
Enforcing a Semantic Routing Mechanism based on Peer
Context Matching

Silvana Castano and Stefano Montanelli 1

Abstract. In this paper we present the main features of the
H-LINK semantic routing mechanism we are developing to combine
ontology-based peer contexts and ontology matching techniques for
providing P2P query forwarding on a real semantic basis. H-LINK

defines a semantic overlay network where each edge represents a
semantic link between two peers having similar contexts. Semantic
links are exploited to address query propagation by identifying the
semantic neighbors that can provide relevant knowledge with respect
to a given target request.

1 INTRODUCTION

Recent schema-based P2P networks go beyond traditional file-
sharing P2P networks, by providing infrastructures where peers can
create and share knowledge [1]. In this scenario, peers join the sys-
tem by providing their own context and need to cooperate by match-
ing their respective context with the aim to discover similar partners
and to enforce effective resource sharing. In order to provide scalable
infrastructures for peer communications, P2P semantic routing pro-
tocols are being proposed with the aim to address query propagation
on the basis of the local context of each peer [2, 7, 9, 12, 14]. At the
current stage of development, a challenging issue regards the need
of advancing the existing semantic routing protocols by combining
ontology-based peer contexts and ontology matching techniques for
providing query forwarding on a real semantic basis.

In this paper, we present the main features of the H-LINK

semantic routing mechanism we are developing in the framework of
our HELIOS peer-based system for knowledge sharing and evolu-
tion [5]. In HELIOS, the peer context is represented through a peer
ontology describing the knowledge the peer brings to the network
and the knowledge the peer perceives from the network. Peers act as
independent agents with their own context (i.e., peer ontology) and
interact each other by submitting discovery queries and by replying
with relevant knowledge. In the HELIOS framework, the H-MATCH

semantic matchmaker has been developed to evaluate the semantic
affinity between an incoming discovery query and a peer ontology.
On this basis, the H-LINK semantic routing mechanism is designed
to exploit the matching knowledge acquired from the discovery
process. The matching knowledge becomes network knowledge in
the peer ontology, and it is exploited to provide a semantic overlay
network where peers having similar contexts are interlinked as
semantic neighbors. This way, as a peer learns about the network
contents through discovery queries, also its network knowledge
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is gradually evolved to reflect its newly acquired semantic neighbors.

Example of knowledge discovery in HELIOS. Considering the sce-
nario of Figure 1, we suppose that peer A is interested in discov-
ering peers capable of providing resources semantically related to
the publishing domain. To this end, peer A composes and submits
to the system a discovery query Q1 containing the target concepts
of interest Publication and Book with the properties year and author,
respectively. Moreover, Book is specified as a subclass of Publica-
tion. Receiving the query Q1, the peer (i.e., peer B, peer C, and
peer D) uses the H-MATCH semantic matchmaker to compare the
query target with its own peer ontology, with the aim to identify
whether there are concepts matching the target request. Accord-
ing to their matching results, peer B and peer D send back to the
requesting peer A a ranked list of concepts found to be seman-
tically related to the target, and, for each entry, the correspond-
ing semantic affinity value SA. In particular, peer B replies with
the Volume matching concept as SA(Book, V olume) = 0.82,
while peer D sends back two matching concepts, namely Newspa-
per and Magazine, with SA(Publication, Newspaper) = 0.67
and SA(Book, Magazine) = 0.539. On the other hand, peer C
does not reply to peer A as no matching concepts are identified. The
query replies represent the discovered knowledge of peer A that can
be exploited to decide whether to further interact with the answering
peers in order to access their relevant resources for data sharing. Be-
fore H-LINK, the discovery process relied on the conventional P2P
infrastructure and associated routing protocols for addressing query
propagation in the network. In H-LINK, we show how the discovered
knowledge can be further exploited for semantic routing purposes by
enforcing query forwarding according to peer context similarities.

2 ONTOLOGY MATCHING WITH H-MATCH

H-MATCH performs ontology matching at different levels of depth
by deploying four different matching models spanning from surface
to intensive matching, with the goal of providing a wide spectrum
of metrics suited for dealing with many different matching scenarios
that can be encountered in comparing concept descriptions of real
ontologies. H-MATCH takes two ontologies as input and returns the
mappings that identify corresponding concepts in the two ontologies,
namely the concepts with the same or the closest intended meaning.
H-MATCH mappings are established after an analysis of the simi-
larity of the concepts in the compared ontologies. In H-MATCH we
perform similarity analysis through affinity metrics to determine a
measure of semantic affinity in the range [0, 1]. A threshold-based
mechanism is enforced to set the minimum level of semantic affinity
required to consider two concepts as matching concepts. Given two
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Figure 1. Example of knowledge discovery in HELIOS

concepts c and c′, H-MATCH calculates a semantic affinity value
SA(c, c′) as the linear combination of a linguistic affinity value
LA(c, c′) and a contextual affinity value CA(c, c′). The linguistic
affinity function of H-MATCH provides a measure of similarity be-
tween two ontology concepts c and c′ computed on the basis of their
linguistic features (i.e., concept names). For the linguistic affinity
evaluation, H-MATCH relies on a thesaurus of terms and termino-
logical relationships automatically extracted from the WordNet lex-
ical system. The contextual affinity function of H-MATCH provides
a measure of similarity by taking into account the contextual fea-
tures of the ontology concepts c and c′. The context of a concept
can include properties, semantic relations with other concepts, and
property values. The context can be differently composed to consider
different levels of semantic complexity, and four matching models,
namely, surface, shallow, deep, and intensive, are defined to this end.
In the surface matching, only the linguistic affinity between the con-
cept names of c and c′ is considered to determine concept similarity.
In the shallow, deep, and intensive matching, also contextual affin-
ity is taken into account to determine concept similarity. In partic-
ular, the shallow matching computes the contextual affinity by con-
sidering the context of c and c′ as composed only by their proper-
ties. Deep and intensive matching extend the depth of concept con-
text for the contextual affinity evaluation of c and c′, by considering
also semantic relations with other concepts (deep matching model)
as well as property values (intensive matching model), respectively.
The comprehensive semantic affinity SA(c, c′) is evaluated as the
weighted sum of the Linguistic Affinity value and the Contextual
Affinity value, that is:

SA(c, c′) = WLA · LA(c, c′) + (1 − WLA) · CA(c, c′) (1)

where WLA is a weight expressing the relevance to be given for the
linguistic affinity in the semantic affinity evaluation process.

H-MATCH has been extensively tested on several real ontology
matching cases in order to evaluate the matching models with re-
spect to performance and quality of results [4]. By analyzing the
obtained results, we note that the most accurate and precise results
are achieved with the deep and intensive matching models provided

that the ontology descriptions are detailed enough. On the other side,
we note that the best performance in terms of computation time are
achieved with the surface and shallow matching models. For seman-
tic routing purposes, the computation time of the semantic affinity
evaluation is a crucial factor and needs to be performed as fastest as
possible in order to avoid bottlenecks. To this end, possible lacks in
matching precision and accuracy can be admitted in turn of rapid re-
sponse time during the semantic affinity evaluation. For this reason,
the shallow matching model is selected to work with H-LINK for
identifying the semantic neighbors that have the highest chance to
provide relevant knowledge with respect to a given query (see Sec-
tion 4). A detailed description of H-MATCH and related matching
models is provided in [4]. We note that H-MATCH can be suitably
adopted to enforce semantic routing functionalities by relying on
its flexible matching models that allow to dynamically configure the
tradeoff between performance and accuracy according to the require-
ments of the considered matching scenario. Provided that a dynamic
and flexible configuration is supported, other existing matching tools
can however be used to enforce the H-LINK semantic routing mech-
anism in turn of H-MATCH [11]. In the remainder of the paper, we
focus on the use of H-MATCH for semantic routing in H-LINK.

3 PEER ONTOLOGY ARCHITECTURE
The context of a HELIOS peer is described through a peer ontology

that is organized in a two-layer architecture where the upper layer
represents the content knowledge and the lower layer represents the
network knowledge of the peer, respectively. The content knowledge
layer describes the knowledge the peer brings to the network that is
described as a graph of concepts, properties, and semantic relations 2.
The network knowledge layer describes the knowledge that the peer
has of the semantic neighbors it has interacted with. With reference
to the discovery example in Figure 1, when peer A receives a reply

2 For the sake of internal representation of ontology specification languages,
and in particular for Semantic Web languages like OWL, we rely on a refer-
ence model, called H-MODEL, that provides a graph-based representation
of peer ontologies. For further details on H-MODEL, the reader can refer
to [5].



from peer B and peer D as an answer to the discovery query Q1, it
stores in the network knowledge layer a description of peer B and
peer D. A peer description is given in the form of network concept,
characterized by a set of properties describing the network features
of the peer (e.g., IP address, bandwidth). A location relation is de-
fined to connect a network concept nc with a concept c in the content
knowledge layer. The location relation is labeled with a confidence
annotation cf that keeps track of the discovered semantic affinity be-
tween c and the peer ontology of the peer represented with nc. The
cf value corresponds to the semantic affinity value SA returned by
the peer nc in its query answer. A new location relation is defined for
each matching concept returned in the query answer. A comprehen-
sive expertise measure is associated with a network concept nc and it
is computed as the average mean of the confidence values associated
with all the location relations connected with nc.

As an example, in Figure 2, we consider a portion of the peer
ontology of the peer A after the knowledge discovery process
described in Figure 1. In this example, peer B and peer D have
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Figure 2. A portion of the peer ontology of peer A

answered to query Q1, then the corresponding network concepts
are defined in the network knowledge layer. According to the query
reply of peer B, a new location relation with a confidence value
of 0.82 is defined to connect the peer B network concept with the
Book concept in the content knowledge layer. As two matching
concepts are returned in the query answer of peer D (i.e., Newspaper,
Magazine), two location relations are defined by connecting the peer
D network concept with the concepts Publication and Book in the
content knowledge layer, and by setting a confidence value of 0.67
and 0.539, respectively. As a consequence, the expertise measures
associated with peer B and peer D are 0.82 and 0.605, respectively.

Considerations. The confidence value associated with a location rela-
tion between c and nc is updated when a new semantic affinity value
with c is returned by nc in reply to a discovery query. As proposed
in [9], the confidence value cf associated with a given location re-
lation between c and nc can be periodically updated by observing
the ratio between the number of relevant replies provided by nc and
the number of queries sent to nc with a target concept related to c.
When the ratio has low values, cf can be decreased to denote that
the original confidence (i.e., semantic affinity) is no more actual. In
such way, only confirmed location relations are maintained in the
peer ontology, while unreliable confidence values are gradually re-
duced and finally dropped. Furthermore, a number of information
can be combined with the confidence measures for providing a more
accurate evaluation of the network concept expertise and thus, of the
associated semantic neighbor. For instance, a trust mechanism can be

adopted to maintain reputation information about the semantic neigh-
bors stored in the network knowledge layer [13]. Moreover, informa-
tion regarding the network reliability of the semantic neighbors, such
as connection stability and granted bandwidth, can be considered for
expertise computation [2]. Confidence and expertise measures are
exploited by H-LINK for addressing query routing on a semantic ba-
sis.

4 THE H-LINK SEMANTIC ROUTING
MECHANISM

The H-LINK semantic routing mechanism is based on the idea of
exploiting the network knowledge layer of a peer ontology by us-
ing the H-MATCH semantic matchmaker for providing query routing
support according to semantic neighbor contents.

We consider a query q with a target concept tc 3. Two different
roles can be distinguished for a given peer p:

• Requesting peer. Peer p needs to submit to the network a query q
in order to identify relevant partners for subsequent resource shar-
ing. To this end, peer p invokes H-MATCH to compare the target
concept tc against the content knowledge layer of its peer ontol-
ogy O. A list MCL = {〈c1, SA(tc, c1)〉 . . . 〈cn, SA(tc, cn)〉}
of matching concepts c1 . . . cn ∈ O and corresponding semantic
affinity values SA(tc, c1) . . . SA(tc, cn) is returned as a result.
Peer p sets the number of credits Ncr to distribute to the query
recipients in order to define the number of replies that peer p wish
to receive as answers to the query q. Therefore, H-LINK is in-
voked by passing the list MCL to select the semantic neighbors
for query q submission.

• Receiving peer. When a peer p receives a query q together with the
number of credits nc from a requesting peer r, it needs to evalu-
ate whether matching concepts can be provided back to peer r. To
this end, H-MATCH is invoked by peer p and the list MCL of
matching concepts is still produced as a results. If MCL 6= ∅, the
peer p sends MCL back to peer r by consuming one credit, oth-
erwise no reply is sent back to peer r and all the received credits
are still available for forwarding. If at least one credit is available,
H-LINK is invoked by peer p to select the semantic neighbors for
query q forwarding; otherwise the propagation mechanism stops.

H-LINK invocation. H-LINK is invoked for both query submis-
sion/forwarding provided that at least one credit is still available.
Three main steps define H-LINK: selection of semantic neighbors;
ranking of semantic neighbors; distribution of credits.

1- Selection of semantic neighbors. The network knowledge layer
of the peer ontology is accessed to select the network concepts,
together with the associated confidence values, that are con-
nected to the concepts in MCL through a location relation. A
list SNL of semantic neighbors is returned as a result. A se-
mantic neighbor sn ∈ SNL is described in the form sn =
〈nc, {c1, cf1 . . . cm, cfm}〉, where nc is the network concept fea-
turing sn, while c1 . . . cm ∈ MCL are the concepts of MCL
connected to nc through a location relation, and {cf1 . . . cfm}
the corresponding confidence values.

2- Ranking of semantic neighbors. The semantic neighbors in
SNL are ranked with respect to their relevance for the query tar-
get tc. To this end, the harmonic mean is used to combine the

3 For the sake of clarity, we consider the case of a single target concept in the
query. The H-LINK semantic routing mechanism can be easily extended to
consider the case of multiple target concepts.



confidence values associated with the semantic neighbors in SNL
and the semantic affinity values in MCL. Given a semantic neigh-
bor sn ∈ SNL, the ranking value rsn corresponds to the follow-
ing formula:

rsn =

∑m

i=1

2·cfi·SA(tc,ci)
cfi+SA(tc,ci)

m
(2)

Finally, a ranked list RSNL of semantic neighbors with the corre-
sponding ranking value is returned as a result. A threshold mecha-
nism can be used to rule out the semantic neighbors with a ranking
value lower than a predefined threshold t.

3- Distribution of credits. The semantic neighbors in RSNL de-
termine the recipients of the query q. Available credits Acr are
proportionally distributed to the semantic neighbors in RSNL ac-
cording to their ranking value. Then, the number of credits ncsn

assigned to the semantic neighbor sn ∈ RSNL is computed as
follows:

ncsn = b Acr∑
∀sni∈RSNL

rsni

· rsnc (3)

We note that if H-LINK is invoked with MCL = ∅, selection and
ranking of semantic neighbors are not performed and credits are
proportionally distributed according to the expertise measure of the
network concepts in the network knowledge layer.

Example. As an example of H-LINK semantic routing, we consider
the peer B of Figure 1. Peer B intends to submit to the system the
query Q2 described in Figure 3(a) with total number of credits to dis-
tribute Ncr = 5. The peer B uses H-MATCH to compare the query
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Figure 3. (a) The Query Q2 example and (b) a portion of the peer B
ontology

Q2 against its peer ontology (see Figure 3(b)). As a result, the fol-
lowing semantic affinity values are returned by H-MATCH:

SA(Book,Volume)=0.79
SA(Book,Publication)=0.49

By invoking H-LINK, we find that:

MCL={〈 Volume,0.79 〉, 〈 Publication,0.49 〉}
SNL={〈 peer A,{Volume,0.74}〉, 〈 peer E,{Publication,0.81}〉,

〈 peer F,{Volume,0.875,Publication,0.62}〉}

On the basis of such results, H-LINK computes the ranking of the
semantic neighbors in SNL and assigns the corresponding number
of credits, as shown in Table 1. The query Q2 is then submitted to the
selected semantic neighbors together with the assigned number of
credits. As shown in the routing schema of Figure 4, peer A receives
the query, consumes one credit for replying to peer B, and forwards
the query Q2 to peer D by assigning the last remaining credit. Peer E

Table 1. Example of semantic neighbor ranking and credit distribution

Semantic
neighbor

Ranking
value

Assigned
credits

peer A 0.764 2
peer E 0.611 1
peer F 0.689 2

consumes the unique credit received and soon stops the forwarding
process, while the peer F forwards all the received credits to peer G
as no reply is sent back to peer B.
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Q2 :: 2credits
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Figure 4. The H-LINK routing schema for query Q2

Considerations. A possible side effect of the H-LINK mechanism is
due to the fact that credits are distributed on the basis of the knowl-
edge discovered during past interactions. This means that the knowl-
edge of new peers joining the system is hardly discovered and it is not
considered for semantic neighbor selection. H-LINK deals with this
by introducing a perturbation during the credit distribution phase. As
proposed in [14], a small set of random peers is picked and it receives
a percentage of the credits available for distribution. As a result, a
larger part of the network is explored with the aim to discover addi-
tional knowledge and to include new peers in the semantic routing
process.

5 RELATED WORK
Semantic query routing techniques are required to improve effective-
ness and scalability of current discovery and search processes for re-
source sharing in P2P systems. In this direction, the notion of P2P Se-
mantic Link Network is introduced in [15] to emphasize the need of
typed semantic links specifying semantic relationships between peers
in order to maintain information about nodes with similar contents.
Each peer defines its own XML Schema (source schema) describing
the contents to share and adopts SOAP-based messages to commu-
nicate with the other members of the network. As a difference with
location relations in H-LINK, semantic links are exploited with cy-
cle analysis and functional dependency analysis in order to select the
query recipients according to the types of the semantic links as well
as to the similarity between elements and structures of peer schemas.
We note that semantic links need to be actively updated, while loca-
tion relations are automatically maintained in H-LINK by relying on
conventional discovery processes. In [12], the REMINDIN’ multi-
step query propagation mechanism is described to enforce selected
propagation of queries by observing which queries are successfully
answered by other peers, by storing these observations, and by subse-
quently using this information for peer selection. A similar approach
is presented in [14] where the Intelligent Search Mechanism (ISM)



is introduced to provide an efficient and scalable solution for improv-
ing the information retrieval problem in P2P systems. Each ISM peer
is composed of four basic elements: i) the profiling structure that is
used to store the most recent replies of each known peer, ii) the query
similarity function that is used to identify the similarity between dif-
ferent search queries, iii) the RelevanceRank algorithm which ex-
ploits the profiling structure to select the peers that can provide rele-
vant answers with respect to a given query, and iv) the search mech-
anism that is used to send the query to the selected peers. As another
example of P2P semantic routing approach, the NeuroGrid adaptive
decentralized search system is proposed in [9]. In such work, se-
mantic routing is intended as content-based query forwarding, and
a learning mechanism is defined to dynamically adjust the relevance
of known peers for each query. In NeuroGrid, each node maintains
a knowledge base that contains associations between keywords and
other nodes. Queries are then forwarded to the nodes that may store
matching documents according to the actual knowledge base. In [2],
the Seers search infrastructure is presented. In Seers, each shared re-
source is described through a XML meta-document and a matching
policy is used to define how to evaluate the similarity between re-
sources and queries and to assign scores. Scores are then exploited to
select the most relevant documents and to rank neighbors for query
forwarding. In recent work, ontology-based frameworks are also be-
ing proposed to address the lack of semantics in actual P2P rout-
ing algorithms. A RDF-based semantic routing architecture is pre-
sented in [10]. Nodes are clustered in structured trees according to
their interests and intra-/inter-cluster routing algorithms are defined
for providing a scalable query forwarding mechanism. In [7], peers
advertise their experience in the P2P network according to a shared
common ontology. Based on the semantic similarity between a query
and the expertise of other nodes, a peer can select appropriate peers
for query forwarding.

Original contribution of H-LINK. With respect to the above ap-
proaches, we observe that current content-based P2P query prop-
agation algorithms are essentially based on statistical observations
and exploit, in some cases, a shared ontology, often mainly a taxon-
omy. In order to evaluate the similarity between a target query and
resources, keyword-based strategies and basic matching techniques
(e.g., string matching) are actually supported. The main contribution
of H-LINK is related to the use of independent ontologies, rather
than a single shared ontology, and to the use of ontology match-
ing techniques to build a network knowledge layer reflecting the
gradual learning of semantic neighbors. A further contribution of
our approach regards the fact that H-LINK is capable of addressing
emergent semantics requirements, by extending current techniques
to work in multi-ontology contexts and thus releasing the constraint
of having an initial common shared knowledge.

6 CONCLUDING REMARKS AND FUTURE
WORK

In this paper, we have presented the H-LINK mechanism we are de-
veloping for matching-based semantic routing in P2P systems. Pre-
liminary experimentations show that the H-LINK approach is effec-
tive. Our future work will be focused on the extensive experimen-
tation of H-LINK by means of simulation techniques with the aim
to assess the real scalability of the proposed approach. Furthermore,
we plan to i) investigate the opportunity to refine the credit distribu-
tion procedure by considering the recommendation adjustment tech-
niques developed in the field of document retrieval in distributed en-
vironments [8], and ii) compare H-LINK with other existing P2P

routing approaches in order to evaluate the performance for what
concern generated traffic and single peer workload. We will also
investigate the opportunity to use flexible ontology evolution tech-
niques for extending the peer ontology with the new concepts that are
mostly queried in the network [3], thus improving also peer routing
capabilities. Finally, we note that the network concepts keep track
of peer context similarities. In this respect, the network knowledge
can be exploited for the formation of emergent communities of peers
on the basis of their common perspective and context. Some initial
results on this topic are presented in [6].
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