
Aligning WSMO and WS-Policy ?

Dumitru Roman, Jacek Kopecký, Ioan Toma, and Dieter Fensel

Digital Enterprise Research Institute, Innsbruck, Austria
{firstname.lastname }@deri.org

Abstract. Service-Oriented Architectures (SOAs) suggest that IT systems should
be developed from coarse-grained, loosely coupled, business-aligned components,
so called services. One way towards loose coupling is to refrain from hard-coding
policies in the system and to represent them explicitly. Semantic Web Services
(SWS) add semantics to Web services (main realization of SOAs). However, SWS
research currently ignores most of the work done on Web service policies, there-
fore in this paper we present a proposal for combining WSMO, a major SWS
framework, and WS-Policy Framework, a set of specifications with heavy in-
dustrial backing. The resulting combination is aimed at serving as the basis of
applying the logical reasoning capabilities that have been developed (or are being
developed) for WSMO to WS-Policy, and the basis for integrating WSMO in the
WS-Policy framework.

1 Introduction

Semantic Web based approaches to policies have been recently advocated (in e.g. [2, 16,
11, 7, 8, 15]) in order to cope with some of the limitations of traditional policy handling
systems (e.g. policy systems existing before the era of Web services) where the poli-
cies are hard coded into a system according to the functional requirements, language
features, and design decisions, without separating policy specification from policy im-
plementation, and thus making difficult and expensive to change and enforce policies.
Policy specification, enforcementand revisionare three basic tasks a policy-handling
system must provide. In this paper we focus on issues related to policy specification
in semantically enriched service-oriented environments. Policy specification languages
enable policies to be captured independent from a concrete system implementation.
Such languages are to be interpreted by a policy engine at runtime, which makes dy-
namic policy changes possible; they formalize the intent of the designer into a form that
can be analyzed and interpreted by a policy-aware system.

In this context, we are interested in identifying the potential relations between the
policy languages and the so-called Semantic Web Services [10, 6]. Semantic Web Ser-
vices have emerged as a combination of Semantic Web and Web services technologies
with the aim of automating different service-related tasks, such as Web service discov-
ery, composition, mediation, or execution. Several proposals have been put forward in
this area.1 In this paper we choose the WSMO approach [13] for analysis of its rela-
tion to policy domain because, in contrast to other approaches, it provides a unifying

? The work is funded by the European Commission under the projects ASG, DIP and SWING.
1 We refer the reader to [12] for a detailed discussion on the SWS approaches.



framework combining a conceptual model (Web Service Modeling Ontology), a formal
syntax and language (Web Service Modeling Language), and an execution environment
(Web Service Execution Environment).

Common denominators have been identified between policies that may be leveraged
to improve policy uniformity and streamline service-oriented enterprise-wide policy
implementation. In particular, a set of new enforcement policies were proposed in the
industry using novel policy concepts together with building blocks from e.g. XACML,
WS-Policy and SAML. For the purpose of this paper, we have chosen to use the Web
Services Policy Framework (WS-Policy) [5], a general purpose model and a syntax to
describe the policies of a Web Service. Our choice is motivated by the fact that WS-
Policy has significant industry backing. Interested parties are already creating policy
assertions for various domains and the major commercial Web services infrastructure
stacks already have or are building support for policy-based Web service invocations.

The aim of this paper is to investigate the potential relations between the WSMO
approach to SWS and the WS-Policy framework, and to offer a basis for further re-
search on the use of policies in the context of semantically enriched service environ-
ments. Issues like policy conformance checking, policy-based semi-automatic negoti-
ations between users and services, or policy-based matchmaking etc., are important in
our context, however they are out of scope of this paper. The scope of this paper is lim-
ited to identifying the commonalities and differences between the conceptual models of
WSMO and WS-Policy, and proposing a concrete way for combining them.2

Despite the differences in terminology, we can say that both WSMO and WS-Policy
describe the capabilities and constraints of Web services. On one side, WSMO uses
very clearly defined terms likeWeb service, Capability, Interfaceetc. to capture all the
relevant properties of Web services. On the other side, WS-Policy talks about generic
assertions, focusing on their combinations in whole policies, and then attaching these
policies to various subjects, among which Web service endpoints are especially relevant
for our work.

We can identify two generic concepts from the WS-Policy framework that could
encompass elements from WSMO: Policy Assertion and Policy Subject. In other words,
parts of a WSMO description can be mentioned as assertions in some policy, or a policy
could be attached to parts of a WSMO description. We describe these two directions and
the syntax realizing the actual connections in the following two sections (Section 2 and
Section 3). In Section 4 we briefly highlight related works, and in Section 5 we conclude
this paper and point out potential directions for future work.

2 Attaching Policies to WSMO

To analyze how policies can be attached to WSMO, we need first to introduce a distinc-
tion between functional and non-functional properties.3 In any application, thefunc-

2 Because of the limited space we do not provide an overview of the concepts that WSMO and
WS-Policy introduce, however, we refer the reader to [13] and [5] for a detailed introduction
to WSMO and WS-Policy, respectively.

3 A more detailed discussion on functional vs. non-functional properties can be found in the
position paper for the W3C Workshop on Constraints and Capabilities for Web Services [1].



tional part of any data contains crucial information necessary for the application to do
its job. Non-functionalproperties (NFPs), on the other hand, contain such additional
data that may help the application do a better job, or to refine its functionality.

For example, one of the aims of WSMO is Web service discovery (we can see
WSMO as an application for service discovery), and to enable discovery, WSMO de-
scribes clientGoalsand theCapabilitiesof the available service.GoalsandCapabili-
tiesare the the necessary inputs to a matching algorithm, therefore they are functional
aspects of WSMO descriptions. While pure Web service discovery only requires the
CapabilitiesandGoals, the match maker can also take into account preferences and
constraints over parameters like the price, availability or quality of a service. Because
such parameters are not critical for the match maker, they are modeled as non-functional
properties.

The distinction between functional and non-functional parameters depends highly
on the application that uses the particular parameter — a functional parameter of one
application can be non-functional in another. For instance, Semantic Web Services are
an application that automates the use of Web services, and the price of a service is
generally modeled as a non-functional property; however a shopping agent application
will have price as one of its main functional parameters.

In WSMO, the distinction between functional and non-functional properties is made
very clear: WSMO enumerates all the relevant functional properties (for exampleWeb
servicehasCapabilityandInterfaceas its functional properties) and it allows an exten-
sible bag of NFPs everywhere. WS-Policy does not have any such distinction, so it can
be used to express both functional and non-functional policy assertions, depending on
the application that employs policies. Since WSMO enumerates in its conceptual model
all the parameters that are functional for the aim of WSMO, policies can be treated as
non-functional data, therefore when a WS-Policy is attached to a WSMO element, it is
abstractly added to the non-functional properties of that element.

Fig. 1.Attaching Policies to WSMO Elements

Figure 1 shows how WSMO elements can be used as policy assertions in a policy
that is then attached to a particular policy scope. In particular, a policy is attached here
to a WSMO Web service description, and it is treated as a non-functional property of
that service. Due to the way policy attachment works syntactically, the policy is in fact
embedded or referenced from within the non-functional properties block of the Web
service description.

To summarize, WSMO elements can serve as WS-Policy Policy Subjects, and any
policies attached to those WSMO elements are treated as non-functional properties. In



the following, we present the syntax for including policies as non-functional properties
in WSMO descriptions. Using this mechanism, the existing and future policy assertions
can usefully complement the Dublin Core NFPs [18] currently used by WSMO.

To attach policies generically to XML elements such as WSDL descriptions, the
WS-PolicyAttachment specification [4] defines an XML attribute calledPolicyURIs
and an XML element calledPolicyReference . Both the attribute and the element
point to external policies using URIs. WS-PolicyAttachment introduces both of them
because some XML languages restrict attribute or element-based extensibility.

In WSMO, we use the namespace-qualified namewsp:PolicyReference for
an NFP; its value is one or more URIs of policies attached to the owner WSMO element:

01 service ACMEService
02 nonFunctionalProperties
03 wsp#PolicyReference hasValue
04 {_"http://fabrikam123.example.com/policies/DSIG",
05 _"http://fabrikam123.example.com/policies/SECTOK"}
06 endNonFunctionalProperties

In some cases it can be useful for manageability reasons to include the whole policy
in the WSMO description, especially when the policy is fairly small. For this purpose
we reuse the namespace-qualified namewsp:Policy as the name of a non-functional
property whose content is the XML serialization of the wholePolicy element. This
is illustrated by the following example:

01 service ACMEService
02 nonFunctionalProperties
03 wsp#Policy hasValue
04 "<wsp:Policy>
05 <wsp:ExactlyOne>
06 <wsse:SecurityToken>
07 <wsse:TokenType>wsse:Kerberosv5TGT
08 </wsse:TokenType>
09 </wsse:SecurityToken>
10 <wsse:SecurityToken>
11 <wsse:TokenType>wsse:X509v3
12 </wsse:TokenType>
13 </wsse:SecurityToken>
14 </wsp:ExactlyOne>
15 </wsp:Policy>"
16 endNonFunctionalProperties

To summarize, we allow attaching both external and embedded policies to WSMO
elements, treating the attached policies as non-functional properties. For this, we reuse
the WS-Policy element names (wsp:PolicyReference and wsp:Policy ) as
NFP identifiers in WSMO.

3 WSMO as Policy Assertions

WS-Policy is a mechanism of combining domain-specific policy assertions and attach-
ing them to various policy subjects. WSMO descriptions can be viewed as policy as-
sertions and combined with others in policy alternatives. Figure 2 shows how WSMO
elements can be used as policy assertions in a policy that is then attached to a particular
policy scope, for example a Web service endpoint. Such a policy would thus attach the
WSMO Web service description to that endpoint.



Fig. 2.Using WSMO Elements as Policy Assertions

We can envision, for example, a policy that ties the capabilities of a Web service
with various security settings. A service may offer some basic functionality with strong
authentication but weak communication channel encryption, and more advanced func-
tionality can be available provided that strong encryption is employed.

WSMO currently does not have any specific mechanism for expressing that alterna-
tive WSMO descriptions are in effect in conjunction with various non-functional prop-
erties,4 and WS-Policy seems to be a widely-adopted mechanism for expressing exactly
such alternatives, therefore even though WSMO descriptions would not normally be
treated as policy assertions, such an approach may prove beneficial.

Because policy assertions must be XML elements, we can reuse WSML/XML se-
rialization format (see [3]) for representing WSMO descriptions as policy assertions in
WS-Policy. To attach a whole WSMO description as a single policy assertion, we use
the elementwsml:wsml .5 For finer granularity (e.g. only asserting a single capability
description) we can reuse the appropriate elements likewsml:capability .

In some situations it may be beneficial only to refer to a WSMO description (as op-
posed to including it inline as a policy assertion). For referring to a whole WSML file
we introduce the elementwsml:descriptionReference that refers to a WSML
document, and similarly we can introduce specific elements for referring to specific
elements of WSMO, for instance to refer to a capability or an interface we can use ele-
mentswsml:capabilityReference andwsml:interfaceReference that
would refer to the identifiers of the WSMO capability or interface descriptions.

The listing in Figure 3 is a policy that claims the policy subject is described by
the WSMO services http://example.org/services/ticketService and http://example.org/
services/billingService. Lines 2–7 show a WSML/XML elementwsml:webService
that, in this context, means a policy assertion assigning a WSMO service description
defined inline. Similarly, lines 13–15 show a reference to such a description, using the

4 See Section 2 for discussion of why WSMO treats WS-Policy as non-functional properties.
5 The firstwsml is a namespace prefix and the second is the name of the XML element container

for WSML/XML syntax.



Fig. 3.Example policy with WSMO webService as policy assertion

01 <wsp:Policy>
02 <wsml:webService
03 name="http://example.org/services/ticketService">
04 <wsml:capability name="ticketing">
05 ...
06 </wsml:capability>
07 </wsml:webService>
08 <wsml:ontology
09 name="http://example.org/ontologies/ticketing/">
10 <wsml:concept name="Ticket"/>
11 ...
12 </wsml:ontology>
13 <wsml:serviceReference>
14 http://example.org/services/billingService
15 </wsml:serviceReference>
16 </wsp:Policy>

new elementwsml:serviceReference . Finally, lines 8–12 contain an ontology
which is used by the ticketService definition.

The conclusion is that to represent a policy assertion “the policy subject has the
following WSMO description” we can use any global WSML/XML element as appro-
priate, and to represent an assertion only referencing a WSMO description we have to
create specific elements for each type of WSMO entity that we want to reference.

4 Related Works

To the best of our knowledge, the approach presented in this paper is the first attempt
to combine the WSMO approach to SWS with policies. However, it is worth mention-
ing other works that deal with combining policies and Semantic Web technologies in
general. Such approaches differ from our work in the sense that they are focused on
Semantic Web technologies other than WSMO, and some of them are aimed at solv-
ing a specific policy-related task (e.g. policy conformance check, matchmaking of Web
services, etc.), whereas we are mainly focused in this paper on combining WSMO and
WS-Policy, without emphasizing at this stage any particular policy-related task.

We can classify relevant related works as those that deal directly with WS-Policy,
and those which take a more general approach to policies, and thus not committing to
WS-Policy as a framework for representing policies.

Among works that deal directly with WS-Policy, [9] provides a mapping of WS-
Policy to OWL-DL in order to use OWL-DL reasoners to check policy conformance,
[17] uses OWL ontologies for creating policy assertions with semantics in WS-Policy
in order to enable matching the non-functional properties of Web Services represented
using WS-policy, and [14] proposes an approach to behaviour-based discovery of Web
Services by which business rules that govern service behaviour are described as a policy,
in the form of ontological information; here WS-Policy is used to associate such a policy
to the Web Service.

Works that do not deal directly with WS-Policy (but which take into account Seman-
tic Web based approaches to policies) focus more on administrative policies such as se-
curity and resource control policies. In this category it is worth mentioning KAoS [16]



as one of the first efforts to represent policies using OWL, [11] that discusses how to
represent policy inheritance and composition based on credential ontologies and for-
malizes these representations in Frame-Logic, [15] that proposes a hybrid approach for
policy specifications which exploits the expressive capabilities of Description Logic
languages and Logic Programming approaches; and Rein [8],6 which is a framework
for representing and reasoning over policies in the Semantic Web.

5 Conclusions and Outlook

This paper is a first step to combine WS-Policy (a policy framework with significant
industry backing) and the WSMO approach to Semantic Web Services (one of the most
important proposals for Semantic Web Services to date). We identified potential ways
of combining them, and provided the necessary syntax. The new syntax elements are
summarized in Table 1.

Table 1.Syntax for combining WSMO and WS-Policy

Name Type Description

wsp#PolicyReference NFP identifier non-functional property referring to an ex-
ternal policy file by URI

wsp#Policy NFP identifier non-functional property containing an XML
serialization of a policy

wsml:wsml XML Element the root element of WSML/XML syntax,
reused as a policy assertion “the embed-
ded WSML description applies (to the pol-
icy subject)”

wsml:webService
wsml:goal
. . .

XML Element other WSML/XML elements reused as a
policy assertion “the embedded WSML de-
scription applies (to the policy subject)”

wsml:descriptionReference
wsml:webServiceReference
wsml:goalReference
. . .

XML Element policy assertions that refer to WSMO defini-
tions by their identifier URIs

The proposals presented in the paper represent the basis for enabling the use of
policies from SWS environments for tasks such as policy-based semi-automatic nego-
tiations between users and services, policy-based matchmaking between users requests
and services, scheduling of service compositions under certain constraints, etc; but also
for enabling the use of semantic descriptions as policy assertions.

In future work, we plan to investigate concrete applications of the combination of
WSMO and WS-Policy presented in this paper, especially applying existing reasoning
techniques developed in the context of WSMO to policy specification, as well as devel-
oping new techniques in order to provide automated support for Web service discovery,
negotiation, selection, composition, invocation and monitoring with policy awareness.

6 http://dig.csail.mit.edu/2006/06/rein/



References

1. S. Arroyo, C. Bussler, J. Kopecký, R. Lara, A. Polleres, and M. Zaremba. Web Service
Capabilities and Constraints in WSMO. InW3C Workshop on Constraints and Capabilities
for Web Services, September 2004.

2. P. A. Bonatti and D. Olmedilla. Semantic Web Policies: Where are we and What is still Miss-
ing? A tutorial at ESWC’06, 2006. Available athttp://www.l3s.de/ ∼olmedilla/
events/2006/ESWC06/ESWC06 Tutorial.html .

3. J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and D. Fensel.
The Web Service Modeling Language WSML. Available viahttp://www.wsmo.org ,
October 2005.

4. C. Sharp (editor) et al. Web Services Policy 1.2 – Attachment (WS-PolicyAttachment).
Technical note, April 2006. Available viahttp://www.w3.org/ .

5. J. Schlimmer (editor) et al. Web Services Policy 1.2 – Framework (WS-Policy). Technical
note, April 2006. Available viahttp://www.w3.org/ .

6. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF.Electronic Com-
merce Research and Applications, 1(2), 2002.

7. L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner. Self-Describing Delegation Net-
works for the Web. InProceedings of the Seventh IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY’06), pages 205–214, 2006.

8. L. Kagal, T. Berners-Lee, D. Connolly, and D. J. Weitzner. Using Semantic Web Technolo-
gies for Policy Management on the Web. InAAAI, 2006.

9. V. Kolovski, B. Parsia, Y. Katz, and J. A. Hendler. Representing Web Service Policies in
OWL-DL. In International Semantic Web Conference, pages 461–475, 2005.

10. S. McIlraith, T. Son, and H. Zeng. Semantic Web Services. InIEEE Intelligent Systems
(Special Issue on the Semantic Web), 2001.

11. W. Nejdl, D. Olmedilla, M. Winslett, and C. C. Zhang. Ontology-Based Policy Specification
and Management. In2nd European Semantic Web Conference (ESWC), pages 290–302,
2005.

12. D. Roman, J. de Bruijn, A. Mocan, I. Toma, H. Lausen, J. Kopecky, D. Fensel, J. Domingue,
S. Galizia, and L. Cabral. Semantic Web Services – Approaches and Perspectives. In
J. Davies, P. Warren, and R. Studer, editors,Semantic Web Technologies: Trends and Re-
search in Ontology-based Systems, pages 191–236. John Wiley & Sons, 2006.

13. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web Service Modeling Ontology.Applied Ontology, 1(1):77–106,
2005.

14. N. Sriharee, T. Senivongse, K. Verma, and A. P. Sheth. On Using WS-Policy, Ontology, and
Rule Reasoning to Discover Web Services. InINTELLCOMM, pages 246–255, 2004.

15. A. Toninelli, J. Bradshaw, L. Kagal, and R. Montanari. Rule-based and Ontology-based
Policies: Toward a Hybrid Approach to Control Agents in Pervasive Environments. InPro-
ceedings of the Semantic Web and Policy Workshop, November 2005.

16. A. Uszok, J. M. Bradshaw, R. Jeffers, A. Tate, and J. Dalton. Applying KAoS Services to En-
sure Policy Compliance for Semantic Web Services Workflow Composition and Enactment.
In International Semantic Web Conference, 2004.

17. K. Verma, R. Akkiraju, and R. Goodwin. Semantic Matching of Web Service Policies. In
SDWP Workshop, 2005.

18. S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core Metadata for Resource Discovery.
RFC 2413, IETF, 1998.


