FireFly: Lightweight AJAX System for F2F-CL

Rosario De Chiara, Marco Volpe

ISISLab - Dipartimento di Informatica ed Applicazioni
Universita di Salerno,
84084, Fisciano (SA) — Italy
E-mail: dechiara@dia.unisa.it, volpemar@gmail.com

Abstract. In this paper is illustrated the development of FireFly, a
system for the Face to Face Collaborative Learning (F2F-CL). FireFly
is written using AJAX, a set of technologies that allows to create rich
web-based application. The challenge is to develop a system able to be
executed on usual desktop PC, requesting the lesser possible installation
effort and achieving enough expandability to allow further extensions.
The system is currently under development, but the prototypes and the
early tests confirms that the use of AJAX technology for this kind of
application is suitable and deserves further investigations.

1 Introduction

In this paper we report the results of our experiences in implementing
a system for F2F-CL, FireFly, exploiting the set of technologies known
under the name of AJAX. In our intentions the system must provide the
following features:

— Easiness both in the installation and management: virtually zero in-
stallation effort. This is particularly critical considering that installa-
tions are usually made on tens of personal computers.

— Low-end hardware: this can be an issue in various scenarios, for in-
stance schools.

— No Internet connection required: Internet connection is not available
everywhere and even where it is available it can be subject to heavy
controls and limitations.

— Need for a cross platform solution: platform independence is appreci-
ated from the point of view of the developer, the same application for
every machine, and from the point of view of the user that has not to
face the problem of different User Interfaces (Uls).

The intersection of all these limitations excludes totally or partially some
traditional solutions, for various reasons:

E. Tomadaki and P. Scott (Eds.): Innovative Approaches for Learning and Knowledge Sharing,[]
EC-TEL 2006 Workshops Proceedings, ISSN 1613-0073, p. 59-66, 2006.

FireFly: Lightweight AJAX System for F2F-CL 60

— Java applet downloaded from a server located somewhere in the world:
this solution would allow to avoid to face legacy hardware (at least for
the server) allowing to provide high level services through traditional
Java applet software. This kind of solution rely on a trustworthy In-
ternet connection that is not always available. On the other hand Java
applications are, of course, cross platform.

— Local Java applications: this solution is suitable for installations on
machine not connected to the Internet, but can meet the limitations
of computers on which the software cannot be installed. The “install
nothing” policy is often enforced by system administrators as a radical
solution to viruses and malware.

— Native language solution: a native language solution is not cross-
platform by definition. As a pro it can deeply exploit the hardware.

Starting from all these considerations we have pondered about the use of
AJAX technology would present some interesting points on its favor.

2 AJAX

The term AJAX is the contracted form for the expression Asynchronous
Javascript And XML [13]. AJAX is a set of technologies at the hearth
of which there is the capability of modern browsers (Mozilla Firefox, Mi-
crosoft Internet Explorer, Apple Safari, Opera) of managing an API (Ap-
plication Program Interface) called XMLHttpRequest. This API, available
within browser through Javascript, allows to transfer data to and from a
web server using HTTP. This data transfer is carried out over an inde-
pendent connection channel and the moved data are formatted in XML.

XMLHttpRequest is particularly important because it allows asynchro-
nous transfers of data between the client and the server, and this permits
to break the constrain of using the traditional form submission mechanism
used in HTML [6]. Using XMLHttpRequest is just one of the elements that
made up the AJAX technology, after the data are moved asynchronously
between client and server the next step is to update the user interface
in order to reflect the results of this data exchange. The user interface
is managed through an HTML web page that is in charge for displaying
data and gathering user inputs. Being the data updated asynchronously
the user interface must be update in the same manner without a page
reload. To obtain this, two well known ways of designing web pages are
used: XHTML and CSS, in order to define the styles of the various compo-
nents (text, labels, buttons etc...), and DOM(Document Object Model)
to address the components of the page that are intended to be modified.

61 R. De Chiara and M. Volpe

What is really new in AJAX is not the set of techniques but the way
this techniques are used to meet a goal that is to use the browser and the
network as a platform for implementing interactive web applications. The
combined effort of XMLHttpRequest for exchanging data and the dynamic
look and feel provided to the web pages by the use of XHTML and DOM
enable the developer to create applications like GMail [5], Writely [10] and
YouOS [12]: GMail is a web mail application, Writely is a cooperatively
usable word processing and YouOS tries to mimic the basic behaviors of
an operating system (actually a window manager).

rowser client
user interface
|
JavaSeript call
r client * HmL+(I35datz
user interface Ajax engine
HTTP request HTTP request
http(s) transport httgl(s) transport
HTML+CSS data XML data
web server web and/or XML server
datastores, backend datastores, backend
processing, legacy systems processing, legacy systems
server-side systems server-side systems
classic Ajax
web application model web application model

Fig. 1. Comparison between the classic web application and the AJAX web application
model. (Image from [13])

In Figure 1 is compared the classic web application model and the
AJAX model, on the left is shown the traditional form-driven application,
while on the right there is the AJAX model in which the AJAX engine
presence within the browser is emphasized. The data exchange between
the client and the server is XML and this clearly request a server able to
parse and create well-formed XML to send it back to the client.

3 System description

The system is implemented through a suitable configured web server that
will provide the application to the clients through an HTML page. A client

FireFly: Lightweight AJAX System for F2F-CL 62

for FireFly is any modern web browser with not particular settings at
all. To let an ordinary PC act as a server for some tens of clients we have
focused our attention on finding a computational light web server that
would not request too much computational effort.

3.1 Functionalities

The system architecture is quite simple, the software is installed together
with the web server. The server part is written in PHP while the client
part is Javascript, being it executed in a browser. To boot the system it is
enough to execute the web server that simply will be waiting for connec-
tions. The participants can enter the system just pointing their browser
to the server IP address. An authentication screen will be presented to
log into the system.

The system currently provides two tools for the collaboration. One
tool is a traditional unstructured chat in which contribution from users
are just appended. The other tool is a threaded chat in which the contri-
butions can be structured in a hierarchical manner.

Another task carried out by clients is the gathering of all input, this
is performed by Javascript functions in execution within the browser.

Worth nothing is the fact that the system does not use any database
engine, everything is stored in XML files and in order to avoid wasteful
parsing of huge XML files containing more days of interactions, files are
timestamped and rotated everyday in order to keep their size reasonable.
These XML files could be used as input for trace analysis softwares a
limitation of these traces is that they are coarse grained because of the
architecture of FireFly.

3.2 Lightweight web servers

Clients interactions will be managed from the web server through CGI
(Common Gateway Interface) scripts written in PHP. The ability of run-
ning CGI scripts is the sole feature a web server has to provide to host
AJAX applications. We have compared three solutions, choosing among
light web servers: Sambar Server [8], lighttpd [7] and ghttpd [4].

Sambar Server Sambar server is a framework that provides a wide
range of different servers (DHCP, SMTP, FTP etc...). The purpose
of Sambar is to allow with just one choice, to set up a complete set of
services. Sambar is available for both Linux and Windows and is fully
configurable through a web interface. A stripped down version of the
server is provided for free and it is closed-source.

63 R. De Chiara and M. Volpe

lighttpd lighttpd is small footprint web server. It is Open Source licensed
under the revised BSD license. It is designed keeping in mind the
memory and CPU occupation, no matter this it provides a complete
set of feature that allows it to be compared with Apache [1]. lighttpd
also support FastCGI [3] that is an extension to CGI designed to
provide high performance without the limitations of server-dependent
solutions. lighttpd is the server currently used for the development of
FireFly.

ghttpd ghttpd is a small web server released under the GPL. It provides
CGI but not FastCGI. It is available just for Linux and Unix.

FireFly is currently using lighttpd for various reasons: operating sys-
tem independent solution, simple configuration, availability of FastCGI
etc. ... Being FireFly an AJAX application it is actually web server in-
dependent, because its logic is just a collection of standard HTML files
and PHP sources that can be installed in whatever CGl-aware web server
available.

3.3 User interface issues

The use of AJAX often raises critics about the usability level perceived
by users, mainly because the Ul has to be implemented using ad-hoc
Javascript libraries (see [11], [9], [2]). The Uls rendered using these li-
braries can be non standard from a user point of view, so a particular
attention must be paid in designing them. The current FireFly Ul is im-
plemented using YUI from Yahoo!, the idea is to simplify the UI and keep
it as similar is possible to widespread operating systems: the users list and
every tool in FireFly is rendered within a sort of windows exposing tra-
ditional controls like drag and drop on title bar and maximize/minimize
icons, in the upper part there is a status bar that mimics the feature
of the status bar available under most common operating systems (see
Figure 2).

3.4 System life cycle

Using AJAX for implementing an highly interactive system like FireFly,
means to carefully design the policy of distribution of the updates among
the users. The typical user activity is to append sentences in a chat ses-
sion; because of the architecture of the browser, when a user clicks the
submission button for a new contribution, the text is immediately sent
to the server that has to bounce it to every other client.

FireFly: Lightweight AJAX System for F2F-CL 64

jbri Strumenti 2 g

L] hetpeff127.0.0.1
v Gleorca - ot @ - B &

i] (hal-utﬁ ‘

Chat Room Message Tree Etiter User Connected Logout

Aleu Chat Room Area Tree Message d

. . o

admin: efgeq S admin: ciao

Eradmin: ahaha
admin: gregerg
admin: grereg

http://127.0.0.1c} 1casmezBoiu72zdcazrbIose

Fig. 2. A screenshot from the application.

Bouncing automatically newly available updates to the clients is not
possible because the data exchange between the web server and the clients
can happen just when the clients explicitly request for it. Using AJAX
(and XMLHttpRequest) the client’s browser is capable of periodically re-
quest updates and visualize them in the various tools. This is the key of
the use of AJAX, these periodic updates cannot be avoided because of the
HTTP protocol that is based on request/response mechanism [14], and
the respond, that is the updates from other clients, can be sent just after a
request generated by the browser. In figure 3 is shown the data exchange
between the client and the server, continuous lines indicate the periodical
updates, while dotted lines indicate the updates sent from client to server
on every new contribution from user.

The frequency of such requests is a critical issue, too frequent requests
create an heavy load on the server, while less frequent requests cause
the slowdown of the interactions between users. In early testing we have
used a 3 seconds interval, it is clear that this interval depends on various
factors: the number of clients, the number, the size and the frequency of
contributions from users. The server collects casual updates from clients

65 R. De Chiara and M. Volpe

Client Server

Every 3 seconds

Every new
contribution

time

Fig. 3. Data exchange between client and server. lines between client and server indi-
cate periodically updates, while dotted lines indicate casual updates. All the exchanged
data are well-formed XML files.

and append them to the XML file that the periodical updates will request
for.

4 Conclusion

The system we have designed is currently under development, our effort
is in tidying up the code in order to make it modular. Our ambition is
to design a modular system that would allow to developer to create tools
on their own and just plug them into the system. One of the first step in
this tidying up phase is to keep the XML exchange across the network
the more efficient is possible, and this will request some ad-hoc measures
of both generated traffic and parsing effort for both client and server.

Discussion As a summary we report here how we matched the prefixed
goals reported in early sections:

— Easiness in the installation and management: FireFly needs just a
one-step installation on the server. The installation of the web server
is enough easy to be handled by common users and will not require
complex settings.

— Low-end hardware: the system can be used exploiting pre-existent web
server. In case no web server is available a small footprint solution can
be employed.

FireFly: Lightweight AJAX System for F2F-CL 66

— No Internet connection required: there is no-need for an internet con-

nection. FireF'ly works on a LAN.

Need for a cross platform solution: the capability of being cross-
platform is achieved on both the sides, client and server, as a result
of using AJAX technologies. Under various operating systems there
exists plenty of web servers suitable to run FireFly. Whatever is the
client operating system there will be a browser capable of executing
the FireFly Javascript code.

Further undergoing developments are toward implementing new tools,

like cooperative writing tool and graphical whiteboard.

References

ANl e

14.

Apache software fundation. http://www.apache.org/.

Dojo. http://dojotoolkit.org/.

Fastcgi. http://www.fastcgi.com/.

Gaztek ghttpd. http://gaztek.sourceforge.net/ghttpd/.

Gmail. http://www.gmail.com.

Html 4.01 specification: = Forms. http://www.w3.org/TR/REC-
html40/interact /forms.html.

lighttpd. http://www.lighttpd.net.

. Sambar server. http://www.sambar.com.
. script.aculo.us. http://script.aculo.us/.

10.
11.
12.
13.

Writely. http://www.writely.com.

Yahoo! user interface. http://developer.yahoo.com/yui/.

Youos. http://www.youos.com.

Jesse James Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/publications/essays/archives/000385.php.

H. Frystyk T. Berners-Lee, R. Fielding. Hypertext transfer protocol — http/1.0.
1996. http://tools.ietf.org/html/rfc1945.

