex, France
sabatucci@csai.unipa.it; cossentino@pa.icar.cnr.it; gaglio@unipa.it

Abstract—The use of design patterns proved successful in

lowering the development time and number of errors when
producing software with the object-oriented paradigm. Now the
need for a reuse technique is occurrin g for the emergent agent
paradigm, for which a great effort is currently spending in
methodology defin itions. In this work we present our experiences
in the identific ation, descr iption, production and use of agents
patterns. A repository of patterns was enriched dur ing these
years so to request a classification criteria and a documentation
template useful to help user during the selection.

Index Terms—Multiagent systems, patterns, reuse models and
tools.

I. INTRODUCTION

N the last years, multi-agent systems (MAS) achieved a
remarkable success and diffusion in employment for

distributed and complex applications. In our research we focus
on the design process of agent societies, activity that involves
a set of implications such as capturing the ontology of the
domain, representing social aspects, and intelligent
behaviours. In the following, we will pursuit a specific goal:
lowering the time and costs of developing a MAS application.
We think that a fundamental contribution could come by the
definition of reuse techniques and tools providing a strong
support during the design phase. We identified in design
patterns a good solution to this need. Significant motivations
to the use of design patterns in a project are:
x Patterns communicate knowledge: they allow experts to

document, reason and discuss systematically about
solutions applied to specific problems. Patterns also help
people to learn a new design paradigm or architectural
style, and help new developers ignore traps and pitfalls
that have been learned only by costly experiences [11].

x Patterns increment quality of software: design patterns
are signs of quality because their use implies safe and
elegant solutions that are validated by the experience
rather than from testing [19].

x Patterns improve the documentation process: the
pattern catalogue constitutes a documentation repository
where the designer may explore possible solutions for
his/her problem: each pattern provides a comprehensible
way of documenting complex software architectures by
expressing the structure and the collaboration of
participants at a level higher than source code [20].

x Patterns decrease development time: design patterns

are strategies helping people to find their way through
complex situations by applying ready solution to solve
diffi cult problems. Also they help in diagnosing, revising,
and improving a group's work [11][14].

x Patterns improve software maintenance: a project
obtained with patterns reuse is robust and simpler to
modify with respect to traditional projects [19].

Our definition of pattern come from traditional object-

oriented design patterns, revised for the agent paradigm. In
particular we use an ontological approach, strongly influenced
by the study of multi-agent system (MAS) meta-models.

In this paper we will present AgentFactory II, a tool for
working with patterns for agents, integrating a user interface
to select and apply patterns from a repository. AgentFactory II
is based on the experience done with a previous release of the
software [7] that was useful for exploring the possibility of
designing a multi-agent system using design patterns as
building blocks and successively to generate code from them.
The major innovation of the tool is an expert system able to
reason about the project and patterns, and a complex system to
generate source code and documentation.

The paper is organized as following: in the section II we
discuss the PASSI design process that is the base of our
approach; in section III we introduce our agent patterns
definition whereas in section IV we illustrate the architecture
adopted to realize the tool; in section V we illustrate the
DocWeaver, a specific agent of this society, that is responsible
to generate the documentation in a specific agent-oriented
style. Finally in section VI we report some conclusions.

II. THE PASSI DESIGN PROCESS

In our work we will refer to the PASSI [4] methodology
that represents the starting point and the natural context of our
pattern definition and application. PASSI (Process for Agent
Societies Specification and Implementation) drives the
designer from the requirements analysis to the implementation
phase for the construction of a multi-agent system. The design
work is carried out through the construction of five models
obtained by performing twelve sequential and iterative
activities. Briefly, the phases and activities of PASSI are:
x System Requirements. It produces a description of the

functionalities for the system-to-be, driving an initial
decomposition of the problem according to the agent
paradigm. The four activities are: (i) the Domain

I

124

Fig. 1 – The three levels architecture for our pattern definition

Table 1 – Description for the GenericAgent pattern

Name: GenericAgent
Classification: internal architecture/single-agent
Intent : this pattern may be used as the root before
applying all single-agent patterns because it gives to an
agent the ability of registering/deregistering to the
platform services (AMS and DF).
Motivation : this pattern is useful for agents who want to
discover if the system offers a specific service and what
agents can provide it. The GenericAgent pattern adds the
ability of registration to the platform (white/yellow pages)
so that the agent is accessible for conversations.
Preconditions: none.
Postconditions: the agent is able of registering and de-
registering to AMS e DF.
Solution (Structure, Participants and Collaboration): the
target agent is enriched with an attribute for listing the
description of all its services offered to the community. A
registerDF() and registerAMS() methods with their
correspondent deregisterDF() and deregisterAMS() are
introduced to agent class.

Related Patterns: this pattern may be the predecessor
for all single-agent patterns. The LogAgent is a variant of
this pattern which may be used specifically for
debugging/testing aims.

Requirements Description, where the system is described
in terms of the functionalities; (ii) the Agent Identification
where agents are introduced for dealing with identified
requirements; (iii) the Role Identification where agents'
interactions are described by the introduction of roles;
(iv) the Task Specification where the plan of each agent is
draft.

x Agent Society. It is the phase where the agent paradigm
is fully exploited. It is composed of four activities: i) in
the Domain Ontology Description the system domain is
represented in terms of concepts, predicates and actions;
ii) the Communication Ontology Description focuses on
the agents' communications, described in terms of
referred ontological elements, content language and
protocol; iii) in the Role Description the distinct roles
played by agents are detailed within their dependencies.

x Agent Implementation. It is a model of the solution
architecture in terms of required classes with their
attributes and methods. It is composed of two main
streams of activities (structure definition and behaviour
description) both performed at the single-agent and multi-
agent levels of abstraction.

x Code. It is a model of the solution at the code level. It is
largely supported by patterns reuse and automatic code
generation.

x Deployment. It is a model of the distribution of the parts
of the system across hardware processing unit; it
describes the allocation of agents in the units and any
constraint on migration and mobility.

x Testing. It has been divided into two different activities:
the Agent and the Society test. In the first one the
behavior of each agent is verified with regards to the
original requirements whereas during the Society Test,
integration verification is carried out together with the
validation of the overall results of the iteration.

III. AGENT PATTERNS

In order to work with agent design patterns we need a
definition of what such a pattern is. We agree with the
traditional object-oriented definition for design patterns, but
we introduced some changes in order to adapt it for the agent
paradigm.

We look at a pattern as “a problem which occurs over and
over again in our environment, and then describes the core
solution to that problem” [1]; the common use of design
patterns is to describe best practices, good designs, and
capture experience in such a way that it is possible for others
to reuse them [11].

Our design patterns approach was conceived during the

development of the PASSI process [4] with the goal of
introducing a viable reuse technique for the development of
MASs: our reuse technique uses some PASSI diagrams for
describing the proposed solution. In this way the “solution”
introduced is expressed in agent oriented terms, for instance
agent, role, communication, goal and so on.

Jackson in an analysis of software design phases [15]
distinguishes between the problem and the solution context:
the problem and its solution are separated entities located in
two different conceptual positions. The solution stays in the
computer and in its software (machine domain) whereas the
problem is in the world outside from it (application domain).
Our approach to the definition of agent patterns spreads across
both of the application and machine domains. However we
need to specialize the Jackson’s domains to cope with the
agent concept. When using agents as a design paradigm the
solution is generally quite abstract with respect to its
expression in terms of object oriented concepts. We split the
machine domain in two sub-domains, introducing the “agency
domain” between the problem and the implementation
domains (see Fig. 1). Our pattern architecture is based on
these three levels:

Pattern problem. A fundamental part of a pattern is the
textual description of the problem for which it may be useful.
It is composed by: (i) motivation, an explanation of how (and
why) the pattern works, and why it is good, putting into
evidence steps and rules required to resolve the problem; (ii)
the application context describes the conditions under which
the problem and the solution seem to recur, and for which the

125

solution is desirable; (iii) related patterns element describes
other patterns that could solve a similar problem. As an
instance of pattern we report the GenericAgent described in
details in Table 1.

Pattern solution. It represents the solution (introduced
when adopting the pattern) in terms of agent-oriented
elements. The solution description illustrates the static
structure and the dynamic behaviour introduced by the pattern
in terms of resources, participants and collaborations. The
formal description is a set of rules expressed using a logical
language based on Jess. These rules are classified in three
groups: i) the preconditions have to be verified before to
introduce the pattern, ii) the postconditions are rules to verify
after the pattern application (they may condition future
patterns application), and iii) the solution rules that are a
logical description of the elements constituting the solution
and their behaviour/interactions. Our patterns for agents are
explicitly defined to be used in conjunction with the PASSI
methodology [4]; as a consequence the solution is described
using some diagrams from the PASSI phases depicting agents’
internal structure and social behaviour. Roles, tasks,
communications, and interaction protocols are examples of the
involved elements. An instance of rules for the pattern
solution for the previously introduced GenericAgent is shown
in Table 2; in the subsection IV.B we will describe how these
rules influence the design when the pattern is introduced in the
project.

Pattern implementation. This represents the lower level of
the solution containing the effective implementation in object
oriented terms. It uses diagrams of PASSI depicting the static
structure of the involved agents in terms of classes, attributes
and methods using conventional UML class diagrams and
dynamic behaviour of one or more agents involved in
interactions using activity or state-chart diagrams.

The main feature of our tool is to automatically generate the
solution at this implementation level. This feature will be
discussed in the subsection IV.C.

IV. THE AGENT FACTORY TOOL

The AgentFactory II tool was designed and developed after
some experiences done developing and using the previous
version of the tool [5][8]. The strategic choice distinguishing

this new version of the tool from the previous one is that we
are developing it as a multi-agent system.

Table 2 - Rules for the GenericAgent pattern
(deffunction generic_agent (?name)

(if (generic_agent_precond ?name) then
 (add_new agent ?name)
 (add_new agent_action “register_DF” ?name)
 (add_new agent_action “unregister_DF” ?name)
 (add_new agent_action “register_AMS” ?name)
 (add_new agent_action “unregister_AMS” ?name)
))

(deffunction generic_agent_precond (?name)
 (if (exist (agent ?name)) then
 (return FALSE)
 else
 (return TRUE)
))

)

The system as shown in Fig. 2 is basically composed by
four agent organizations [11] (or groups of agents responsible
of a functional area): i) the pattern architect, ii) the agent
model, iii) the aspect weavers and iv) the object model. Each
organization will be discussed in details in the following
subsections. The UserAgent, external to all these
organizations, is responsible to interact with the designer,
using a GUI (a screenshot is reported in Fig. 3); this agent has
the goal of adapting its GUI to the agents present in the
system (that are not a-priori known); in order to deal with an
ontology that is not a-priori known we used an high level
ontology an reflection techniques [21][2]. In Fig. 3 we show
an instance of the UserAgent GUI: the tree on the left panel
reports the model hierarchy of the project; in the right panel it
is possible to manually edit data for the element selected in the
tree (often elements are introduced using patterns);
specifically, in the example, the ParticipantRole role is
selected and the right panel shows text-fields for this element:
the role name, the author and the documentation, the agent
who plays the role, the tasks involved in the role and finally
some custom attributes.

A. The Agent Model Organization

This organization is responsible to manage the “agent
solution” level of our architecture (reported in Fig. 2). This
organization is designed to front a hard problem: maintaining
the meta-model of our patterns independent from the specific
methodology employed to design a system. This is a hard goal
because all the agent-oriented methodologies use specific
meta-models, involving different concepts or assigning them
different meanings.

We structured the “Agent Model” as a holonic organization
[12] (shown in Fig. 4) based on three basic roles (that are
played by the agents of the organization): i) the MMDF is the
head of the hierarchy, ii) the Fragment Agents stay at the
intermediate level, whereas iii) the Model Agents are the
bodies of this holonic structure.

Fig. 2 – Organizations and agents involved in the

AgentFactory II to ol

126

The most important role of the organization is played by the

MMDF (MetaModel Directory Facilitator) agent, that is
inspired to the FIPA [8] Directory Facilitator (DF); in the
abstract architecture defined by FIPA, the DF is the agent
responsible to maintain the yellow pages for all the services in
the system by communicating with the DF all the agents may
register their own services or discovery services offered by
other agents. The MMDF agent has a similar function but
focused on building the meta-model used during design: at the
beginning the meta-model is empty; when the model agents
are executed they register one or more meta-model elements:
therefore the MMDF is populated at run-time (according to a
specific methodology).

Fragment agents represent “pieces of a methodology” and
are responsible to group model agents coming from the same
methodology in a model holon; this was done for two
motivations: i) fragment agents coordinate the work among
their model agents (internal collaboration); ii) fragment agents
enable the collaboration of elements coming from different
methodologies (external collaborations). For illustrating this
concept, in Fig. 4 we show a possible configuration for the
“Agent Model” organization. We have two fragments coming
from two agent oriented methodologies: PASSI [4] and
Tropos [4]. Each of these fragments is responsible for
different elements of the meta-model (requirement, role and
agent for PASSI, goal, resource and agent for Tropos);
intersections among model agents may be treated in two
different ways: a concept may be shared among different
fragments (as the agent in Fig. 4) or may be exclusive of a
methodology.

B. The Pattern Architect Organization

This is the organization responsible for managing the
pattern repository and introducing selected patterns into the
system. Our pattern implementation is realized using a first

order language; we have chosen to extend the Jess language
[16] that is a lisp-like language, adding the ability to access to
the services offered by the Agent Model (for instance to query
for a specific element, or to introduce a new element). In
Table 2 there is an example of a pattern: the GenericAgent;
that is used for giving to an agent the ability of
registering/deregistering in/from the platform services
(white/yellow pages). This pattern is useful for agents who
want to discover if the system offers a specific service and
what agents can provide it. The pattern is done by a rule,
generic_agent, that is activated using a parameter (the name
of the new agent). This simple set of rules verifies
(precondition) if an agent with the same name exists in the
project, an then (pattern solution) adds the agent with some
abilities (register_DF, unregister_DF, register_AMS,
unregister_AMS). In this example there are no postconditions.

C. The Aspect Weavers Organization

A significant characteristic of AgentFactory (already
present in the early version of the tool) is the automatic code
generation for different platforms (until now we supported
only Jade [2] and FIPA-OS [10], but it was conceived for
being extended with other agent-platforms that are compliant
with the abstract FIPA architecture [8]). The previous version
of the tool had a code generation engine based on a sequence

Fig. 3 - A screenshot of the AgentFactory UserAgent

Fig. 4 – Agents and roles in the holonic structure for the “Agent

Model” organization

127

Fig. 5 - The portion of the PASSI MAS meta-model used to generate the documentation with the DocAgent; on the right a screenshot of the

hypertextual documentation generated for the case study

of transformations according to the MDA architecture [17]. In
this new version we are realizing a more complex
transformation engine, that is inspired to Aspect Oriented
Programming (AOP) [17] in order to reduce the gap between
the agent solution (introduced using patterns from the
repository and refined by the designer) and the object-oriented
solution (that is typically an object oriented system). We
referred to collaborative team-work as a metaphor for where
different human-roles (that are expert in their own sector)
individually work in a specific competence area, giving their
personal contribution to the final solution. In our context
agents are the experts and each area of competence is an
aspect of the agent-oriented solution to take in consideration
for code production. Agents have to collaborate in order to
converge all their single contribution in the same final object-
oriented code. In the AOP terminology the engine realizing
this convergence is called ‘aspect weaver’; this is the
motivation for the name chosen for this organization: an
aspect weaver agent is the ‘expert’ of a specific area of the
project; it is responsible to a specific aspect of the project and
it is able to generate an output in terms of object-oriented
solution. The entire organization is organized to weave all the
contributions coming from different agents and to meet them
in an unique solution.

We actually realized only three weaver agents: i) an
ArchitectureWeaver (responsible of the agent skeleton and
communications), ii) an OntologyWeaver (responsible to add
ontology to the messages exchanged by agents) and iii) a
DocWeaver (that creates the documentation; it will be
discussed in details in section V). The ArchitectureWeaver

fundamentally carries out the code generation functionality of
the previous version of AgentFactory, generating the base
architecture of the agents within their abilities/tasks. The
OntologyWeaver adds the management of the ontology:
concepts, predicates and actions that are used in the agent
knowledge and communications.

D. The Object Model Organization

This organization is conceived for realizing the agent
implementation level of our architecture (see Fig. 2); it is
relative to the object oriented solution. Agents of this
organization are responsible to treat elements of the object
oriented paradigm (such as classes, methods, attributes and so
on). The organization is composed by three agents: i) the MAS
agent, ii) the Ontology agent and iii) the Testing agent. The
MAS agent is responsible to handle data of a whole multi-
agent system taking in consideration both the static structure
of the agent and the behaviour of the multi-agent system. The
organization is able to export the source code for Jade and
FIPA-OS agent platforms. The Ontology agent is responsible
to generate classes for the system ontology: these are
serializable classes that are used in the agents’ knowledge and
communications. The Test agent (still under development)
will be responsible to generate stub and driver agents for
simulating the communications and collaborations among
system agents (integration testing).

V. A WEAVER AGENT: DOCWEAVER

In the past, during the development of multi-agent systems
we suffered the lack of a specific technique for documenting

128

our source code; we used Javadoc for generating the API
documentation (from comments in source code), but we noted
it is difficult to navigate because it implies a shift in the
paradigm (from agent-oriented to object-oriented and vice-
versa); whereas the solution is expressed in agent oriented
terms, the documentation is expressed in object oriented
terms: the mapping is not direct and easy. Therefore we
demanded a way for documenting our solution using directly
an agent oriented style.

From these considerations we deducted the requirements
for the AgentDoc, an agent oriented style for documenting a
multi-agent system; the terms included in this documentation
are not fixed, but are depending from the specific
methodology used and therefore from the specific MAS meta-
model adopted. AgentFactory II is naturally inclined to use
different meta-models, so we create a DocWeaver agent
responsible to generate the AgentDoc for each designed MAS.
In order to generate this documentation the AgentDoc uses the
meta-model stored in the MMDF. This is not enough because
the agent requires information about how an element of the
MAS meta-model influences the documentation content. In
order to solve this problem the DocWeaver uses a (manually
built) configuration graph that specifies what elements (graph
nodes) have to be included in the documentation (for each
instance of the included elements an HTML page is
generated); whereas the relationships among the elements
(graph arcs) generates links among pages: the result is a
navigable hypertextual documentation.

In the grey box in Fig. 5 we report the graph used for
generating the documentation for a PASSI project. It is a
simplified version of the PASSI meta-model composed by
Agent, Role, Task, Communication and Ontology. Fig. 5
shows an example of the generated documentation concerning
an agent of the system; the page presents a left frame with a
list of the system elements (agents, roles…), and a right frame
with details of the selected item; for instance we focus on an
agent and its details are: roles, communications and ontology
(that are the nodes with distance one from the agent node).

VI. CONCLUSIONS AND FUTURE WORK

Our conviction is that pattern reuse is a very challenging
and interesting issue in multi-agent systems as it has been in
object-oriented ones. However we are aware that the problems
arising from this subject are quite delicate and risky.
Nonetheless, we believe, thanks to the experiences we made
in application fields such as informative systems and robotics,
that it is possible to obtain great results with a correct
approach.

In order to support the design of multi-agent system we
developed a complex multi-agent system for building agents
with a pattern support. This tool is also able to generate the
documentation and the source code for the project. Actually
the code generated is just a bit richer that the code generated
in the previous version, however we are working on a more
complex organization with a greater number of weaver agents

involving other aspects as role, task, plan and so on; in this
context we require a more precise coordination mechanism
among the weavers. Another improvement under development
is the Testing agent, that would be employed for integration
testing on multi-agent system.

REFERENCES
[1] Alexander C. 1979. The Timeless Way of Building. Oxford University

Press
[2] Arnold, K. and Gosling, J. 1998. The Java Programming Language (2nd

Ed.). ACM Press/Addison-Wesley Publishing Co.
[3] Bellifemine F., Poggi A. and Rimassa G. 2001. Developing Multi-agent

Systems with JADE. In proceedings of The 7th international Workshop
on intelligent Agents. Agent theories Architectures and Languages (July
07 - 09, 2000), LNCS 1986, Springer-Verlag, London, pp. 89-103.

[4] Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J., and Perini A.
2004. TROPOS: An Agent-Oriented Software Development
Methodology, Journal of Autonomous Agents and Multi-Agent Systems,
Kluwer Academic Publishers 8(3), pp. 203-236

[5] Chella A, Cossentino M and Sabatucci L. 2003. Designing JADE
systems with the support of CASE tools and patterns. Exp Journal, Sept;
3(3):86–95.

[6] Cossentino M. 2005. From Requirements to Code with the PASSI
Methodology, In Agent-Oriented Methodologies, edited by B.
Henderson-Sellers and P. Giorgini, Idea Group Inc., Hershey, PA, USA

[7] Cossentino M., Sabatucci L. and Chella A. 2003. A Possible Approach
to the Development of Robotic Multi-Agent Systems. IEEE/WIC Conf.
on Intelligent Agent Technology (IAT'03). Halifax (Canada), October,
13-17, pp 539- 44.

[8] Cossentino M., Sabatucci L. and Chella A. 2003. A Possible Approach
to the Development of Robotic Multi-Agent Systems - IEEE/WIC Conf.
on Intelligent Agent Technology (IAT'03). October, 13-17, 2003.
Halifax (Canada).

[9] FIPA Abstract Architecture – [Available on Internet]
http://www.fipa.org/repository/architecturespecs.html

[10] FIPA-OS Website - [Available on Internet], http://fipaos.sourceforge.net
[11] Ferber J., Gutknecht O. 1998. A Meta-Model for the Analysis and

Design of Organizations in Multi-Agent Systems. In Third International
Conference on Multi Agent Systems (ICMAS'98); p 128.

[12] Fischer K., Schillo M. and Siekmann J. 2003. Holonic Multiagent
Systems: A Foundation for the Organisation of Multiagent Systems,
Lecture Notes in Computer Science, Volume 2744, Jan 2003, Pages 71 –
80

[13] Gamma E., Helm R., Johnson R., and Vlissides J. 1994. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

[14] Greenfield J. and Short K. 2003. Software factories: assembling
applications with patterns, models, frameworks and tools. In Companion
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Anaheim, CA,
USA, October 26 - 30, 2003). OOPSLA '03. ACM Press, New York,
NY, pp. 16-27

[15] Jackson M. 2001. Problem Frames: Analysing and Structuring Software
Development Problems, Addison-Wesley

[16] Jess Rule Engine – available at: http://herzberg.ca.sandia.gov/jess/
[17] Kiczales, G. 1996. Aspect-oriented programming. ACM Comput. Surv.

28, 4es (Dec. 1996)
[18] OMG Model Driven Architecture - [Available on Internet]

http://www.omg.org/mda/
[19] Prechelt L., Unger B., Philippsen M. and Tichy W. 2002. Two

Controlled Experiments Assessing the Usefulness of Design Pattern
Documentation in Program Maintenance. IEEE Trans. Softw. Eng. 28(6),
pp. 595-606.

[20] Schmidt D. and Stephenson P. 1995. Experience Using Design Patterns
to Evolve Communication Software Across Diverse OS Platforms, In
proceedings of the 9th European Conference on Object-Oriented
Programming, LNCS 952, pp. 399 – 423

[21] Sun Microsystems. Java reflection. 2002. Available on internet at
http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html

129

A Repository of Fragments for Agent Systems Design

Valeria Seidita1, Massimo Cossentino2,3 and Salvatore Gaglio1,2

1Dipartimento di Ingegneria Informatica - University of Palermo
Viale delle Scienze 90128 Palermo, Italy

2Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche
Viale delle Scienze, 90128 Palermo, Italy

3SET - Université de Technologie, Belfort-Montbliard
90010 Belfort cedex, France

seidita@csai.unipa.it, cossentino@pa.icar.cnr.it, gaglio@unipa.it

Abstract

The creation of a new design process for a specific sit-
uation using the method engineering approach is based on
the composition of a set of reusable method fragments. The
request for these reusable method fragments leads to the
need for a repository containing standardized fragments
that can be easily selected and assembled in new design
processes. In this work we present a definition of method
fragment coming from the work of the FIPA Technical Com-
mittee Methodology and a repository where fragments are
classified according to the specific process component (ac-
tivity, process role, and work product) they underpin and on
the specific MAS Metamodel element(s) they work on.

1 Introduction

Today a relevant number of design processes for devel-
oping multi agent systems can be found in literature; each
of them is well suited for a specific purpose or for a spe-
cific agent architecture (BDI, reactive, state-based,. . .); one
unique (and eventually standardized) design process fitting
all possible situation does not exist; in the agent-based de-
velopment context, we are now facing the same problem
some researchers faced a few years ago when the definition
of a new discipline was given, the Method Engineering.

Method Engineering aims at solving the previously said
problem focusing on the creation of new techniques and
tools allowing the construction of a specific design process
(in literature referred as a situational method) [18]. Many
researchers applied this paradigm and shared similar ap-
proaches: constructing and adapting new design processes

by assembling (reusing)method fragmentfrom a repository
(calledmethod base) built by splitting up some existing de-
sign processes [16][22][21][3][17].

Method engineer is the key stakeholder during a process
construction activity; he develops two main phases, the first
one regards extracting, defining, standardizing and storing
in the repository the method fragments coming from exist-
ing processes while the second one consists in composing
the new process through the selection and the assembly of
the right fragments.

Our activity in this field started a few years ago within
the FIPA Technical Committee (TC) Methodology from
where the basis of this work arose. More specifically we
acknowledge a great dependence of our method fragment
definition with the one proposed in the FIPA context and
also the design processes we studied are among the most
important in that context (Adelfe, Gaia, PASSI, Tropos).

In this paper we introduce the repository we used for
storing the fragments extracted from the above cited de-
sign processes. It is essentially a database where method
fragments are stored in form of text documents and can be
accessed using a categorization based on the process meta-
model elements that we consider central in agent-systems
design (process role, phase/activity, work product and MAS
Metamodel element). It is interesting to note that, in our
opinion, this latter element (the MAS Metamodel element,
MMM element hereafter) is one of the keys of agent-system
design today. The lack of a standardized or at least widely
accepted MAS Metamodel brings to several different inter-
pretations for it. Method engineers cannot neglect this as-
pect and we think that one of the first activities while build-
ing the new process is defining the MMM elements that he
will instantiate and their relationships.

130

One of the most difficult activities in constructing our
repository was its conceiving in such a way that fragments
could be easily retrieved. We think that our solution to this
problem, coherently with the choice of basing categoriza-
tion on the four cited elements of the process metamodel
is interesting: we built a taxonomy within each of the four
basic categories (process role, phase/activity, work product,
MMM element). In this way, a method engineer who aims
at retrieving a fragment that produces a structural diagram
(a kind of work product in our taxonomy) and involves a
specific process role (like the Domain Analyst that is an-
other item of our taxonomies), can easily find a list of all
the fragments in the repository satisfying these criteria.A
similarly interesting search could be related to the need for
designing some kind of MMM element (suppose ontologi-
cal concepts) because the method engineer wants to intro-
duce a fragment about that in his/her new process.

The paper is organized as follows: in the next section we
introduce our method fragment definition, in section three
we describe the structure of our repository and in section
four we provide an overview on the content of our method
base; finally in section five, some conclusions are drawn.

2 Method Fragment

FIPA TC Methodology approach shares a similar mean-
ing of method fragment with Harmsen and Brinkkemper
[3][16][14]. A method fragment is a portion of a design
process composed of two main parts, the process and the
product. In our specific approach (also grounded on the
process model proposed by an OMG specification, SPEM
[20]) main process elements are Activity, Role and Arte-
fact; more explicitly a development process is composed
of Activities performed by one (or more) Role(s) responsi-
ble for producing artefacts, Activities produce or consume
Artefacts as inputs or outputs. From now on, in order to be
compliant with SPEM notation, we will refer to WorkProd-
uct and ProcessRole in place of, respectively, Artefact and
Role.

According to our approach a method fragment is com-
posed as follows :

1. A portion of process (what is to be done, in what or-
der), defined with a SPEM diagram.

2. One or more deliverables (WorkProducts like
(A)UML/UML diagrams, text documents including
code and so on). The result of the work could
also be some kind of product/artefact that is not be
delivered to anyone outside the development pro-
cess. It also includes a reference to a recommended
notation/language/ structure to be used.

3. Some preconditions (they are a kind of constraint be-
cause it is not possible to start the portion of process

specified in the fragment without the required input
data or without verifying the required guard condi-
tion).

4. A list of concepts (related to the MAS Metamodel) to
be defined (designed) or refined during the specified
process fragment.

5. Guideline(s) that illustrates how to apply the fragment
and best practices related to that.

6. A glossary of terms used in the fragment (in order to
avoid misunderstandings if the fragment is reused in a
context that is different from the original one).

7. Composition guidelines are a description of the con-
text/ problem that is behind the portion of methodol-
ogy from which the specific fragment is extracted; it
can be used to facilitate fragment reuse in the proper
context.

8. Aspects of fragment are a textual description of spe-
cific issues like for instance: implementation platform
for which the fragment is more suitable, application
area, etc.

9. Dependency relationships that can be used to identify
fragments strongly related to the considered one.

It can be represented by the metamodel shown in Fig.
1 where the presented elements are logically divided in
three areas, the first one concerns the fundamental pro-
cess features (Activity, ProcessRole, WorkProduct and
MMMElement- drawn in grey in the figure), the second one
concerns the reuse features of the fragment and the third one
its representation in the repository.
As regards the first area, the main element is the Frag-
ment that is part of a Development Process based on
a well defined LifeCycle (for example waterfall[13],
iterative/incremental[2]); Lifecycle, in the area concerning
the reuse of the fragment, allows positioning the fragment
in the proper place in the development cycle.

A fragment is composed of elements such as Activity,
ProcessRole and WorkProduct useful for the description of
the portion of process related to the specific fragment: an
Activity describes a portion of work, performed by a Pro-
cessRole [20] during which some data are used as input or
produced as output, besides an Activity is an element of a
Phase and it is composed of Steps, which are the smaller
parts of work to be performed. At last an Activity can pro-
duce one or more WorkProducts, whatever consumed, pro-
duced, modified or refined during the portion of work con-
sidered in the fragment; a WorkProduct can be a diagram
(for example an UML diagram) or a text document, and

131

Figure 1. The method fragment metamodel

refers to a Modelling Language Notation. A WorkProd-
uct is classified according to a WorkProductKind that de-
scribes the WorkProduct category, for instance text docu-
ment, model, code library etc., it is built by a ProcessRole,
which is responsible for its production. MMMElement (the
Multi agent system Meta-Model Element) is a very impor-
tant element of the fragment metamodel we adopted, it is
the generic component of a MAS Metamodel (Multi Agent
System metamodel) which constitutes the main building
block of an agent design methodology. A MAS Meta-
model is a structural/ontological representation of the el-
ements (for instance agent, role, behaviour, ontology, ...)
and relationships that will be instantiated in an actual sys-
tem; instances of MAS Metamodel elements are described
in WorkProducts and are also considered as input/output of
activities; it is worth to note that in our approach the ul-
timate aim of the work performed in a fragment is to de-
fine/refine/relate MMMElements.
Two elements of the definition, belonging to this area, are
not explicitly presented in the metamodel, but included in
other elements, they are: portion of process, it is represented

by the activities that are parts of the whole process, and list
of concepts, which is composed of the set of MMMelements
that are designed during the portion of process the fragment
represents.
The second area (in Fig. 1) shows all the elements allow-
ing the fragment reuse and assembly, they are the Glossary
of terms used in the fragment, the Aspect, in the form of a
textual description useful to identify the field of fragment
application (several fragments are rather specific for some
kind of agent architecture like the BDI one or an imple-
mentation platform like JADE and are not suitable for dif-
ferent contexts without a significant maintenance), and the
Composition Guideline (while Aspects deal with the target
system features, Composition Guidelines concern the de-
velopment process and describe how and in which context
the fragment can be profitably reused).
The third area describes the fragment as it is stored in the
repository, Fragment Dependency is the only element it
contains, this is a list of fragments that have a dependant
or dependee relationship with the the specific reused frag-
ment.

132

This definition of fragment is the basis for the extraction
of method fragments from existing methodologies; in our
opinion the extraction process aims at reifying the concepts
of activity, role, work product and MAS Metamodel ele-
ment. A fragment is physically stored in the repository in
the form of a text document [7]; in these documents, SPEM
is used as a process modeling language, in particular SPEM
notation is employed to represent the main fragment ele-
ments (Activity, ProcessRole and WorkProduct) and some
diagrams (for instance SPEM Activity Diagrams) are used
to depict the work flow performed in the fragment and the
relationships among these elements.

3 Fragment Repository

As we said in section 1 method engineering is a disci-
pline which aim is to design, construct and adapt methods
for information systems development [3][22][18]; one of
the most common applications of the method engineering
paradigm is an approach based on reuse, where the con-
stituent parts of a development process (method fragments)
are stored in a repository (method base) from which they
could opportunely be selected and retrieved in order to be
successively assembled in the new required process (this
operation sometimes requires an adjustment of the fragment
in order to properly place it in the new process).

In literature we found two repositories of fragments, the
first one [15] is a method base associated to the Decamerone
CAME tool and the second one is the OPF repository [11].
These repositories share the same aim: to facilitate the se-
lection and retrieval of method fragments. In constructing
our repository we share the same aim of the two previously
cited examples but our approach is quite different.
The method base in Decamerone is based on the assump-
tion that a method engineer creates a repository of frag-
ments coming, only, from processes suitable for solving a
particular problem; this brings about a first selection of de-
sign processes. The extraction of method fragments, that
once stored in the repository may be selected and assem-
bled in the new design process, regards only a limited num-
ber of fragments. Instead we aim at collecting a relevant
number of the existing agent design processes and at stor-
ing all the fragments we can extract from them, in so doing,
during the creation of a specific design process, we have
a larger repository to be used and we can select and even-
tually adopt a fragment coming from a process that could
not fit, in its wholeness, the problem we want to solve; we
think this choice constitutes a richness for the selection ac-
tivity. As regard OPF, which is the most important element
of the OPEN approach [11], it comprises a metamodel rep-
resenting all process elements which instantiation generates
a method fragment; OPF contains a very large number of
method fragments accessible from a website and it provides

methods fragments at a very low level of granularity.
In our previous works [8][9][10][12] we extracted a lot
of method fragments coming from different agent de-
sign processes created by different research groups and
suited to deal with very different multi-agent system de-
sign philosophies, they are: Adelfe, Gaia, PASSI and Tro-
pos [1][24][6][4].
All of these processes present substantial differences in the
terms they adopted and in their meanings for specifying the
design process elements; for instance in Adelfe process the
process role called Requirement Analyst in some activities
performs the same work performed by the System Analyst
in the PASSI process; besides each process underpins a spe-
cific MAS Metamodel which elements have a meaning that
can be different from the corresponding one in another pro-
cess even if sometimes they share the same name. There-
fore the fragments, once stored in the repository, lose im-
portance and usefulness if we do not dispose a method for
their easy retrieval. We thought that the rationale for stor-
ing the fragments in the repository (and then make clever
query) was to consider the work performed by method engi-
neer when trying to assemble new methodologies, he selects
only the fragments he can really use; with this we mean that,
for instance, if there is not any ontology designer among
the workers of an organization, it is useless to include in
the process under construction an activity to be performed
by such a stakeholder (this would bring to a process that
for its application would need skills that are unavailable).
We think to facilitate the discrimination of the right frag-
ments classifying them in categories based on the main pro-
cess elements (2): Activity, ProcessRole, WorkProduct and
MMMElement. However while categorizing the fragments
we met a great problem: from the studied processes we
collected about sixteen different process roles, seventeen
phases (each of them is composed of several activities), a
lot of work products and of MMM elements. Therefore we
thought useful to categorize all the available method frag-
ments according to a taxonomy unifying (and mapping) dif-
ferent elements (from different approaches) under a unique
definition. We firstly identified the set of common activi-
ties, a design process is usually composed of, referring to
the main phases of a software engineering design process
[23][13], then the principal process roles performing these
phases and finally a set of work product kinds; Fig. 2 shows
the clustering rationale for phase and process role, it is just
an illustrative representation of our taxonomy that does not
exclude some possibility of intersection among different ar-
eas; for the work product kinds taxonomy we adopted the
structure shown in Fig. 3. In the following subsections we
will better illustrate the taxonomies.

133

Figure 2. Categories for phases and process roles in the design process

Figure 3. Categories for work product kind

3.1 Phase

Any kind of design process for information system pro-
duction, and in our case for multi agent system production,
can be decomposed in a set of activities (or phases) orga-
nized in sequential steps depending on the specific chosen
process model; regardless of their organization some kind
of activities have to be performed to develop any system.
We examined all the phases our the 4 studied processes
present (in terms of the work they carry on and their aim)
and, referring to the main phases of a software engineering
process, we clustered them in the following phases:
Requirements, it consists in the requirements elicitation
phase during which a functional model is given to provide
the purpose of the system and the interactions between the
system and the environment.
Analysis, it consists in all the activities aiming at under-
standing the system and its structure (without reference to
any implementation detail), identifying and defining the
main entities of a MAS (such as role, communication, etc.).
Design, the aim of this phase is to define the agent architec-
ture, describing agents’ behaviours and to investigate how
a society of agents cooperate to realise the system- level
goals, and what is required of each individual agent in order

to do this; all the aspects of the agent society are faced.
Implementation, gives a view on the system architecture,
methods and classes are used to describe the agent’s struc-
ture and behaviour.
Testing, it is composed of a unit test, the verify of the single
agent’s behaviour with regards to the original requirements
of the system and a society test, the validation of efficient
cooperation between agents.
Deployment, this phase defines and describes how agents
are deployed and which constraints are present for their mi-
gration and mobility.
Coding, the phase of writing the code eventually with the
aid of reusable code and source code.
Some of these phases are fundamental in a classic software
development process while some others are specific for the
agent oriented context, for instance design phase deals with
the concept of agent and explores the social aspect of a multi
agent system while a classic design phase concerns the way
the different system components provide system function-
alities.

3.2 Process Role

Starting from the phases identified in the previous sub-
section and from the examination of all the existing stake-
holders in the referring agent design processes, we clus-
tered, under the same element, a set of process roles per-
forming similar activities. First of all we associated for each
phase a process role, in Fig. 2 we can see that a general
role called Analyst performs the requirement and analysis
phases, the Designer performs design, implementation and
deployment, a tester performs testing and the Programmer
performs the coding phase, then examining all the process
role involved in the the studied processes we succeeded in
detailing each of these higher level stakeholder in the fol-
lowing:
System Analyst: models the current system and generates
information about the future system, he is responsible of
detailing use cases and he is an expert of the development

134

domain thus identifying and modeling the main elements of
the multi agent system under construction (referring to the
MMM elements).
Domain Analyst: analyzes the system environment in or-
der to determine and model MAS domain elements.
User: defines and validates the system requirements.
Agent Analyst: analyzes the system to be in order to es-
tablish which entities can be agents and to research which
architecture is necessary to build the system.
Agent Designer: analyzes and designs all the MMM ele-
ments strictly related to the concept of agent (in each design
process), such as role, task, services, interaction language
and so on.
User Interface Designer: identifies and defines the inter-
face among actors and the system.
Programmer: is responsible of writing the code.
Test Designer: designs a test activity basing on system re-
quirements an agent has to satisfy.
Test Developer: executes the designed tests.
Again we can see that some process roles are classic ones
for object oriented context while some others, for instance
agent designers, are specific stakeholders of the agent ori-
ented context.

3.3 Work Product Kind

A generic work product produced by a process activity
can be of a certain kind representing a specific category,
for instance text document, code an so on; we clustered all
the possible work product kinds under two main categories
(Fig. 3): graphical and textual.

A work product which kind is graphical can be further-
more categorized as a structural or a behavioural one, when
used to model respectively the static or the dynamic aspect
of a system; for instance a behavioural work product points
out the flow of messages along the time among different
agents.

As regard the textual work product we decided to classify
them as structured or free, in the sense that a text document
can be hold by a particular template or grammar, for exam-
ple to build a table or to write a code document, or can be
freely written in a natural language.

Sometimes some work products can combine two differ-
ent kinds (this is the case of a document including both a
diagram and the related description) so we introduced the
term atomic or composite to mean a work product of a sin-
gle kind or a work product of two or more combined kinds.

3.4 MAS Model Elements

The MAS Metamodel gives a structural representation
of the concepts belonging to the system under construction;
in our previous works [7][8] we divided the metamodel of

Figure 4. Repository Content

the multi agent system in three areas, to better deal with the
different domain abstractions relevant to a system design;
the first area represents all the aspects of the user’s prob-
lem description including the environment representation,
the second deals with agent based concepts that are use-
ful to define a solution strategy and the third describes the
structure of the code solution.

We claim that all the existing MAS Metamodels can be
divided in the cited three areas thus allowing the creation of
three categories of MMM elements; we named them: Prob-
lem, Social and Solution.

4 Overview on our repository content

Our work starts from a re-engineering activity of the an-
alyzed processes [8][9][10][12], that let us to represent all
of them in a standardized way using SPEM and to extract
forty-five fragments, each of them stored in our repository
on the basis of the process elements and the MMM elements
categories it deals with; Fig. 4 summarizes how much frag-
ments we stored in each category.

Some repositories of fragments already exist [11][15], in
our work we propose a repository structured with the aim
of minimizing the effort necessary for finding the best frag-
ment for a specific purpose and a specific application con-
text.

In building our repository we adopted an approach that
is someway similar to the OPF one [11](we reengineered
the studied processes, expressed them in a standardized no-
tation, and then extracted the fragments); in so doing we
adopted a specific choice at the basis of the extraction pro-
cess: we looked at the work products as the beam for split-

135

ting down the process in its constituting method fragments.
The result is a relatively small number of method fragments
but we think this could be the right level of granularity for
our purposes because, in this way, the process construction
can be lead by a concrete and tangible entity, the work prod-
uct, and finally it results in an easier and faster extraction
and selection of fragments.
We already made an experiment on constructing a new de-
sign process using some method fragments stored in the
repository; it consisted in building an agile process for rapid
prototyping of applications in our laboratory. The result
was the Agile PASSI [5] process that was largely based on
PASSI fragments, because we wanted to reuse the expertise
we accumulated in several years of using it.

The repository we presented can be accessed from
a website1 that allows the user to query the method
base looking for matches on several keys from the cat-
egories we proposed in section 3; in the repository the
method fragments are stored in form of text documents
and the metadata are managed using a relational data
structure, some relationships are, for instance, the fol-
lowing: Fragment(ID,FragName,FileName,IDPhase)con-
tains the data identifying each fragment with the link to
its representing document and the phase it belongs to,
Phase(ID,PAName,PADescription)contains the informa-
tion on phases and in the same way for all the other ele-
ments.

5 Conclusion

In this paper we presented a repository of method frag-
ments that can be used for composing a new design process
for multi-agent systems. The peculiarities of this reposi-
tory can be summarized as follows: (i) this is a specifically
agent-oriented conceived repository; as a consequence a
specific attention has been given to agent-oriented peculiar-
ities like the MAS Metamodel elements that are explicitly
present in both the method fragments descriptions and in
their categorization; (ii) fragments have been defined (and
extracted from existing methodologies) following a work
product-based approach; we mean that each method frag-
ment is supposed to produce at least one work product (not
necessarily from scratch, it can also refine an existing one);
(iii) we adopted a specific philosophy for enabling frag-
ments retrieval from the method base: fragments are cate-
gorized according to 4 basic criteria: process roles involved
in the design activities, phase of the overall design process
in which the specific fragment can be reused, kind of work
product produced by the repository and finally, MAS meta-
model elements that are managed in the activities involved
in the fragment. In the future we plan of extending the

1http://www.pa.icar.cnr.it/passi/fragment.html

repository by including some other methodologies (we are
currently working on Ingenias and Prometheus) and then in-
corporating that in a CAME/CASE tool we are building in
order to effectively support the work of the process designer
first (while he defines the new process) and the system de-
signer later (while he designs the agent system).

References

[1] Bergenti, F., Gleizes, M.P., Zambonelli, F.: Method-
ologies and Software Engineer- ing for Agent Systems.
Kluwer (2004)

[2] Boehm, B.: A Spiral Model of Software Development
and Enhancement. IEEE Computer, Vol. 21, N 5, May,
(1988) pp. 61-72

[3] Brinkkemper, S.: Method engineering: engineering of
information systems development methods and tools.
Information and Software Technology. 38(7): p. 275-
280 (1996)

[4] Castro, J., Kolp, M., Mylopoulos, J.: Towards
requirements-driven information systems engineering:
the tropos project. Inf. Syst. 27 (2002) 365389

[5] Chella, A. Cossentino, M., Sabatucci, L., Seidita, V.:
Agile PASSI: An Agile Process for Designing Agents.
International Journal of Computer Systems Science &
Engineering. Special issue on ”Software Engineering
for Multi-Agent Systems”. May 2006. in printing

[6] Cossentino, M.: From requirements to code with
the PASSI methodology. In Henderson-Sellers, B.,
Giorgini, P., eds.: Agent-Oriented Methodologies, Idea
Group Inc. (2005)

[7] Cossentino, M., Sabatucci, L., Seidita, V.: Method
Fragments from the PASSI process. Technical Report
ICAR-CNR n. 21-03 (2003)

[8] Cossentino, M., Sabatucci, L., Seidita, V.: SPEM
description of the PASSI process. Technical Re-
port ICAR-CNR n. 20-03 (2003) Available on
line at http://www.pa.icar.cnr.it/cossentino/FIPAmeth/
metamodel.htm.

[9] Cossentino, M., Seidita, V.: SPEM Description of
ADELFE Process. Technical Report ICAR-CNR n.05-
07 (2005)

[10] Cossentino, M., Seidita, V.: Tropos: Processo e fram-
menti. Technical Report ICAR-CNR n.05-06 (2005)

[11] Firesmith, D. and Henderson-Sellers, B.:The OPEN
Process Framework - An Introduction. Addison-
Wesley: Harlow, UK (2002)

136

[12] Garro, A., Turci, P.: Gaia Fragments. available on
line at http://www.pa.icar.cnr.it/cossentino/FIPAmeth/
metamodel.htm

[13] Ghezzi, C., Jazayeri, M., and Mandrioli, D.: Funda-
mentals of Software Engineering. Prentice Hall Inter-
national, Upper Saddle River, NJ (USA) (1991)

[14] Harmsen A.F.: Situational Method Engineering.
Moret Ernst & Young (1997)

[15] Harmsen,A.F., Brinkkemper, S.: Design and Imple-
mentation of a Method Base Management System for
a Situational CASE Environment. APSEC 1995: 430-
438

[16] Harmsen A.F., Brinkkemper, S., Oei, H.: Situational
Method Engineering for Information System Projects.
In Olle T.W. and A.A. Verrijn Stuart (Eds.), Math-
ods and Associated Tools for the Information Systems
Life Cycle, Proc. of the IFIP WG8.1 Working Confer-
ence CRIS’94, pp. 169-194, North-Holland, Amster-
dam, (1994)

[17] Henderson-Sellers, B.: Process Metamodelling and
Process Construction: Examples Using the OPEN Pro-
cess Framework (OPF). Ann. Softw. Eng. 14, 1-4, 341-
362 (Dec. 2002)

[18] Kumar K., Welke R.: Methodology engineering: a
proposal for situation-specific methodology construc-
tion. In Challenges and Strategies for Research in Sys-
tems Development, pages 257269, 1992.

[19] Method fragment definition. FIPA Document,
http://www.fipa.org/activities/methodology.html, (Nov
2003)

[20] OMG, 2002, Software Process Engineering Meta-
model Specification, Version 1.0, Object Management
Group, formal/02-11-14 (Nov 2002)

[21] Ralyté, J.: Towards situational methods for infor-
mation systems development: engineering reusable
method chunks, Procs. 13th Int. Conf. on Information
Systems Development. Advances in Theory, Practice
and Education Vilnius Gediminas Technical University,
Vilnius, Lithuania, 271-282 (2004)

[22] Saeki, M.: Software Specification & Design Methods
and Method Engineering. International Journal of Soft-
ware Engineering and Knowledge Engineering.

[23] Sommerville, I.: Software Engineering. Addison-
Wesley (2004)

[24] Zambonelli, F., Jennings, N., Wooldridge, M.: Devel-
oping multiagent systems: the gaia methodology. ACM
Transactions on Software Engineering and Methodol-
ogy 12 (2003) 417470

137

Expressing preferences declaratively
in logic-based agent languages

Stefania Costantini
Università degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito,
I-67010 L’Aquila - Italy

Email: stefcost@di.univaq.it

Pierangelo Dell’Acqua
Department of Science and

Technology - ITN
Linköping University

60174 Norrköping, Sweden
Email: pier@itn.liu.se

Arianna Tocchio
Università degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito,
I-67010 L’Aquila - Italy

Email: tocchio@di.univaq.it

Abstract— In this paper we present an approach to intro-
ducing preferences among actions in logic-based agent-or iented
languages. These preferences are expressed in the body of rules
(i.e., they are local to the rule where they are defined). To the
best of our knowledge, no similar approach has been proposed
before, and cannot be easily simulated by means of preferences
expressed in the head of rules, which are global. The approach
is applied to choosing which action an agent should per form in
reaction to an event, among the feasible ones.

I . INTRODUCTION

Intelligent agents perform advanced activities such as ne-
gotiation, bargaining, etc. where they have to choose among
alternatives. The choice will be based on some kind of
preference or priorities related for instance to:

• the agent’s objectives;
• the context (cooperative vs. competitive);
• available resources;
• the strategies that the agent intends to follow.

Agents will in general include specialized modules and/or
meta-level axioms for applying priorities and preferences, like
for instance those proposed in [9] for prioritized defeasible
reasoning. However, it can be useful in logical agents to be
able to express preferences at a more basic linguistic level.
These basic preferences can then be employed in building
more advanced high-level strategies. At the language level,
preferences have already been expressed in various way in
Answer Set Programming [8] [12]. In that context, the basic
mechanism is that of computing the Answer Sets and then
chose “preferred” ones. We will shortly review below the
work of Brewka on LPODS (Logic Programs with Ordered
Disjunction) [2] and the work of Sakama and Inue on PLP
(Prioritized Logic Programming) [13]. The reader may refer
to the latter paper and to [6] for a discussion of relevant
existing approaches. Some of them are based on establish-
ing priorities/preferences among atoms (facts), and typically
introduce some form of disjunction in the head of rules. Other
approaches express instead priorities among rules.

Our proposal is aimed at allowing an agent to express pref-
erences concerning either which action they would perform in
a given situation, or, in perspective, which goal they would

pursue in a certain stage. Since actions are often performed in
reaction to events and goals are set in accordance to some
internal conclusion that has been reached, we propose to
introduce disjunction in the body of rules. If the body of a
rule contains a disjunction among two or more actions, the
preferred one will be chosen according to preference rules,
that may have a body in that (following [13]) priorities may
be conditional. If agents evolve with time and enlarge their
knowledge and experience, priorities may dynamically change
according to the agent evolution.

In agent languages that are not based on Answer Set
Programming, one cannot select the preferred model(s) by
means of a filter on possible models. Then, other techniques
are needed in order to provide a semantic account to this
proposal. Recently, an approach to declarative semantics of
logical agent-oriented languages that considers evolution of
agents has appeared in the literature [5]: changes that occur
either externally (i.e., reception of exogenous events) or in-
ternally (i.e., courses of actions undertaken based on internal
conditions) are considered as making a change in the agent
program, which is a logical theory, and in its semantics
(however defined). For such a change to be represented, it
is understood as the application of a program-transformation
function. Thus, agent evolution is seen as program evolution,
with a corresponding semantic evolution.

This semantic approach can be applied to the present setting
by adapting the proposal of the split programs introduced in
[2]. A split program is a version of the given program obtained
by replacing each disjunction by one of its options. Then, at
each step we would have a set of possible evolutions, each
corresponding to a split program. Among them, the preferred
one (according to the present conditions) is taken, while all
the others are pruned. As mentioned before, given similar
situations in different stages of the agent life, different options
can be taken, according to the present assessment of the agent
knowledge.

Though simple, this mechanism is to the best of our
knowledge new, as no similar approach has been proposed
before, and it cannot be easily simulated by existing ones.

138

In Section II we review some features that intelligent
logical agents should in our opinion possess, and the related
usefulness of introducing preferences. In Section III we briefly
review previous related work on preferences. In Section V
we introduce the approach, and in Section VI its semantics.
Finally, we conclude in Section VII.

I I . ENHANCING CAPABILITIES OF LOGICAL AGENTS BY

INTRODUCING PREFERENCES

A great deal can besaid about features that agents in general
and logical agents in particular should possess(for a review the
reader may refer for instance to [14], for a discussion to [11]).
It is widely recognized however that agents, whatever the
language and the approach on which they are based, should be
able to copewith achanging and partially known environment.
In this environment, agents should be able to interact, when
they deem it appropriate, with other agents or with the user
in order to complete their own problem solving and to help
others with their activities.

Interacting agents may act according to suitable strategies,
which include expressing preferences and establishing prior-
ities, possibly with the aid of past experiences. In our view,
complex strategies can take profit of basic linguistic constructs
reminiscent of those introduced in Answer Set Programming.

Our proposal is aimed at allowing an agent to express pref-
erences/priorities (in the following, we will often interchange
the two terms) concerning either which action they would
perform in agiven situation, or also, in perspective, which goal
they would pursue in a certain stage. Since actions are often
performed in reaction to events and goals are set in accordance
to some internal conclusion that has been reached, we propose
to introduce disjunction in the body of rules. If the body of
a rule contains a disjunction among two or more actions, the
preferred one ischosen according to preference rules, that may
have a body. I.e., following [13], priorities may be conditional.
Also, preference rules may contain references to the agent past
experience, and then the preferred choice may change over
time. More precisely, whenever the body of a rule contains a
disjunction among two or more actions, the intended meaning
is the following:

• preference rules establish which action is preferred;
• precondition of the action state whether it can be actually

performed, i.e., if it is feasible;
• the agent should perform the best preferred feasible

action.

I I I . PREVIOUS RELATED WORK

The reader may refer to [6] for a discussion of many
existing approaches to preferences. The main distinction is
among those that define priorities/preferences among atoms
(facts), and typically introduce some form of disjunction in
the head of rules, and those that express instead priorities
among rules. Among the latter ones, we mention [10] that
applies preferences among rules in negotiating agents based

on argumentation, so as to tune argumentations according to
changing contexts.

The approach of [13] considers general extended disjunctive
programs where a rule has the syntax:

L1| . . . |Lk|notLk+1| . . . |notLk+h ← Body

where “ |” represents disjunction and not is negation as
failure under the Answer Set semantics. A preference, or
priority, between two ground literals e1, e2 is expressed in
the form e1 ≺ e2. An answer set S2 of a given program is
preferable onto another answer set S1 iff S2 \ S1 contains
an element e2 whose priority is higher than some element e1

in S1 \ S2, and the latter does not contain another element
e3 whose priority is strictly higher that e2. Then, preferred
answer sets (or p-answer sets) are a subset of the traditional
ones, that can beseen asaspecial casecorresponding to empty
priorities.

Basic PLP is exploited in [13] so as to express priorities
not only between plain facts, but also between more general
forms of knowledge. The approach allows many forms of
commonsense reasoning to be modeled.

An interesting application is that of priority with precon-
ditions. For instance, borrowing the example from [13], the
situation where a person drinks tea or coffee but she prefers
coffee to tea when sleepy can be represented as follows (in a
prolog-like syntax):

tea | coffee.

tea ≺ coffee :- sleepy .

This program can be translated in a standard way in plain
PLP and, assuming that sleepy holds, has the p-answer set
{sleepy , coffee}.

In LPODS [2], one can write expressions such as A × B

in the head of rules, where the new connective × stands for
ordered disjunction. The expression intuitively stands for: if
possible A, but if A is impossible then (at least) B. If there
are several disjuncts, the first one represents the best preferred
option, the second one represents the second best option, etc.
The following is an example where a person who wishes to
spend the evening out and has money prefers to go to theatre,
or else (if impossible) to go to the cinema, or else (if both
previous options cannot be taken) to go to dine at a restaurant.

theatre × cinema × restaurant :-
want to go out , have money .

For selecting the preferred answer set(s) of a program P ,
one obtains the possible split programs of P , where a split
program P ′ is obtained from P by replacing each disjunctive
rule by one of its options. Then, the answer sets of P are taken
to be theanswer setsof thesplit programs. To choosepreferred
ones given that there may be several disjunctions, a notion of
degree of satisfaction of disjunctive rules must be defined, that

2
139

inducesapartial ordering on answer sets. Preferred answer sets
are those that satisfy all rules of P to the better degree.

IV. COMPARISON

To the best of our knowledge, the approach of introducing
preferences in the body of logical rules is novel, and has never
appeared in the literature. It cannot be easily simulated by
using preferences in the head: in fact, preferences expressed
in the body are local to the rule where they occur, while
preferences defined in the head are global. The application to
agents performing actions is also new. As an agent evolves in
time and its knowledge changes, preferred choices will change
as well. Then, according to the same preference structure an
agent will in general prefer differently in different stages of
its life.

V. THE APPROACH IN MORE DETAIL

We will now introduce a simple though in our opinion
effective construct that can be employed in agent-oriented
logic languages based on logic (horn-clause) programming.
Similarly to [13], we assume the following:

• preferences are expressed between two ground facts;
• preferences are expressed explicitly by means of special

rules, that may have conditions;
• preference is transitive, irreflexive and anti-symmetric.

In our approach, preferences can be defined between actions
that agents may perform. We make some preliminary assump-
tion about the agent languages we are considering. We do
not commit to any particular syntax, though we will propose
a sample one in order to introduce and illustrate examples.
We will discuss the semantics of the class of languages that
we consider in Section VI. By saying “an agent” we mean
a program written in the language at hand, that behaves as
an agent when it is put at work. We assume in particular the
following syntactic and operational features.

• The agent is able to perceive external events coming from
theenvironment where theagent issituated. In our sample
syntax an external event isan atom which isdistinguished
by postfix E. E.g., rainE indicates an external event.

• The agent is able to react to external events, i.e., the lan-
guage provides some kind of condition-action construct.
In our sample syntax ee indicate reaction by means of the
connective :> . Then, a reactive rule will be indicated
with pE :> Body meaning that whenever the external
event pE isperceived, theagent will executeBody. There
are languages (like, e.g., the one presented in [3]) where
an agent can react to its own internal conclusions, that
are interpreted as events (thus modeling proactivity). We
assume that the syntax for reaction is the same in both
cases. However, an internally generated event is indicated
with postifix I, i.e., in the form pI.

• The agent is able to perform actions. Actions will occur
in the agent program as special atoms. In our sample
syntax we assume them to be in the form qA, i.e.,

they are distinguished by suffix A. E.g., open umbrellaA

indicates an action. Actions may have preconditions: In
our sample syntax we assume them to be expressed by
rules. The connective :< indicates that the rule defines
the precondition of an action. I.e., a precondition rule will
be indicated as qA :< Body, meaning that the action qA

can be performed only if Body is true. We do not cope
here with the effective execution of actions, that is left to
the language run-time support.

In the proposed approach, a disjunction (indicated with
“ |”) of actions may occur in the body of a reactive rule.
Preferences among actions are defined in preference rules,
that are indicated by the new connective << . Then, a rule
pE :> q1A | q2A means that in reaction to pE the agent
may perform either action q1A or action q2A. A rule
q1A <<q2A :- Body means that action q2A is preferred over
action q1A provided that Body is true. I.e., if Body is not true
the preference is not applicable, and then any of the actions
can be indifferently executed. A set of preference rules define
in general a partial order among actions, where preferences
are transitively applied and actions that are unordered can be
indifferently executed. In our approach preferences are applied
on feasible actions. I.e., the partial order among actions must
be re-evaluated at each step of the agent life where a choice
is possible, according to the preconditions of the actions. The
preferred actions at each stage are those that can actually be
performed and that are selected by the preference partial order.

Example 5.1: Consider a person who receives an invitation
to go out. She would prefer accepting the invitation rather
than refusing, provided that the invitation comes from nice
people. She is able to accept if she has money and time. The
invitation is an external event that reaches the agent from her
external environment. Accepting or refusing constitutes the
reaction to the event, and both are actions. One of the actions
(namely, accepting) has preconditions. In our sample syntax,
an agent program fragment formalizing this situation may look
as follows.

invitationE :> acceptA | rejectA.

acceptA :< have money , have time.

refuseA<< acceptA :- nice people inviting .

When the external event invitationE is perceived by the
agent, it can react by alternatively performing one of two
actions. The action acceptA will be performed if its precondi-
tions are verified. As preferences are among feasible actions,
acceptA ispreferred provided that nice people inviting holds.
Notice that this is not known in advance, as the agent evolves
in time: the invitation may arrive at a stage of the agent
operation when time and money are available, and then the
preferred action is chosen. If instead the invitation (or, another
future invitation) arrives when there are no resources for
accepting, the agent will refuse the invitation.

Another example will introduce further aspects.

Example 5.2: Let us now rephrase the example of the
person preferring coffee over tea if sleepy. Let us put it in

3
140

a proactive perspective, where the person wonders whether it
is time to take a break from working, e.g., at mid-afternoon.
If so, she will consider whether to drink tea or coffee. The
corresponding program fragment might look as follows, where
take break is an internal conclusion that triggers a proactive
behavior: the first rule reaches the conclusion that taking a
break is in order; the second rule states what to do then, i.e.,
specifies a reaction to the internal conclusion itself (indicated
in the second rule with postfix I for “ internal”). For the
mechanism to beeffective, take break must beattempted from
time to time, so as to trigger the consequent behavior as soon
as it becomes true.

take break :- five oclock .

take breakI :> drink teaA | drink coffeeA.

drink coffeeA :< espresso.

drink teaA<< drink coffeeA :- sleepy .

Again, what the agent will do depends upon the present
conditions, i.e., upon whether the agent feels sleepy or not.
Moreover, in this variation the agent drinks coffee only if she
can have an espresso.

Assume now that there is also the option of drinking juice,
though the agent will only drink orange juice, and that the
agent prefers juice to tea. Then the program becomes:

take break :- five oclock .

take breakI :> drink teaA | drink coffeeA

| drink juiceA.

drink coffeeA :< espresso.

drink juiceA :< orange.

drink teaA<< drink coffeeA :- sleepy .

drink teaA<< drink juiceA.

The expected behavior is the following:

• If sleepy holds and espresso holds as well, the agent
can drink coffee (the action drink coffeeA is allowed)
and will not drink tea, which is less preferred. If orange

does not hold, the agent will definitely drink coffee.
• If sleepy holds and espresso holds as well, the agent

can drink coffee (the action drink coffeeA is allowed)
and will not drink tea, which is less preferred. If orange

holds, also the action drink juiceA is allowed, and pre-
ferred over drink teaA. The agent can indifferently drink
either coffee or juice, as they are unrelated.

• If espresso does not hold, the agent cannot drink cof-
fee (the action drink coffeeA is not allowed). Then, if
orange holds then the agent will drink juice (the action
drink juiceA will be performed), otherwise it will drink
tea (as the action drink teaA is always allowed, not
having preconditions).

• If sleepy doesnot hold, there isno preferencebetween tea
and coffee. If orange does not hold and espresso holds,
one of the two actions drink teaA or drink coffeeA can
be indifferently executed. If orange holds and espresso

holdsaswell, drink juiceA ispreferred over drink teaA,

but as no other priority is specified, one of the actions
drink coffeeA or drink juiceA can be indifferently exe-
cuted.

VI . DECLARATIVE SEMANTICS OF EVOLVING AGENTS

WITH PREFERENCES

The evolutionary semantics that has been proposed in [5]
has the objective of providing a unifying framework for
various languages and semantics for reactive and proactive
logical agents.

This semantic approach is based upon declaratively mod-
eling the changes inside an agent which are determined both
by changes in the environment and by the agent’s own self-
modifications. The key idea is to understand these changes
as the result of the application of program-transformation
functions. In this view, a program-transformation function is
applied for instance upon reception of either an external or an
internal event, the latter having a possibly different meaning
in different formalisms. That is, perception of an event can be
understood as having an effect on the program which defines
the agent: for instance, the event can be stored as a new fact
in the program. Similarly, actions which are performed can be
recorded as new facts. All the “past” events and actions will
constitute the “experience” of the agent.

Recording each event or action or any other change that
occurs inside an agent can be semantically interpreted as
transforming the agent program into a new program, that
may procedurally behave differently than before: e.g., by
possibly reacting to the event, or drawing conclusions from
past experience. Or also, the internal event corresponding to
the decision of the agent to undertake an activity triggers a
more complex program transformation, resulting in version of
the program where the corresponding intention is somewhat
“ loaded” so as to become executable.

Then, in general one will have an initial program P0 which,
according to these program-transformation steps (each one
transforming Pi into Pi+1), gives rise to a Program Evo-
lution Sequence PE = [P0, ..., Pn]. The program evolution
sequence will have a corresponding Semantic Evolution Se-
quenceME = [M0, ...,Mn] whereMi is thesemantic account
of Pi according to the specific language and the chosen
semantics. The couple 〈PE; ME〉 is called the Evolutionary
Semantics of the agent program PAg, corresponding to the
particular sequence of changes that has happened, and to the
order in which they have been considered. The evolutionary
semantics of an agent represents the history of an agent
without introducing a concept of a “state” .

The different languages and different formalisms will influ-
ence the following key points:

1) When a transition from Pi to Pi+1 takes place, i.e.,
which are the external and/or internal factors that de-
termine a change in the agent.

2) Which kind of transformations are performed.
3) Which semantic approach is adopted, i.e., how Mi is

obtained from Pi. Mi might be for instance a model,

4
141

or an initial algebra, or a set of Answer Sets if the
given language is based on Answer Set Programming
(that comes from the stable model semantics of [8]). In
general, given a semantics S we will have Mi = S(Pi).

A transition from Pi to Pi+1 can reasonably take place, for
instance:

• When an event happens.
• When an action is performed.
• When a new goal is set.
• Upon reception of new knowledge from other agents.
• In consequence to the decision to accept/reject the new

knowledge.
• In consequence to the agent decision to revise its own

knowledge.

We say that at stage Pi+1 of the evolution the agent has
perceived event ev (whatever its class) meaning that the
transition from Pi to Pi+1 has taken place in consequence
of reception of ev. It is reasonable to assume that in the stage
Pi+1 the agent will cope with ev, e.g., by reacting to it if it
is an external event.

Example 6.1: It is useful to discuss how the program trans-
formation step related to actions might be formalized. Intu-
itively, an action atom (like e.g. drink coffeeA in a previous
example) should become true given its preconditions, if any
(espresso in the example) whenever the action is actually
performed in some rule. For the sake of simplicity assume
that (like in the examples presented above) actions can occur
only in the body of reactive rules.

Declaratively, this means that the action occurs in the body
of an applicable reactive rule. Practically, whenever that rule
will be processed by the interpreter because the corresponding
(external or internal) event has happened, the action will be
actually performed (by means of any kind of mechanism
that connects the agent to its environment). To account for
this behavior, in the initialization step each rule defining
preconditions for actions, say of the form

actA :<C1, . . . , Cs

is transformed into a set of rules of the form:

actA :- D1, . . . , Dh, C1, . . . , Cs

where D1, . . . , Dh, h ≥ 0 are the conditions (except for other
actions) of each reactive rule where actA occurs in the body.
The Ci’s are omitted if actA has no preconditions.

Whenever at some stage Pi of the program evolution actA

will be attempted and feasible as its preconditions are true, we
will have actA ∈ Mi.

It can be useful in general to perform an Initialization
step, where the program PAg, written by the programmer, is
transformed into a corresponding initial program P0 by means
of some sort of knowledge compilation. This initialization
step can be understood as a rewriting of the program in
an intermediate language and/or as the loading of a “virtual
machine” that supports language features. This stage can on
one extreme do nothing, on the other extreme it can perform

complex transformations by producing “code” that implements
language features in the underlying logical formalism. P0 can
be simply a program (logical theory) or can have additional
information associated to it.

This semantic approach can be extended so as to encompass
the present proposal. As a first point, in the initialization step
preferences must be collected and preference rules removed.
Then, P0 will not contain preference rules, but will be associ-
ated to a structure Pref where preferences between couples of
(ground) actionsaremadeexplicit, by performing thetransitive
closure of preference rules. The conditions of a preference rule
(if any) are added as preconditions of the preferred action.

Weadapt the ideaof split program from [2]. A split program
is a version of the given program obtained by replacing a dis-
junction by one of its options. In our case, whenever an agent
at stage Pi of its evolution has perceived an (either external
or internal) event, say pE, it will react to it. However, if there
is a disjunction of actions in the body of the corresponding
reactive rule, then the agent may react in more that one way.
Thedifferent waysof reacting are represented by different split
programs, each one representing an alternative. Precisely,

Definition 1: Let PAg be an agent program that has been
transformed into a program P0 by the initialization step. Let
Pi be the program obtained from the evolution of P0 at the
i-th step, corresponding to the perception of event pE. Let
pE :> Body be the corresponding reactive rule in Pi, where a
disjunction of actions occurs in Body. A split program P ′

i is
obtained by replacing the disjunction with one of its options.

Referring to theprogram of Example5.1, at the initialization
step it is transformed into:

invitationE :> acceptA | rejectA.

acceptA :< have money , have time,

nice people inviting .

where the preference refuseA<< acceptA is recorded in the
structure Pref . Then, whenever the event invitationE will
be perceived will be two split programs: a first one, say φ1,
where the body of the reactive rule contains only acceptA,
and a second one, say φ2, where the body of the reactive rule
contains only refuseA.

We will have a set {P 1
i , . . . , P k

i } of split programs cor-
responding to the number k of actions occurring in the
disjunction. Assuming that events are considered one at a time
(i.e., an evolution step copes with a single event), at each stage
split programswill be relative to asingle reactive rule, and will
correspond to a set {M1

i , . . . ,Mk
i } whereM

j
i is the semantics

of P
j
i . We say that we a split occurs at stage Pi of program

evolution whenever at that stage the incoming event is related
to a reactive rule with a disjunction of actions in its body.

The preferred split programs are those whose semantics
contain the preferred actions. Precisely:

Definition 2: Let PAg be an agent program that has been
transformed into a program P0 by the initialization step, and
let Pref be the preference structure that has been associated

5
142

to the program. Let Pi correspond to a step of the evolution of
P0, where a split occurs. Given two split programs P r

i and P s
i

obtained from Pi by splitting a disjunction act1A | . . . | actkA,
then P r

i is preferred over P s
i if the following conditions hold:

• the semantics Mr
i of P r

i contains actrAi;
• actrAi is preferred over actsAi according to Pref .

Notice that both Mr
i and Ms

i may not contain the corre-
sponding action (actrAi and actsAi respectively), in case its
preconditionsare false. Then, asplit program ispreferred upon
another one if (i) its semantics entails the related action and
(ii) either the semantics of the other one does not entail the
related action, or the former action is preferred.

Then, at each step where a split occurs we have a set of
possible evolutions, each corresponding to a split program.
Among them, the preferred one (according to the present
conditions) is taken, while all the others are pruned. As
mentioned before, given similar situationsat different stagesof
the agent life, different options can be taken, according to the
present assessment of the agent knowledge. In the example, φ1

will be preferred to Φ2 whenever it actually entails acceptA.

We can have a unique best preferred split program P b
i if

Pref is a total order with respect to the actions over which
we split, or we may have more than one equally preferred split
programs. Any of them can be indifferently selected.

Definition 3: Let Pi be a stage of the program evolution
sequence, where a split occurs. We let Pi+1 be any of the best
preferred split programs.

VI I . CONCLUDING REMARKS

In this paper we have presented an approach to express-
ing preferences among actions and in logical agents. The
approach builds on previous relevant work related to answer
set programming, but is rephrased for reactive and proactive
agents that evolve in time. In fact, the semantics of the
approach is given in evolutionary terms, where an agent
program is considered to be modified by events that happen
and actions that are performed, while its semantic account
evolve correspondingly.

There are others approaches in computational logic that are
related to the present one, and to which we are indebted,
namely [1] and [7], where preferences and updating pref-
erences are coped with in the context of a more general
approach to updating logic programs. We may notice that the
examples that we have presented basically refer to the syntax
and procedural semantics of the DALI language [3], [4], [14].
Actually they correspond to working DALI programs, though
the implementation is prototypical and is being experimented.

Our next research objective is to extend the possibility of
expressing preferences to all kinds of subgoals occurring in
the body of logical rules, instead of coping with actions only.

Another important objective is to extend the approach so as
to beable to expresspreferencesamong agent goals (objectives
to reach). In fact, the reasoning can besimilar. Actually, setting
an objective is related to building a plan for achieving it. A

plan however can be seen as divided into:

1) a preliminary check stage, where feasibility of subse-
quent actions is checked (are the tickets available? Do I
have the money? Do my friends accept to join me? May
I rent a car?);

2) an operative stage, where actions that influence the
environment (and in general cannot be retracted, or at
least not so easily) are performed.

The first stage can be seen as a feasibility stage for setting
an objective. Then, if there is a disjunction of objectives in the
body of a rule, we mean that the agent should set the most
preferred feasible one.

REFERENCES

[1] J. J. Alferes, P. Dell’Acqua and L. M. Pereira, A compilation of updates
pluspreferences. Logics in Artificial Intelligence, Proc. of the8th Europ.
Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002, pp. 62-74.

[2] G. Brewka, Logic programming with ordered disjunction, In Proc. of
AAAI-02, Edmonton, Canada, 2002.

[3] S. Costantini and A. Tocchio, A logic programming language for multi-
agent systems. Logics in Artificial Intelligence, Proc. of the 8th Europ.
Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002.

[4] S. Costantini, A. Tocchio, The DALI logic programming agent-oriented
language. Logics in Artificial Intelligence, Proc. of the 9th European
Conference, Jelia 2004, Lisbon, September 2004. LNAI 3229, Springer-
Verlag, Germany, 2004.

[5] S. Costantini, A. Tocchio, About declarative semantics of logic-based
agent languages. In M. Baldoni and P. Torroni (eds.), Declarative Agent
Languages and Technologies, Post-Proc. of DALT 2005. LNAI 3229,
Springer-Verlag, Germany, 2006.

[6] J. Delgrande, T. Schaub, H. Tompits and K. Wang, A classification and
survey of preference handling approaches in nonmonotonic reasoning.
Computational Intelligence, 2004.

[7] P. Dell’Acqua and L. M. Pereira, Preferring and updating in logic-
based agents. In: Web-Knowledge Management and Decision Support.
Selected Papers from the 14th Int. Conf. on Applications of Prolog
(INAP), LNAI 2543, Springer-Verlag, Berlin, 2003, pp. 70-85.

[8] M. Gelfond and V. Lifschitz, The stable model semantics for logic
programming. Proc. of 5th ILPS conference, 1988, pp. 1070-1080.

[9] M. Gelfond and T. C. Son, Reasoning with prioritized defaults. In
Proc. of the 3rd Int. Works. on Logic Programming and Knowledge
Representation, LNAI 1471, Springer-Verlag, Berlin, 1998, pp. 164-
223.

[10] A. Kakas and P. Moraitis, Adaptive agent negotiation via argumentation.
In Proc. of the 5th International Joint Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS’06), Hakodate, Japan, 2006.

[11] R. A. Kowalski, The logical way to be artificially intelligent, Compu-
tational Logic in Multi-Agent Systems (CLIMA VI Post-Proceedings),
LNAI 3900, Springer-Verlag, Berlin, 2005, pp. 1-22.

[12] V. Lifschitz, Answer set planning. Invited talk. Proc. of ICLP ’99 Conf.,
pp. 23–37. The MIT Press, 1999.

[13] C. Sakama and K. Inoue, Prioritized logic programming and its
application to commonsense reasoning. Artif. Int. 123(1-2), Elsevier,
2000, pp. 185-222.

[14] A. Tocchio, Multi-Agent systems in computational logic, Ph.D. Thesis,
Dipartimento di Informatica, Universitá degli Studi di L’Aquila, 2005.

6
143

1

Models, Abstractions and Phases in Multi-Agent
Based Simulation

Mizar Luca Federici, Stefano Redaelli and Giuseppe Vizzari
Dept. of Computer Science, Systems, and Communication

University of Milan–Bicocca
Milan, Italy

{mizar,redaelli,vizzari}@disco.unimib.it

Abstract— This paper introduces some considerations about
simulation practice and a schema of the models that are implic-
itly and explicitly involved in a Multi-Agent Based Simulation
(MABS). The aim of this work is to set simulation inside scientific
framework. In order to do that we give an interpretation of the
levels that compound a simulation and that constitute different
kinds of abstraction. A clear awareness of the relations that
exist between these levels and the corresponding steps, in fact,
it is necessary if MABS wants to be adopted as a scientific
investigation method. Our opinion is that this analysis suggests
some answers to the objections that are often directed towards
the use of simulation in scientific practice but also underlines
some criticalities in this process.

I. INTRODUCTION

Why do we use computer simulations? Winsberg in [1]
claims that “simulations are often performed to investigate
systems for which data are sparse”. An assumption that
stands behind the use of simulation as a tool to investigate
reality is that reality cannot be known analyzing what can
be considered as its single parts or components, but only by
recreating it from its components. Assertors of the efficacy
of the scientific use of simulation claim that a simulation
expresses a theory, and that a theory expressed by a simulation
produces a series of empiric predictions that can be directly
compared to reality. This consideration lays on the conviction
that a simulation is also a way to build up a scientific
theory as it allows to check immediately the consequences
of our assumptions and gives us precise indications for the
correction or reformulation of a theory. Computer extends
our calculus and memory capacity, and simulations that run
on a computer are considered a method to study complex
systems thanks to the possibility that they give to handle
complex models. Under this extent computer simulations are
also considered as virtual experimental laboratories to study
phenomena that are difficult to observe directly. However
there are also many objections to the use of simulations in
science. Daniel Dennett in [2] asks if we can consider real
motion what we see in the Cellular Automata world or if it
is only apparent motion (the consideration can be referred to
Multi-Agent based Simulations as well). Dennett says “The
flashing pixels on the computer screen are a paradigm case,
after all, of what a psychologist would call apparent motion
[...] should we say at least that these moving patterns are
real?”. Dennett, explaining another objection to the use of

Cellular Automata simulation in [2] affirms that “There has
been a distinct ontological shift as we move between levels
[...] whereas at the physical level there is no motion, and only
individuals, cells are defined by their fixed spatial location,
at design level we have the motion of persisting objects
[...]”. In fact when a real phenomena is studied by means
of software entities that interact in a computer, it is not easy
to demonstrate the correspondence of the dynamics observed
in the computer to the ones that belong to a real phenomena.
These are not the only objections to the “scientific” use of
simulations. The introduction in a simulation of a certain
amount of arbitrary details (or assumptions), that are not
derived from observations, is often necessary in order to make
the simulation run. This makes then difficult to understand
which outputs of the simulation are really meaningful and
which are instead effects of the introduction of the arbitrary
details that we put into the simulation. Moreover, simulations
are also criticized to be too simplified in respect to reality as
it does not exist a defined criteria to guess if simplifications
operated in building a simulation are the good ones. Other
considerations regard the fact that simulations do not tell
anything new as they are fully deterministic and just give
back as output the same information that we put in input.
Although many of these objections can be directed also to
common scientific practice (more considerations about this
topic can be found summarized in [3] [4]) it is undeniable that
scientific investigation by simulation is an activity that has to
be performed carefully; in fact the possibility of misinterpre-
tation of data is higher than in common experimental practice,
exactly due to the “ontological shift” mentioned by Dennett.
Winsberg in [1] makes clear that many layers of models are
involved in a simulation and different resources are used in
each inferential step that is presumed in the shift from one
layer to another. Winsberg, again in [1], explains that by these
steps the simulation, from an existing theoretical knowledge,
attempts to extract new knowledge about the system being
simulated. This article explores the role of a specific kind of
computer simulations, the MABS, in scientific investigation. In
Section II-A is presented a brief overview of some definition
of model in science and the relation that exists between a
model and a theory. In Section II-B is introduced the scientific
cycle in experimental science, in order to make, in Section III,
a correlation between models in science and models in sim-
ulations. The point of view of the article is that computer

144

2

simulations are not only scientific “ models” of phenomena
but are constituted of different layers of abstractions and
present one step more in relation to scientific abstractions
in experimental science. A schema of the abstractions that
are implicitly involved in simulation practice is proposed and,
in Section IV, we suggest that, if this activity is interpreted
under this perspective, an answer can be found to some of
the objections that are often moved to the use of simulation in
scientific investigation. In Section V are stated the conclusions.

II. MODELS AND THEORIES

A. A reflection on Models and Theories

Doran and Gilbert in [5] define a model as something that is
similar to a target system T but easier to observe. A model M
of a target system T consist in an entity that becomes the object
of study in place of T in all the cases where this last cannot
be studied or observed directly. Doran and Gilbert explain
that the idea of the possibility of studying a model of T in
place of T is based upon the conviction that if something
is proved to be true in the model then it must be true also
in the target system if, in the design of the model, some
characteristics of the behavior of the target system have been
“ captured” by the model. This definition of model is close to
the one given by Bruce Edmonds in [6]. Edmonds defines a
model as something that “ enables an inference process such
that the process enabled in the model corresponds to some
aspects of an observed process” . For this reason the result of
the “ inferential process” in the model, if the initial conditions
are set properly, remarks the author, predicts some aspects of a
subsequent state of the system that is under study. According
to Edmonds’ opinion, in science a natural process is encoded
in a model; the model performs the inference process and
then the results of the inference are decoded and projected
to reality in order to state a prediction. Edmonds in his article
adds that something is a model of “ something else” if the
diagram in Figure 1 “ commutes” and though same results
follow both the lines. Under this perspective the inference
process is thus assigned to the model. Analogously R.I.J.
Huges in [7] explains that a model must be analyzed by
three activities of mind that are: denotation, demonstration and
interpretation. In Huges’ opinion, denotation is the “ core” of
the representation and consist in symbols that stand or refer to
parts of the target system; demonstration refers to the internal
dynamics of the representation (the model) whose effects can
be examined; interpretation instead consist in the examination
of the behavior of the model in order to draw conclusions on
the behavior of the world. Eric Winsberg in [8] states that as
“ models are partially independent of both theories and the
world [...] they can be used as instruments of exploration
in both domains” . But for this same reason, that a model
is independent both of empirical facts and of theories, the
translation of the model in the target system must be accurately
specified. This independent status of models is remarked also
in many other works found in literature (see [9] [10]).

We have spoken about the role of models in relation to
theories. But what is then a scientific theory? M.L.Dalla Chiara
and G.Toraldo di Francia in [11] explain that a theory is

Fig. 1. Edmonds’schema representing the role of model in science

a form of knowledge that resumes a set of laws that can
be applied to infinite different cases. The authors add that
a form of knowledge has an axiomatic structure and from
that axioms, or initial postulates, by a relation of logical
consequence is established the set of derived propositions that
the theory asserts. This is what is called syntactic definition
of theory, but it does exists also a semantic definition stating
that some kinds of theories are isomorphic to reality and
that the inference steps, bringing from the set of assumptions
to the consequences of the theory, are not deductive (see
Winsberg [1]).

From these considerations we can infer that a model in
science derives from a theory, but it is also something that
corresponds to reality, although it is distinct also from it.
That “ correspondence” , to be taken for granted, must be made
explicit although it can be proved only by empirical facts.

B. Model, Theories and Phases in Physics

Experimental science is founded on the concept of experi-
ment and of observation of phenomena. David Hestenes in [12]
asserts that “ the construction of a physical model reduces a real
system to an abstract model that it is possible to translate in
a mathematical form” . Under his perspective a “ mathematical
model is at a higher abstract level and constitutes the highest
abstraction of the knowledge process” (i.e. equations). The
description of the observed phenomena is then constituted by
the analytical or the graphic relations between sizes [12]. Axel
Gelfert, in [13] states that a mathematical model, in the sense
close to the one meant by Hestenes, is a set of equations,
theorems and definitions but, Gelfert remarks, the equations do
not constitute, by their own, a model of anything (neither of a
class of phenomena) unless an interpretation that connects the
variables with aspects of observable phenomena is established.
We exemplify this process with the schema in Figure 2. In the
same direction is also the definition given by Dalla Chiara and
Toraldo di Francia that in [11] claim that a physical model
can be identified with a structure M = <Mat, Exp, Tra>

where Mat represent the mathematical part, Exp represents
the experimental part, and Tra is a function of translation
that associates a mathematical interpretation to the elements
of the experimental part. Axel Gelfert again in [13] under-
lines that mathematical models, like other kinds of models,
require background assumptions for their interpretations. This

145

3

Fig. 2. The schema of the phases in physics.

perspective is not contrary either to what says Huges that in [7]
makes clear that physical theories are not statements about
physical world, on the contrary, they are statements about
theoretical constructs and only if the theory is satisfactory then
these constructs stand in a particular relation to the world. In
next section some considerations about MABS and models are
introduced.

The role of the mathematical model in physics is clear, and
it appears to us in tune with the considerations about models
that we saw in the previous paragraph.

III. MODELS AND PHASES OF A SIMULATION

Our interpretation is that Multi-Agent based Simulations
match many of the definitions of model that have been
exposed in the precedent paragraphs. Edmonds in [6] states
that MABS attempt to model Multi-Actor Systems with a
Multi-Agent System. The attempt is to investigate a system
by the construction of a MAS model and the analysis of the
behavior of the MAS when it runs. In the opinion of Edmonds
what distinguishes MABS from other forms of modeling is
that simulations based on a Multi-Agent System adopt a MAS
as formal model (in physics that role is of mathematics).
Often in MABS object-actors or other entities of the system
under study (the target system) are mapped onto agents in
the MAS. Edmonds explains that the entities in the real
system correspond to those of the agents in the MAS, while
interactions between entities are correspondent to interactions
rules between agents. Edmonds considers a MABS as a model
of the target system. In his work he does remain at a high level
and suggests interesting epistemological considerations about
the MABS. On the basis of his work we would like to attempt
a step further and try to detail the abstractions that constitute
a MABS. A first consideration is that in a MABS reality is
not directly mapped in a MAS, as one might be induced to
think by looking casually at Edmonds’ diagram, but what that
is mapped it is a model of reality (see Figure 3). This model
is an intermediate step between reality and MAS. Looking
deeper at the different passages implied in the construction
of a simulation model using a MAS, it appears clear that
implicitly we are working also with other intermediate models.
Each model represents a level of abstraction. In fact when we
want to study a phenomenon by a computer simulation a first
theoretical representation has to be translated through many
others steps before it can run on a computer. For this reason

Fig. 3. Edmonds’ schema revisited by the means of the introduction of
another intermediate level.

to use computer simulation to do science, it must be kept a
trace of all the passages that from reality bring to the software
code.

Our proposal is schematized in Figure 4. In the left side
of the schema are shown the existent levels that we identify
between reality and software code. The circularity of the
process of simulation described by Edmonds is maintained
in our proposal. In the right side of the schema in Figure 4,
in fact, are described the necessary steps that have to be
followed to turn back simulation results to reality. In the next
part of the paper we describe in details the meaning and the
importance of each level shown in the schema. Edmonds in
his article identifies also some phases in the simulation process
(Design, Inference, Analysis and Interpretation) and we will
see how they can be mapped in our schema at the end of next
section. Now we will describe in details the meaning and the
importance of each level shown in the schema.

A. Levels of Abstraction in simulation Building

In this section we give a brief explanation of each of
the levels shown in the left side of our schema. The levels
described below have to be considered levels of abstraction
implied (although sometimes implicitly) in MABS. It is not
in the scope of this work to give engineering guidelines
to translate the requirements of a system into the software
implementation, but we want to give a conceptual map of the
structure of the practice of simulation.

1) Target System: this level of abstraction is constituted by
the object of study that is determined by a specific point
of view on a portion of reality, considered “ isolated”
from the rest of the universe. This first abstraction is the
result of the identification of the problem that we want to
examine and it is achieved by the Phase 1 (Observation
in our schema). For example, the target system could
be the urban road system if the goal of the simulation
is to study the urban traffic problem. An example of a
Multi-Agent based traffic model can be found in [14].

2) Abstract Model: the second level is the abstract model
of the target system. The model construction (Phase
2) consists in the definition of the elements that are

146

4

Fig. 4. The schema shows the levels and phases involved in a simulation process. Notice that, with except of reality that has to be considered extra-model,
the more abstract levels are found in the bottom part of the diagram.

considered constitutive of the Target System, and in
the formulation of a set of hypothesis (conjectures that
constitute our intuitive theory) about which rules govern
their behaviors and interactions. This definition, at the
beginning, can be also not rigorous. For example, in
the case of the traffic, our abstract model is constituted
by the elements of the environment (i.e. roads, cross-
ings, traffic lights etc.), the individuals that populates
the environment (cars, motorcycles etc.), the rules of
behavior in this context (vehicles go along the road in
one direction, they stop when the traffic light is red, they
keep a security distance, etc.) and the properties of the
elements that have been identified in that context (each
vehicle has a speed etc.).

3) Computational Model: the third level is the specific
computational model that has been adopted to represent
the abstract model (see Phase 3 in the schema). The
computational model is always a formal model (it can be
a specific MAS). At this level the elements and the rules
described in the precedent level are formally defined
using proprieties and concepts of the MAS model (i.e.
agents, signals etc). In the traffic example cars and traffic
lights can be represented, in a MAS, by different kinds
of agents, while the behavior of the single agents is
modeled giving to the agents the possibility to emit
and interpret specific signals (the red stop lights can be
represented by a signal sent to car that is following).

4) The software model: the fourth level is the software
translation of the Computational Model (Phase 4). The
computational model, as it is, is an abstract definition
and must be translated in a specific program language.

At the end of this 4 steps the original target system will
be completely translated in something that is ready to be
computed by a machine. The translation of that model into
another implies the “ encoding” of a model in the language of
another. This is an activity that is intrinsic to the MABS and it
is strictly related both to scientific activity and to technological
constrains. It is important to be conscious of all these passages
because each translation can introduce errors and sometimes
also a lack of information due to the necessity to use a
less expressive language (e.g. the description of the abstract
model in the language of the MAS model). Therefore, each
abstraction represents another step far from reality because it
implies a transformation of the first model into something else.
For this reason a “ conversion key” that establishes what all the
elements of the various models represents, is needed in order
to maintain a correspondence with reality and use simulation
for scientific investigation.

B. Levels of Decoding

The simulation process proceeds back in the direction of
reality by steps that go through several abstraction levels and
that help to check the effects of the assumptions of the previous
phases and eventually to detect errors or limits of the adopted

147

5

Fig. 5. This schema shows the levels involved in revision phases. of a simulation.

frameworks (e.g the selected MAS). Where it is necessary, in
fact, may be necessary to come back to the previous levels and
revise one or more of the models involved in the simulation.
This operation allows also to correct mistakes introduced
in translation phases, and to modify some models by the
introduction of new elements that have been demonstrated
to be necessary in order to obtain meaningful results (see
Figure 5). The four decoding steps are presented below:

1) Output: outputs are the simple results of the software
execution (Phase 5). If some errors are detected in this
step it is necessary go back to the software code.

2) Simulation Displaying: the envisioning of the outputs
(Phase 6) is often the only way to operate with the sim-
ulation dynamic data, because simple outputs are usable
only at a machine level. This step is not trivial because
consists in the representation of real entities by objects
that do not necessarily offer a realistic visualization of
the phenomena. The aim of Simulation Displaying in
fact is to give an immediate and readable interpretation
of the Outputs. This passage is often another abstraction
jump that needs a translation key. The importance of the
visualization of simulation output data has been largely
discussed in many articles (i.e. see Batty and Smith
in [15]). This step is very important, in particular for
MAS-based simulations of complex systems, because
the direct observation of the dynamics envisioned, allows
to detect unexpected behaviors. These anomalies will be
resolved in the next steps, and they could induce to a
revision of the software, of the MAS, or the of Abstract
Model. If we focus on the MAS-based traffic model
example, at this level we can observe on the screen the
dynamic evolution of the simulation constituted by the
virtual cars that go along the roads.

3) Theory: after the visualization, the correctness of the
simulation displaying data must “ verified” (Phase 7);
in other words it is necessary to check if our initial
assumptions at the abstract level are captured by the

simulation. This phase is not aimed at evaluating if
the assumptions of the theory are correct, but only at
verifying if these assumptions are maintained in the
simulation. During this phase, we may need to go back
to the software or to the MAS to correct mistakes
and revise our computational modeling choices if we
have some bad feedbacks from the displaying of the
simulation. To turn back to traffic example, thanks to
visualization phase we can observe the cars that move,
brake, form a queue and so on. For example we could
notice an anomalous behavior near crosses because cars
do not give way correctly as we have assumed in our
theory. Therefore we must go back to software in order
to check if we did mistakes in the implementation or
we may be forced to check if we have wrongly mapped
the rules of the Abstract Model in the language of the
computational model.

4) Real Data: after the verification phase next step is
validation phase (Phase 8). If in the previous step we
have decided that our theory is well represented by the
simulation, now we can validate the theory in relation
to real data collected in the target system. In this phase
the results of the simulation must be related to real and
measurable aspects of reality. In a study on the traffic
problem, for example, a portion of a real street must
be simulated and the verified results must be compared
to the real data collected by observations of reality. If
after this check simulation results are considered not
reliable, it is necessary to turn back to the Abstract
Model and change some of the initial assumptions, or it
may be decided the introduction of new elements that at
first time were wrongly considered not relevant for the
representation of the Target System. The not realistic
formation of very long queues, for example, could be
resolved with a revision of the interaction rules between
the cars and by the introduction of the possibility to
overtake when the road on the other way is free.

148

6

Fig. 6. The figure shows how classical phases of simulation process (as can be found in Edmonds’ work) are mapped onto our schema

If the theory is validated by available data then it is possible
to make predictions for future states of the Target System
(Phase 9).

In reference to the work of Edmonds [6] the phases of
the simulation process are identified as Design, Inference,
Analysis and Interpretation. These phases in our schema are
visible in Figure 6. The phase of Design in our schema
involves all the 4 abstractions, as to say the Target System, the
Abstract Model, the Computational Model and the Software.
The Inference phase of Edmonds belongs to the level of the
Software abstraction of our schema, the phase of Analysis
involves from the level of Displaying to Real Data, while
Interpretation regards Simulation Displaying and the Theory.

IV. SOME RESULTS FOR THE SIMULATION PRACTICE

In this section the introduction of an example will clarify our
considerations about the aid that the conceptualization given in
the proposed schema can give to simulation activity. Therefore
we will now introduce the work described in [16]. In particular
Balmer and Nagel describe a MAS simulation focused on
traffic roundabouts which is applied to a specific Zurich area.
During the phase of Design the authors decided to represent
cars as particles that move along tunnels (driving routes)
representing streets. The spatial model is continuous (the
position of each particle is determined by a pair of coordinates)
and the particles can be considered agents because they have
specific behavior rule (agents must respect the physical rules
of acceleration, they have a specific desired speed, they must
respect other agents in the system decelerating or overtaking
if a slower agent drive in front of them, etc.). Agents also
hold information about their destination. Therefore the target
system is also in this case the traffic dynamics, the abstract
model is constituted by the assumptions and rules like the
ones presented above, while the chosen computational model
is constituted by a set of physical equations describing the
particles motion. During what we have called “ the analysis” ,
in particular in the phase that in our schema is identified with

the number 8 (validation), a problem was detected: in some
situation the cars were subjected to forces exerted in opposite
direction (the forces implied were the one directed towards the
desired way and the repulsion force aimed at the avoidance of
collisions with other cars) and they became unable to move.
This problem could not be identified in the design process
because it can be considered as an emergent phenomenon that
occurs only in some situations and in some specific spatial
contexts. This event is a relevant simulation result, because it
can be a hint of a possible congestion. In this framework it is
then useful to record it, but since this is not a routinary event,
the behavior of agent drivers in this situation cannot modelled
in a simple way. The decision in this case could have been
to turn back to the abstract model and operate a change (i.e.
discretization of space or the introduction of giving way rules).
However Balmer and Nigel anyway decided not to operate
these big changes of their abstract model, but they opted for a
minor modification: the introduction of a compenetration rule
in order to force the cars to go beyond the stall situation and
avoid the deadlock. This is an abstract and gross representation
of a set of complex behaviors that can be assumed by human
drivers to solve a stall. Thanks to this solution the global
behavior of the cars (in sense of aggregate data) maintains
a better similarity with the observed reality. In our opinion
Balmer and Nigel could detect the problem and adopt a good
solution for a correct and scientific use of simulation because
they were aware of all the steps done in the previous design
phase. It is fundamental to be aware of all these passages as
it would be an error to map directly the real world in the
software code. if we follow strictly all the passages shown in
the schema, it is possible to keep track of the translations of
our initial assumptions and, in this way, we can easily avoid
the introduction of arbitrary details whose influence cannot be
kept under control, as pointed out by some of the critics to
simulation practice that we summarized in Section I.

We then suggested that simulations can be used as a valid
tools for scientific investigation as the cycle of a simulation

149

7

Fig. 7. The schema in figure shows on the left side the abstractions level
implied in a simulation in comparison to those (on the right side) implied by
experimental science.

reflects the cycle of a science like physics, although a further
abstraction is involved in simulation as it is shown in Figure 7.
If we come back to reality following the proposed schema in
all its passages it is possible to obtain meaningful results that
are connected with reality, especially if the revision phases
are performed accurately. This practice is analogous to the
one followed by a science like physics where a first phase of
simplification and abstraction (in newtonian physics reality is
so simplified that bodies are seen just as simple points without
extension, see [12]) follows an experimental phase by which
the results obtained in the simplified model are projected back
to reality. These considerations can help to give an answer to
other of the objections presented at the beginning of the paper.

V. CONCLUSIONS

In this paper we began reporting some definitions of what
can be considered a model in science and we briefly described
the scientific cycle in physics. Then we raised some questions
about MABS and their role in scientific investigation. We
started from the work of Edmonds to introduce our inves-
tigation in the nature of simulations in the attempt to give
some answers. Our conclusion is that simulations are not
“ models” but are a compound of many models at different
levels of abstractions. We pointed out that in the encoding or
decoding of one level into another is situated the risk to loose
the scientific purpose of simulations, if a translation criteria
between models is not stated explicitly. When one modeler is
led to revise his/her theory about the simulated domain after an
analysis of simulation results and their validation, simulation
can be considered a useful tool for scientific investigation.
On the other hand, if the simulation has been deeply tested
and we can trust simulation results, we focus on the phase of
simulation prediction. In this last case we are working with a
tested instrument and we are not using MABS to do scientific
investigation but simply, for example, to help decision makers.
It must be noted that other areas of Computer Science and
engineering deal with models and abstractions of real systems,
in particular Software Engineering. For example the problem
of correspondence between models is considered also by the
Model Driven Architecture Approach (MDA), that focuses on

the importance of the mapping between the models present
at different levels of Software Engineering practice. One of
the purpose of MDA is to give guidelines for integration of
Information Technologies in order to assure interoperability
between systems (for an introduction and first references on
MDA see for example [17]). Another meaningful example is
the work of M. Jackson [18] that analyzes under the perspec-
tive of Problem Frames (PF) the relation that, in Software
Engineering, exists between the requirements, the real world,
and the machine considered as the general purpose computer
that will execute the software. MABS share several aspects
with Software Engineering, because the proposed schema
reminds several iterative software development processes that
are used also to project and build an effective simulation
tool. MDA or PF definitions take in consideration a class
of problems that is involved also in MABS, but our study
does not take into consideration deeply the technical problems
that are strictly related to the machine, the software and the
specific available technologies. The aim of this work is in fact
to state some general considerations that could help to preserve
scientific contents through the many models involved in MAS
simulation practice.

REFERENCES

[1] E. Winsberg, “ Sanctioning models: epistemology of simulation” , Science
in Context, 12, 275-292, 1999.

[2] D.C. Dennett, “ Real Patterns” , The Journal of Philosophy, Vol. 88, No.
01, pp. 27-51, 1991.

[3] K. Richardson, “ The Problematisation of Existence: Towards a Philoso-
phy of Complexity” , In proceedings of ISCE Workshop on Complexity
and Philosophy, 2002.

[4] D. Parisi, “ Simulazioni” , Il Mulino Eds, Bologna, 2001.
[5] J. Doran and N. Gilbert, “ Simulating Societies: an introduction” , in

N.Gilbert e J.Doran Eds, Simulating Societies: the Computer Simulation
of Social Phenomena, UCL Press, pp. 1-18, London, 1994.

[6] B. Edmonds, “ The Use of Models - Making MABS More Informative” ,
Lecture Notes in Computer Science, Page 15, 1979, Jan 2000, .

[7] R.I.G. Hughes, “ Models and Representation” , Philosophy of Science, pp.
S325-S336, 1997.

[8] E. Winsberg, “ Simulated Experiments: Methodology for a virtual World” ,
Philosophy of Science, pp. 105-125, 2003.

[9] M. Morrison and M.S. Morgan, “ Models as Mediators, Perspectives on
Natural and Social Science” , Cambridge University Press, 1999.

[10] N. Cartright in “ the dappled world. A study of the boundaries of
Science” , Cambridge, Cambridge UP 1999.

[11] M.L. Dalla Chiara and G. Toraldo di Francia, “ Introduzione alla filosofia
della scienza” , Laterza, Roma-Bari, 1999.

[12] D. Hestenes, “ Modeling Games in the Newtonian World” , Am. J. Phys.
pp. 732-748, (1992).

[13] A. Gelfert, “ Simulating Many-Body Models in Physics: Rigorous
Results, ’Benchmarks’, and Cross-Model Justification” , in Proceedings
Models and Simulations, London, 2006.

[14] K. Dresner and P. Stone, “ Multiagent Traffic Management: A
Reservation-Based Intersection Control Mechanism” , In Proceedings of
the Third International Joint Conference on Autonomous Agents and
MultiAgent Systems, p. 530–537, 2004.

[15] M. Batty and A. Smith, “ Urban Simulacra: From Real to Virtual Cities
and Back and Beyond” , Architectural Design, Sensing the 21st Century
City: The Net City Close-up and Remote, Eds. David Grahame Shane
and Brian McGrath, 2005.

[16] M. Balmer and K. Nagel, “ Shape Morphing of Intersection Layout
Using Curb Side Oriented Driver Simulation” , in Innovations in Design &
Decision Support Systems in Architecture and Urban Planning, Springer–
Verlag, p. 167–183, 2006.

[17] A. Wegmann and O. Preiss, “ Strengthening MDA by Drawing from the
Living System Theory” , in WiSME@UML 2002, Workshop in Software
Model Engineering, Dresden, Germany, 2002.

[18] M. Jackson, “ Problem Frames and Software Engineering” , Information
and Software Technology 47, p. 903–912, 2005.

150

Conformance and Interoperability
in Open Enviroments

Matteo Baldoni, Cristina Baroglio,
Alberto Martelli, and Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

Email: {baldoni,baroglio,mrt,patti}@di.unito.it

Abstract— An important issue, in open environments like the
web, is guaranteeing the interoperability of a set of services.
When the interaction scheme that the services should follow is
given (e.g. as a choreography or as an interaction protocol), it
becomes possible to verify, before the interaction takes place,
if the interactive behavior of a service (e.g. a BPEL process
specification) respects it. This verification is known as “confor-
mance test”. Recently some attempts have been done for defining
conformance tests w.r.t. a protocol but these approaches fail
in capturing the very nature of interoperability, turning out
to be too restrictive. In this work we give a representation of
protocol, based on message exchange and on finite state automata,
and we focus on those properties that are essential to the
verification the interoperability of a set of services. In particular,
we define a conformance test that can guarantee, a priori, the
interoperability of a set of services by verifying properties of the
single service against the protocol. This is particularly relevant in
open environments, where services are identified and composed
on demand and dynamically, and the system as a whole cannot
be analyzed.

I. INTRODUCTION

In this work we face the problem of verifying the in-
teroperability of a set of peers by exploiting an abstract
description of the desired interaction. On the one hand, we
will have an interaction protocol (possibly expressed by a
choreography), capturing the global interaction of a desired
system of services; on the other, we will have a set of service
implementations which should be used to assemble the system.
The protocol is a specification of the desired interaction,
as thus, it might be used for defining several systems of
services [3]. In particular, it contains a characterization of
the various roles played by the services [6]. In our view, a
role specification is not the exact specification of a process
of interest, rather it identifies a set of possible processes, all
those whose evolutions respect the dictates given by the role.
In an open environment, the introduction of a new peer in an
execution context will be determined provided that it satisfies
the protocol that characterizes such an execution context; as
long as the new entity satisfies the rules, the interoperability
with the other components of the system is guaranteed.

The computational model to which web services are inspired
is that of distributed objects [10]. An object cannot refuse to
execute a method which is invoked on it and that is contained
in its public interface, in the very same way as a service cannot
refuse to execute over an invocation that respects its public

interface (although it can refuse the answer). This, however,
is not the only possible model of execution. In multi-agent
systems, for instance, an agent sending a request message to
another agent cannot be certain that it will ever be answered,
unless the interaction is ruled by a protocol. The protocol
plays, in a way, the role of the public interface: an agent
conforming to a protocol must necessarily answer and must be
able to handle messages sent by other agents in the context of
the protocol itself. The difference between the case of objects
and the case of protocols is that the protocol also defines an
“execution context” in which using messages. Therefore, the
set of messages that it is possible to use varies depending
on the point at which the execution has arrived. In a way,
the protocol is a dynamic interface that defines messages
in the context of the occurring interaction, thus ruling this
interaction. On the other hand, the user of an object is not
obliged to use all of the methods offered in the public interface
and it can implement more methods. The same holds when
protocols are used to norm the interaction. Generally speaking,
only part of the protocol will be used in an entity’s interaction
with another and they can understand more messages than
the one forseen by the protocol. Moreover, we will assume
that the initiative is taken from the entity that plays as a
sender, which will commit to sending a specific message out
of its set of alternatives. The receiver will simply execute
the reception of the message. Of course, the senders should
send a message that its counterpart can understand. For all
these reasons, performing the conformance test is analogous
to verifying at compilation time (that is, a priori) if a class
implements an interface in a correct way and to execute a
static typechecking.

Sticking to a specification, on the other hand, does not
mean that the service must do all that the role specification
defines; indeed, a role specification is just a formal definition
of what is lawful to say or to expect at any given moment
of the interaction. Taking this observation into account we
need to define some means for verifying that a single service
implementation comforms to the specification of the role in the
protocol that it means to play [14]. The idea is that if a service
passes the conformance test it will be able to interact with a
set of other services, equally proved individually conformant
to the other roles in the protocol, in a way that respects the
rules defined in the protocol itself.

151

A typical approach to the verification that a service im-
plementation respects a role definition is to verify whether
the execution traces of the service belong to the protocol [1],
[12], [7]. This test, however, does not consider processes with
different branching structures. Another approach, that instead
takes this case into account, is to apply bisimulation and say
that the implementation is conformant if it is bisimilar to
its role or, more generally, that the composition of a set of
policies is bisimilar to the composition of a set of roles [9],
[18]. Bisimulation [16], however, does not take into account
the fact that the implementor’s decisions of cutting some
interaction path not necessarily compromise the interaction.
Many services that respect the intuitions given above will not
be bisimilar to the specification. Nevertheless, it would be very
restrictive to say that they are not conformant (see Section III-
A). Thus, in order to perform the conformance test we need
a softer test, a test that accepts all the processes contained in
a space defined by the role. In this work we provide such a
test (Section III). This proposal differs from previous work
that we have done on conformance [7], [8] in various aspects.
First of all, we can now tackle protocols that contain an
arbitrary (though finite) number of roles. Second, we account
also for the case of policies and roles which produce the same
interactions but have different branching structures. This case
could not be handled in the previous framework due to the
fact that we based it exclusively on a trace semantics.

II. PROTOCOLS, POLICIES, AND CONVERSATIONS

A conversation policy is a program that defines the com-
municative behavior of an interactive entity, e.g. a service,
implemented in some programming language [3]. A conversa-
tion protocol specifies the desired communicative behavior of
a set of interactive entities. More specifically, a conversation
protocol specifies the sequences of messages (also called
speech acts) that can possibly be exchanged by the involved
parties, and that we consider as lawful.

In languages that account for communication, speech acts
often have the form m(as, ar, l), where m is the kind of
message, or performative, as (sender) and ar (receiver) are
two interactive entities and l is the message content. In the
following analysis it is important to distinguish the incoming
messages from the outgoing messages w.r.t a role of a protocol
or a policy. We will write m? (incoming message) and m!
(outgoing message) when the receiver or the utterer and the
content of the message is clear from the context or they are
not relevant. So, for instance, m(as, ar, l) is written as m?
from the point of view of ar, and m! from the point of view
of the sender. By the term conversation we will, then, denote
a sequence of speech acts that is a dialogue of a set of parties.

Both a protocol and a policy can be seen as sets of
conversations. In the case of the protocol, it is intuitive that
it will be the set of all the possible conversations allowed by
its specification among the partners. In the case of the single
policy, it will be the set of the possible conversations that the
entity can carry on according to its implementing program.
Although at execution time, depending on the interlocutor

and on the circumstances, only one conversation at a time
will actually be expressed, in order to verify conformance a
priori we need to consider them all as a set. It is important to
remark before proceeding that other proposal, e.g. [2], focus
on a different kind of conformance: run-time conformance,
in which only the ongoing conversation is checked against a
protocol.

Let us then introduce a formal representation of policies
and protocols. We will use finite state automata (FSA). This
choice, though simple, is the same used by the well-known
verification system SPIN [15], whose notation we adopt.
FSA will be used for representing individual processes that
exchange messages with other processes. Therefore, FSA will
be used both for representing the roles of a protocol, i.e. the
abstract descriptions of the interacting parties, as well as for
representing the policies of specific entities involved in the
interaction. In this work we do not consider the translation
process necessary to turn a protocol (e.g. a WS-CDL choreog-
raphy) or an entity’s policy (e.g. a BPEL process) in a FSA;
our focus is, in fact, conformance and interoperability. It is
possible to find in the literature some works that do this kind
of translations. An example is [12].

Definition 2.1 (Finite State Automaton): A finite state au-
tomaton is a tuple (S, s0, L, T, F), where S is a finite set of
states, s0 ∈ S is a distinguished initial state, L is a finite set
of labels, T ⊆ (S ×L× S) is a set of transitions, F ∈ S is a
set of final states.
Similarly to [15] we will denote by the “dot” notation the
components of a FSA, for example we use A.s to denote the
state s that belongs to the automaton A. The definition of run
is taken from [15].

Definition 2.2 (Runs and strings): A run σ of a FSA
(S, s0, L, T, F) is an ordered, possibly infinite, set of transi-
tions (a sequence) (s0, l0, s1), (s1, l1, s2), (s2, l2, s3), . . . such
that ∀i ≥ 0, (si, li, si+1) ∈ T , while the sequence l0l1 . . . is
the corresponding string σ.

Definition 2.3 (Acceptance): An accepting run of a finite
state automaton (S, s0, L, T, F) is a finite run σ in which the
final transition (sn−1, ln−1, sn) has the property that sn ∈ F .
The corresponding string σ is an accepted string.

Given a FSA A, we say that a state A.s1 ∈ A.S is alive if
there exists a finite run (s1, l1, s2), . . . , (sn−1, ln−1, sn) and
sn ∈ A.F . Moreover, we will write A1 ⊆ A2 iff every string
of A1 is also a string of A2.

In order to represent compositions of policies or of individ-
ual protocol roles we need to introduce the notions of free and
of synchronous product. These definitions are an adaptation
to the problem that we are tackling of the analogous ones
presented in [4] for Finite Transition Systems.

Definition 2.4 (Free product): Let Ai, i = 1, . . . , n, be n

FSA’s. The free product A1 × · · · × An is the FSA A =
(S, s0, L, T, F) defined by:

• S is the set A1.S × · · · × An.S;
• s0 is the tuple (A1.s0, . . . , An.s0);
• L is the set A1.L × · · · × An.L;

152

• T is the set of tuples
((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′

1, . . . , An.s′n))
such that (Ai.si, li, Ai.s

′

i) ∈ Ai.T , for i = 1, . . . , n; and
• F is the set of tuples (A1.s1, . . . , An.sn) ∈ A.S such

that si ∈ Ai.F , for i = 1, . . . , n.
We will assume, from now on, that every FSA A has an

empty transition (s, ε, s) for every state s ∈ A.S. When the
finite set of labels L used in a FSA is a set of speech acts,
strings will represent conversations.

Definition 2.5 (Synchronous product): Let Ai,
i = 1, . . . , n, be n FSA’s. The synchronous product of
the Ai’s, written A1 ⊗ · · · ⊗ An, is the FSA obtained as
the free product of the Ai’s containing only the transitions
((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′

1, . . . , An.s′n)) such
that there exist i and j, 1 ≤ i 6= j ≤ n, li = m!, lj = m?,
and for any k not equal to i and j, lk = ε.
The synchronous product allows a system that exchanges mes-
sages to be represented. It is worth noting that a synchronous
product does not imply that messages will be exchanged in
a synchronous way; it simply represents a message exchange
without any assumption on how the exchange is carried on.

In order to represent a protocol, we use the synchronous
product of the set of such FSA’s associated with each role
(where each FSA represents the communicative behavior of
the role). Moreover, we will assume that the automata that
compound the synchronous product have some “good prop-
erties”, which meet the commonly shared intuitions behind
protocols. In particular, we assume that for the set of such
automata the following properties hold:

1) any message that can possibly be sent, at any point of
the execution, will be handled by one of its interlocutor;

2) whatever point of conversation has been reached, there
is a way to bring it to an end.

An arbitrary synchronous product of n FSA’s might not meet
these requirements, which can, however, be verified by using
automated systems, like SPIN [15].

Note that protocol specification languages, like UML se-
quence (activity) diagrams and automata [17], naturally follow
these requirements: an arrow starts from the lifeline of a role,
ending into the lifeline of another role, and thus corresponds to
an outgoing or to an incoming message depending on the point
of view. Making an analogy with the computational model of
distributed objects, one could say that the only messages that
are sent are those which can be understood. Moreover, usually
protocols contain finite conversations.

We will say that a conversation is legal w.r.t. a protocol if
it respects the specifications given by the protocol, i.e. if it is
an accepted string of the protocol.

III. INTEROPERABILITY AND CONFORMANCE TEST

We are now in position to explain, with the help of a few
simple examples, the intuition behind the terms “conformance”
and “interoperability”, that we will, then, formalize. By in-
teroperability we mean the capability of a set of entities of
actually producing a conversation when interacting with one
another [5]. Interoperability is a desired property of a system

of interactive entities and its verification is fundamental in
order to understand whether the system works. Such a test
passes through the analysis of all the entities involved in the
interaction.

Fig. 1. Example of the summer school.

Figure 1 shows an intuitive example, in which a group of
persons wish to attend a summer school. Each of them can
speak and understand different languages. For instance, Jan
can speak English, Dutch, and French. The school registration
form requires the interested attendee to speak and understand
English, which is the official language of the school. This
requirement allows a person to decide if it will be in condition
to interact with the other participants before attending the
school. So, for instance, Matteo, who speaks Italian and could
therefore interact with Guido, will not be in condition to
understand the other participants. Jan and Leon could interact
by speaking Ducth, however, since they also know English,
they will be able to interact with all the other attendees and
so they will be in condition to participate. The fact that they
understand other languages besides the one required by the
“school protocol” does not compromise their interoperability
with the others. In fact, within the context of the school
everybody will speak English with them. Interoperability is
compromised when one does not understand (part of) the
protocol (e.g. Matteo) or when one decides to speak a language
that is not agreed (e.g. Leon when speaking Dutch).

In an open system, however, it is quite unlikely to have a
global view of the system either because it is not possible
to read part of the necessary information (e.g. some services
do not publish their behavior) or because the interactive
entities are identified at different moments, when necessary.
Protocols are adopted to solve such problems, in fact, having
an interaction schema allows the distribution of the tests in
time, by checking a single entity at a time against the role
that it should play. The protocol, by its own nature guarantees
the interoperability of the roles that are part of it. One might
argue why we do not simply verify the system obtained by

153

substituting the policy instead of its role within the protocol
and, then, check whether any message that can be sent will be
handled by some of the interlocutor roles, bringing to an end
the conversations. Actually, this solution presents some flaws,
as the following counter-example proves. Let us consider a
protocol with three roles: A1 sends m1 to A2, A2 waits
for m1 and then it waits for m2, and A3 sends m2 to A2.
Let us know substitute to role A2 the policy which, first,
waits for m2 and then it waits for m1. The three partners
will perfectly interoperate and successfully conclude their
conversations but the conversation that is produced is not legal
w.r.t. the protocol. In protocol-based systems, the proof of the
interoperability of an entity with others, obtained by checking
the communicative behavior of the entity against the rules of
the system (i.e. against an interaction protocol itself), is known
as conformance test. Intuitively, this test must guarantee the
following definition of interoperability.

Definition 3.1 (Interoperability w.r.t. an interaction protocol):
Interoperability w.r.t. an interaction protocol is the capability
of a set of entities of producing a conversation that is legal
w.r.t. the protocol.
Let us now consider a given service that should play a role
in a protocol. In order to include it in the interaction we need
to understand if it will be able to interact with the possible
players of the other roles. If we assume that the other players
are conformant to their respective roles, we can represent
them by the roles themselves. Roles, by the definition of
protocol, are interoperable. Therefore, in order to prove the
interoperability of our service, it will be sufficient to prove
for it the “ good properties” of its role. First of all, we should
prove that its policy does not send messages that the others
cannot understand, which means that it will not send messages
that are not accounted for by the role. Moreover, we should
prove that it can tackle every incoming message that the other
roles might send to it, which means that it must be able to
handle all the incoming messages handled by the role. Another
important property is that whatever point of conversation has
been reached, there is a way to bring it to an end. In practice,
if a role can bring to an end a conversation in which it has
been engaged, so must do the service. To summarize, in order
to check a service interoperability it will be sufficient to check
its conformance w.r.t. the desired role and this check will
guarantee that the service will be able to interact with services
equally, and separately, proved conformant to the other roles.
This, nevertheless, does not mean that the policy of the service
must be a precise “ copy” of the role.

A. Expectations for interoperability

Let us now discuss some typical cases in which a policy and
a role specification that differ in various ways are compared
in order to decide if the policy conforms to the role so as
to guarantee its interoperability with its future interlocutors
that will play the other roles in the protocol. With reference
to Figure 2, let us begin with considering the case reported
in row (a): here, the service can possibly utter a message
m3 that is not foreseen by the role specification. Trivially,

m2!

m3!

m1?

No!
m2!

m1?
Ok!

m2?

m3?

m1!

Ok!
m2?

m1!

m2!
m1?

m2!

m4!

m1?

m2?
m1!

m2?

m4?

m1!

(a)

(b)

(c)

(d)

6≤

≤

≤

6≤

Policy Protocol role

No! Missing edge

Fig. 2. A set of cases that exemplifies our expectations about a conformant
policy: cases (b) and (c) do not compromise interoperability, hence they should
pass the conformance test; cases (a) and (d) instead should not pass the
conformance test.

this policy is not conformant to the protocol because the
service might send a message that cannot be handled by any
interlocutor that conforms to the protocol. The symmetric case
in which the policy accounts for less outgoing messages than
the role specification (Figure 2, row (b)) is, instead, legal. The
reason is that at any point of its conversations the entity will
anyway always utter only messages that the entities playing
the other roles will surely understand. Hence, interoperability
is preserved. The restriction of the set of possible alternatives
(w.r.t. the protocol) depends on the implementor’s own criteria.

Let us now consider the case reported in Figure 2, row
(c). Here, the service policy accounts for two conversations in
which, after uttering a message m1, the entity expects one
of the two messages m2 or m3. Let us also suppose that
the protocol specification only allows the first conversation,
i.e. that the only possible incoming message is m2. When
the entity will interact with another that is conformant to the
protocol, the message m3 will never be received because the
other entity will never utter it. So, in this case, we would
like the a priori conformance test to accept the policy as
conformant to the specification.

Talking about incoming messages, let us now consider the
symmetric case (Figure 2, row (d)), in which the protocol
specification states that after an outgoing message m1, an
answer m2 or m4 will be received, while the policy accounts
only for the incoming message m2. In this case, the expec-
tation is that the policy is not conformant because there is
a possible incoming message (the one with answer m4) that
can be enacted by the interlocutor, which, however, cannot be
handled by the policy. This compromises interoperability.

To summarize, at every point of a conversation, we expect
that a conformant policy never utters speech acts that are not
expected, according to the protocol, and we also expect it to be
able to handle any message that can possibly be received, once

154

m2!

m3!

m1!

m1!

m2?

m3?

m1!

m1!

m3?

m2?

m1!

m3!

m2!

m1! No!

m3!

m2!

m1!

m3?

m2?

m1!

m2!

m3!

m1!

m1!

m2?

m3?

m1!

m1!

(a)

(b)

(c)

(d)

Policy

≤

6≤

6≤

≤

Protocol role

No! Missing edge

No! Missing edge

Fig. 3. A set of cases that exemplifies our expectations about a conformant
policy: differently than in Figure 2, for every row, the policy and the role
produce the same conversations but the structure of their implementations
differ.

again according to the protocol. However, the policy is not
obliged to foresee (at every point of conversation) an outgoing
message for every alternative included in the protocol but it
must foresee at least one of them if this is necessary to proceed
with the conversation. Trivially, in the example of row (b),
a policy containing only the conversation m1? (not followed
either by m2! or by m4!) would not be conformant.

Let us now consider a completely different set of situations,
in which the “ structure” of the policy implemented and the
structure of the role specification are taken into account. These
situations are taken from the literature on communicating
processes [13]. Figure 3 reports a set of cases in which the role
description and the policy allow the same conversations but
their structure differs: in rows (a) and (c) the policy decides
which message to send (receive, respectively) after m1 from
the very beginning, while in the protocol this decision is taken
after m1 is sent. In row (b) and (d) the situation is inverted.

The case of row (a) does not compromise conformance in
the same way as the case reported at row (b) of Figure 2
does not: after a non-deterministic choice the set of alternative
outgoing messages is restricted but in both cases only legal
messages that can be handled by the interlocutor will be sent.
The analogous case reported in row (c), concerning incoming
messages, instead, compromises the conformance. In fact, after
the non-deterministic step the policy might receive a message
that it cannot handle, similarly to row (d) of Figure 2.

The case of row (b), Figure 3, compromises the confor-
mance because after the non-deterministic choice the role
specification allows a single outgoing message with no alterna-
tives. The policy, instead, might utter one out of two alternative
messages (similarly to row (a) of Figure 2). Finally, the case

of row (d) does not compromise the conformance, following
what reported in Figure 2, row (c).

B. Conformance and interoperability

In this section we define a test, for checking conformance,
that is derived from the observations above. A first consider-
ation is that a conformance test is not an inclusion test w.r.t.
the set of possible conversations that are produced. In fact,
for instance, in row (d) of Figure 2 the policy produces a
subset of the conversations produced by the role specification
but interoperability is not guaranteed. Instead, if we consider
row (c) in the same figure, the set of conversation traces,
produced by the policy, is a superset of the one produced
by the protocol; despite this, interoperability is guaranteed.
A second consideration is that a conformance test is not a
bisimulation test w.r.t. the role specification. Actually, the
(bi)simulation-based test defined in concurrency theory [16]
is too strict, and it imposes constraints, that would exclude
policies which instead would be able to interoperate, within
the context given by the protocol specification. In particular,
all the cases reported in Figure 3 would not be considered
as conformant because they are all pairs of processes with
different branching structures. Despite this, we would like our
test to recognize cases (a) and (d) as conformant because they
do not compromise interoperability.

The solution that we propose is inspired by (bi)simulation,
but it distinguishes the ways in which incoming and outgoing
messages are handled, when a policy is compared to a role 1.
In the following, we will use “ A1 ≤ A2” to denote the fact
that A1 conforms to A2. This choice might seem contradictory
after the previous discussion, in fact, in general A1 ≤ A2 does
not entail A1 ⊆ A2. However, with symbol “≤” we capture the
fact that A1 will actually produce a subset of the conversations
forseen by the role, when interacting with entities that play
the other roles in the protocol (see Propositions 3.3 and 3.4).
This is what we expect from a conformant policy and from
our definition of interoperability. Let A an FSA, let us denote
by Succ(l, s) the set of states {s′ | (s, l, s′) ∈ A.T}.

Definition 3.2 (Conformant simulation): Given two FSA’s
A1 and A2, A1 is a conformant simulation of A2, written
A1 ≤ A2 iff there is a binary relation R between A1 and A2

such that

1) A1.s0RA2.s0;
2) if siRsj , where si ∈ A1.S and sj ∈ A2.S, then

a) for every (si, m!, si+1) ∈ A1.T , Succ(m!, sj) 6= ∅
and si+1Rs′ for every s′ ∈ Succ(m!, sj);

b) for every (sj , m?, sj+1) ∈ A2.T , Succ(m?, si) 6= ∅
and sj+1Rs′ for every s′ ∈ Succ(m?, si);

Particularly relevant is the case in which A2 is a role in
a protocol and A1 is a policy implementation. Notice that,
in this case, conformance is defined only w.r.t. the role that
the single policy implements, independently from the rest of
the protocol. As anticipated above, Definition 3.2 does not

1All proofs are omitted for lack of space, they will be supplied on demand.

155

imply the fact that “ A1 ≤ A2 entails A1 ⊆ A2” . Instead, the
following proposition holds.

Proposition 3.3: Let A1⊗· · ·⊗Ai⊗· · ·⊗An be a protocol,
and A′

i a policy such that A′

i ≤ Ai, then A1⊗· · ·⊗A′

i⊗· · ·⊗
An ⊆ A1 ⊗ · · · ⊗ Ai ⊗ · · · ⊗ An.
This proposition catches the intuition that a conformant policy
is able to produce a subset of the legal conversations defined
by the protocol but only when it is executed in the context
given by the protocol.

The above proposition can be generalized in the following
way. Here we consider a set of policies that have been individ-
ually proved as being conformant simulations of the various
roles in a protocol. The property states that the dialogues that
such policies can produce will be legal w.r.t. the protocol.

Proposition 3.4: Let A1 ⊗ · · · ⊗ An be a protocol and let
A′

1, . . . , A
′

n be n policies such that A′

i ≤ Ai, for i = 1, . . . , n,
then A′

1 ⊗ · · · ⊗ A′

n ⊆ A1 ⊗ · · · ⊗ An

In order to prove interoperability we need to prove that our
policies will actually produce a conversation when interacting,
while so far we have only proved that if a conversation will
be generated, it will be legal. By assumption, in a protocol
it is always possible to conclude a conversation whatever the
point at which the interaction arrived. We expect a similar
property to hold also for a set of policies that have been
proved conformant to the roles of a protocol. The relation ≤
is too weak, so we need to introduce the notion of complete
conformant simulation.

Definition 3.5 (Complete conformant simulation): Given
two FSA’s A1 and A2 we say that A1 is a complete
conformant simulation of A2, written A1 £ A2, iff there is a
A1 is a conformant simulation of A2 under a binary relation
R and

• for all si ∈ A1.F such that siRsj , then sj ∈ A2.F ;
• for all sj ∈ A2.S such that sj is alive and siRsj , si ∈

A1.S, then si is alive.
Now, we are in the position to give the following fundamental
result.

Theorem 3.6 (Interoperability): Let A1 ⊗ · · · ⊗ An be a
protocol and let A′

1, . . . , A
′

n be n policies such that A′

i £ Ai,
for i = 1, . . . , n. For any common string σ′ of A′

1 ⊗ · · · ⊗A′

n

and A1 ⊗ · · · ⊗ An there is a run σ′σ′′ such that σ′σ′′ is an
accepted string of A′

1 ⊗ · · · ⊗ A′

n.
Intuitively, whenever two policies, that have independently
been proved conformant to the two roles of a protocol, start
an interaction, thanks to Proposition 3.4, they will be able
to conclude their interaction producing a legal accepted run.
Therefore, Theorem 3.6 implies Definition 3.1 (interoperabil-
ity).

IV. CONCLUSIONS AND RELATED WORKS

In this work we have given a definition of conformance
and of interoperability that is suitable to application in open
environments, like the web. Protocols have been formalized
in the simplest possible way (by means of FSA) to capture
the essence of interoperability and to define a fine-grain
conformance test.

The issue of conformance is widely studied in the literature
in different research fields, like multi-agent systems (MAS)
and service-oriented computing (SOA). In particular, in the
area of MAS, in [7], [5] we have proposed two preliminary
versions of the current proposal, the former, based on a
trace semantics, consisting in an inclusione test, the latter,
disregarding the case of different branching structures. The
second technique was also adapted to web services [8]. Both
works were limited to protocols with only two roles while,
by means of the framework presented in this paper we can
deal with protocols with an arbitrary finite number of roles.
Inspired to this work the proposal in [1]: here an abductive
framework is used to verify the conformance of services to
a choreography with any number of roles. The limit of this
work is that it does not consider the cases in which policies
and roles have different branching structures. The first proposal
of a formal notion of conformance in a declarative setting is
due to Endriss et al. [11], the authors, however, do not prove
any relation between their definitions of conformance and
interoperability. Moreover, they consider protocols in which
two partners strictly alternate in uttering messages.

In the SOA research field, conformance has been discussed
by Foster et al. [12], who defined a system that translates
choreographies and orchestrations in labeled transition systems
so that it becomes possible to apply model checking techniques
and verify properties of theirs. In particular, the system can
check if a service composition complies with the rules of
a choreography by equivalent interaction traces. Violations
are highlighted back to the engineer. Once again, as we
discussed, basing on traces can be too much restrictive. In
[9], instead, “ conformability bisimulation” is defined, a variant
of the notion of bisimulation. This is the only work that
we have found in which different branching structures are
considered but, unfortunately, the test is too strong. In fact,
with reference to Figure 2, it excludes the cases (b) and (c),
and it also excludes cases (a) and (d) from Figure 3, which
do not compromise interoperability. A recent proposal, in this
same line, is [18], which suffers of the same limitations.

1) Acknowledgements.: This research has partially been
funded by the European Commission and by the Swiss Federal
Office for Education and Science within the 6th Frame-
work Programme project REWERSE number 506779 (cf.
http://rewerse.net), and it has also been supported by MIUR
PRIN 2005 “ Specification and verification of agent interaction
protocols” national project.

REFERENCES

[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and M. Mon-
tali, “An abductive framework for a-priori verification of web services,”
in Principles and Practice of Declarative Programming, PPDP’06).
ACM Press, 2006.

[2] M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello,
“ Specification and verification of agent interaction protocols in a logic-
based system,” in ACM SAC 2004. ACM, 2004, pp. 72–78.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Springer, 2004.

[4] A. Arnold, Finite Transition Systems. Pearson Education, 1994.

156

[5] M. Baldoni, C. Baroglio, A. Martelli, and Patti, “ Verification of protocol
conformance and agent interoperability,” in Post-Proc. of CLIMA VI, ser.
LNCS State-of-the-Art Survey, vol. 3900. Springer, 2006, pp. 265–283.

[6] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti, “ Reasoning about
interaction protocols for customizing web service selection and compo-
sition,” J. of Logic and Alg. Progr., special issue on Web Services and
Formal Methods, 2006, to appear.

[7] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “ Ver-
ifying protocol conformance for logic-based communicating agents,” in
Proc. of CLIMA V, ser. LNCS, no. 3487. Springer, 2005, pp. 192–212.

[8] — — , “ Verifying the conformance of web services to global interaction
protocols: a first step,” in Proc. of WS-FM 2005, ser. LNCS. Springer,
September, 2005, vol. 3670, pp. 257–271.

[9] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “ Chore-
ography and orchestration: a synergic approach for system design,” in
Proc. of 4th International Conference on Service Oriented Computing
(ICSOC 2005), 2005.

[10] B. Eckel, Thinking in Java. Prentice Hall, 2005.
[11] U. Endriss, N. Maudet, F. Sadri, and F. Toni, “ Logic-based agent com-

munication protocols,” in Advances in agent communication languages,
ser. LNAI, vol. 2922. Springer-Verlag, 2004, pp. 91–107, invited
contribution.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “ Model-based analysis of
obligations in web service choreography,” in Proc. of IEEE International
Conference on Internet&Web Applications and Services 2006, 2006.

[13] R. v. Glabbeek, “ Bisimulation,” Encyclopedia of Distributed Com-
puting (J.E. Urban & P. Dasgupta, eds.), Kluwer, 2000, available at
http://Boole.stanford.edu/pub/DVI/bis.dvi.gzz.

[14] F. Guerin and J. Pitt, “ Verification and Compliance Testing,” in Com-
munication in Multiagent Systems, ser. LNAI, H. Huget, Ed., vol. 2650.
Springer, 2003, pp. 98–112.

[15] G. J. Holzmann, The SPIN Model Checker : Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[16] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[17] OMG, “ Unified modeling language: Superstructure,” 2005.
[18] X. Zhao, H. Yang, and Z. Qui, “ Towards the formal model and

verification of web service choreography description language,” in Proc.
of WS-FM 2006, 2006.

157

Importing Agent-like Interaction in Object
Orientation

Matteo Baldoni, Guido Boella
Dipartimento di Informatica

Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

Email: {baldoni,guido}@di.unito.it

Leendert van der Torre
Department of Computer Science FTST

6, rue Richard Coudenhove - Kalergi
L-1359 Luxembourg

Email: leon.vandertorre@uni.lu

Abstract— This paper begins with the comparison of the
message-sending mechanism, for communication among agents,
and the method-invocation mechanism, for communication
among objects. Then, we describe an extension of the method-
invocation mechanism by introducing the notion of “sender” of
a message, “state” of the interaction and “protocol” using the
notion of “role”, as it has been introduced in the powerJava
extension of Java. The use of roles in communication is shown
by means of an example of protocol.

I. INTRODUCTION

The major differences of the notion of agent w.r.t. the notion
of object are often considered to be “autonomy” and “proactiv-
ity” [27]. Less attention has been devoted to the peculiarities
of the communication capabilities of agents, which exchange
messages while playing roles in protocols. For example, in the
contract net protocol (CNP) an agent in the role of initiator
starts by asking for bids, while agents playing the role of
participants can propose bids which are either accepted or
rejected by the Initiator.

The main features of communication among agents which
emerge from the CNP example are the following:

1) The message identifies both its sender and its receiver.
E.g., in FIPA the acceptance of a proposal is:
(accept-proposal :sender i :receiver
j :in-reply-to

bid089 :content X :language
FIPA-SL).

2) The interaction with each agent is associated to a state
which evolves according to the messages that are ex-
changed. The meaning of the messages is influenced by
the state. E.g., in the FIPA iterated contract net protocol,
a “call for proposal” is a function of the previous calls
for proposals, i.e., from the session.

3) Messages are produced according to some protocol (e.g.,
a call for proposal must be followed by a proposal or a
reject).

4) The sender and the receiver play one of the roles
specified in the protocol (e.g., initiator and participant
in the contract net protocol).

5) Communication is asynchronous: the response to a mes-
sage does not necessarily follow it immediately. E.g., in
the contract net protocol, a proposal must follow a call

for proposal and it must arrive, no matter when, before
a given deadline.

6) The receiver autonomously decides to comply with
the message (e.g., making a proposal after a call for
proposal).

The message metaphor has been originally used also for
describing method calls among objects, but it is not fully ex-
ploited. In particular, message-exchange in the object oriented
paradigm has the following features:

1) The message is sent to the receiver without any infor-
mation concerning the sender.

2) There is no state of the interaction between sender and
receiver.

3) The message is independent from the previous messages
sent and received.

4) The sender and the receiver do not need to play any role
in the message exchange.

5) The interaction is synchronous: an object waits for the
result of a method invocation.

6) The receiver always executes the method invoked if it
exists.

These two scenarios are rather different but we believe that
the object-oriented (OO) paradigm can learn something from
the agent-oriented world. The research question of this paper is
thus: is it profitable to introduce in the OO paradigm concepts
taken from agent communication? how can we introduce
in the OO paradigm the way agents communicate? And as
subquestions: which of the above properties can be imported
and which cannot? How to translate the properties which can
be imported in the OO paradigm? What do we learn in the
agent-oriented world from this translation?

The methodology that we use in this paper is to map the
properties of agent communication to an extension of Java,
powerJava [4], [3], [5], which adds roles to objects. Roles
are used to represent the sender of a message (also known as
the “player of the role”), to represent the state of the interaction
via role instances, allowing the definition of protocols and
asynchronous communication as well as the representation of
the different relations between objects.

The choice of the Java language is due to the fact that it is
one of the prototypical OO programming languages; moreover,

158

MAS systems are often implemented in Java and some agent
programming languages are extensions of Java, e.g., see the
Jade framework [8] or the JACK software tool [26]. In this
way we can directly use complex interaction and roles offered
by our extension of Java when building MAS systems or
extending agent programming languages.

Furthermore, we believe that in order to contribute to the
success of the Autonomous Agents and Multiagent Systems
research, the theories and concepts developed in this area
should be applicable also to more traditional views. It is
a challenge for the agent community to apply its concepts
outside strictly agent-based applications. The OO paradigm is
central in Computer Science and, as observed and suggested
also by Juan and Sterling [19], before AO can be widely used
in industry, its attractive theoretical properties must be first
translated to simple, concrete constructs and mechanisms that
are of similar granularity as objects.

The paper is organized as follows. In Section II we show
which properties of agent communication can be mapped to
objects. In Section III we introduce how we model interaction
in powerJava and in Section IV we discuss how to use roles
in order to model complex forms of interaction between object
inspired by agent interaction, we also illustrate the contract net
protocol among objects using powerJava. Conclusions end
the paper.

II. COMMUNICATION BETWEEN OBJECTS

When approaching an extension of a language or of a
method, the first issue that should be answered is whether
that extension brings along some advantages. In our specific
case, the question can be rephrased as: Is it useful for the OO
paradigm to introduce a notion of communication as developed
in MAS? We argue that there are several acknowledged limita-
tions in OO method invocation which could be overcome, thus
realizing what we could call a “ session-aware interaction” .

First of all, objects exhibit only one state in all interactions
with any other object. The methods always have the same
meaning, independently of the identity or type of the object
from which they are called.

Second, the operational interface of Abstract Data Types
induces an asymmetrical semantic dependency of the callers
of operations on the operation provider: the caller takes
the decision on what operation to perform and it relies on
the provider to carry out the operation. Moreover, method
invocation does not allow to reach a minimum level of “ control
from the outside” of the participating objects [2].

Third, the state of the interaction is not maintained and
methods always offer the same behavior to all callers under
every circumstance. This limit could be circumvented by
passing the caller as a further parameter to each method and
by indexing, in each method, the possible callers.

Finally, even though asynchronous method calls can be
simulated by using buffers, it is still necessary to keep track
of the caller explicitly.

The above problems can be solved by using the way
communication is managed between agents and defining it

as a primitive of the language. By adopting agent-like com-
munication, in fact, the properties presented in Section I –
with the only exception of autonomy, (6), which is a property
distinguishing agents from objects – can be rewritten as in the
following:

1) When methods are invoked on an object also the object
invoking the method (the “ sender”) must be specified.

2) The state of the interaction between two objects must
be maintained.

3) In presence of state information, it is possible to imple-
ment interaction protocols because methods are enabled
to adapt their behavior according to the interaction that
has occurred so far. So, for instance, a proposal method
whose execution is not preceded by a call for proposals
can detect this fact and raise an exception.

4) The object whose method is invoked and the object
invoking the method play each one of the roles specified
by the other, and they respect the requirements imposed
on the roles. Intuitively, requirements are the capabilities
that an object must have in order to be able to play the
role.

5) The interaction can be asynchronous, thanks to the fact
that the state of the interaction is maintained.

For a better intuition, let us consider as an example the
case of a simple interaction schema which accounts for two
objects. We expect the first object to wait for a “ call for
proposal” by the other object; afterwards, it will invoke the
method “ propose” on the caller. The idea is that the call for
proposal can be performed by different callers and, depending
on the caller, a different information (e.g. the information that
it can understand) should be returned by the first object. More
specifically, we can, then, imagine to have an object a, which
exposes a method cfp and waits for other objects to invoke
it. After such a call has been performed, the object a invokes
a method propose on the caller. Let us suppose that two
different objects, b and c, do invoke cfp. We desire the data
returned by a to be different for the two callers.

Since we look at the agent paradigm the solution is to have
two different interaction states, one for the interaction between
a and b and one for the interaction between a and c. In our
terminology, b and c interact with a in two distinct roles
(or better, role instances) which have distinct states: thus it is
possible to have distinct behaviors depending on the invoker.
If the next move is to “ accept” a proposal, then we must be
able to associate the acceptance to the right proposal.

In order to implement these properties we use the notion
of role introduced in the powerJava language in a different
way with respect to how it has been designed for.

III. MODELLING INTERACTION WITH powerJava

In [24], [1], [13], [22] the concept of “ role” has been
proved extremely useful in programming languages for several
reasons. These reasons range from dealing with the separation
of concerns between the core behavior of an object and its
interaction possibilities, reflecting the ontological structure of
domains where roles are present, from modelling dynamic

159

changes of behavior in a class to fostering coordination among
components. In [4], [3], [5] the language powerJava is
introduced: powerJava is an extension of the well-known
Java language, which accounts for roles, defined within social
entities like institutions, organizations, normative systems, or
groups [6], [15], [28]. The name powerJava is due to the fact
that the key feature of the proposed model is that institutions
use roles to supply the powers for acting (empowerment).
In particular, three are the properties that characterize roles,
according to the model of normative multiagent systems [10],
[11], [12]:

Foundation: a (instance of) role must always be
associated with an instance of the institution it be-
longs to (see Guarino and Welty [17]), besides being
associated with an instance of its player.
Definitional dependence: The definition of the role
must be given inside the definition of the institution
it belongs to. This is a stronger version of the
definitional dependence notion proposed by Masolo
et al. [20], where the definition of a role must include
the concept of the institution.
Institutional empowerment: the actions defined for
the role in the definition of the institution have access
to the state and actions of the institution and to the
other roles’ state and actions: they are powers.

Roles require to specify both who can play the role and
which powers are offered by the institution in which the role
is defined. The objects which can play the role might be of
different classes, so that roles can be specified independently
of the particular class playing the role. For example a role
customer can be played both by a person and by an organi-
zation. Role specification is a sort of double-sided interface,
which specifies both the methods required to a class playing
the role (requirements, keyword “ playedby”) and the methods
offered to objects playing the role (powers keyword “ role”).
An object, which plays a role, is empowered with new methods
as specified by the interface.

To make an example, let us suppose to have a printer which
supplies two different ways of accessing to it: one as a normal
user, and the other as a superuser. Normal users can print their
jobs and the number of printable pages is limited to a given
maximum. Superusers can print any number of pages and can
query for the total number of prints done so far. In order to
be a user one must have an account which is printed on the
pages. The role specification for the user is the following:

role User playedby AccountedPerson {
int print(Job job);
int getPrintedPages();

}

interface AccountedPerson {
Login getLogin();

}

The superuser, instead:

role SuperUser playedby AccountedPerson {
int print(Job job);
int getTotalPrintedPages();

}

Requirements must be implemented by the objects which act
as players.

class Person implements AccountedPerson {
Login login; // ...
Login getLogin() {

return login;
}

}

Instead, powers are implemented in the class defining the
institution in which the role itself is defined. To implement
roles inside an institution we revise the notion of Java inner
class, by introducing the new keyword definerole instead
of class followed the name of the role definition that the
class is implementing.

class Printer {
final static int MAX_PAGES_PER_USER;
private int totalPrintedPages = 0;

private void print(Job job, Login login) {
totalPrintedPages += job.getNumberPages();
// performs printing

}

definerole User {
int counter = 0;
public int print(Job job) {

if (counter > MAX_PAGES_USER)
throws new IllegalPrintException();

counter += job.getNumebrPages();
Printer.this.print(job, that.getLogin());
return counter;

}
public int getPrintedPages(){

return counter;
}

}

definerole SuperUser {
public int print(Job job) {

Printer.this.print(job, that.getLogin());
return totalPrintedPages;

}
public int getTotalPrintedpages() {

return totalPrintedPages;
}

}

}

Roles cannot be implemented in different ways in the same
institution and we do not consider the possibility of extending
role implementations (which is, instead, possible with inner
classes), see [5] for a deeper discussion.

As a Java inner class, a role implementation has access
to the private fields and methods of the outer class (in the
above example the private method print of Printer used both
in role User and in role SuperUser) and of the other roles
defined in the outer class. This possibility does not disrupt
the encapsulation principle since all roles of an institution are
defined by who defines the institution itself. In other words, an
object that has assumed a given role, by means of it, has access

160

and can change the state of the corresponding institution and of
the sibling roles. In this way, we realize the powers envisaged
by our analysis of the notion of role.

The class implementing the role is instantiated by passing
to the constructor an instance of an object satisfying the
requirements. The behavior of a role instance depends on the
player instance of the role, so in the method implementation
the player instance can be retrieved via a new reserved key-
word: that, which is used only in the role implementation.
In the example the invocation of that.getLogin() as a
parameter of the method print.

All the constructors of all roles have an implicit first
parameter which must be passed as value the player of the
role. The reason is that to construct a role we need both the
institution the role belongs to (the object the construct new
is invoked on) and the player of the role (the first implicit
parameter). For this reason, the parameter has as its type the
requirements of the role. A role instance is created by means of
the construct new and by specifying the name of the “ inner
class” implementing the role which we want to instantiate.
This is like it is done in Java for inner class instance creation.
Differently than other objects, role instances do not exist by
themselves and are always associated to their players.

Methods can be invoked from the players, given that the
player is seen in its role. To do this, we introduce the new
construct

receiver <-(role) sender
This operation allows the sender (player of the role) to use
the powers given by “ role” when it interacts with the receiver
(institution) the role belongs to. It is similar to role cast as
introduced in [3], [4], [5] but it stresses more strongly the
interaction aspect of the two involved objects: the sender uses
the role defined by the receiver for interacting with it. Let us
see how to use this construct in our running example. The first
instructions in the main create a printer object hp8100 and
two person objects, chris and sergio. chris is a normal
user while sergio is a superuser. Indeed, instructions four
and five define the roles of these two objects w.r.t. the created
printer. The two users invoke method print on hp8100.
They can do this because they have been empowered of
printing by their roles. The act of printing is carried on by
the private method print. Nevertheless, the two roles of
User and SuperUser offer two different way to interact
with it: User counts the printed pages and allows a user to
print a job if the number of pages printed so far is less than a
given maximum; SuperUser does not have such a limitation.
Moreover, SuperUser is empowered also for viewing the
total number of printed pages. Notice that the page counter
is maintained in the role state and persists through different
calls to methods performed by a same sender/player towards
the same receiver/institution as long as it plays the role.

class PrintingExample {
public static void main(String[] args) {

Printer hp8100 = new Printer();
Person chris = new Person();
Person sergio = new Person();

hp8100.new User(chris);
hp8100.new SuperUser(sergio);

(hp8100 <-(User) chris).print(job1);
(hp8100 <-(SuperUser) sergio).print(job2);
(hp8100 <-(User) chris).print(job3);

System.out.println("Chris has printed " +
(hp8100 <-(User) chris).getPrintedPages()

+ " pages");
System.out.println("The printer hp8100 has

printed a total of " +
(hp8100 <-(User)sergio).getTotalPrintedPages()
+ " pages");

}
}

By maintaining a state, a role can be seen as realizing a
session-aware interaction, in a way that is analogous to what
done by cookies or Java sessions for JSP and Servlet. So in
our example, it is possible to visualize the number of currently
printed pages, as in the above example. Note that, when we
talk about playing a role we always mean playing a role
instance (or qua individual [20] or role enacting agent [14])
which maintains the properties of the role.

An object has different (or additional) properties when it
plays a certain role, and it can perform new activities, as
specified by the role definition. Moreover, a role represents a
specific state which is different from the player’s one, which
can evolve with time by invoking methods on the roles. The
relation between the object and the role must be transparent
to the programmer: it is the object which has to maintain a
reference to its roles. However, a role is not an independent
object, it is a facet of the player.

Since an object can play multiple roles, the same method
will have a different behavior, depending on the role which the
object is playing when it is invoked. It is sufficient to specify
which the role of a given object, we are referring to, is. In the
example chris can become also superuser of hp8100,
besides being a normal user

hp8100.new SuperUser(chris);
(hp8100 <-(SuperUser) chris).print(job4);
(hp8100 <-(User) chris).print(job5);

Notice that in this case two different sessions will be kept:
one for chris as normal user and the other for chris as
superuser. Only when it prints its jobs as a normal user
the page counter is incremented.

IV. USES OF ROLES IN powerJava

In this paper we exploit the language powerJava in a
new way which allows modelling the agent inspired vision of
interaction among objects. The basic idea of powerJava is
that objects (e.g. hp8100), called institutions, are composed
of roles which can access the state of the institution and of
other sibling roles and, thus, can coordinate with each other
[4]. However, since an institution is just an object which
happens to contain role implementations, nothing prevents us
to consider every object as an institution, and to consider the
roles as different ways of interacting with it. Many objects can
play the same role (a printer can have many users) as well as

161

the same object can play different roles (chris is both a user
and a superuser). Each role instance has its own state, which
represents the state of the interaction with the player of the
role.

Fig. 1. The possible uses of roles.

Figure 1 illustrates the different interaction possibilities
given by roles, which do not exclude the traditional direct
interaction with the object when roles are not necessary. Other
possibilities like sessions shared by multiple objects are not
considered for space reasons.

Arrows represent the relations between players and their
respective roles, dashed arrows represent the access relation
between objects, i.e., their powers.

• Drawing (a) illustrates the situation where an object
interacts with another one by means of the role offered
by it. This is, for instance, the case of sergio being a
SuperUser of hp8100.

• Drawing (b) illustrates an object (e.g., chris) interacting
in two different roles with another one (hp8100 in
the example). This situation is used when an object
implements two different interfaces for interacting with
it, which have methods (like print) with the same
signature but with different meaning. In our model the
methods of the interfaces are implemented in the roles
offered by the objects to interact with them. The role
represent also the different sessions of the interaction with
the different objects.

• Drawing (c) illustrates the case of two objects which
interact by means of the roles of an institution (which
can be considered as the context of execution). This is the
original case, powerJava has been developed for [4]; in
this paper, we used as a running example the well-known
5 philosophers scenario. The institution is the table, at
which philosophers are sitting and coordinate to take the
chopsticks and eat since they can access the state of each
other. The coordinated objects are the players of the role
chopstick and philosopher. The former role is
played by objects which produce information, the latter
by objects which consume them. None of the players
contains the code necessary to coordinate with the others,
which is supplied by the roles.

• In drawing (d) two objects interact with each other, each
playing a role offered by the other. This is often the case

of interaction protocols: e.g., an object can play the role
of initiator in the Contract Net Protocol if and only if
the other object plays the role of participant. Indeed, the
Contract Net Protocol is reported as an example in the
following section.

The four cases can be combined to represent more complex
interaction schemas.

This view of roles inspires a new vision of the the OO
paradigm, whose object metaphor has been accepted too
acritically and it has not been subject to a deep analysis. In
particular, it is a naive view of the notion of object and it does
not consider the analysis of the way humans conceptualize
objects performed in philosophy and above all in cognitive
science [16]. In particular, cognitive science has highlighted
that properties of objects are not objective properties of the
world, but they depend on the properties of the agent concep-
tualizing the object: objects are conceptualized on the basis of
what they “ afford” to the actions of the entities interacting with
them. Thus, different entities conceptualize the same object in
different ways. We translate this intuition in the fact that an
object offers different methods according to which type of
object it is calling it: the methods offered (the powers of a
role) depend on the requirements offered by the caller.

A. The Contract Net Protocol example

Hereafter, we report an example set in the framework of
interaction protocols, describing an implementation of the
well-known contract net protocol. The example follows the
interaction schema (d), reported in the previous section, and it
is substantially different than the analogous example reported
in a previous paper [3]. In fact, the solution proposed here is
distributed instead of being centralized (let us denote by this
name a solution respecting case (c) in the previous section).
The advantage of the old solution was that players did not
need to know anything about the coordination mechanism.
In this case, instead, each object also supplies a role for its
counterpart, which describes the powers that are given to the
counterpart in the interaction. For instance, the object that
will play the initiator role will define the powers of
the participants, and vice versa. The powers are the
messages that the initiator will understand; this is very
different than our previous proposal, where the powers only
allowed to start a negotiation or to take part to a negotiation,
depending on the role, and the exchanged messages were
hidden inside the institution.

In this new version, roles are also used for main-
taining interaction sessions. In the following example,
refuseProposal can be executed only if cfp has already
been executed, this can be tracked thanks to the role state and,
in particular, thanks to variable state (set to the constant
value STATE 1 or STATE 2 to check which operations of the
role can be called in which state and under which condition).

Observe that when the object, offering a role, is supposed
to answer something, it needs to invoke a method, which is
supplied as a power of a role, which is in turn offered by the
object to which it is responding. In the contract net, a possible

162

answer to a cfp is the performative propose. In this case,
see also the code reported at the end of this section, the above
interaction is implemented by the instruction:

(that <-(Participant)
Peer.this).propose(getProposal(task))

Here, Peer.this refers to the object offering the role
initiator; such an object means to play the role of
Participant and, in particular, to invoke the power
propose offered by this role. The role participant is
offered by the object which is currently playing the initiator
(identified in the above code line by that), see Fig. 2.

Participant

Peer

evaluateTask

propose

Peer

this

Peer.this that

Initiator cfp

Fig. 2. Description of the interaction between an Initiator and a Participant,
when, after a “ cfp” performative, the answer will be a “ propose” performative.

The communication is asynchronous, since the proposal is
not returned by the cfp method.

Notice that an object which is currently playing the role of
participant in a given interaction, can at the same time play
the role of initiator in another interaction. See the method
evaluateTask, in which a new interaction is started for
executing a subtask by creating the two roles in the respective
objects and by linking players to them:

role Initiator playedby InitiatorReq {
void cfp(Task task);
void rejectProposal(Proposal proposal);
void acceptProposal(Proposal proposal);

}
interface InitiatorReq {
// must implement the role specification
// Participant

}

role Participant playedby ParticipantReq {
void propose(Proposal proposal);
void refuse(Task task);
void inform(Object result);
void failure(Object error);

}

interface ParticipantReq {
// must implement the role specification
// Initiator

}

class Peer implements ParticipantReq,
InitiatorReq

{

definerole Initiator {
final static int STATE_1 = 1;
final static int STATE_2 = 2;
int state = STATE_1;

public void cfp(Task task) {
if (state != STATE_1)
throws new IllegalPerfomativeException();

state = STATE_2;
if (evaluateTask(task))
(that <-(Participant) Peer.this).

propose(getProposal(task));
else
(that <-(Participant) Peer.this).

refuse(task);
}

public void refuseProposal(Proposal proposal) {
if (state != STATE_2)
throws new IllegalPerformativeException();

removeProposal(proposal);
state = STATE_1;

}

public void acceptProposal(Proposal proposal) {
if (state != STATE_2)
throws new IllegalPerfomativeException();

try {
(that <-(Participant) Peer.this).

inform(performTask(proposal, task));
} catch(TaskExecException err) {
(that <-(Participant) Peer.this).

failure(err);
}
state = STATE_1;

}

}

private boolean evaluateTask(Task task) {
Task subTask; // ...
this.new Participant(peer);
peer.new Initiator(this);
(peer <-(Initiator) this).cfp(subTask);

// ...
}

definerole Participant { ... }

}

V. CONCLUSION

In this work, we have proposed the introduction of a form
of interaction between objects, in the OO paradigm, which
borrows from the theory about agent communication. The
main advantage is to allow session-aware interactions in which
the history of the occurred method invocations can be taken
into account and, thus, introducing the possibility of realizing,
in a quite natural way, agent interaction protocols. The key
concept which allows communication is the role played by an
object in the interaction with another object. Besides proposing
a model that describes this form of interaction, we have
also proposed an extension of the language powerJava that
accounts for it.

One might wonder whether the introduction of agent-like
communication between objects gives us some feedback to
the agent world. We believe that the following lessons can be

163

learnt, in particular, concerning roles:
• Roles must be distinguished in role types and role in-

stances: role instances must be related to the concept of
session of an interaction.

• The notion of role is useful not only for structuring insti-
tutions and organizations but for dealing with interaction
among agents.

• The notion of affordance can be used to allow agents to
interacts in different ways with different kind of agents.

In this paper, we show a different way of using powerJava
exploiting roles to model communications where: the method
call specifies the caller of the object, the state of the interaction
is maintained, methods can be part of protocols, objects play
roles in the interaction and method calls can be asynchronous
as in agent protocols.

This proposal builds upon the experience that the au-
thors gathered on the language powerJava [4], [3], [5],
which is implemented by means of a precompiler. Basically
powerJava shares the idea of gathering roles inside wider
entities with languages like Object Teams [18] and Ceasar
[21]. These languages emerge as refinements of aspect oriented
languages aiming at resolving practical limitations of other
languages. In contrast, our language starts from a conceptual
modelling of roles and then it implements the model as
language constructs. Differently than these languages we do
not model aspects. The motivation is that we want to stick
as much as possible to the Java language. However, aspects
can be included in our conceptual model as well, under
the idea that actions of an agent playing a role “ count as”
actions executed by the role itself. In the same way, the
execution of methods of an object can give raise by advice
weaving to the execution of a method of a role. On the
other hand, these languages do not provide the notion of role
casting we introduce in powerJava. Roles as double face
interfaces have some similarities with Traits [23] and Mixins
[9]. However, they are distinguished because roles are used
to extend instances and not classes. Finally, C# allows for
multiple implementations of interfaces. None of the previous
works, however, considers the fact that roles work as sessions
of the interaction between objects.

Some patterns partially address the same problems of this
paper. For example, the strategy design pattern allows to dy-
namically change the implementation of a method. However,
it is complex to implement and it does not address the problem
of having different methods offered to different types of callers
and of maintaining the state of the interaction between caller
and callee.

Baumer et al. [7] propose the role object pattern to solve
the problem of providing context specific views of the key
abstractions of a system. They argue that different context-
specific views cannot be integrated in the same class, otherwise
the class would have a bloated interface, and unanticipated
changes would result in recompilations. Moreover, it is not
possible either to consider two views on an object as an object
belonging to two different classes, or else the object would
not have a single identity. They propose to model context-

specific views as role objects which are dynamically attached
to a core object, thus forming what they call a subject. This
adjunct instance should share the same interface as the core
object. Our proposal is distinguished by the fact that roles
are always roles of an institution. As a consequence they do
not consider the additional methods of the roles as powers
which are implemented using also the requirements of the role.
Finally, in their model, since the role and its player share the
same interface, it is not possible to express roles as partial
views on the player object.

In UML 2.0 the Protocol State Machine (PSM) was in-
troduced to specify which operations of the classifier can
be called in which state and under which condition, thus
specifying the allowed call sequences on the classifiers oper-
ations [25]. This diagram is particular useful for representing
protocols between objects. Our proposal could help to im-
plement a PSM because of the possibility represents directly
by the notion of role all the message exchanges relevant to
the protocol, increasing the readability and reusability of the
protocol implementation itself.

By implementing agent like communication in an OO
programming language, we gain in simplicity in the language
development, importing concepts that have been developed
by the agent community inside the Java language itself.
This language is, undoubtedly, one of the most successful
currently existing programming languages, which is also used
to implement agents even though it does not supply specific
features for doing it. The language extension that we propose
is a step towards the overcoming of these limits.

At the same time, introducing theoretically attractive agent
concepts in a widely used language can contribute to the
success of the Autonomous Agents and Multiagent Systems
research in other fields. Developers not interested in the
complexity of agent systems can anyway benefit from the
advances in this area by using simple and concrete constructs
in a traditional programming language.

Future work concerns making explicit the notion of state of
a protocol so to make it transparent to the programmer and
allow to define the same method with different meanings in
each state. Finally, the integration of centralized and decen-
tralized approaches to coordination among roles (drawings (c)
and (d) of Figure 1) must be studied.

REFERENCES

[1] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini, “An object data
model with roles,” in Procs. of VLDB’93, 1993, pp. 39–51.

[2] F. Arbab, “Abstract behavior types: A foundation model for components
and their composition,” in Formal Methods for Components and Objects,
LNCS 2852. Berlin: Springer Verlag, 2003, pp. 33–70.

[3] M. Baldoni, G. Boella, and L. van der Torre, “ Bridging agent theory and
object orientation: Importing social roles in object oriented languages,”
in Procs. of PROMAS’05 workshop at AAMAS’05, 2005.

[4] ——, “ Roles as a coordination construct: Introducing powerJava,” in
Procs. of MTCoord’05 workshop at COORDINATION’05, 2005.

[5] ——, “ Powerjava: ontologically founded roles in object oriented pro-
gramming language,” in Procs. of OOOPS Track of SAC’06, 2006.

[6] B. Bauer, J. Muller, and J. Odell, “Agent UML: A formalism for specify-
ing multiagent software systems,” Int. Journal of Software Engineering
and Knowledge Engineering, vol. 11(3), pp. 207–230, 2001.

164

[7] D. Baumer, D. Riehle, W. Siberski, and M. Wulf, “ Proc. of plop’02,” in
The role object pattern, 2002.

[8] F. Bellifemine, A. Poggi, and G. Rimassa, “ Developing multi-agent
systems with a FIPA-compliant agent framework,” Software - Practice
And Experience, vol. 31(2), pp. 103–128, 2001.

[9] L. Bettini, V. Bono, and S. Likavec, “A core calculus of mixin-based
incomplete objects,” in Procs. of FOOL Workshop, 2004, pp. 29–41.

[10] G. Boella and L. van der Torre, “Attributing mental attitudes to roles: The
agent metaphor applied to organizational design,” in Procs. of ICEC’04.
IEEE Press, 2004.

[11] — — , “A game theoretic approach to contracts in multiagent systems,”
IEEE Transactions on Systems, Man and Cybernetics - Part C, 2006.

[12] — — , “ Security policies for sharing knowledge in virtual communities,”
IEEE Transactions on Systems, Man and Cybernetics - Part A, 2006.

[13] M. Dahchour, A. Pirotte, and E. Zimanyi, “A generic role model
for dynamic objects,” in Procs. of CAiSE’02, ser. LNCS, vol. 2348.
Springer, 2002, pp. 643–658.

[14] M. Dastani, V. Dignum, and F. Dignum, “ Role-assignment in open agent
societies,” in Procs. of AAMAS’03. New York (NJ): ACM Press, 2003,
pp. 489–496.

[15] J. Ferber, O. Gutknecht, and F. Michel, “ From agents to organizations:
an organizational view of multiagent systems,” in LNCS n. 2935: Procs.
of AOSE’03. Springer Verlag, 2003, pp. 214–230.

[16] J. Gibson, The Ecological Approach to Visual Perception. New Jersey:
Lawrence Erlabum Associates, 1979.

[17] N. Guarino and C. Welty, “ Evaluating ontological decisions with onto-
clean,” Communications of ACM, vol. 45(2), pp. 61–65, 2002.

[18] S. Herrmann, “ Object teams: Improving modularity for crosscutting
collaborations,” in Procs. of Net.ObjectDays, 2002.

[19] T. Juan and L. Sterling, “Achieving dynamic interfaces with agents
concepts,” in Procs. of AAMAS’04, 2004.

[20] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi,
and N. Guarino, “ Social roles and their descriptions,” in Procs. of KR’04.
AAAI Press, 2004, pp. 267–277.

[21] M. Mezini and K. Ostermann, “ Conquering aspects with caesar,” in
Procs. of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD). ACM Press, 2004, pp. 90–100.

[22] M. Papazoglou and B. Kramer, “A database model for object dynamics,”
The VLDB Journal, vol. 6(2), pp. 73–96, 1997.

[23] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black, “ Traits: Composable
units of behavior,” in LNCS, vol. 2743: Procs. of ECOOP’03, S. Verlag,
Ed., Berlin, 2003, pp. 248–274.

[24] F. Steimann, “ On the representation of roles in object-oriented and
conceptual modelling,” Data and Knowledge Engineering, vol. 35, pp.
83–848, 2000.

[25] The Object Management Group, “ Unified modeling language: Super-
structure,” Available at: http://www.omg.org/.

[26] M. Winikoff, “ JACK - intelligent agents: An industrial strength plat-
form,” in Multi-Agent Programming, R. H. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, Eds. Berlin: Springer Verlag, 2005, pp.
175–193.

[27] M. J. Wooldridge and N. R. Jennings, “ Intelligent agents: Theory and
practice,” Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152,
1995.

[28] F. Zambonelli, N. Jennings, and M. Wooldridge, “ Developing multia-
gent systems: The Gaia methodology,” IEEE Transactions of Software
Engineering and Methodology, vol. 12(3), pp. 317–370, 2003.

165

Integrating Ontology Support within AgentService

Christian Vecchiola, Alberto Grosso, Antonio Boccalatte
DIST – Department of Communications Computer and System Sciences

University of Genova
{christian, agrosso, nino}@dist.unige.it

Abstract
This paper describes the software infrastructure
introduced within the AgentService framework in order to
provide support for ontology design, development, and
management. Ontology enriches and normalizes the
interaction among agents by establishing a domain and a
set of relation among objects populating that domain. A
good support for ontology definitely adds value to the
design and the implementation of software agents:
software engineers can take advantages of the services
offered by the framework to produce new ontologies and
rely on them to quickly define interaction protocols which
are automatically translated into state machines used by
software agents.

1. Introduction

In computer science the word ontology refers to “a
data model that represents a domain and is used to reason
about the objects in that domain and the relations between
them” [1]. Software ontologies are used in different fields
of computer science such as information architecture,
semantic web, and knowledge representation. In
particular, the adoption of software ontologies for
knowledge representation is very attractive: ontologies
contribute to provide a structure, a collection of well
identified concepts along with their properties, and
relations among them to a given knowledge base. For
these reasons, they are very useful for software agents
that base their activity mainly on the interaction with
peers and on reasoning about the environment.
Ontologies provide a structured and efficient way to
perform these tasks.

The translation of software ontology into a collection
of software artifacts representing it delivers to MAS
engineers a high level of abstraction helping them in
defining the interactions among agents. From a practical
point of view, a given software ontology establishes the
content of messages exchanged among agents and
provides facilities to validate them. Moreover, ontologies
are a good starting point for defining interaction protocols
which are the most common way to define a structured

dialogue among two entities. Hence, a good support for
ontology design, development, and management,
definitely gives an added value to agent programming
frameworks since it simplifies and empowers the activity
of MAS engineers.

This paper presents the collection of software
abstractions and tools integrated into AgentService [2]
which provides the framework with ontology design,
development, and management (hereafter ontology
service). The ontology service has been designed by
following the specifications provided by FIPA [3]. In the
next sections we will give a brief description of
AgentService and the agent model it proposes (Section 2),
then we will mostly concentrate on the entire process of
defining, implementing an ontology and using it to
support interaction protocol design and implementation
(Section 3 and 4). Conclusions will follow.

2. AgentService

In this section we will give a brief overview of the
AgentService framework by pointing out only those
aspects which are relevant to understand how the
ontology service is integrated into the framework.
Basically, we will describe the components of the
framework and we will present the agent model. For a
more detailed introduction please see [2].

2.1. The Framework

AgentService is a framework to implement distributed
multi-agent systems. It provides support for agent design
and implementation, multi-agent system implementation
management and monitoring. The components which
constitute the framework are the following:

• a flexible agent model through which different agent
architectures can be implemented;

• a library which defines the core of the system and the
basic services of the framework;

• a software environment that hosts multi-agent
systems and controls their life-cycle;

166

• a set of programming language extensions
simplifying the implementation of software agents;

• a collection of tools supporting users in designing
and implementing multi-agent systems;

• complete support for ontology definition and
development;

• automatic code generation for interaction protocols
with ontology integration;

• a software infrastructure allowing agents to migrate
among different instances of the AgentService
platform;

• a set of support programs through which users can
maintain and monitor multi-agent systems.

The core of the framework relies on the Common

Language Infrastructure (hereafter CLI) [4] and makes
the framework portable over different implementations of
this specification like Mono, Rotor, and .NET. The key
features of the framework are the agent platform which is
a modular hosting environment for software agents and
the agent model which will be investigated in the next
paragraph.

2.2. The Agent Model

The framework defines a software agent an
autonomous software entity whose activity is constituted
by a set of concurrent tasks and whose state is defined by
a set of shared objects. Concurrent tasks are referred as
behaviour objects while the term knowledge object is
used to identify the components of the agent state.

Behaviour objects encapsulates all the computational
activity of a given software agent while knowledge
objects define the elements composing its knowledge
base. The formers can be considered as simple little
programs which have their execution stack and can
communicate each other by using the shared knowledge
objects. Behaviour objects can access the runtime services
of the agent platform and query the FIPA management
agents (AMS, MTS, DF, and Ontology Agent) in order to
obtain information about the environment, the community
of agents and the services they offer; for example they
can query the Ontology Agent in order to know which
ontologies are registered in the platform and which agents
are able to understand messages belonging to a given
ontology.

Knowledge objects are data structures containing items
which are exposed as properties. They resemble a C struct
or a Pascal record, but are designed with a built support
for persistence and concurrent multiple accesses.
Knowledge objects define the knowledge base of a given
software agent and the collection of their properties along
with the execution state of each agent define the state of
an agent instance.

Agents can interpret roles into a given communication
protocol and they can publish this service through the DF
which makes this information available to the entire
community of agents. Interpreting a role makes the agent
able to participate into the communication protocol which
defines that role. This feature is implemented by
providing the agent with a behaviour object which
automatically executes the state machine defining the
role. This issue will be further detailed in the next section.

3. Ontology Support in AgentService

AgentService provides a complete support to ontology
design, implementation, and management. These three
functionalities are collectively referred as the ontology
service. The ontology service is based on the following
framework components:

• a set of classes representing the object model
defining all the elements required to represent an
ontology (classes, concepts, instances, attributes,
constraints, validation, etc);

• a set of tools that can be used to automatically
generate the specific classes for a given ontology by
starting from its visual or textual representation;

• an Ontology Agent (OA) which maintains the
knowledge about all the ontologies registered in the
hosting agent platform and about the agent which are
able to communicate by using the concepts defined
into a given ontology;

• FIPA SL0 [5] ACL message support.

As we can notice, from the previous list the framework

does not directly provide any facility to visually design
software ontologies. We decided to rely on a very well
know and established tool that is Protégé [6] a software
projects maintained by the KSI lab the Stanford
University. Protégé, when equipped with Jambalaya [7],
provides all the required features to quickly design a
given ontology. In the following we will briefly illustrate
the object model designed to support ontology definitions
in AgentService, the role of the Ontology Agent, and the
ontology development process.

3.1. Ontology Object Model

The design and the implementation of the object model
defining the ontology reflects the specifications outlined
in the corresponding FIPA standards [3] and has been
inspired by the type system designed in JADE [8] to
support ontologies. The object model defined within
AgentService defines a meta-ontology which contains all
the concepts and the elements which are required to
compose user defined ontologies. The meta-ontology

167

defines the following entities: predicate, term, concept,
query, action, variable, primitive, and aggregate. Figure
1 describes how these elements are connected each other.

Figure 1. Ontology elements hierarchy

The elements depicted in figure 1 define the domain in
which every communication based on a given ontology
takes place. User defined ontologies will provide specific
instances of these elements and MAS engineers will have
to specialize the abstract classes representing the entities
defined by the meta-ontology: the new classes will
represents the concepts, the queries, the actions, the
terms, etc. which are pertaining to the specific problem
domain. Ontologies are also described using schemas
which are generic objects used to describe any ontology
element and provides all the information to represent a
specific ontology without using ontologies specific
classes. Ontology schemas are used internally by the
framework in order to maintain a catalog of all the
ontologies registered, while ontologies specific classes
constitute the API used by software agents to hard-code
the communication based on a specific ontology. Agents
which can dynamically learn to use a given ontology by
exploiting the services of the OntologyDescriptor class
which automatically extracts all the useful information
about a given ontology. It retrieves all the schemas
defining the specific entities of the ontology and provides
also other useful information such as assembly location,
file versioning and type names. The implemented solution
is very flexible since it provides an efficient way of using
ontologies when they are statically identified, while, at
the same time, provides facilities to dynamically reflect1
ontologies.

AgentService also provides support for SL0 which is a
minimal subset of the FIPA ACL message specification.
The framework defines a set of classes able to represent
all the elements of SL0 plus the = (equals) predicate. In
order to communicate with a given ontology agents

1 The verb reflect is used in the sense of type reflection
which identifies a well know set of operation aimed to
extract information about the class type of a given object.

exchange messages which contains SL0 objects and a
specific message content has been designed (the
ACLMessageBody class) in order to transport SL0
statements.

The joint use of the ontology API and of SL0 as a
vehicle allows agents to easily communicate each other.

3.2. The Ontology Agent

In order to be compliant with the specification
provided by FIPA we have introduced the Ontology
Agent which is responsible of maintaining the catalog of
all the ontologies registered with the system and of
providing useful information to software agents. The
entire list of task that should be performed by the
ontology agent is the following:

• ontology discovery and publishing;
• ontology maintenance;
• ontology mapping and translation;
• shared ontology discovery.

The ontology agent provided with the framework
implements only the two features of the previous list
which are also the most important. We think that the
ontology mapping service is a very difficult task to
implement and requires some sort of inductive knowledge
in order to detect similarities among different knowledge
representations.

In order to be available to the community of agents the
Ontology Agent registers its service to the DF. Since we
have implemented a reduced set of task of the ontology
agent we decided to embed these functionalities directly
into the Directory Facilitator, by adding a specific
behaviour which performs these tasks. The community of
agents asks to the DF which agent provides the ontology
service and the directory facilitator returns its own agent
identifier. Hence, the implementation of this feature is
completely transparent to the community of agents which
only expect to obtain the address of the Ontology Agent
in order to query it.

3.3. Ontology Development Process

In order to make users feel at ease and increase their

productivity we adopt, as written above, Protégé in
conjunction with Jambalaya for defining AgentService
ontologies. Figure 2 describes the entire process that by
starting from the Protégé editor generates the assembly
containing the type definitions for the ontology which are
required by the AgentService framework.

Projects designed in Protégé can be exported into the
XML format and a tool provided with AgentService
automatically generates the corresponding object model,
writes the source code and compiles it into an assembly

168

which can be easily deployed into the agent platform or
used by the protocol designer. After the compilation
process takes place MAS engineers are provided with the
entire object model describing the ontology they designed
with Protégé. The assembly can be included into a generic
software project and used as a library, directly deployed
into the agent platform, or, as showed in figure 2, used
within the protocol designer.

Figure 2. Ontology code generation

4. Protocol Design and Implementation

AgentService provide facilities to design, to
implement, and to integrate interaction protocols into
multi-agent systems. Interaction protocols rely on the
ability of agents of communicate each other by using the
services offered by the MTS and the messaging
subsystem. The development of a protocol for
AgentService can be enhanced by using ontologies which
give a sound meaning and a well defined structure to the
messages exchanged during the interaction. AgentService
relies on the Microsoft Visio visual modeling
environment and provides a plug-in which allows users to
define interaction protocols by following the AUML
standard [9].

In particular by using protocol designer developers
can:

• design protocol steps for each agent role involved;
• adopt previously defined ontology for message

content;
• export the protocol in a format usable by

AgentService;

• design agents interpreting the roles through dedicated
behaviours.

The plug-in introduces a new stencil in the Visio
environment which contains all the elements to visually
compose the protocol, and a toolbar which allows to
automatically generate the code implementing the state
machines for the protocols. Such state machines can be
embedded into specific behaviour objects which are then
able to participate in the interaction protocol.

The next paragraphs analyze more in details how the
tool works, in particular some extensions of the AUML
basic elements are introduced and the code generation
process is explained.

4.1 Designing AUML elements

Agent UML proposes extensions to UML and idioms

within UML in particular for sequence e collaboration
diagrams. Sequence diagrams seem to be the best way to
design and represent agent in order to capture inter-agent
dynamics [10]. Two fundamental parts constitute the
diagram model a frame, which delimits the sequence
diagram, and the message flow between roles through a
set of lifelines and messages [11]. Hence the frame
element contains lifelines, sets of messages, and AUML
operators commonly called combined fragments. In
addition to the basic elements proposed by AUML
specification (lifeline, message, alternative, optional,
break, loop), we introduce some new features in order to
make the model effective from the AgentService point of
view.

Since the definition of the protocol is designed in order
to generate running code for AgentService platform, the
tool provides features for inserting lines of .NET code for
each role. In particular designers can write code in order
to manage exceptions during protocol execution or reply
to an error message received from a peer.

Messages are obviously the core of protocol
interactions; the tool provides two kinds of messages:
ontological messages and native messages. The designer
is integrated with the AgentService ontology system; in
order to adopt an ontology it is only necessary to indicate
the assembly containing it. Hence if a user wants to use
an ontology within a protocol, he has to select an SL0
operator and then choose the ontological elements
contained within the previously loaded ontology. In the
case the user does not adopt an ontology, he has to define
the fields composing the body of the message, specifying
the name and the type of the message element (the
message content of AgentService is strongly typed).

The tool allows developer to design peer-to-peer or
client-server communications defining the cardinality of
the agent roles involved in a protocol. AgentService
messages are asynchronous; in client-server protocol the

169

reception by the server is time-outed and the server
manages client interaction by adopting a round-robin
approach.

The AUML tool for AgentService allows users to
define guard conditions (for alternative and optional
statements) as Boolean expressions which very often
involve elements contained within messages previously
received. Hence the guard condition is not a simple label
but it is a fundamental element involved in the generation
of the code modeling the protocol.

Finally the AUML Loop operator is extended in order
to be able to clearly indicate the agent role that manages
the loop.

4.2 Code generation and execution of interaction
protocols

Starting from the model representing the interaction

protocol it is import to be able to generate agents playing
roles within the protocol and then execute them. The
designer only defines the structure of the protocol and
creates classes targeting the AgentService object model
which represent the state machine executing the
interaction protocol. It is up to the agent playing a
specific role to complete the state machine generated by
the tool with all the information it needs.

Figure 3. Protocol development process

Figure 3 describes the protocol development process:
interaction protocols can either be exported into XML
format or into assemblies which can be directly used to
program software agents. Both of the two representations
contain the same information: the first is mainly used to
maintain a textual representation of the protocol and to
export it to third party applications, while the second is

the most important since it actually allows the use of
protocols inside the framework. Given an XML or a
visual representation of the interaction protocol, the
protocol compiler generates an assembly containing the
following entities:

• the definition of the protocol object model;
• the definition of state machines implementing the

roles defined in the interaction protocol;
• the definition of the interfaces types used by the state

machines to customize the execution flow of the
protocol.

Software agents, in order to participate into a protocol,

have to interpret one of the roles defined in the protocol.
This role is interpreted by adding a behaviour object
which executes the state machine defining the role; such
behaviour object has to implement the interface required
by the state machine and through the methods exposed by
this interface interacts and controls, when possible, the
execution of the state machine. The customization level
provided by interface is required, for example, in order to
let the agent choose among different alternatives and then
drive the execution of the protocol.

The state machines automatically handle all the
exceptions that can occur while executing the protocol
(i.e. wrong or malformed messages, etc.) and the
behaviour objects running the state machine can be
informed about these exceptions through specific events.

4.2 Related works

There are some interesting works based on Agent

UML involving the definition of design tools. Ehrler and
Cranefield propose a Plug-in for Agent UML Linking
(PAUL) [12] based on the FIPA-compliant agent platform
Opal [13] and the Eclipse Modeling Framework. In
particular this tool uses the UML Object Constraint
Language (OCL) [14] in order to define the input and
output of the operations an agent can perform within a
protocol. Our design tool does not require the definition
of I/O data for protocol operations; agents playing a
protocol role have access to all the content of the
messages received during the interaction and of course
can consult their knowledge base.

Winikoff [15] precisely defines the syntax of a subset
of AUML by using a textual notation; he provides a tool
for designing diagrams in order to support the notation.
This tool cannot generate code for the models that have to
be implemented manually.

Viper [16] is a graphical editor based on the earlier
version of AUML that can generate code for
AgentFactory [17]. The tool, in the implementation phase,
involves users for populating the protocol with
customized agent code, which together with code

170

automatically generated to reflect the protocol semantics
is compiled into useable agent designs. Hence the tool
generates a skeleton of code implementing the protocol
and users have to complete and compile it. Instead the
AgentService protocol designer generates an assembly
containing the classes representing the state machine of
the protocol and a programming interface that users can
implement in order to customize agent operations. Viper
is not provided with an ontology system.

5. Conclusions

In this paper we presented the software infrastructure

introduced into the AgentService framework in order to
support ontology design, implementation, and
management. Software ontologies are a high level
abstraction which is very useful for identifying the
concepts of a problem domain, to define their relation,
and to reason about them. Ontologies give an added value
to the interaction among software agents since they
provide facilities to define a communication and to
validate messages.

The support provided by AgentService covers, either
directly or not, all the activities previously cited:
AgentService relies on Protégé in order to define a new
ontology and translates the representation provided by
Protégé into a collection of classes fitting the object
model defined into the framework. These classes can be
easily used to define a conversation among software
agents: messages can be verified against a specific
ontology and eventually discarded if spurious. By
querying the ontology agent we can dynamically inspect
the ontology catalog maintained in every multi-agent
system and extract useful information about their
structure, such information can be easily used in order to
start a communication with agents which know that
ontology.

Software ontologies can also be useful to define
structured conversations among agents since they
completely define the content of the exchanged messages.
AgentService provides a useful tool to visually define
interaction protocol integrated with the ontology service:
it is then possible to start from the definition of the
problem domain with Protégé, translate that
representation into a software ontology, build an
interaction protocol based on those concepts, and produce
a state machine which can be directly used by software
agents to interpret roles. All this process can be
performed without writing a line of code thanks to the
supports provide by the framework.

Nonetheless, the ontology service can be improved:
now AgentService provides support only for the SL0
subset of the FIPA ACL specification while a complete
implementation of the SL2 specification is still to come.
Moreover, a more complete service provided by the

ontology agent has to be implemented in order to be
completely compliant with the FIPA specifications.

6. References

[1] Wikipedia, definition of software ontology, available at
http://en.wikipedia.org/wiki/Ontology (computer sci-ence).

[2] C. Vecchiola, A. Grosso, A.Gozzi, and A. Boccalatte,
“AgentService”, Proceedings of the 16th International
Conference on Software Enginnering and Knowledge
Engineering (SEKE04), Banff, Alberta Canada, KSI Publisher,
2004.

[3] FIPA, “FIPA Ontology Service Specification”, 2001,
[Online document], Availabe at
HTTP:http://www.fipa.org/specs/fipa00086/XC00086D.pdf.

[4] Standard ISO/IEC 23271:2003: Common Language
Infrastructure, March 28, 2003, ISO.

[5] FIPA, “FIPA SL Content Language Specification”, [Online
document] available at HTTP:
http://www.fipa.org/specs/fipa00008/SC00008I.html.

[6] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso,
M. Crubezy, H. Eriksson, N. F. Noy, and S. W. Tu, “The
Evolution of Protégé: An Environment for Knowledge-Based
Systems Development”, Stanford Knowledge System Lab,
2002.

[7] M. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R.
Fergerson, and N. Noy, “Jambalaya: Interactive visualization to
enhance ontology authoring and knowledge acquisition in
Protégé”, Workshop on Interactive Tools for Knowledge
Capture, Victoria, BC, Canada, 2001.

[8] G. Caire, “Jade Tutorial – Application-defined Content
Languages and Ontologies”, 2002.

[9] J. Odell, H. V.D. Parunak, and B. Bauer, “Extending UML
for agents”, Proceedings of Agent-Oriented Information Systems
Workshop (AOIS-00), 2000.

[10] J. Odell, H. V.D. Parunak, and B. Bauer, “Representing
agent interaction protocols in uml”, Paolo Ciancarini and
Michael J. Wooldridge Editors, Agent-Oriented Software
Engineering, No. 1957 in LNCS, pp. 121–140, Springer Verlag,
2000.

[11] FIPA. “FIPA Interaction Protocol Library Specification”,
2001. [Online document], Availabe at HTTP:
http://www.fipa.org/specs/fipa00025/XC00025E.pdf.

[12] L. Ehrler and S. Cranefield, “Executing agent UML
diagrams”, Proceedings of the third international conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pp.
906–913, 2004.

171

[13] M. Purvis, S. Cranefield, M. Nowostawski, and D. Carter,
“Opal: A Multi-Level Infrastructure for Agent-Oriented
Software Development”, Information Science Discussion Paper
Series, No. 2002.

[14] J. B. Warmer and A. G. Kleppe, “The Object Constraint
Language: Getting your models ready for MDA”, Addison-
Wesley, 2nd edition, 2003.

[15] M. Winikoff, “Towards Making Agent UML Practical: A
Textual Notation and a Tool”, First international workshop on
Integration of Software Engineering and Agent Technology
(ISEAT 2005), Melbourne, Australia, 2005.

[16] C. Rooney, R. Collier, and G. M. P. O’Hare, “VIPER:
Visual Protocol EditoR”, 6th International Conference on
Coordination Languages and Models (COORDINATION 2004),
2004.

[17] R. Collier, “Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications”, Ph.D. Thesis,
Department of Computer Science, University College Dublin,
Ireland, 2001.

172

Collective Sorting Tuple Spaces
Matteo Casadei, Luca Gardelli, Mirko Viroli

DEIS, Cesena
Alma Mater Studiorum – Università di Bologna

via Venezia 52, 47023 Cesena (FC), Italy
{m.casadei,luca.gardelli,mirko.viroli }@unibo.it

Abstract— Coordination of multiagent systems is recently
moving towards the application of techniques coming from
the research context of complex systems: adaptivity and self-
organisation are exploited in order to tackle openness, dynamism
and unpredictability of typical multiagent systems applications.
In this paper we focus on a coordination problem calledcollective
sorting, where autonomous agents are assigned the task of moving
tuples across different tuple spaces according to local criteria,
resulting in the emergence of the complete clustering property.
Using a library we developed for the MAUDE term rewriting
system, we simulate the behaviour of this system and evaluate
some solutions to this problem.

I. I NTRODUCTION

Systems that should self-organise to unpredictable changes
in their environment very often need to feature adaptivity
as an emergent property. As this observation was first made
in the context of natural systems, it was shortly recognised
as an inspiring metaphor for artificial systems as well [1].
However, a main problem with emergent properties is that,
by their very definition, they cannot be achieved through a
systematic design: their dynamics and outcomes cannot be
fully predicted. Nonetheless, providing some design support in
this context is still possible. The whole system of interest, that
is the application to design and the environment it is immersed
in, can be modelled as a stochastic system, namely, a system
whose dynamics and duration aspects are probabilistic. In this
scenario, simulations can be run and used as a fruitful tool to
predict certain aspects of the system behaviour, and to support
a correct design before actually implementing the application
at hand [2].

This scenario is particularly interesting for agent coordina-
tion. Some works like the TOTA middleware [3], SwarmLinda
[4], and stochastic KLAIM [5], though starting from different
perspectives, all develop on the idea of extending standard
coordination models with features related to adaptivity and
self-organization. They share the idea that tuples in a tuple
space eventually spread to other tuple spaces in a non-
deterministic way, depending on certain timing and probability
issues. Accordingly, in this paper we start analysing the
potential role that simulation tools can have in this context,
towards the identification of some methodological approach
to system design.

As a reference example, we consider an application to
a tuple space scenario of the so-calledcollective sorting
problem for swarm intelligence [1]. This application features
autonomous agents managing a set of distributed tuple spaces,

with the goal of moving tuples from one space to the other
until completely “sorting” them, that is, tuples of different
types reside in different tuple spaces. We show a solution
to this problem based on a fully-distributed algorithm, where
each agent moves tuples according to fully-local criteria, and
where complete sorting appear to emerge from initial chaotic
tuple configurations. To provide evidence of correctness and
appropriateness we rely on simulations.

Many simulation tools can be exploited to this end, though
they all necessarily force the designer to exploit a given
specification language, and therefore better apply to certain
scenarios and not to others—examples are SPIM [6], SWARM
[7] and REPAST [8]. Instead of relying on one of them,
in this paper we seek for a general-purpose approach. We
evaluate the applicability of the MAUDE specification tool as a
general-purpose engine for running simulations [9]. It is very
well known that MAUDE allows for modelling syntactic and
dynamic aspects of a system in a quite flexible way, supporting
e.g. process algebraic, automata, and net-like specifications—
all of which can be seen as instantiations of MAUDE’s term
rewriting framework. We developed a library for allowing a
system designer to specify in a custom way a system model in
terms of a stochastic transition system—a labelled transition
system where actions are associated with arate (of occurrence)
[10]. One such specification is then exploited by the tool to
perform simulations of the system behaviour, thus making
it possible to observe the emergence of certain (possibly
unexpected) properties.

The remainder of this paper is as follows: Section 2 provides
some background on coordination techniques featuring adap-
tivity, Section 3 describes the collective sorting problem, while
Section 4 presents the MAUDE model of the Collective Sorting
and its simulation results, and finally Section 5 concludes
providing perspectives on future works.

II. BACKGROUND

In the effort to improve the design process of software
systems—i.e. to bridge the gap between the design and the
actual implementation—it has become very common practice
to take into account not only functional and architectural
requirements, but also quantitative aspects like temporal and
probabilistic ones. When dealing with complex systems, it is
often the case that aleatory in system dynamics may cause
the emergence of interesting properties, that cannot therefore
be abstracted away when designing the system. Coordination

173

models and technologies for multiagent systems are witness-
ing the development of a number of works moving to this
direction, most of which are inspired by natural phenomena.

A first example is the TOTA (Tuples On The Air) mid-
dleware [3] for pervasive computing applications, inspired by
the concept of field in physics—like e.g. the gravitational
or magnetic fields. This middleware supports the concept of
“spatially distributed tuple”: that is, a tuple can be cloned and
spread to the tuple spaces in the neighborhood, creating a sort
of computational field, which grows when initially pumped
and then eventually fades. To this end, when injected in a
tuple space, each tuple can be equipped by some application-
dependent rules, defining how a tuple should spread across the
network, how the content of the tuple should be accordingly
affected, and so on. TOTA is mainly targeted to support
multiagent systems whose environment is open, dynamic and
unpredictable, like e.g. to let mobile agents meet each other
in a dynamic network.

Another example is the SwarmLinda coordination model
[4], which though similar to TOTA is more inspired by swarm
intelligence and stigmergy [1], [11], [12]. In SwarmLinda
tuples are moved from one tuple space to the other, and ant-
like algorithms are used to retrieve them. The use of self-
techniques in SwarmLinda derives from necessity of dealing
with openness and with the unpredictability of a tuple space’s
users, against the need of achieving adaptivity.

Finally, the “swarm robotics” field applies strategies in-
spired by social insects in order to coordinate the activities
of a multiplicity of robots systems. Typically, these systems
are built on top of ad-hoc software middlewares [1], and solve
problems with distributed-algorithms where, though each robot
brings about very simple goals, the whole system can be
used to solve quite complex problems—see e.g. the collective
sorting problem in Section III-A.

These are all examples witnessing the fact that coordination
in open, dynamic, and unpredictable systems have quantitative
aspects playing a very important role. This calls for analysis
and design tools that can support system development at
various levels, from formal specification up to simulations.

III. C OLLECTIVE SORTING

A. General Scenario

We consider a case of Swarm-like intelligence known as
collective sorting[1]. It features a multiagent system where
the environment is structured and populated with items of
different kinds: the goal of agents is to collect and move items
across the environment so as to order them according to an
arbitrary shared criterion. This problem basically amounts to
clustering: homogeneous items should be grouped together and
should be separated from others. Moving to a typical context
of coordination models and languages, we consider the case
of a fixed number of tuple spaces hosting tuples of a known
set of tuple types. The goal of agents is to move tuples from
one tuple space to the other until the tuples are clustered in
different tuple spaces according to their tuple type.

In several scenarios, sorting tuples may increase the overall
system efficiency. For instance, it can make it easier for an
agent to find an information of interest based on its previous
experience: the probability of finding an information where
a previous and related one was found is high. Moreover,
when tuple spaces contain tuples of one kind only, it is
possible to apply aggregation techniques to improve their
performance, and it is generally easier to manage and achieve
load-balancing.

Increasing system order however comes at a computational
price. Achieving ordering is a task that should be generally
performed online and in background, i.e. while the system
is running and without adding a significant overhead to the
main system functionalities. Indeed, it might be interesting to
look for suboptimum algorithms, which are able to guarantee
a certain degree of ordering in time.

Nature is a rich source of simple but robust strategies:
the behaviour we are looking for has already been explored
in the domain of social insects. Ants perform similar tasks
when organizing broods and larvae: this class of coordination
strategies are generally referred to ascollective sortingor
collective clustering[1]. Although the actual behaviour of
ants is still not fully understood, there are several models that
are able to mimic the dynamics of the system. Ants wander
randomly and their behaviour is modelled by two probabilities,
respectively, the probability to pick upPp and dropPd an item

Pp =
(

k1

k1 + f

)2

, Pd =
(

f

k2 + f

)2

, (1)

where k1 and k2 are constant parameters andf is the
number of items perceived by an ant in its neighborhood:
f may be evaluated with respect to the recently encountered
items. To evaluate the system dynamics, apart from visualising
it, it can be useful to provide a measure of the system order.
Such an estimation can be obtained by measuring the spatial
entropy, as done e.g. in [11]. Basically, the environment is
subdivided into nodes andPi is the fraction of items within
a node, hence the local entropy isHi = −Pi log Pi. The sum
of Hi having Pi > 0 gives an estimation of the order of the
entire system, which is supposed to decrease in time, hopefully
reaching zero (complete clustering).

B. An Architecture for Implementing Collective Sorting

We conceive a multiagent system as a collection of agents
interacting with/via tuple spaces: agents are allowed to read,
insert and remove tuples in the tuple spaces. Additionally, and
transparently to the agents, an infrastructure provides a sorting
service in order to maintain a certain degree of order of tuples
in tuple spaces. This service is realised by a class of agents
that will be responsible for the sorting task. Hence, each tuple
space is associated with a pool of agents, as shown in Figure
1, whose task is to compare the content of the local tuple space
against the content of another tuple space in the environment,
and possibly move some tuple. Since we want to perform this
task online and in background, and with a fully-distributed,
swarm-like algorithm, we cannot compute the probabilities in

174

Fig. 1. The basic architecture consists in a set of sorter agents dedicated to
a single tuple space.

Equation 1 to decide whether to move or not a tuple: the
approach would not be scalable since it requires to count all
the tuples for each tuple space, which might not be practical.

Hence, we devise a strategy based on tuple sampling, and
suppose that tuple spaces provide for a reading primitive we
call urd , uniform read. This is a variant of the standardrd
primitive that takes a tuple template and yields any tuple
matching the template: primitiveurd instead chooses the
tuple in a probabilistic way among all the tuples that could
be returned. For instance, if a tuple space has10 copies of
tuple t(1) and20 copies of tuplet(2) then the probability that
operationurd(t(X)) returnst(2) is twice as much ast(1)’s.
As standard Linda-like tuple spaces typically do not implement
this variant, it can e.g. be supported by some more expressive
model like ReSpecT tuple centres [13]. When deciding to
move a tuple, an agent working on the tuple spaceTSS follows
this agenda:

1) it draws a destination tuple spaceTSD different from
the source oneTSS ;

2) it draws a kindk of tuple;
3) it (uniformly) reads a tupleT1 from TSS ;
4) it (uniformly) reads a tupleT2 from TSD;
5) if the kind ofT2 is k and it differs from the kind ofT1,

then it moves a tuple of the kindk from TSS to TSD.

The point of last task is that if those conditions hold, then the
number of tuplesk in TSD is more likely higher than inTSS ,
therefore a tuple could/should be moved. It is important that
all choices are performed according to a uniform probability
distribution: while in the steps 1 and 2 it guarantees fairness,
in steps 3 and 4 it guarantees that the obtained ordering is
appropriate.

It is worth noting that the success of this distributed al-
gorithm is an emergent property, affected by both probability
and timing aspects. Will complete ordering be reached starting
from a completely chaotic situation? Will complete ordering
be reached starting from the case where all tuples occur in
just one tuple space? And if ordering is reached, how many
moving attempts are globally necessary? These are the sort of
questions that could be addressed at the early stages of design,
thanks to a simulation tool.

IV. THE COLLECTIVE SORTING IN MAUDE

In this section we briefly describe a MAUDE specification
of our solution to the collective sorting problem, and show
simulation results. Our model sticks to the case where 4 tuple

spaces exist (labelled with identifiers0, 1, 2 and3), and four
tuple kinds are subject to ordering (’a , ’b , ’c , and ’d).

A. A MAUDE library for simulation

MAUDE is a high-performance reflective language support-
ing both equational and rewriting logic specifications, for
specifying a wide range of applications [9]. The basic brick of
a MAUDE program is themodule, which is essentially a set of
definitions determining an algebra: the modules can be either
of the functional or systemkind. Functional modules contain
both (syntax-customed) type and operation declarations, along
with equationswhich are actuallyequational rewritingrules
defining abstract data types—this is hence useful to declare
algorithmic aspects of computing systems. System modules
can instead haverewriting lawsas well—i.e. transition rules—
that are typically used to implement a concurrentrewriting
semantics, and are then able to deal with aspects related to
interaction and system evolution. In the course of finding a
general simulation tool for stochastic systems, we find MAUDE

as a particularly appealing framework, for it allows to directly
model a system in terms of transition rules, or to prototype a
new domain-dependent language to have more expressiveness
and compact specifications.

Using MAUDE, we realized a general simulation framework
for stochastic systems: the idea of this tool is to model
a stochastic system by a labelled transition system where
transitions are of the kindS

r:a−−→ S′, meaning that the system
in stateS can move to stateS′ by actiona, wherer is the
(global) rateof actiona in stateS. The rate of an action in a
given state can be understood as the number of times action
a could occur in a time-unit (if the system would rest in state
S), namely, its occurrence frequency. This idea is inspired by
the activity mechanism of stochasticπ-Calculus [10], where
each channel is given a fixed local rate, and the global rate of
an interaction is computed as the channel rate multiplied by
the number of processes willing to send a message and the
number of processes willing to receive a message. Our model
is hence a generalisation of this approach, for the way the
global rate is computed is custom, and ultimately depends on
the application at hand—e.g. the global rate can be fixed, or
can depend on the number of system sub-processes willing to
execute an action. Given a transition system of this kind and an
initial state, a simulation is simply executed by:(i) checking
each time the available actions and their rate;(ii) picking
one of them probabilistically (the higher the rate, the more
likely the action should occur);(iii) accordingly changing
the system state; and finally(iv) advancing the time counter
according to an exponential distribution, so that the average
frequency is the sum of the action rates. This technique is again
a generalisation of the one adopted in the SPIM simulation
engine for stochasticπ-Calculus [6]. For a detailed description
of the simulation framework, refer to [14].

B. The Collective Sorting model

The MAUDE specification of the Collective Sorting
system is divided in three modules, respectively defining

175

mod CS is
pr CS . pr STANDARD-CARRIER .

op source : Nat -> Action . *** SYNTAX OF ACTIONS AND STATES
op chooseTarget : -> Action .
op chooseTupleType : -> Action .
op readSource : -> Action .
op readTarget : -> Action .
op move : -> Action .

subsort DataSpace < State .
*** A REFERNCE INITIAL STATE

op SS : -> State .
eq SS = (init | < 0 @ (’a[100])|(’b[100])|(’c[10])|(’d[10]) > |

< 1 @ (’a[0])|(’b[100])|(’c[10])|(’d[10]) > |
< 2 @ (’a[10])|(’b[50])|(’c[50])|(’d[10]) > |
< 3 @ (’a[50])|(’b[10])|(’c[10])|(’d[50]) > |
(’a , ’b , ’c , ’d)) .

*** IDENTIFYING SOURCE *** TRANSITION SYSTEM SEMANTICS
eq (init | DS)==> =

(source(0) # 0.25 -> [[0] | DS]);
(source(1) # 0.25 -> [[1] | DS]);
(source(2) # 0.25 -> [[2] | DS]);
(source(3) # 0.25 -> [[3] | DS]) .

*** CHOOSING TARGET
eq ([Ns] | DS) ==> = (chooseTarget # now -> [[Ns];[range(3)]| DS]) .
eq ([Ns];[Ns] | DS) ==> = (chooseTarget # now -> [[Ns];[3] | DS]) .

*** CHOOSING TUPLE TYPE QQ
ceq ([Ns];[Nt] | < Ns @ MT > | DS) ==> = (chooseTupleType # now -> [

([Ns];[Nt];[QQ] | < Ns @ MT > | DS)])
if QQ := choose(occurringTuples(MT)) .

*** READING FROM SOURCE
ceq ([Ns];[Nt];[Q] | < Ns @ MT > | QL | DS) ==> = (readSource # now -> [

([Ns];[Nt];[Q];[QQ] | < Ns @ MT > | QL | DS)])
if QQ := get(QL , sample(quantities(QL, MT))) .

*** READING FROM TARGET
ceq ([Ns];[Nt];[Q];[Q1] | < Nt @ MT > | QL | DS) ==> = (readTarget # now -> [

([Ns];[Nt];[Q];[Q1];[QQ] | < Nt @ MT > | QL | DS)])
if QQ := get(QL , sample (quantities(QL, MT))) .

*** MOVING OR DISCARDING
ceq ([Ns];[Nt];[Q];[Q1];[Q] |

< Ns @ (Q[s N]) | MT > |
< Nt @ (Q[N’]) | MT1 > | DS) ==> = (move # now -> [

(init |
< Ns @ (Q[N]) | MT > |
< Nt @ (Q[s N’]) | MT1 > | DS)])

if Q1 =/= Q .

eq ([Ns];[Nt];[Q];[Q1];[Q2] | DS) ==> = (move # now -> [
(init | DS)]) [owise] .

eq temp(init | DS) = false . *** TEMPORANEOUS STATES
eq temp(DS) = true [owise] .

endm

Fig. 2. The transition system semantics in moduleCS.

the structure of a system state (CS-TYPES), some utility
functions (CS-FUNCTIONS), and finally the stochastic
transition system operator==> (CS). Module CS-TYPES
and moduleCS-FUNCTIONS are not reported for brevity.
Module CS-TYPES specifies the necessary types to define
the structure of a system state. In particular, sortTuple is
used to model the occurrence of a tuple in a tuple space:
for instance, ’a[10] means10 tuples of tuple type’a
occur. Sort Space is used to represent a tuple space:
<0 @ (’a[10])|(’b[10])|(’c[10])|(’d[10])>
means the tuple space with identifier0 has10 copies of each
tuple type. ModuleCS-FUNCTIONSdefines three functions:

choose takes a list of tuple type identifiers and returns one
non-deterministically chosen;occurringTuples takes the
content of a tuple space and returns the list of tuple types
occurring in it; quantities takes the content of a tuple
space and a list of tuple types and returns the cardinality of
each of them.

The CS module, as depicted in Figure 2, can be viewed
as the core of the Collective Sorting model. First of all,
six kinds of action are defined: the former is of the kind
source(0) ,. . . ,source(3) and is used to start an agent
working on a certain tuple space; the others are constants
corresponding to the five steps of the agent agenda. The

176

constantSS is assigned to the initial state of the system we
want to simulate, where tuples are spread in different quantities
in the various tuple spaces.

The stochastic transition system semantics is divided in six
groups according to the actions to be executed. Initially, four
actions of the first kind are allowed, each with rate0.25 . The
rate of other actions is the constantnow, which is assigned
to a large float, meaning that these actions should happen
immediately. By this modelling choice, we will simulate a
system where one agent evaluates for moving a tuple at each
time unit, and such an evalution is immediate. The behaviour
of transitions is briefly described as follows.

a) source(i) : When taskinit occurs in the space
it is time to spawn a new agent task: any of the tuple spaces
can be chosen as source, with same probability. Task[i]
correspondingly replacesinit , wherei is the source chosen.
Note that DS is a variable overDataSpace , which here
matches with the rest of the system.

b) chooseTarget : To choose a target, any tuple space
in 0,1,2 is tried. If the result is equal to the current source,
tuple space3 is actually taken as target. This guarantees
the source and target tuple spaces to be distinct. The task
moves then to state[Ns];[Nt] —source and target identifier,
respectively.

c) chooseTupleType : A tuple type is chosen ran-
domly out of those currently occurring inNs. This is computed
with functionschoose andoccurringTuple , and is used
to avoid picking a tuple which is currently absent in the source
tuple space. The task moves then to[Ns];[Nt];[QQ] —
whereQQis the tuple type chosen.

d) readSource : In this step a tuple type is drawn
from the source tuple space using uniform read. Expression
get(QL,sample(quantities(QL, MT))) is used to
sample a tuple giving higher probability to those that occur
more.

e) readTarget : Similar sampling is done
on the target tuple space. The task moves now to
[Ns];[Nt];[Q];[Q1];[Q2] , where Q1 and Q2 are
the tuple types read.

f) move: If the task matches
[Ns];[Nt];[Q];[Q1];[Q] and Q1 is different fromQ,
then a tuple of kindQ is to be moved fromNs to Nt , which
is realised by properly updating the tuple counters. Otherwise
([owise]), the tuple spaces state is left unchanged. In both
cases, the task gets back toinit .
Finally, the temp function defines as temporary states those
that do not have taskinit , which will then cause the
simulation counter not to update.

C. Simulating the Collective Sorting

The simulation can be run by giving the MAUDE interpreter
a command like

rewrite < [5000 : (SS) @ 0.0] > .

which executes precisely5000 agent executions starting from
stateSS. Such a state is defined as a constant in the code

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000

N
um

be
r o

f T
up

le
s

Time

TS1-TT1
TS2-TT2
TS3-TT3
TS4-TT4

Fig. 4. Dynamics of the winning tuple in each tuple space: notice that each
tuple aggregates in a different tuples space.

of Figure 2, and represents a possible initial (disordered)
configuration of tuples. Figure 3 shows a piece of the output
produced by the execution of the simulation—where each
step includes simulation countdown counter, system state, and
elapsed time. After some steps, some tuple starts moving from
one space to the others. After2024 time units, for instance,
tuple kind ’c is already completely collected in tuple space
2. After 4600 time units, the system converged to complete
sorting, as we expected from our distributed algorithm. Chart
in Figure 4 reports the dynamics of the winning tuple in each
tuple space, showing e.g. that complete sorting is reached at
different times in each case. The chart in Figure 5 displays
instead the evolution of the tuple space0: notice that only the
tuple kind ’a aggregates here despite its initial concentration
was the same of tuple kind’b .

Although it would be possible to make some prediction, we
do not know in general which tuple space will host a specific
tuple kind at the end of sorting: this is an emergent property
of the system and is the very result of theinteraction of the
tuple spaces through the agents! Indeed, the final result is not
completely random and the concentration of tuples will evolve
in the same directionmost of the times. It is interesting to
analyse the trend of the entropy of each tuple space as a way
to estimate the degree of order in the system through a single
value: since the strategy we simulate is trying to increase the
inner order of the system we expect the entropy to decrease,
as actually shown in Figure 6.

D. Adding a Load-Balancing Case

The basic strategy based on constant rates (see Section IV-
B) is not very efficient, since agents are assigned to a certain
tuple space also if the tuple space is already ordered! We
may exploit this otherwise wasted computation by assigning
idle agents to disordered tuple spaces, or rather to change the
working rates of agents. This alternative therefore looks suited
to realize a strategy to quicker reach the complete order of
tuple spaces.

177

<
[5000 : init | < 0 @ (’a[100]) | (’b[100]) | (’c[10]) | (’d[10]) > |

< 1 @ (’a[0]) | (’b[100]) | (’c[10]) | (’d[10]) > |
< 2 @ (’a[10]) | (’b[50]) | (’c[50]) | (’d[10]) > |
< 3 @ (’a[50]) | (’b[10]) | (’c[10]) | (’d[50]) > | ’a,’b,’c,’d

@ 0.0],
...

[4000 : init | < 0 @ (’a[107]) | (’b[89]) | (’c[0]) | (’d[0]) > |
< 1 @ (’a[0]) | (’b[136]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[35]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[53]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 9.7664497212663287e+2],
...
[2000 : init | < 0 @ (’a[127]) | (’b[50]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[210]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[33]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 3.0679938546387184e+3],
...
[1000 : init | < 0 @ (’a[142]) | (’b[18]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[242]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[18]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 4.0271359303450395e+3],
...
[438 : init | < 0 @ (’a[160]) | (’b[0]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[260]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[0]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 4.6001450653146167e+3],
...
[0 : init | < 0 @ (’a[160]) | (’b[0]) | (’c[0]) | (’d[0]) > |

< 1 @ (’a[0]) | (’b[260]) | (’c[0]) | (’d[0]) > |
< 2 @ (’a[0]) | (’b[0]) | (’c[80]) | (’d[0]) > |
< 3 @ (’a[0]) | (’b[0]) | (’c[0]) | (’d[80]) > | ’a,’b,’c,’d

@ 5.0313233386068514e+3]
>

Fig. 3. Result for the Collective Sorting simulation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000

N
um

be
r o

f T
up

le
s

Time

Tuple Template 1
Tuple Template 2

Tuple Template 3
Tuple Template 4

Fig. 5. Dynamic of tuple space0: notice that only one kind of tuple
aggregates here.

In order to adapt the agents rate we need a measure of
order: as already stated in Section III, spatial entropy may be
an effective measure for system order. If we denote withqij

the amount of tuples of the kindi within the tuple spacej,
nj the total number of tuples within the tuple spacej, andk
the number of tuple kinds, then, the entropy associated with
the tuple kindi within the tuple spacej is

Hij =
qij

nj
log2

nj

qij
(2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1000 2000 3000 4000 5000

E
nt

ro
py

Time

Tuple Space 1
Tuple Space 2
Tuple Space 3
Tuple Space 4

Fig. 6. Entropy of tuple spaces: they all eventually reach0, that is, complete
order.

and it is easy to notice that0 ≤ Hij ≤ 1
k log2 k. We want to

express now the entropy associated with a single tuple space

Hj =
∑k

i=1 Hij

log2 k
(3)

where the division bylog2 k is introduced in order to obtain
0 ≤ Hj ≤ 1. If we havet tuple spaces then the entropy of the

178

system is

H =
1
t

t∑
j=1

Hj (4)

where the division byt is used to normalizeH, so that
0 ≤ H ≤ 1. Being t the number of tuple spaces then it also
represents the number of agents: let each agent work at rate
Hjr, andtr be the maximum rate allocated to the sorting task.
If we want to adapt the working rates of agents we have to
scale their rate by the total system entropy, since

γ
t∑

j=1

rHj = tr ⇒ γ =
t∑t

j=1 Hj

=
1
H

(5)

hence each agent will work at raterHj

H whereHj andH are
computed periodically.

In order to modify the Collective Sorting model of Figure
2, we replaced the constant agents rate of the first four action
(refer to Section IV-B) with the Equation 3 : hence, the activity
rate of the tuple spacej becomesHj instead of0.25 . Using
load balancingwe introduceddynamismin our model: indeed
in each simulation step the activity rate associated with a tuple
space—i.e. the probability at a given step that an agent of the
tuple space is working—is no longer fixed, but it depends
on the entropy of the tuple space itself. Hence, as explained
above, agents belonging to completely ordered tuple spaces
can consider their goal as being achieved, and hence they
no longer execute tasks. Moreover, this strategy guarantees a
better efficiency in the load balancing of agents work: agents
working on tuple spaces with higher entropy, have a greater
activity rate than the others on more ordered tuple spaces.

Using the Collective Sorting specification with variable
rates, we ran the same simulation of the Section IV-C: the chart
of Figure 7 shows the trend of the entropy of each tuple space.
Comparing the chart with the one in Figure 6, we can observe
that the entropies reach0 faster than the case with constant
rates: indeed since step3000 every entropy within the chart
in Figure 7 is0, while with constant rates the same result is
reached only after4600 steps. The chart in Figure 8 compares
the tendency of the global entropy (see Equation 5) in the case
of constant and variable rates: the trend of the two entropies
represents a further proof that variable rates guarantee a faster
stabilization of the system, i.e. its complete order.

V. CONCLUSION AND FUTURE WORKS

In this article we argued about the necessity of consider-
ing stochastic aspects when designing emergent coordination
mechanisms: this issue is both emerging in few proposals
of new coordination models and in related research contexts.
We evaluated these ideas by using the MAUDE library we
developed, considering and simulating a typical scenario of
swarm-like coordination, the collective sorting problem, which
we believe is a very paradigmatic application of emergent
coordination because of its basic formulation.

Several interesting future works can be pursued:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1000 2000 3000 4000 5000

E
n
t
r
o
p
y

Time

Tuple Space 1
Tuple Space 2
Tuple Space 3
Tuple Space 4

Fig. 7. Entropy of tuple spaces in the variable rate case: the system reaches
the complete order since step3000 .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000

E
n
t
r
o
p
y

Time

Constant Rate
Variable Rate

Fig. 8. Comparison of global entropy in the case of constant and variable
rate: the latter reaches the complete order quicker.

• In the context of collective sorting, we plan to evaluate
other load-balancing approaches, optimising the conver-
gence to complete order, and working with different
combinations of the number of tuple spaces and tuple
kinds.

• The library itself is currently a very simple prototype,
but we believe it could be improved in several ways and
become a very practical simulation tool.

• Another interesting idea would be to apply our library to
some existing coordination models like SwarmLinda, and
provide the necessary tests for the proposed algorithms.

REFERENCES

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz,Swarm Intelligence: From
Natural to Artificial Systems, ser. Santa Fe Institute Studies in the
Sciences of Complexity. Oxford University Press, Inc., 1999.

179

[2] L. Gardelli, M. Viroli, and A. Omicini, “On the role of simulations
in engineering self-organising MAS: The case of an intrusion detection
system inTuCSoN,” in Engineering Self-Organising Systems, ser. LNAI,
S. A. Brueckner, G. Di Marzo Serugendo, D. Hales, and F. Zambonelli,
Eds. Springer, 2006, vol. 3910, pp. 153–168, 3rd International Work-
shop (ESOA 2005), Utrecht, The Netherlands, 26 July 2005. Revised
Selected Papers.

[3] M. Mamei and F. Zambonelli, “Programming pervasive and mobile com-
puting applications with the tota middleware,” inPervasive Computing
and Communications, 2004. PerCom 2004. Proceedings of the Second
IEEE Annual Conference on. IEEE, March 2004, pp. 263– 273.

[4] R. Menezes and R. Tolksdorf, “Adaptiveness in linda-based coordina-
tion models,” inEngineering Self-Organising Systems: Nature-Inspired
Approaches to Software Engineering, ser. LNAI, G. D. M. Serugendo,
A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds. Springer Berlin
/ Heidelberg, January 2004, vol. 2977, pp. 212–232.

[5] R. D. Nicola, D. Latella, and M. Massink, “Formal modeling and
quantitative analysis of KLAIM -based mobile systems,” inSAC ’05:
Proceedings of the 2005 ACM symposium on Applied computing. New
York, NY, USA: ACM Press, 2005, pp. 428–435.

[6] A. Phillips, “The Stochastic Pi Machine (SPiM),” 2006, version
0.042 available online at http://www.doc.ic.ac.uk/˜anp/spim/. [Online].
Available: http://www.doc.ic.ac.uk/ anp/spim/

[7] “Swarm,” 2006, available online at http://www.swarm.org/.
[8] “Recursive porous agent simulation toolkit (repast),” 2006, available

online at http://repast.sourceforge.net/.
[9] M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and

C. Talcott,Maude Manual, 2nd ed., Department of Computer Science
University of Illinois at Urbana-Champaign, December 2005, version
2.2 is available online at http://maude.cs.uiuc.edu.

[10] C. Priami, “Stochastic pi-calculus,”The Computer Journal, vol. 38,
no. 7, pp. 578–589, 1995.

[11] H. Gutowitz, “Complexity-seeking ants,” inProceedings of the Third
European Conference on Artificial Life, Deneubourg and Goss, Eds.,
1993.

[12] K. Hadeli, P. Valckenaers, C. B. Zamfirescu, H. V. Brussel, B. S.
Germain, T. Holvoet, and E. Steegmans, “Self-organising in multi-
agent coordination and control using stigmergy,” inEngineering Self-
Organising Systems: Nature-Inspired Approaches to Software Engineer-
ing, ser. LNAI, G. D. M. Serugendo, A. Karageorgos, O. F. Rana, and
F. Zambonelli, Eds. Springer Berlin / Heidelberg, January 2004, vol.
2977, pp. 105–123.

[13] A. Omicini and E. Denti, “From tuple spaces to tuple centres,”Science
of Computer Programming, vol. 41, no. 3, pp. 277–294, Nov. 2001.

[14] M. Casadei, L. Gardelli, and M. Viroli, “Simulating emergent properties
of coordination in maude: the collective sorting case,” in5th Interna-
tional Workshop on the Foundations of Coordination Languages and
Software Architectures, Bonn, Germany, August 2006, to appear into.

180

Minority Game:
A Logic-Based Approach in TuCSoN

Enrico Oliva Mirko Viroli Andrea Omicini
ALMA MATER STUDIORUM—Università di Bologna

via Venezia 52, 47023 Cesena, Italy
E-mail:{enrico.oliva,mirko.viroli,andrea.omicini}@unibo.it

Abstract— Minority Game is receiving an increasing interest
because it models emergent properties of complex systems in-
cluding rational entities, such as for instance the evolution of
financial markets. As such, Minority Game provides for a simple
yet stimulating scenario for system simulation.

In this paper, we aim at presenting a logic approach to the
Minority Game whose goal is to overcome the well-known limits
of the equation model in the verification of the system behaviour.
We realise the social system simulation using a novel MAS meta-
model based on agents and artifacts, where the agent rationality
is obtained using a BDI architecture.

To this end, we adopt the TuCSoN infrastructure for agent
coordination, and its logic-based tuple centre abstractions as
artifact representatives. By implementing Minority Game over
TuCSoN, we show some of the benefits of the artifact model in
terms of flexibility and controllability of the simulation.

A number of parameters can affect the behaviour of Minority
Game simulation: such parameters are explicitly represented in
the coordination artifact, so that they can be tuned up during the
simulation. In particular, experiments are shown where memory
size and number of wrong moves are adopted as the tuning
parameters.

I. INTRODUCTION

Minority Game (MG) is a mathematical model that takes
inspiration from the “El Farol Bar” problem introduced by
Brian Arthur (1). It is based on a simple scenario where at each
step a set of agents perform a boolean vote which conceptually
splits them in two classes: the agents in the smaller class win.
In this game, a rational agent keeps track of previous votes
and victories, and has the goal of winning throughout the steps
of the game—for which a rational strategy has to be figured
out. Several researches showed that, although very simple, this
model takes into account crucial aspects of some interesting
complex systems coupling rationality with emergence: e.g.
bounded rationality, heterogeneity, competition for limited re-
sources, and so on. For instance, MG is a good model to study
market fluctuation, as an emergent property resulting from
interactions propagating from micro scale (agent interaction)
to macro scale (collective behaviour).

As showed by (2), a multiagent system (MAS) can be used
to realise a MG simulation—there, BDI agents provide for
rationality and planning. An agent-based simulation is partic-
ularly useful when the simulated systems include autonomous
entities that are diverse, thus making it difficult to exploit the
traditional framework of mathematical equations.

The Minority Game is a social simulation that aims at
reproducing a simplified human social scenario. A (human)

society is composed by different kinds of people with different
behaviours, and its composition affects the progress of the
game. In principle, a logic-based approach based on BDI agent
makes it easier to explicitly model a variety of diverse social
behaviours. Also, in this scenario, argumentation theory (3) is
useful to model the information exchange and sharing between
humans/agents so as to improve the agent reasoning abilities,
as well as to provide a more realistic simulation of a society.

In this paper we proceed along this direction, and adopt a
novel MAS meta-model based on the notion of artifact (4).
The notion of artifact is inspired by Activity Theory (5): it
represents those abstractions living in the MAS environment
that provide a function, which agents can exploit to achieve in-
dividual and social goals. The engineering principles promoted
by this meta-model makes it possible to flexibly balance the
computational burden of the whole system between autonomy
of the agents and the designed behaviour of artifacts.

In order to implement MG simulations we adopt the
TuCSoN infrastructure for agent coordination (6), which in-
troduces tuple centres as artifact representatives. A tuple centre
is a programmable coordination medium living in the MAS
environment, used by agents interacting by exchanging tuples
(logic tuples in the case of TuCSoN logic tuple centres). As
we are not concerned much with the mere issues of agent
intelligence, we rely here on a weak form of rationality,
through logic-based agents adopting pre-compiled plans called
operating instructions (7).

By implementing MG over TuCSoN, we can experiment
with flexibility and controllability of the artifact model, and
see if and how they apply to the simulation – in particular,
artifacts allow for a greater level of controllability with respect
to agents. To this end, in this paper we show how the model
allows some coordination parameters to be changed during the
run of a simulation with no need to stop the agents: this can
be useful e.g. to change the point of equilibrium, controlling
the collective behaviour resulting by interactions propagated
from the entities at the micro level.

The remainder of this paper is organised as follows. First,
we introduce the general simulation framework based on
agents and artifacts. Then, we provide the reader with some
relevant details of the Minority Game. Some quantitative
results of MG simulation focussing on system dynamics and
run-time changes are presented, just before final remarks.

181

Monitor

Tuning

Agent

Coordination Artifact

Player

Fig. 1. TuCSoN Simulation Framework for MG

II. THE TuCSoN FRAMEWORK FOR SIMULATION

The architecture proposed for MAS simulation is based on
TuCSoN (6), which is an infrastructure for the coordination of
MASs. TuCSoN provides agents with an environment made
of logic tuple centres, which are logic-based programmable
tuple spaces. The language used to program the coordination
behaviour of tuple centres is ReSpecT, which specifies how
a tuple centre has to react to an observable event (e.g. when
a new tuple is inserted) and has to accordingly change the
tuple-set state (8). Tuple centres are a possible incarnation of
the coordination artifact notion (9), representing a device that
persists independently of agent life-cycle and provides services
to let agents participate to social activities.

In our simulation framework we adopt logic-based agents,
namely, agents built using a logic programming style, keeping
a knowledge base (KB) of facts and acting according to
some rule—rules and facts thus forming a logic theory. The
implementation is based on tuProlog technology1 for Java-
Prolog integration, and relies on its inference capabilities for
agent rationality. Agents roughly follow the BDI architecture
(as showed in Figure 2), as the KB models agent beliefs while
rules model agent intentions.

To coordinate agents we take inspiration from natural sys-
tems like ant-colonies, where coordination is achieved through
the mediation of the environment: our objective is to have a
possibly large and dynamic set of agents which coordinate
each other through the environment while bringing about their
goals.

Externally, we can observe overall system parameters by
inspecting the environment, namely, the tuple centres agents
interact with. In this way we can try different system be-
haviours changing only the coordination behaviour of the en-
vironment. Furthermore we can change, during the simulation,
some coordination parameters (expressed as tuples in a tuple
centre), programming and then observing the transition of the
whole system either to a new point of equilibrium or to a
divergence.

Three kinds of agents are used in our simulation: player
agents, monitor agents and tuning agents (as depicted in

1http://tuprolog.alice.unibo.it

Figure 1): all the agents share the same coordination artifact.
The agent types differ because of their role and behaviour:
player agents play MG, the monitor agent is an observer
of interactions which visualises the progress of the system,
the tuning agent can change some rules or parameters of
coordination, and drives the simulation to new states. Note
that the main advantage of allowing a dynamic tuning of
parameters instead of running different simulations lays in
the possibility of tackling emergent aspects which would not
necessarily appear in new runs.

The main control loop of a player agent is a sequence of
actions: observing the world (perception), updating its KB
(effects), scheduling next intention (precondition), elaborating
and executing a plan (action). This structure is depicted in
Figure 2. Moreover, in order to connect agent mental states
with interactions, we use the concept of action preconditions
and perception effects as usual.

III. MINORITY GAME

MG was introduced and first studied by (10), as a means
to evaluate a simple model where agents compete through
adaptation for finite resources. MG is a mathematical rep-
resentation from ‘El Farol Bar’ problem introduced by (1),
providing an example of inductive reasoning in scenarios of
bounded rationality. The game consists in an odd number N of
agents: at each discrete time step t of the game an agent i takes
an action ai(t), either 1 or −1. Agents taking the minority
action win, whereas the majority looses. After a round, the
total action result is calculated as:

A(t) =
N∑
i

ai(t)

In order to take decisions agents adopt strategies. A strategy
is a choosing device that takes as input the last m winning
results, and provides the action (1 or −1) to perform in the
next time step. The parameter m is the size of the memory
of the past results (in bits), and 2m is therefore the potential
past history that defines the number of possible entries for a
strategy.

The typical strategy implementation is as follows. Each
agent carries a sequence of 2m actions, called a strategy, e.g.

Beliefs

Agent mental state

Preconditions

Effects

Desires

Intentions

Action Perception

Preconditions

Effects

Fig. 2. Agent Architecture

182

Fig. 3. Typical Time evolution of the Original MG with N = 51, m = 5
and s = 2

m = 3 23actions = [+1,+1,−1,−1,+1,−1,+1,+1]. The
information on past m wins is stored considering the success
of − group if A(t) > 0 or + group if A(t) < 0. Such a
past history is mapped on the natural number that results by
considering − as 0 and + as 1. Such a number is used as
position in the sequence of the next action to take: for instance,
if [−,+,−] is the past winning group, we read it as 010 (that
is, 2), and accordingly pick the decision in position 2 inside
[+1,+1,−1,−1,+1,−1,+1,+1], that is −1.

Each agent actually carries a number s ≥ 2 of strategies.
During the game the agent evaluates all its strategies according
to their success, and hence at each step it decides based on
the most successfull strategy so far. Figure 3 shows a typical
evolution of the game.

One of the most important applications of MG is in the
market models: (11) use MG as a coarse-grained model for
financial markets to study their fluctuation phenomena and
statistical properties. Even though the model is coarse-grained
and provides an over-simplified micro-scale description, it any-
way captures the most relevant features of system interaction,
and generates collective properties that are quite similar to
those of the real system.

Another point of view, presented e.g. by (12), considers the
MG as a point in space of a Resource Allocation Game (RAG).
In this work a generalisation of MG is presented that relaxes
the constraints on the number of resources, studying how the
system behaves within a given range.

A. MG Logic-Based Approach

MG can be considered a social simulation that aims to
reproduce a simplified human scenario. Each (human) agent,
in this scenario, must do a choice under the minority global
rule. In order to study the system composed by different
kinds of players with different behaviours, we here adopt
a logic-based approach to build the players. In this way,
it is possible to observe particular social behaviours which
would otherwise remain hidden in the approximation of the
mathematical model.

A more recent paper (2) observes that MG players could be
naturally modelled as agents with a full BDI model, and adopts
a new adaptive stochastic MG with dynamically evolving
strategies in the simulation. We can then apply our simulation
framework, with Logic Agents and Coordination Artifacts,

Fig. 4. Variance of the Game with 11 Random Agents

to test the MG from a logic-based point of view, and to
experiment with some dynamic tuning strategy.

The next step is to consider players as in an argumenta-
tion scenario (3), where agents have the ability to exchange
arguments with the purpose to make their own choice or to
persuade others to change theirs.

B. MG Performance

In order to track the performance of an MG system,
the most interesting quantity is variance, defined as σ2 =
[A(t)−A(t)]2: it shows the variability of the bets around the
average value A(t). In particular, the normalised version of
variance ρ = σ2/N is considered.

Generally speaking, variance is the inverse of global ef-
ficiency: as variance decreases agent coordination improves,
making more agents winning. Variance is interestingly affected
by the parameters of the model, such as number of agents (N),
memory (m) and number of strategies (s): in particular, the
fluctuation of variance is shown to depend only on the ratio
α = 2m/N between agent memory and the number N of
agents.

For large values of α—the number of agents is small with
respect to the number of possible histories—the outcomes are
seemingly random: the reason for this is that the information
that agents observe about the past history is too complex for
their limited processing analysis.

When new agents are added, fluctuation decreases and
agents perform better by choosing randomly, in this case ρ = 1
and α ≈ 1/2, as visible in the results of our simulation in
Figure 4—the game enters into a regime where the loosing
group is close to N/2, hence we might say coordination is
performing well.

If the number of agents increase further, fluctuations rapidly
increase beyond the level of random agents and the game
enters into the crowded regime. With a low value of α the
value of σ2/N is very large: it scales like σ2/N ≈ α−1.

The results of other observations suggest that the behaviour
of MG can be classified in two phases: an information-rich
asymmetric phase, and an unpredictable or symmetric phase.
A phase transition is located where σ2/N attains its minimum
(αc = 1/2), and it separates the symmetric phase with α < αc

from an asymmetric phase with α > αc.
All these cases have been observed with the TuCSoN

simulation framework described in next section.

183

IV. THE SIMULATION FRAMEWORK

The construction of MG simulations with MASs is based
on the TuCSoN framework and on tuProlog as an inferential
engine to program logic agents. The main innovative aspect
of this MG simulation is the possibility of studying the
evolution of the system with particular and different kinds of
agent behaviour at the micro level, imposed as coordination
parameters which are changed on-the-fly.

A. Operating Instructions

Each agent has an internal plan, structured as an algebraic
composition of allowed actions (with their preconditions) and
perceptions (with their effects), that enables the agent to use
the coordination artifact to play the MG. This plan can be
seen as Operating Instructions (7), a formal description based
on Labelled Transition Systems (LTS) that the agent reads to
understand what its step-by-step behaviour should be. Through
an inference process, the agent accordingly chooses the next
action to execute, thus performing the cycle described in
Section II.

Operating instructions are expressed by the following the-
ory:
% pre=Preconditions
% eff=Effects
% act=Action
% per=Perception
firststate(agent(first,[])).
definitions([

def(first,[],...),
%definition of the main control loop
def(main,[S],

[act(out(play(X)),pre(choice(S,X))),
per(in(result(Y)),eff(res(Y))),
agent(main,[S])]

),
...

]).

The first part of operating instructions is expressed by
term first, where the agent reads the game parameters that
are stored in the KB, and randomly creates its own set of
strategies.

In the successive part main, the agent executes its main
cycle. It first puts tuple play(X) in the tuple space, where
X = ±1 is agent vote. The precondition of this action
choice(S,X) is used to bind in the KB X with the
value currently chosen by the agent according to strategy S.
Then, the agent gets the whole result of the game in tuple
result(Y) and applies it to its KB. After this perception,
the cycle is iterated again.

B. Tuple Centre Behaviour

The interaction protocol between agents and the coordina-
tion artifact is then simply structured as follows. First each
agent puts the tuple for its vote. When the tuples for all agents
have been received, the tuple centre checks them, computes the
result of the game—either 1 or −1 is winning—and prepares
a result tuple to be read by agents.

The ReSpecT program for this behaviour is loaded in the
tuple centre by a configuration agent at bootstrap, through

operation set_spec(). The following ReSpecT reaction
is fired when an agent inserts tuple play(X), and triggers
the whole behaviour:

reaction(out(play(X)),(
%read the last value of count
in_r(count(Y)),
Z is Y+1,
%calculate the partial result
in_r(sum(M)),
V is M+X,
out_r(sum(V)),
%store the new value of count
out_r(count(Z))
%this action will be catch

)).

This reaction considers the bet (X), counts the bets (Z),
and computes the partial result of the game (V). When
all the agents have played, the artifact produces the tuple
winner(Result,Turn,NumberOfLoss,MemorySize,last/more)

which is the main tuple of MG coordination.

reaction(out_r(count(X)),(
%check if all agents have already played
rd_r(numag(Num)),
X=:=Num,
in_r(totcount(T)),
Turn is T+1,
rd_r(game(G)),
%read the result of the game
in_r(sum(Result)),
%reset the sum value
out_r(sum(0)),
rd_r(countsession(CS)),
in_r(count(Y)),
%reset the count value
out_r(count(0)),
%calculate variance
in_r(qsum(SQ)),
NSQ is Result*Result+SQ,
out_r(qsum(NSQ)),
%calculate mean
in_r(totsum(R)),
NewS is R+Result,
out_r(totsum(NewS)),
rd_r(numloss(NumberOfLoss)),
rd_r(mem(MemorySize)),
% put out the tuple with the result
out_r(winner(Result,Turn,NumberOfLoss,
MemorySize,G)),
out_r(totcount(Turn))

)).

Fig. 5. Interface of the Monitor Agent

184

Fig. 6. Variance of the System with Initial Parameters N = 5 and m = 3

The winner tuple contains the result of the game
(Result), the number of steps (Turn), two tuning parame-
ters (NumberOfLoss and MemorySize) and one constant
to communicate agents whether they have to stop or to play
further (last/more). Figure 5 reports the graphical interface
of the monitor agent that during its life-time reads the tuple
winner and draws variance.

C. Tuning the Simulation

In classical MG simulation there are a number of parameters
that can affect the system behaviour, which are explicitly
represented in the tuple centre in form of tuples: the number of
agents numag(X), memory size mem(X), and the number of
strategies numstr(X). In our framework, we have introduced
as a further parameter the number of wrong moves after
which the single agent should be recalculate own strategy,
represented as a tuple numloss(X). Such a threshold is
seemingly useful to break the symmetry in the strategy space
when the system is in a pathological state, i.e., when all
agents have the same behaviour and the game oscillates from
minimum to maximum value.

In our framework, it is possible to explore the possibility
to dynamically tune up the coordination rules by changing
numloss and mem coordination parameters, which are stored
as tuples in the coordination artifact. The simulation architec-
ture built in this way, in fact, allows for on-the-fly change of
some game configuration parameters—such as the dimension
of agent memory—with no need to stop the simulation and
re-program the agents.

By changing the parameters, the tuning agent can drive the
system from an equilibrium state to another, by controlling
agent strategies, the dimension of memory, or the number of
losses that an agent can accept before discarding a strategy.
This agent observes system variance, and decides whether and
how to change tuning parameters: reference variance is calcu-
lated by first making agents playing the game randomly—
see Figure 4. The new value of parameters is stored in
tuple centre through tuples numloss(NumberOfLoss) and
mem(MemorySize), the rules of coordination react and
update the information that will be read by the agents.

Fig. 7. System Evolution of the Variance in Figure 6

D. Simulation Results

The result of the tuned simulation in Figures 6 and 7 shows
how the system changes its equilibrium state and achieves
a better value of variance.2 In this simulation the tuning
agent is played by a human that observes the evolution of
the system and acts through the tuning interface to change
the coordination parameters, such as threshold of losses and
memory, hopefully finding new and better configurations. The
introduction of the threshold of losses in the agent behaviour
is useful when the game is played by few agents: these param-
eters enable system evolution and a better agent cooperative
behaviour.

V. CONCLUSION

In this paper, we aim at introducing new perspectives on
agent-based simulation by adopting a novel MAS meta-model
based on agents and artifacts, and by applying it to Minority
Game simulation. We implement and study MG over the
TuCSoN coordination infrastructure, and show some benefits
of the artifact model in terms of flexibility and controllability
of the simulation. In particular, in this work we focus on the
possibility to build a feedback loop on the rules of coordination
driving a system to a new and better equilibrium state. Many
related agent simulation tools actually exist: as this paper is a
starting point, we plan to perform a systematic comparison
of their expressiveness and features. In the future, we are
interested in constructing an intelligent and adaptive tuning
agent with a BDI architecture, substituting the human agent
in driving the evolution over time of the system behaviour.

VI. ACKNOWLEDGEMENTS

The first author of this paper, Enrico Oliva, would like
to warmly thank Dr. Peter McBurney and the Department
of Computer Science at University of Liverpool for their
scientific support and their hospitality during his stay in
Liverpool, when this paper was mostly written.

2In Figure 6, the first phase of equilibrium is followed by a second one
obtained by changing the threshold parameter S = 5. Finally, a third phase
is obtained changing the dimension of the memory to m = 5.

185

REFERENCES

[1] W. B. Arthur, “Inductive reasoning and bounded rational-
ity (the El Farol problem),” American Economic Review,
vol. 84, no. 2, pp. 406–411, May 1994.

[2] W. Renz and J. Sudeikat, “Modeling Minority Games
with BDI agents – a case study,” in Multiagent
System Technologies, ser. LNCS, T. Eymann, F. Klügl,
W. Lamersdorf, M. Klusch, and M. N. Huhns, Eds.
Springer, 2005, vol. 3550, pp. 71–81, 3rd German
Conference (MATES 2005), Koblenz, Germany, 11-
13 Sept. 2005. Proceedings. [Online]. Available: http:
//www.springerlink.com/link.asp?id=y62q174g56788gh8

[3] S. Parsons and P. McBurney, “Argumentation-based com-
munication between agents.” in Communication in Mul-
tiagent Systems, ser. Lecture Notes in Computer Science,
M.-P. Huget, Ed., vol. 2650. Springer, 2003, pp. 164–
178.

[4] A. Ricci, M. Viroli, and A. Omicini, “Programming
MAS with artifacts,” in Programming Multi-Agent
Systems, ser. LNAI, R. P. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, Eds.
Springer, Mar. 2006, vol. 3862, pp. 206–221, 3rd
International Workshop (PROMAS 2005), AAMAS
2005, Utrecht, The Netherlands, 26 July 2005.
Revised and Invited Papers. [Online]. Avail-
able: http://www.springerlink.com/openurl.asp?genre=
article&issn=0302-9743&volume=3862&spage=206

[5] A. Ricci, A. Omicini, and E. Denti, “Activity Theory
as a framework for MAS coordination,” in Engineering
Societies in the Agents World III, ser. LNCS, P. Petta,
R. Tolksdorf, and F. Zambonelli, Eds. Springer-Verlag,
Apr. 2003, vol. 2577, pp. 96–110.

[6] A. Omicini and F. Zambonelli, “Coordination for Inter-
net application development,” Autonomous Agents and
Multi-Agent Systems, vol. 2, no. 3, pp. 251–269, Sept.
1999.

[7] M. Viroli and A. Ricci, “Instructions-based semantics
of agent mediated interaction,” in 3rd International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), N. R. Jennings, C. Sierra,
L. Sonenberg, and M. Tambe, Eds., vol. 1. New
York, USA: ACM, 19–23 July 2004, pp. 102–109.
[Online]. Available: http://portal.acm.org/citation.cfm?
id=1018409.1018737

[8] A. Omicini and E. Denti, “Formal ReSpecT,” Electronic
Notes in Theoretical Computer Science, vol. 48, pp. 179–
196, June 2001.

[9] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and
L. Tummolini, “Coordination artifacts: Environment-
based coordination for intelligent agents,” in 3rd
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2004), N. R. Jennings,
C. Sierra, L. Sonenberg, and M. Tambe, Eds., vol. 1.
New York, USA: ACM, 19–23 July 2004, pp. 286–293.
[Online]. Available: http://portal.acm.org/citation.cfm?

id=1018409.1018752
[10] D. Challet and Y.-C. Zhang, “Emergence of cooperation

and organization in an evolutionary game,” Physica
A: Statistical and Theoretical Physics, vol. 246, no.
3–4, pp. 407–418, Dec. 1997. [Online]. Available:
http://dx.doi.org/10.1016/S0378-4371(97)00419-6

[11] D. Challet, M. Marsili, and Y.-C. Zhang, “Modeling
market mechanism with minority game,” Physica A:
Statistical and Theoretical Physics, vol. 276, no.
1–2, pp. 284–315, Feb. 2000. [Online]. Available:
http://dx.doi.org/10.1016/S0378-4371(99)00446-X

[12] H. V. D. Parunak, S. Brueckner, J. Sauter, and R. Savit,
“Effort profiles in multi-agent resource allocation,” in 1st
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2002), C. Castelfranchi
and W. L. Johnson, Eds. Bologna, Italy: ACM, 15–
19 July 2002, pp. 248–255.

[13] N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
Eds., 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004). New
York, USA: ACM, 19–23 July 2004.

186

Reasoning about Goals in BDI Agents:
the PRACTIONIST Framework

Vito Morreale∗, Susanna Bonura∗, Giuseppe Francaviglia∗, Fabio Centineo∗,
Massimo Cossentino†§, and Salvatore Gaglio†‡

∗R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A.
†ICAR-Italian National Research Council

‡DINFO-University of Palermo
§SET - Universit de Technologie Belfort-Montbliard, France

Abstract— The representation of goals and the ability to reason
about them play an important role in goal-oriented requirements
analysis and modelling techniques, especially in agent-oriented
software engineering. Moreover goals are more useful and stable
abstractions than others (e.g. user stories) in the analysis and
design of software applications. Thus, the PRACTIONIST frame-
work supports a goal-oriented approach for developing agent
systems according to the Belief-Desire-Intention (BDI) model.

In this paper we describe the goal model of PRACTIONIST
agents, in terms of the general structure and the relations among
goals. Furthermore we show how PRACTIONIST agents use
their goal model to reason about goals during their deliberation
process and means-ends reasoning as well as while performing
their activities.

I. I NTRODUCTION

With the increasing management complexity and main-
tenance cost of advanced information systems, attention in
recent years has fallen on self-* systems and particularly on
the autonomic computing approach and autonomic systems. In
[1] authors argue that adopting a design approach that supports
the definition of a space of possible behaviours related to the
same function is one of the ways to make a system autonomic.
Then the system should be able to select at runtime the best
behaviour on the basis of the current situation. Goals can be
used as an abstraction to model the functions around which
the systems can autonomously select the proper behaviour.

In this view, the explicit representation of goals and the
ability to reason about them play an important role in several
requirements analysis and modelling techniques, especially
when adopting the agent-oriented paradigm.

In this area, one of the most popular and successful agent
models is the BDI [2], which derives from the philosophical
tradition of practical reasoning first developed by Bratman[3].
It states that agents decide, moment by moment, which actions
to perform in order to pursue their goals. Practical reasoning
involves a deliberation process, to decide what states of affairs
to achieve, and a means-ends reasoning, to decide how to
achieve them.

Nevertheless there is a gap between BDI theories and
several implementation [4]. Indeed, most of existing BDI agent
platforms (e.g. JACK [5], JAM [6]) generally use goals instead
of desires. Moreover, the actual implementations of mental
states differ somewhat from their original semantics: desires

(or goals) are treated as event types (such as in AgentSpeak(L)
[7]) or procedures (such as in 3APL [8]) and intentions are
executing plans. Therefore the deliberation process and means-
ends reasoning are not well separated, as being committed to
an intention (ends) is the same as executing a plan (means).

Moreover, some available BDI agent platforms do not
support the explicit representation and implementation ofgoals
or desires with their properties and relations, but they deal with
them in a procedural and event-based fashion. As a result,
while such an explicit representation of goals provide useful
and stable abstractions when analysing and designing agent-
based systems, there is a gap between the products of those
phases and what development frameworks support.

According to Winikoff et al. [4], ”by omitting the declarative
aspect of goals the ability to reason about goals is lost”. What
is actually lost is the ability toknow if goals are impossible,
achieved, incompatible with other goals, and so forth. Thisin
turn can support thecommitment strategiesof agents and their
ability to autonomously drop, reconsider, replace or pursue
goals.

However, some other BDI agent platforms deal with declar-
ative goals. Indeed, in JADEX goals are explicitly represented
according to a generic model, enabling the agents to handle
their life cycle and reasoning about them [9]. Nevertheless, the
model defined in JADEX does not deal with relations among
goals.

The PRACTIONIST framework [10] adopts a goal-oriented
approach to develop BDI agents and stresses the separation
between the deliberation process and the means-ends reason-
ing, with the abstraction of goal used to formally define both
desires and intentions during the deliberation phase. Indeed,
in PRACTIONIST a goal is considered as an analysis, design,
and implementation abstraction compliant to the semantics
described in this paper. In other words, PRACTIONIST agents
can be programmed in terms of goals, which then will be
related to either desires or intentions according to whether
some specific conditions are satisfied or not.

After a brief overview of the general structure of PRAC-
TIONIST agents and their execution model (section II), this
paper addresses the definition of the goal model (section III).
We also describe how PRACTIONIST agents are able to
reason about available goals according to their goal model,

187

current beliefs, desires, and intentions (see section IV).All
aforementioned issues and the proposed model are fully imple-
mented in the PRACTIONIST framework and available when
developing applications by using the goal-oriented approach
and the concepts described in this paper (section V). Finally,
in section VI we present a simple example that illustrates the
definition and the usage of goals and their relations.

II. PRACTIONIST AGENTS

The PRACTIONIST framework aims at supporting the pro-
grammer in developing BDI agents and is built on top of JADE
[11], a widespread platform that implements the FIPA1 spec-
ifications. Therefore, our agents are deployed within JADE
containers and their main cycle is implemented by means of
a JADE cyclic behaviour.

A PRACTIONIST agent is a software component endowed
with the following elements:

• a set ofperceptionsand the correspondingperceptorsthat
listen to some relevant external stimuli;

• a set of beliefs representing the information the agent
has got about both its internal state and the external
environment;

• a set ofgoals the agent wishes or wants to pursue. They
represent some states of affairs to bring about or activities
to perform and will be related to either its desires or
intentions (see below);

• a set ofgoal relationsthe agent uses during the deliber-
ation process and means-ends reasoning;

• a set ofplansthat are the means to achieve its intentions;
• a set ofactions the agent can perform to act over its

environment; and
• a set ofeffectorsthat actually execute the actions.

Beliefs, plans, and the execution model are briefly described
in this section, while goals are the subject of this paper andare
presented in the following sections. However, for a detailed
description of the structure of PRACTIONIST agents, the
reader should refer to [10].

The BDI model refers to beliefs instead of knowledge, as
beliefs are not necessarily true, whileknowledgeusually refers
to something that is true [12]. According to this, an agent may
believe true something that is false from the other agents’ or
the designer’s point of view, but the idea is just to provide the
agents with a subjective window over the world.

Therefore each PRACTIONIST agent is endowed with a
prolog belief base, where beliefs are asserted, removed, or
entailed through inference on the basis of KD45 modal logic
rules [12] and user-defined formulas. Currently the PRAC-
TIONIST framework supports two prolog engines, i.e. SWI-
Prolog2 and one that was derived from TuProlog3.

In the PRACTIONIST framework plans represent an impor-
tant container in which developers define the actual behaviors
of agents.

1http://www.fipa.org
2http://www.swi-prolog.org
3http://tuprolog.alice.unibo.it

Each agent may own a declared set of plans (theplan
library), each specifying the course of acts the agent will
undertake in order to pursue its intentions, or to handle
incoming perceptions, or to react to changes of its beliefs.

PRACTIONIST plans have a set of slots that are used
by agents during the means-ends reasoning and the actual
execution of agent activities. Some of these slots are: the
trigger event, which defines the event (i.e. goals, perceptions,
and belief updating) each plan is supposed to handle; the
context, a set of condition that must hold before the plan can
be actually performed; the body, which includes the acts the
agent performs during the execution of the plan.

Through their perceptors, agents search for stimuli (percep-
tions) from the environment and transform them into (external)
events, which in turn are put into theEvent Queue(figure
1). Such a queue also contains internal events, which are
generated when either an agent is committed to a goal or there
is some belief updates. The former type of internal events is
particularly important in PRACTIONIST agents, as described
in the following sections.

The main cycle of a PRACTIONIST agent is implemented
within a cyclic behaviour, which consists of the following
steps.

1) it selects and extracts an event from the queue, according
to a properEvent Selectionlogic;

2) it handles the selected event through the following
means-ends reasoningprocess: (i) the agent figures out
thepractical plans, which are those plans whose trigger
event matches the selected event (Options in figure
1); (ii) among practical plans, the agent detects the
applicable ones, which are those plan whose context
is believed true, and selects one of them (main plan);
(iii) it builds the intended means, which will contain the
main plan and other alternative practical plans. In case
of goal event updates the corresponding intended means
stack; otherwise it creates a new intended means stack.

It should be noted that every intended means stack can
contain several intended means, each able to handle a given
event, possibly through several alternative means.

Moreover all intended means stacks are concurrently exe-
cuted, in order to provide the agents with the capability of
performing several activities (perhaps referring to related or
non-related objectives) in parallel. When executing each stack,
the top level intended means is in turn executed, by performing
its main plan. If it fails for some reason, one of alternative
plans is then performed, until the corresponding ends (related
to the triggering event) is achieved.

During the execution of a plan, several acts can be per-
formed, such asdesiring to bring about some states of affairs
or to perform some action,addingor removingbeliefs,sending
ACL messages, and so forth. Particularly, desiring to pursue
a goal triggers a deliberation/filtering process, in which the
agent figures out whether that goal must be actually pursued
or not, on the basis of the goal model declared for that agent.

The interaction among intended means belonging to differ-
ent stacks can occur at a goal level, since each plan could wait

188

Fig. 1. PRACTIONIST Agent Architecture

for the success/failure of some goal that the agent is pursuing
through another intended means.

III. G OAL MODEL

In the PRACTIONIST framework, a goal is an objective
to pursue and we use it as a mean to transform desires into
intentions through the satisfaction of some properties. Inother
words, our agents are programmed in terms of goals, which
then will be related to either desires or intentions according
to whether some specific conditions are satisfied or not.

Formally, a PRACTIONISTgoal g is defined as follows:

g = 〈σg, πg〉 (1)

where:
• σg is thesuccess conditionof the goalg;
• πg is the possibility conditionof the goal g stating

whetherg can be achieved or not.
Since we consider such elements as local properties of

goals, in the PRACTIONIST framework we defined them as
operations that have to be implemented for each kind of goal
(figure 3).

In order to describe the goal model, we first provide some
definitions about the properties of goals.

Definition 1 A goal g1 is inconsistentwith a goal g2

(g1⊥g2) if and only if wheng1 succeeds, theng2 fails.

Definition 2 A goal g1 entailsa goalg2 or equivalentlyg2

is entailed byg1 (g1 → g2) if and only if wheng1 succeeds,
then alsog2 succeeds.

Definition 3 A goal g1 is a precondition of a goal g2

(g1 7→ g2) if and only if g1 must succeed in order to be
possible to pursueg2.

Definition 4 A goal g1 dependson a goalg2 (g1 ↪→ g2) if
and only ifg2 is precondition ofg1 andg2 must be successful
while pursuingg1.

Therefore the dependence is a stronger form of precondition.
Both definitions let us specify that some goals must be
successful before (and during, in case of dependency) pursuing
some other goals (refer to section IV for more details).

Now, given a setG of goals and based on the above
definitions, it is also possible to define some relations
between those goals.

Definition 5 The inconsistencyΓ ⊆ G × G is a binary
symmetric relation on G, defining goals that are inconsistent
with each other. Formally,

Γ = {(gi, gj) i, j = 1, ..., |G| : gi⊥gj} . (2)

When two goals are inconsistent with each other, it might

189

be useful to specify that one is preferred to the other. We
denote thatgi is preferred togj with gi � gj.

Definition 6 The relation of preferenceΓ
′

⊆ Γ defines the
pair of goals(gi, gj) wheregi⊥gj andgi � gj . Formally,

Γ′ = {(gi, gj) ∈ Γ : gi � gj} . (3)

Therefore if there is no preference between two inconsistent
goals, the corresponding pair does not belong to the setΓ

′

.
Moreover, since several goals can be pursued in parallel,
there is no need to prefer some goal to another goal if they
are not inconsistent each other.

Definition 7 The entailmentΞ ⊆ G×G is a binary relation
on G, defining which goals entail other goals. Formally,

Ξ = {(gi, gj) i, j = 1, ..., |G| : gi → gj} . (4)

Definition 8 The precondition setΠ ⊆ G × G is a binary
relation on G, defining which goals are precondition of other
goals. Formally,

Π = {(gi, gj) i, j = 1, ..., |G| : gi 7→ gj} . (5)

Definition 9 The dependence∆ ⊆ G×G is a binary relation
on G, defining which goals depend on other goals. Formally,

∆ = {(gi, gj) i, j = 1, ..., |G| : gi ↪→ gj} . (6)

Finally, on the basis of the above properties and relations
we can now define the structure of thegoal modelof PRAC-
TIONIST agents as follows

GM = 〈G, Γ, Γ′, Ξ, Π, ∆〉 (7)

where:

• G is the set of goals the agent could pursue;
• Γ is the inconsistencyrelation among goals;
• Γ′ is thepreferencerelation among inconsistent goals;
• Ξ is theentailmentrelation among goals;
• Π is thepreconditionrelation among goals;
• ∆ is thedependencerelation among goals.

IV. REASONING ABOUT GOALS

In this section we show how the goal elements previously
defined are used by PRACTIONIST agents when reasoning
about goals during their deliberation process and the means-
ends reasoning. We also highlight the actual relations between
them and mental attitudes, i.e. desires and intentions.

In PRACTIONIST agents goals and their properties are
defined on the basis of what agents believe. Thus, an agent will
believe that a goalg = 〈σg, πg〉 has succeeded if it believes
that its success conditionσg is true. The same holds for the
other properties.

It is important to note that, in PRACTIONIST, desires and
intentions are mental attitudes towards goals, which are in
turn considered as descriptions of objectives. Thus, referring

to a goal, an agent can just relate it to adesire, which it is
not committed to because of several possible reasons (e.g. it
believes that the goal is not possible). On the other hand, a
goal can be related to anintention, that is the agent is actually
and actively committed to pursue it.

Let GM = 〈G, Γ, Γ′, Ξ, Π, ∆〉 be a goal modelof a
PRACTIONIST agentα and, at a given time,G′ ⊆ G be the
set of its active goals, which are those goals that the agent is
already committed to.

Suppose thatα starts its deliberation process and generates
the goalg = 〈σg, πg〉 as an option. Therefore the agent would
like to commit tog, that is itsdesireis to bring about the goal
g. However, since an agent will not be able to achieve all its
desires, it performs the following process in the context ofits
deliberation phase (figure 2): the agent checks if it believes
that the goalg is possibleand notinconsistent(see definition
1) with active goals (belonging toG′).

If both conditions hold the desire to pursueg will be
promoted to anintention. Otherwise, in case of inconsistency
amongg and some active goals, the desire to pursueg will
become an intention only ifg is preferred to such inconsistent
goals, which will in turn be dropped.

In any case, if the desire to pursueg is promoted to an
intention, before starting the means-ends reasoning, the agent
α checks if it believes that the goalg succeeds(that is, if it
believes that the success conditionσg holds) or whether the
goal g is entailed (see definition 2) by some of the current
active goals. In case of both above conditions do not hold,
the agent will perform the means-ends reasoning, by either
selecting a plan from a fixed plan library or dynamically
generating a plan and finally executing it (details on this
means-ends reasoning can be found in [10]).

Indeed, if the goalg succeeds or is entailed by some current
active goals (i.e. some other means is working to achieve a
goal that entails the goalg), there is no reason to pursue it.
Therefore, the agent does not need to make any means-ends
reasoning to figure out how to pursue the goalg.

Otherwise, before starting the means-ends reasoning, if
some declared goals are precondition forg, the agent will
first desire to pursue such goals and then the goalg.

In the PRACTIONIST framework, as a default, an agent
will continue to maintain an intention until it believes that
either such an intention has been achieved or it is no longer
possible to achieve the intention. This commitment strategy to
intention is calledsingle-minded commitment[13]. In order to
perform such a behaviour, the agent continuously checks if it
believes that the goalg has just succeeded and that the goal
g is still possible.

Moreover the agent checks if some dependee goal does
not succeed. If so, it will desire to pursue such a goal and
then continue pursuing the goalg. When all dependee goals
succeed, the agent resumes the execution of the plan.

In order to be able to recover fromplan failures and try
other means to achieve an intention, if the selected plan fails
or is no longer appropriate to achieve the intention, then the
agent selects one of applicablealternative planswithin the

190

check if the goal
is possible

check if the goal
succeeds

check if the goal is
inconsistent with active goals

exception: the goal
cannot be pursued

check if the goal is entailed
by some active goal

synchronize with the
entailing goal

check about goal
preconditions

[goal is not possible]

[goal inconsistent AND not preferred]
[goal succeeds]

[goal is not entailed
 by any active goal]

Fig. 2. Reasoning about goals: the deliberation phase.

same intended means and executes it.
If none of the alternative plans was able to successfully

pursue the goalg, the agent take into consideration the goals
thatentail g. Thus the agent selects one of them and considers
it as an option, processing it in the way described in this
section, from deliberation to means-ends reasoning.

If there is no plan to pursue alternative goals, the achieve-
ment of the intention has failed, as the agent has not other ways
to pursue its intention. Thus, according to agents beliefs,the
goal waspossible, but the agent was no able to pursue it (i.e.
there are no plans).

V. THE SUPPORT FOR THEGOAL MODEL IN THE

PRACTIONIST FRAMEWORK

In order to provide the PRACTIONIST framework with the
support for the definition/handling of agent goal models and
the capabilities for reasoning about goals, we identified and
fulfilled the following requirements:

• registration of the goals that each agent could try to
pursue during his life cycle;

• registration of the relations among such goals;
• checking whether two goals are inconsistent and which

the preferred one is (if any);
• getting the list of goals that entail a given goal;
• getting the list of goals that are precondition of a given

goal;
• getting the list of goals which a given goal depends on.
A proper ad-hoc search algorithm explores the goal model

and answers the queries, on the basis of both declared and
implicit relations. Indeed, implicit relations (especially incon-
sistence and entailment) can be inferred from the semantics
of some built-in goals, such as state goals (e.g.achieve(ϕ),
cease(ϕ), maintain(ϕ), andavoid(ϕ), whereϕ is a closed
formula of FOL). Therefore, the goal reasoner takes into
account implicit relations such asachieve(ϕ)⊥achieve(¬ϕ),
achieve(ϕ)⊥cease(ϕ), maintain(ϕ)⊥avoid(ϕ), and so
forth.

Figure 3 shows the actual structure of theGoalModel
that each agent owns (PRACTIONISTAgent is the ab-
stract class that has to be extended when developing
PRACTIONIST agents). Such a model stores informa-
tion about declared goals (with their internal properties,
i.e. success and possibility condition) and the four types
of relations these goals are involved in. Specifically the
interface GoalRelation provides the super interface

for all goal relations supported by the PRACTIONIST
framework (i.e.EntailmentRel, InconsistencyRel,
DependencyRel, and PreconditionRel) and defines
the operationverifyRel, whose purpose is to check each
specific relation.

In order to exploit the features provided by the goal model
and understand if a given goal the agent desires to pursue is
inconsistent with or implied by some active goals, the agent
must have information about such active goals and whether
them are related to either desires or intentions. Therefore, each
PRACTIONIST agent owns anActiveGoalsHandler
component, which, with the aid of theGoalModel, has the
responsibility of keeping track of all executing intended means
stacks with the corresponding waiting and executing goals and
managing requests made by the agent.

Thus, at any given time, theActiveGoalsHandler is
aware of current desires and intentions of the agent, referring
them to active goals.

VI. A N EXAMPLE

In this section we present the Tileworld example to illustrate
how to use the goal model presented in this paper and the
support provided by the PRACTIONIST framework.

The Tileworld example was initially introduced in [14] as
a system with a highly parameterized environment that could
be used to investigate the reasoning in agents. The original
Tileworld consists of a grid of cells on which tiles, obstacles
and holes (of different size and point value) can exist. Each
agent can move up, down left or right within the grid to pick
up and move tiles in order to fill the holes. Each hole has an
associated score, which is awarded to the agent that has filled
the hole. The main goal of the agent is to score as many points
as possible.

Tileworld simulations are dynamic and the environment
changes continually over time. Since this environment is
highly parameterized, the experimenter can alter various as-
pects of it through a set of available ”knobs”, such as the
rate at which new holes appear (dynamism), the rate at
which obstacles appear (hostility), difference in hole scores
(variability of utility), and so forth.

Such applications, with a potentially high degree of dy-
namism, can benefit from the adoption of a goal-oriented
design approach, where the abstraction of goal is used to
declaratively represent agents’ objectives and states of affairs
that can be dynamically achieved through some means.

191

Fig. 3. The structure of the support for the goal model in the PRACTIONIST framework.

Figure 4 shows the Tileworld environment, where new
agents can be added or removed and the corresponding pa-
rameters can be dynamically changed.

In our Tileworld demonstrator two types of agents were
developed, the Tileworld Management Agent (TWMA) and
the Tileworld Player Agent (TWPA): the former is the agent
that manages and controls the environment, by creating and
destroying tiles, holes and obstacles, according to the parame-
ters set by the user; the latter is the agent moving within the
grid and whose primary goal is to maximize its score by filling
holes with tiles. A player agent does not get any notification
about the environment changes (i.e. by the management agent),
but it can ask such an information (e.g. what the current
state of a cell is) by means of sensing actions, in order to
adopt the best strategy on the basis of the current state of
the environment. In fact, for each state of the environment
(e.g., static, dynamic, very dynamic, etc.) at least a strategy is
provided. All the strategies are implemented through plansthat
share the same goal and differ for their operative conditions
(i.e. the context).

It should be noted that, since PRACTIONIST agents are
endowed with the ability of dynamically building plans starting
from a given goal and a set of available actions, some strategies
could be generated on-the-fly by taking into account emerging
situations.

The player agent has beliefs about the objects that are
placed into the grid, its position, its score, the state of the
environment, etc.

The TWPA top level goal is to score as many points as
possible, but to do this, it has to register itself with the
manager, look for the holes and for the tiles, hold a tile, and
fill a hole.

We designed the TWPA by adopting the goal-oriented
approach described in this paper and directly implemented
its goal-related entities (i.e. goals and relations) thankto the
support provided by the PRACTIONIST framework. In figure
5 a fragment of the goal model of the TWPA is shown as a

UML class diagram with dependencies stereotyped with the
name of the goal relations. Actually some relations only hold
under certain condition and the diagram does not show such
details.

According to the diagram, the TWPA has to be
registered with the TWMA before increasing its
score (the goalScorePoints depends on the goal
RegisterWithManager). Moreover, in order to score
points, the TWPA has to fill as many holes as possible (the
goal FillHole entails the goalScorePoints). But, in
order to fill a hole, the TWPA has to hold a tile and find a
hole (the goalFillHole depends onthe goalHoldTile
and requires the goalFillHole as precondition); finally,
the TWPA has to find the tile to hold it (the goalHoldTile
has the goalFindTile as a precondition).

According to the above-mentioned description, the follow-
ing source code from the TWPAgent class shows how goals
and relations among them are added to the agent and thus
how to create the goal model through the PRACTIONIST
framework:

protected void initialize()
{
...
GoalModel gm = getGoalModel();

// Goal declaration
gm.add(new RegisterWithManager());
gm.add(new ScorePoints());
gm.add(new HoldTile());
gm.add(new FindTile());
gm.add(new FillHole(getBeliefBase()));
gm.add(new FindHole());

// relations among goals
gm.add(new Dep_ScorePoints_RegisterWithManager());
gm.add(new Ent_ScorePoints_FillHole());
gm.add(new Dep_FillHole_HoldTile());
gm.add(new Pre_HoldTile_FindTile());
gm.add(new Pre_FillHole_FindHole());

...
}

192

Fig. 4. The Tileworld environment.

In order to better understand how the above-mentioned
relations are implemented, the following source code shows
the precondition relation among the goalsHoldTile and
FindTile:

public class Pre_HoldTile_FindTile
implements PreconditionRel

{
public Goal verifyRel(Goal goal1, Goal goal2)
{
if((goal1 instanceof HoldTile) &&

(goal2 instanceof FindTile))
return new FindTile;

return null;
}
...

}

When the player agent desires to pursue a goal, it checks
if this goal is involved in some relations and in that case
it reasons about them during the deliberation, means-ends,
and intention reconsideration processes. Thus, developers only
need to specify goals and relations among them at the design
time.

As an example, when the TWPA desires to fill a hole (i.e.
FillHole), according to the defined goal model and the
semantics described in section 2, the agent automatically will
check if it just holds a tile (i.e.HoldTile); if not, such a
goal will be desired. On the other hand, the agent will check
if it has found a hole (i.e.FindHole) and again, if not, it
will desire that.

Moreover, when pursuing the goalFillHole, the agent
will continuously check the success of all its dependee goals
(i.e. HoldTile) andmaintain them in case of failure.

It should be noted that the plan to pursue the goal

FillHole does not need to include the statements to desire
either the dependee (i.e.HoldTile) or precondition (i.e.
FindHole) goals, as shown in the following code fragment.

public class FillHolePlan extends GoalPlan
{
public void body() throws PlanExecutionException
{

String posPred = "pos(obj1: X,obj2: Y)";
AbsPredicate pos =

getBeliefBase().retrieveAbsPredicate(
AbsPredicateFactory.create(posPred));

int xPos = pos.getInteger("obj1");
int yPos = pos.getInteger("obj2");

doAction(new ReleaseTileAction(xPos, yPos,
twaServer.getHoleValue(xPos, yPos)));

...
}

...
}

The Tileworld domain highlights how the PRACTIONIST
goal model is particularly adequate to model dynamic envi-
ronments in a very declarative manner.

VII. CONCLUSIONS AND FUTURE WORK

In the PRACTIONIST framework, desires and intentions are
mental attitudes towards goals, which are in turn considered
as descriptions of objectives.

In this paper we described how a declarative representation
of goals can support the definition of desires and intentionsin
PRACTIONIST agents. It also supports the detection and the
resolution of conflicts among agents’ objectives and activities.
This results in a reduction of the gap between BDI theories
and several available implementations.

193

Fig. 5. TWPA’s goal model.

We also described how goals and relations are used by
PRACTIONIST agents during their deliberation process and
the execution of their activities; particularly it is described how
agents manages these activities by using the support for the
goal model shown in the previous sections.

It should be noted that, unlike several BDI and non-BDI
agent platforms, the PRACTIONIST framework supports the
declarative definition of goals and the relations among them,
as described in this paper. This provides the ability tobelieve
if goals are impossible, already achieved, incompatible with
other goals, and so forth. This in turn supports thecommitment
strategiesof agents and their ability to autonomously drop,
reconsider, replace or pursue intentions related to activegoals.

The ability of PRACTIONIST agents to reason about goals
and the relations among them (as described in section IV)
lets programmers implicitly specify several behaviours for
several circumstances, without having to explicitly code such
behaviours, letting agents figure out the right activity to
perform on the basis of the current state and the relations
among its potential objectives.

Goals can be adopted throughout the whole development
process. Thus, we are defining a development methodology
where goals play a central role and maintain the same seman-
tics from early requirements to the implementation phase.

As a part of our future strategy, we aims at extending the
proposed model with further properties of goals and relations
among them. Finally, we aim at applying the concepts and
the model described in this paper in the development of
real-world applications based on BDI agents.

Acknowledgments. This work is partially supported by
the Italian Ministry of Education, University and Research
(MIUR) through the project PASAF.

REFERENCES

[1] A. Lapouchnian, S. Liaskos, J. Mylopolous, and Y. Yu, “Towards
requirements-driven autonomic systems design,”Proceedings of the

2005 workshop on Design and evolution of autonomic application
software, pp. 1–7, 2005, aCM Press, New York, NY, USA.

[2] A. S. Rao and M. P. Georgeff, “BDI agents: from theory to practice,”
in Proceedings of the First International Conference on Multi—Agent
Systems. San Francisco, CA: MIT Press, 1995, pp. 312–319. [Online].
Available: http://www.uni-koblenz.de/f̃ruit/LITERATURE/rg95.ps.gz

[3] M. E. Bratman,Intention, Plans, and Practical Reason. Cambridge,
MA: Harvard University Press, 1987.

[4] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah,“Declarative
& procedural goals in intelligent agent systems,” inKR, 2002, pp. 470–
481.

[5] P. Busetta, R. Rnnquist, A. Hodgson, and A. Lucas, “Jack intelligent
agents - components for intelligent agents in java,” 1999.

[6] M. J. Huber, “Jam: A bdi-theoretic mobile agent architecture.” in Agents,
1999, pp. 236–243.

[7] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a
logical computable language,” inSeventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, R. van
Hoe, Ed., Eindhoven, The Netherlands, 1996. [Online]. Available:
citeseer.ist.psu.edu/article/rao96agentspeakl.html

[8] K. V. Hindriks, F. S. D. Boer, H. W. van der, and J. J. Meyer,
“Agent programming in 3APL,”Autonomous Agents and Multi-Agent
Systems, vol. 2, no. 4, pp. 357–401, 1999, publisher: Kluwer Academic
Publishers, Netherlands.

[9] L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt, “Goal repre-
sentation for bdi agent systems,” inSecond International Workshop on
Programming Multiagent Systems: Languages and Tools, 7 2004, pp.
9–20.

[10] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentino, and S. Gaglio,
“Practionist: a new framework for bdi agents,” inProceedings of the
Third European Workshop on Multi-Agent Systems (EUMAS’05), 2005,
p. 236.

[11] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-
compliant agent framework,” inProceedings of the Practical
Applications of Intelligent Agents, 1999. [Online]. Available:
http://jmvidal.cse.sc.edu/library/jade.pdf

[12] B. F. Chellas,Modal Logic: An Introduction. Cambridge: Cambridge
University Press, 1980.

[13] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
BDI-architecture,” inProceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA, 1991, pp. 473–484.
[Online]. Available: http://citeseer.nj.nec.com/rao91modeling.html

[14] M. E. Pollack and M. Ringuette, “Introducing the tileworld: Experimen-
tally evaluating agent architectures,”National Conference on Artificial
Intelligence, pp. 183 – 189, 1990.

194

	I. Introduction
	II. MetaMeth – System Requirements
	III. Software Architecture and Tecnologies
	IV. EXAMPLE.
	V. Future Works

