
Br idging the Gap between Compar ison and
Conforming the Views in View Integration

Peter Bellström

Department of Information Systems
Karlstad University, S-651 88 Karlstad, Sweden

Peter.Bellstrom@kau.se

Abstract. View integration is a complex, error-prone and time-consuming task.
Therefore there is a need to decompose the integration methods into smaller
well defined phases where different techniques are applied. Most of the
methods used today is composed of, or at least is a mixture of, the following
four phases: pre-integration, comparison of the views, conforming the views
and merging and restructuring, and most of the methods put focus on phase 2
and 3. Despite of this there is a gap between these two phases. To bridge this
gap a framework has been developed. In the framework Inference Rules (IR)
are used, together with Enterprise Modeling (EM) as the canonical modeling
language, to deduce dependencies that are not conflicting from dependencies
that are or have been identified as an inter-schema property. Three research
questions regarding why, how and when IR should be applied in view
integration are analyzed and discussed and it is argued that the framework may
not only improve view integration as such but also improve the applied conflict
and inter-schema resolution techniques.

1 Introduction

To be able to design a database that is understandable and correct, a database design
method has to be used. A database design method has at least three phases:
conceptual database design, logical database design and physical database design
(e.g. [3, 29]). Conceptual database design is the most critical phase and will probably
continue to be so [3, 8]. This is the case since it highly influences the rest of the
design and is in this paper seen as divided into two distinct parts: view design and
view integration. Several methods and models, including graphical representations,
have been proposed over the last twenty years. The Entity-Relationship (ER)
modeling language, with its ER diagrams was first proposed by Chen [7] in the mid
1970’s and has since then become one of the most popular and commonly used
modeling languages [12, 28] and is almost seen as a de facto standard for conceptual
database design [27]. The success of ER mainly depends on four things. Firstly, ER
has been extended (generally termed Extended ER) and used in several methods (e.g.
[11, 29]). Secondly, ER has concepts naturally occurring in database design [19].
Thirdly, ER is useful for communicating different definitions of data and relationships
with the end users [29]. Finally, ER is a good modeling language for defining

2 Peter Bellström

constructs like the unary and ternary relationships [24]. Although ER has been widely
used and has proved to be a good modeling language it has been criticized for its
generally use of the relationship construct [11]. ER has also been questioned
regarding its use as a canonical modeling language in view integration since it is not
clear if a type should be transformed into an entity type or a relationship type [18].
Finally, ER lacks the very important instance-of dependency needed to illustrate
classification. A modeling language that may bridge these shortcomings is EM.

In EM a dependency (relationship) is classified as association, composition,
aggregation, specialization, generalization or instance-of (see Figure 2). This
approach gives the designer an opportunity to define a clear view of the dependencies
between the concepts in the views and schema. Another positive aspect with EM is
that not only semantic and pragmatic dependencies but also syntactic parts [16] of the
future database may be defined and graphically illustrated. The big challenge during
conceptual database design is to create a global conceptual schema that is
semantically correct, complete, easy to use and comprehensive [24] using the
primitives and constructs of the chosen modeling language [28]. One way to achieve
this is to involve the end users and define views for each end user or user group, to
conduct view design. The views are then integrated, in a task called view integration,
into one final and global conceptual schema. View integration, a very critical part of
database design [30] is one of two paths in schema integration; database integration is
the other one. Schema integration is defined by [2] as ” [...] the activity of integrating
the schemas of existing or proposed databases into a global, unified schema.” . View
integration is a complex task because different end users may define their own view
of the organization, a phenomenon often called semantic relativism [27]. This means
that we often have to deal with different representations and interpretations of the
same concept.

Although many view integration methods have been proposed during the last
twenty years view integration needs continual refinement and reevaluation [30]. This
is motivated by the fact that view integration is a complex, time-consuming and error-
prone task [22]. Many of the proposed methods use the four phases identified by [2].
However, in this paper it is argued that one phase is still missing henceforward called
pre-conforming the views. This phase is motivated since a lack of understanding
regarding the gap between the second and third phase exists. Earlier methods also
lack in the use of IR during conforming the views where conflicts and inter-schema
properties are resolved. Addressing the described gap is important because conflict
resolution has been ranked as the key issue in view integration [27]. Another
motivation to incorporate the proposed phase is the need to decompose view
integration into smaller phases not only because it is a complex task but also because
there is a need to unambiguously define and describe each phase.

 Therefore, the aim of this paper is to present a framework where IR are applied
together with EM to bridge the gap between comparison and conforming the view in
view integration. The following three research questions are used to reach the aim:
Why, how and when to apply IR in view integration.

The organization of this paper is as follows. Firstly, view integration methods and
approaches are described and discussed. Secondly, a subset of EM is discussed in the
context of view design and view integration followed by a description of IR. Fourthly,
IR are discussed in connection with the three research questions about why, how and

Bridging the Gap between Compar ison and Conforming the Views in View
Integration 3

when to apply IR in view integration. Finally, the paper is summarized and
conclusions are presented.

2 View Integration Methods and Approaches

Several view integration methods and approaches have been proposed over the last
twenty years. In the study performed by [2] the authors concluded that a view
integration method is composed of, or at least a mixture of, the following four phases:
pre-integration, comparison of the schemas, conforming the schemas and merging
and restructuring (Figure 1).

Fig. 1. View integration as described by [2]

The arrows in Figure 1 should be interpreted as follows. Arrows moving from left
to right illustrate feed-forward and arrows moving from right to left illustrate feed-
back. The arrows also indicate that view integration is an iterative task and it is
therefore possible to move back and forth between the four phases. The first phase
that should be applied when conducting view integration is pre-integration.
According to [25], pre-integration has three main tasks that should be carried out: 1)
translate all views into a canonical modeling language, 2) check for conflicts and
inconsistencies in each view and finally, 3) select integration strategies. In
comparison of the schemas the main task to perform is to compare the views aiming
to identify not only similarities but also differences such as name conflicts, structural
conflicts, and inter-schema properties [18]. In conforming the schemas the conflicts
and inter-schema properties identified in the previous phase are resolved. Conflicts
are for instance name conflicts and structural conflicts where the first are often
resolved by renaming concept names (e.g. [1, 9]) and the second by restructuring the
views or schema (e.g. [19, 27]). Finally, in merging and restructuring the views are
superimposed, restructured and checked according to one or several quality criteria [2,
3]. To avoid ambiguity regarding the names of the phases and since this paper deals
with view integration, they are henceforward called: pre-integration, comparison of
the views, conforming the views, and merging and restructuring.

Several more specialized view integration approaches and methods have also been
proposed. In the rest of this section three such specialized methods are described and
discussed with focus on the phases used in each of them. All methods use ER or some
similar modeling constructs to graphically define and describe the views and schema.
Choosing these three methods is motivated by the fact that ER or some extensions of
it has become one of the most commonly and frequently database modeling language
used today (e.g. [12, 27, 28]). ER or some extensions of it, has also dominated view
integration research since the late 1980’s [25]. Although the object-oriented approach

4 Peter Bellström

has become popular most of the database designers still prefer working with ER [24]
or some similar modeling language.

The first method is proposed by [1] and it focuses on ER. The method has three
phases. It starts with conflict analysis followed by merging and ends with enrichment
and restructuring. The second method is proposed by [19] and it focuses on
resolution of structural conflicts in ER. The method has five phases as follows:
resolve naming conflicts, resolve structural conflicts, merge the schemas, create ISA
hierarchies and remove inherited attributes and finally remove redundant
relationship sets and derived attributes. The third and last method is proposed by [9]
and it focuses on resolving conflicts using extended ER. This method is an assertion-
based method that only has two phases: schema comparison and schema integration.
When analyzing the example methods and the phases used in each of them it is
concluded that all of them have and use similar phases compared with the four phases
identified by [2]. This indicates that [2] have had a strong influence on the methods
that are developed and used today. However, in this paper it is argued that one phase
is still missing. The missing phase that is identified and proposed is called pre-
conforming the views. This phase is important and needed since it exists a gap
between the second phase, identification of conflicts, and the third phase, resolution
of conflicts in view integration.

3 Applying EM in View Design and View Integration

Several methods and modeling languages for view design and view integration have
been proposed during the last three decades. The main idea is to define and design a
conceptual schema relieved from all computer implementation aspects. However the
main part of the methods and conceptual modeling languages used today tends to
focus on the implementation level and the technical part of the future database [15].
The modeling approach applied in this paper, EM, can be used for modeling and
defining not only semantic and pragmatic dependencies but also the syntactic parts of
the future database without considering any implementation aspects. Another problem
with earlier methods concerns resolution of conflicts in view integration. Many of the
earlier proposed methods focus on handling conceptual similarities and differences,
resolving synonyms and homonyms with renaming which could compress several
concept names into one concept name [4], instead of trying to keep the concept names
used in the views and organization as long as possible in view integration.

Fig. 2. Adapted and modified representation of static dependencies in EM [16]

The static dependencies adapted and modified from EM are illustrated in Figure 2.

Bridging the Gap between Compar ison and Conforming the Views in View
Integration 5

3.1 Why EM should be applied in View Design and View Integration

EM focuses on defining (modeling) and integrating the business processes of the
organization in focus [32]. EM can also be described as a generalization and an
extension of system analysis and design [16]. The main idea in EM is to define a
consistent, coherent and complete specification, a conceptual schema, of the future
database [16] using the same schema type [17]. Applying EM during view design and
view integration has several advantages if compared with a traditional modeling
language. First, EM has a comprehensive set of graphical primitives to use (see Fig.
2). This gives the designer an opportunity to define more detailed dependencies
between the concepts. Secondly, in EM every concept is drawn as a box which
minimizes the occurrence of a type conflict. Thirdly, in EM both static and dynamic
dependencies of the database may be defined and graphically illustrated in one view
or schema [5]. This is important since recent studies have indicated and proved that
using one view and schema type may result in less confusion for both the designer
and the end user than keeping the static and dynamic dependencies separate [31].
Fourthly, in EM a concept may be interpreted differently depending on the
dependencies in focus [5]. Finally, applying EM during view design simplifies view
integration since the designer is only interested in the semantics of the concepts and
the dependencies between them and not in implementation details like ER is in some
aspects.

In Figure 3 the concepts Person, Employment and Company are illustrated using
both ER and EM. Both views are henceforward shortly described and discussed with
the aim to illustrate that EM does not deal with implementation issues which ER does
in some cases. A second aim is to illustrate why EM is preferred as a canonical
modeling language during both view design and view integration.

Fig. 3. Comparison between ER and EM.

The primitives used in Figure 3 (a) are entities represented as rectangles and
relationships represented as diamonds. Besides these the cardinality is illustrated as M
or 1 where M represents 0, 1 or many and 1 represents 0 or 1. The primitives used in
Figure 3 (b) are represented in Figure 2.

Both views in Figure 3 should be interpreted as follows. One Person can be
employed by many Companies and one Company can employ many Persons. The
Employment concept is used since applying EM a so called many-to-many
dependency (relationship) is divided into two one-to-many relationships. Let us now
assume that the designers together with the end users have decided to add two more
concepts called Employee and Employer. Employee is defined as a specialization of
Person and Employer is defined as a specialization of Company. Adding the concepts
is straight forward for the view defined with EM (Figure 3 (b)) but for the view

6 Peter Bellström

defined with ER (Figure 3 (a)) this is not possible because both Employee and
Employer are used as relationship (dependency) names.

Finally, Figure 4 and Figure 5 both illustrate how EM can be used for view design
and view integration where two name conflicts have been identified. The figures also
illustrate that the concept names used in both views are retained even after the name
conflicts have been resolved. One remark is needed regarding the preservation of
concept names. If one or several concepts are found redundant, in [6] called over-
specification, during merging and restructuring these may only be removed after
carefully considering the consequences of removing a concept and concept name.

Since both Figure 4 and Figure 5 are deeply analyzed, explained and discussed in
section 5 there is at this point no need do any further explanations. Just view the left
part of Figure 4 and Figure 5 as examples on how to apply EM for view design and
view the right part of Figure 4 and Figure 5 as simplification and resolution
techniques for conflicts identified in view integration.

Fig. 4. Homonym conflict before and after resolution (IR 2.6).

Fig. 5. Synonym conflict before and after resolution (IR 2.2).

4 Four Categor ies of IR for Static Dependencies

IR should by used to deduce new dependencies from one or several other
dependencies and may informally be called reasoning rules. In this paper IR with the
following structure are analyzed if A Dep1 B then A Dep2 B1. Table 1 illustrates how
the dependencies are denoted and that this study focuses on static dependencies. Table
2 illustrates the seven examples of IR that are described and discussed. Letters A and
B should be interpreted as concepts and arrows as dependencies between the
concepts.

1 Letters A and B should be interpreted as concepts and Dep1-2 as a dependencies.

Bridging the Gap between Compar ison and Conforming the Views in View
Integration 7

Table 1. Adapted and modified representation of basic static dependencies in EM [14]

Number Dependency name Cardinality Denoted
1 Injection dependency (0,1; 1,1) A ===> B
2 Bijection dependency (1,1; 1,1) A �� B
3 Total functional dependency (0,* ; 1,1) A � B
4 Surjection dependency (1,1; 1,*) A ��� B
5 Surjective partial functional dependency (0,1; 1,*) A ==>> B
6 Mutual multivalued dependency (1,* ; 1,*) A ���� B
7 Total multivalued dependency (0,* ; 1,*) A �� B
8 Partial injection dependency (0,1; 0,1) A |==> B
9 Functional (partial) dependency (0,* ; 0,1) A |� B
10 Multivalued (partial) dependency (0,* ; 0,*) A |�� B

Table 2. Adapted and modified IR [13]

Number IR Category
2.1 If A ===> B then A == >> B Weaker dependency
2.2 If A

�����
 B then A

���
 B, B
���

 A Weaker dependency
2.3 If A

���
 B, B
���

 C then A
���

 C Inheritance dependency
2.4 If A

���
 B, B --< C then A --< C Inheritance dependency

2.5 If A � B, B � C then A � B.C, B.C
���

 C Semantic quality improvement
2.6 If A � B then A.B ��� A, A.B

���
 B Semantic quality improvement

2.7 If A � B, B
���

 C then A � C Classification dependency

In Table 2 a few of the IR have additional dependencies. These are explained when

they first occur in the IR. The IR in Table 2 has been chosen since they exemplify IR
of four different categories: 1) IR and weaker dependencies, 2) IR and inheritance
dependencies, 3) IR and semantic quality improvement, and 4) IR and classification
dependencies. Although other IR exists (e.g. [13, 14]) and new IR may be developed,
the main idea in this paper is to illustrate how to apply IR together with EM to bridge
the gap between comparison and conforming the views in view integration. In the rest
of this section each category is therefore described and discussed.

Each IR rule is illustrated and described in Section 5.2 using both the syntax
illustrated in Table 1 and the primitives adapted from EM illustrated in Figure 2.

4.1 IR and Weaker Dependencies

Often the designer of the views does not know if an instance of a concept exists or
even how many instances there could exist for one specific concept: the exact
cardinality is not known. The designer then often chooses to use a zero in the
cardinality. A zero in the cardinality results in a weaker dependency and in some
situations even a ‘many cardinality’ could be viewed as a weaker dependency because
the exact number of instances of a concept is not known. A weaker dependency could
also be viewed as a special case of a stronger dependency [13] and can be derived
through IR. Examples of rules that use weaker dependencies are found in IR 2.1 and
IR 2.2 in Table 2. In IR 2.2 two additional dependencies are used. The thick arrow
(‘ �
	 ’) should to be interpreted as inherits and the double sided thick arrow

8 Peter Bellström

(‘ � � 	 ’) should be interpreted as mutual inheritance. Mutual inheritance is also
used to illustrate that two concepts are synonymous [5]. Remark 4.1(a): When
applying the mutual inheritance dependency to illustrate synonyms the two concepts
are equivalent according to their names. None of the concept names are therefore
preferred before the other.

4.2 IR and Inher itance Dependencies

Inheritance is a useful dependency to apply in view design and view integration
because often a need to describe hierarchies exists. This could be illustrated through
generalization and specialization of concepts in the views and schema. Therefore it is
important to understand how and when inheritance should be used and what are
actually inherited. Examples of IR that use the inheritance dependency are found in
IR 2.3 and IR 2.4 in Table 2. In IR 2.4 an additional dependency is used. The
dependency that appear as a thin arrow (‘ --<’) should be interpreted as composition.
Composition is useful when defining that a concept is composed of several other
concepts [16]. Remark 4.2(a): Composition is a stronger dependency than
aggregation. Composition illustrates that a concept is composed of several other
concepts but when the composed concept is removed all concepts that it is composed
of are also removed. Remark 4.2(b): Composition is just one example of dependency
that is inherited through the inheritance dependency.

4.3 IR and Semantic Quality Improvement

Often there is a need to improve the semantic quality in a view or a schema. This
occurs because ambiguity often exists between the concept names. Semantic quality
improvement has been given different names in different methods and models such as
sharpening meaning [20]. Examples of IR that can be applied for semantic quality
improvement are found in IR 2.5 and IR 2.6 in Table 2. In both IR the dot (‘ .’)
notation is used. In this context it is used to prefix concept names to unambiguously
identify a concept [13]. This means that one concept name is compounded from
several concept names with a dot between them. The dot notation can also be used as
a component for resolution of homonym conflicts [5]. Another application of the
quality improvement rules is as a technique to prevent an impoverishment of the
concept names used in the views and schema. Impoverishment of concept names in
view design and view integration is further discussed and criticized in [4].

4.4 IR and Classification Dependencies

One important dependency that traditional methods and models such as ER often are
missing is the instance-of dependency. This dependence is needed to illustrate
classification. Instance-of is closely related to the inheritance dependency. The
difference between them is that ‘ inherits’ deals with concepts (classes) and instance-
of deals with instances of concepts (classes) called objects in object-oriented methods

Bridging the Gap between Compar ison and Conforming the Views in View
Integration 9

and models (e.g. [20]). In EM both these dependencies are important and could be
used in the views and schema. The motivation behind this is that sometimes there
exists a need to define different levels of abstraction (e.g. model, meta-model) of the
database in one view or schema [5]. One example of IR that can be applied for
classification dependencies is found in IR 2.7 in Table 2. In IR 2.7 an additional
dependency is used ‘ less than or equal to’ (‘ � ’) which should be interpreted as
instance-of. Remark 4.4(a): If we have the dependency Sony_TV_32001 � Sony TV
then the instance-of dependency should be interpreted as Sony_TV_32001 is an
instance-of Sony TV.

5 Applying IR in View Integration

This section presents the main ideas behind the framework developed to bridge the
gap between comparison and conforming the views in view integration. The
framework is composed of IR applied with EM as a canonical modeling language in
view integration. To reach this framework three research questions have been asked
and analyzed regarding why, how and when IR should be applied in view integration
using EM as a canonical modeling language. In section 5.1 conflicts and inter-schema
properties are described and discussed in the context of view integration and the why
question is raised and discussed. In section 5.2 IR are described, discussed and
illustrated using not only the primitives adapted from EM but also using the syntax
illustrated in Table 1. The how question is also raised and discussed. Section 5.3
includes a discussion about when to apply IR in view integration. Together these three
subsections (5.1-5.3) build and illustrate the developed framework.

5.1 Why IR should be applied in View Integration

Two of the most complex phases in view integration are comparison of the views and
conforming the views. During comparison of the views both differences such as
conflicts and inter-schema properties and similarities are identified. This phase has
been called the most important [25], difficult [10] and challenging [18] phase in view
integration. During conforming the views the conflicts and inter-schema properties
identified in the previous phase are resolved. Therefore this phase has been mentioned
as a critical issue [19] and a key issue [27] in view integration. Most of the earlier
view integration methods also put focus on these two phases. As mentioned earlier
while analyzing and comparing two views several conflicts and inter-schema
properties may often be detected. What types of conflict that can occur depend on the
chosen modeling language and the level of abstraction integration is to be performed
at (e.g. conceptual or logical level). In this paper the conflict classification proposed
by [2] is used as a starting point. This is motivated since it is well known and gives an
illustrating picture over the conflicts that may occur during view integration
performed at the conceptual level. The conflict classification can also be used as a
checklist and as a reference while applying and discussing IR in the context of view
integration. Conflicts are by [2] classified as either name conflicts or structural

10 Peter Bellström

conflicts. Name conflicts are further divided into homonyms, which occur if one name
is used for two or more concepts and synonyms, which occur if two or more names are
used for one concept. Structural conflicts are further divided into type conflicts, which
occur if different modeling constructs are used to define the same concept. Applying
the static part of EM the type conflict is minimized because every concept is modeled
as a box [5]. Dependency conflicts occur if different dependencies are defined
between the same concepts and key conflicts occur if different keys are defined for the
same concept. Finally, behavioral conflicts occur if different policies for insertion and
deletion are defined for the same concept [2]. Apart from these conflicts, there exists
a phenomenon called inter-schema properties. These properties concern concepts that
are not exactly the same but have certain constraints in common [18]. After the
conflicts and the inter-schema properties have been identified the next step is to
resolve them. Resolution and simplification of conflicts and inter-schema properties
are a very complex task and therefore it is desirable to apply techniques that may help
to resolve or at least simplify the problems. IR are one such technique and should
therefore be used in view integration.

5.2 How to Apply IR in View Integration

As also mentioned earlier IR should be applied in view integration as rules for
simplifying or resolving identified conflicts and inter-schema properties. The
examples used in this subsection are applications of the IR in Table 2. The examples
are both illustrated graphically using the primitives adapted from EM and illustrated
using the syntax in Table 1. In this paper IR are used as a technique to reasoning with
the end users about conflict and inter-schema simplification and resolution. Therefore
IR may informally be called reasoning rules. Although there exists similar reasoning
about applying rules for conflict resolution (e.g. [25]) these discussions are very broad
and not detailed, while the discussion in this paper, especially this subsection, answer
the how question at a very detailed level. The examples are scenarios that may occur
in an organization conducting view integration in conceptual database design. In all
figures the abbreviations V1 and V2 are used. These should be interpreted as “view
one” and “view two” which are views prepared for integration. Let us now work
through the examples found in Figure 4-10 starting with Figure 6.

��� �������
	� 	 �

� 	 �
 ��� �������
	

� 	 �
 ��� �������
	

��� �

�����

Fig. 6. Pre-conforming views with IR 2.1.

When comparing the views in Figure 6 a dependency conflict is identified. In V1
the dependency is defined as I tem ===> Product and in V2 as I tem ==>> Product.
Applying IR 2.1 the conflict can be simplified or resolved as follows: I f I tem ===>
Product then I tem ==>> Product. The dependency in V1 is altered to be the same
as in V2. The same resolution technique, to introduce a semantic weaker dependency,
is described by [23] as a general resolution technique for simple dependency conflicts

Bridging the Gap between Compar ison and Conforming the Views in View
Integration 11

such as the one illustrated in Figure 6. One remark regarding the use of IR 2.1 is
required. The differences in cardinality may also indicate a homonym conflict. It is
therefore very important to analyze not only the concept names and dependencies but
also the concepts surroundings before deciding to apply this rule. However, using it as
a communication tool the rule can be very useful when trying to identify and resolve
problems such as dependency conflicts and homonyms.

Let us now analyze the situation in Figure 5. In the left view we have the following
dependencies Article

�����
 I tem, Product ������������ I tem. This illustrates that Item

and Article is synonyms and that each Item is dependent on one single Product and
that each Product may be associated with one or more Items. Applying IR 2.2 the
synonyms can be simplified as following: if I tem

�����
Article then Ar ticle ���

I tem, I tem
���

 Ar ticle.
It can be concluded that IR for semantic weaker dependencies can be used not only

to simplify and resolve dependency conflicts (IR 2.1) but also to simplify or resolve
synonym conflicts (IR 2.2) where synonyms are defined as A

�����
B if and only if

A
���

B, B
���

 A.
The next situation to analyze is illustrated in Figure 7. In V1 we have the following

dependency LCD TV
���

Flat Screen TV and in V2 the following TV
���

Product.

�
	 � 	
��� � � ��
� �������� �

��� �������
	� �

� � ����� � 	������� �

� � �

� ���

� ��
	 � 	�� � � � ��
� �� � ���

Fig. 7. Pre-conforming views with IR 2.3.

When comparing the views an inter-schema property is identified. In V1 LCD TV
is a specialization of Flat Screen TV and in V2 TV is a specialization of Product. This
indicates that an inheritance hierarchy exists between the views. Flat Screen TV is a
specialization of TV which also makes it a Product. Applying IR 2.3 the inter-schema
property can be simplified or resolved as follows: I f LCD TV

���
 Flat Screen TV,

Flat Screen TV
���

 TV2, TV
���

 Product then LCD TV
���

 Product.
Let us now continue with the situation in Figure 8. The dependencies in V1 and V2

can be described as LCD TV
���

 Flat Screen TV (V1) and TV --< Integrated
Home Cinema Package (V2). When comparing the views an inter-schema property
is identified. In V1 Flat Screen TV is defined as a generalization of LCD TV and in
V2 TV is defined as a part of (composition) Integrated Home Cinema Package. Flat
Screen TV is a specialization of TV which also makes it a part of Integrated Home
Cinema Package. Applying IR 2.4 the inter-schema property can be simplified or
resolved as follows: I f LCD TV

���
 Flat Screen TV, Flat Screen TV

���
 TV3,

2 This inheritance dependency is the inter-schema property, marked ISP in Fig. 7, identified

between Flat Screen TV and TV.
3 This inheritance dependency is the inter-schema property, marked ISP in Fig. 8, identified

between Flat Screen TV and TV.

12 Peter Bellström

TV --< Integrated Home Cinema Package then LCD TV --< Integrated Home
Cinema Package.

�
	 � 	
��� � � ��
� �������� �

� ��� � ��� � � � �
	�����
��� ��� ������ � ��� ���� �

��� �

� � �

� ��
	 � 	�� � � � ��
� �� � ��� � ��� � ��� � � � �
	�����

��� ��� ������ � ��� ���������� �

Fig. 8. Pre-conforming views with IR 2.4.

It can be concluded that inference rules for inheritance dependencies (IR 2.3 and
IR 2.4) can be used to simplify and resolve inter-schema properties.

The next situation to analyze is illustrated in Figure 9. In V1 we have the following
dependency Product ���� Type (V1) and in V2 the following Type ���� Family (V2).

���������� � �����
	

����� � �
�
�� 	 � ��������� � � �� 	 ���� �������
	

� � � 	 �� � �

� ���

Fig. 9. Pre-conforming views with IR 2.5.

When comparing the views in Figure 9 neither a conflict nor an inter-schema
property is identified. However ambiguity exists regarding the use of concept names.
Each Product is dependent on one single Type and each Type is dependent on one
single Family. One way to integrate the views is to merge them over the Type
concept. If that is the situation there is a need to improve the semantic quality and at
the same time eliminate the ambiguity pointed out earlier. This can be achieved
applying IR 2.5 as follows: I f Product ���� Type, Type ���� Family then Product ����
Type.Family, Type.Family

���
 Family. As also illustrated in the integrated schema

in Figure 9 the dependencies and the Type concept are improved regarding the
semantic quality.

Let us compare the views in Figure 4. In V1 the following dependency is defined
Product ���� Size and in V2 the following TV ���� Size. The similarity and at the same
time the difference between the views are identified in the use of concept names. In
this case it indicates a homonym conflict. The Size concept is used differently and
therefore a sharpening of meaning, a semantic quality improvement, is needed. This
can be achieved applying IR 2.6 as follows: I f TV ���� Size then TV.Size ������������ TV,
TV.Size

���
Size. To end up with the schema in Figure 4 IR 2.6 also has to be

applied for V1 and then the views can be merged over the Size concept.
It can be concluded that IR for semantic quality improvement can be used not only

to simplify or resolve homonym conflicts (IR 2.6) but also to improvement semantic
quality (IR 2.5). A deeper discussion about identifying and resolving homonym
conflicts applying EM is given in [5].

Bridging the Gap between Compar ison and Conforming the Views in View
Integration 13

The seventh and last situation to analyze is illustrated in Figure 10. In V1 the
following dependency is defined STV32001

�
 Sony LCD TV and in V2 the

following TV
���

 Product.

Fig. 10. Pre-conforming views with IR 2.7.

When comparing the views an inter-schema property is once again identified. In
V1 STV32001 is an instance-of Sony LCD TV and in V2 is TV a specialization of
Product. An inheritance hierarchy is identified between the views: Sony LCD TV in
V1 is a specialization of TV in V2. Applying IR 2.7 the inter-schema property can be
simplified or resolved as follows: I f STV32001

�
 Sony LCD TV, Sony LCD TV ���

 TV4, TV
���

 Product then STV32001
�
 Product.

It can be concluded that IR for classification dependencies can be used to simplify
and resolve inter-schema properties (IR 2.7).

5.3. When to Apply IR in View Integration

This section finalizes the description and discussion about the developed framework
by focusing on the new identified and proposed phase. In the developed framework
IR should be applied to simplify and resolve conflicts and inter-schema properties in
view integration. View integration is often seen as an important and critical part of
conceptual database design and therefore needs continual refinement and reevaluation
[30]. Two serious weaknesses have in this paper been identified in the earlier
proposed integration methods. The first is the gap between comparison and
conforming the views and the second is the lack of explicitly mentioning the use of IR
as such but also an own phase. The absence of mentioning IR as a conflict and inter-
schema property simplification or resolution technique is even more surprising. When
IR are mentioned (e.g. [25]) they are treated superficially and incorporated in other
phases which makes them complex and hard to handle. One specific phase for the use
of IR is therefore proposed. The new phase is placed between comparison of the views
and conforming the views and is henceforward called pre-conforming the views.
Figure 11 illustrates the phases in view integration as described and proposed in this
paper.

4 This inheritance dependency is the inter-schema property, marked ISP in Fig. 10, identified

between Sony LCD TV and TV.

14 Peter Bellström

Fig. 11. View integration process as described and proposed in this paper.

Figure 11 should be interpreted from left to right and the arrows indicate that it is

possible to go back to an earlier phase and do adjustments. The use of pre-conforming
the views is motivated because there is a need not only to decompose the integration
methods into smaller phases that are unambiguous regarding their content but also to
bridge the gap between comparison and conforming the views. Therefore it is
important to incorporate pre-conforming the views as a standard phase into view
integration and in it apply IR to simplify and resolve conflicts and inter-schema
properties.

6. Summary and Conclusions

In this paper a framework that bridges the gap between comparison of the views and
conforming the views in view integration has been developed. The three research
questions about why, how and when IR should be applied during view integration
have been raised and discussed. The question regarding why IR should be applied has
at least two possible answers. First because there exist a gap between the two most
complex and important phases, comparison of the views and conforming the views, in
view integration. Therefore a need for techniques that can be used to solve, or at least
simplify, the conflicts and inter-schema properties exists and IR are one such
technique. Secondly, because the integration methods used today needs continual
refinement and reevaluation as pointed out by [30]. The reason behind this is the
complexity of the view integration task and because the used primitives and modeling
languages are continually developed and refined. The question about how IR should
be applied also has at least two possible answers. First IR should be applied to deduce
new dependencies from two or more dependencies where a conflict has been
identified. Secondly, IR should to be applied to deduce new dependencies from two or
more dependencies where an inter-schema property has been identified. The question
regarding when to apply IR has in this study one obvious answer. In a new phase in
this paper called pre-conforming the views. This new phase should be incorporated
between comparison of the views and conforming the views. Pre-conforming the
views should first of all be used to bridge the gap between phase 2 and phase 3 which
are the two most complex phases in view integration. By incorporating pre-
conforming the views as a standard phase in view integration the task for each phase
can be defined and described more precisely. To answer these three questions the
static dependencies of EM [16] has been applied including a deeper discussion about
why to apply EM in view design and view integration. Analysis using both the
primitives in EM and the syntax for IR has been conducted, illustrated and discussed.

Bridging the Gap between Compar ison and Conforming the Views in View
Integration 15

One important observation of this work is that using the developed framework where
EM is treated as the canonical modeling language and IR are used to deduce
dependencies name conflicts (synonyms and homonyms) can be resolved without
loosing any of the concept names. Retaining the concept names may counteract
language impoverishment in the global schema. Finally, by combining EM as a
canonical modeling language during view design and view integration and using IR
for pre-conforming the views the designers can focus on the semantics of each
concept and the dependencies between the concepts instead of dealing with
implementation issues of the future database.

References

1. Batini, C., Lenzerini, M.: A Methodology for Data Schema Integration in the Entity
Relationship Model. IEEE Transactions on Software Engineering 10(6) (1984) 650–664

2. Batini, C., Lenzerini, M., Navathe, B.L. A Comparative Analysis of Methodologies for
Database Schema Integration. ACM Computing Surveys 18(4) (1986) 323–363

3. Batini, C., Ceri, S., Navathe, S.: Conceptual Database Design – An Entity-Relationship
Approach. Benjamin-Cummings, Redwood City, California (1992)

4. Bellström, P., Carlsson, S.: Towards an Understanding of the Meaning and the Contents of
a Database through Design and Reconstruction. In: Vasilecas, O. et al. (eds.): Proc. 13th
ISD Conference (2004) 283–293

5. Bellström, P.: Using Enterprise Modeling for Identification and Resolution of Homonym
Conflicts in View Integration. In: Vasilecas, O. et al. (eds.): Information Systems
Development Advances in Theory, Practice and Education. Springer (2005) 265–276

6. Bellström, P., Jakobsson, L.: Towards a Generic and Integrated Enterprise Modeling
Approach to Designing Databases and Software Components. In: Nilsson, A.G. et al.
(eds.): Advances in Information Systems Development: Bridging the Gap between
Academia and Industry. Springer, (2006) 635–646

7. Chen, P.: The Entity-Relationship Model – Toward a Unified View of Data. ACM
Transactions on Database Systems 1(1) (1976) 9–36

8. Dey, D., Storey, V.C., Barron, T.M.: Improving Database Design through the Analysis of
Relationships. ACM Transactions on Database Systems 24(4) (1999) 453–486

9. Dupont, Y.: Resolving Fragmentation Conflicts in Schema Integration. In: Loucopoulos,
P. (ed.): Proc. 13th ER Conference. Springer-Verlag, (1994) 513–532

10. Ekenberg, L., Johannesson, P.: A Formal Basis for Dynamic Schema Integration. In:
Thalheim, B. (ed.): Proc. 15th ER Conference. Springer, (1996) 211–226

11. Engels, G., Gogolla, M., Hohenstein, U., Hulsmann, K., Lohr-Richter, P., Saake, G.,
Ehrich, H.D.: Concepual modelling of Database Applications Using an Extended ER
Model. Data & Knowledge Engineering 9 (1992) 157–204

12. Fahrner, C., Vossen, G.: A Survey of Database Design Transformations Based on the
Entity-Relationship Model. Data & Knowledge Engineering 15 (1995) 213–250

13. Gustas, R.: Semantic and Pragmatic Dependencies of Information Systems. Monograph,
Technologija Kaunas (1997)

14. Gustas, R.: Integrated Approach for Modelling of Semantic and Pragmatic Dependencies
of Information Systems. In: Ling, T.W. et al. (eds.): Proc. 17th ER Conference. Springer-
Verlag, (1998) 121–134

16 Peter Bellström

15. Gustas, R., Gustiené, P.: Extending Lyee Methodology Using the Enterprise Modelling
Approach. In: Fujita, H., Johannesson, P. (eds.): Proc. 1st SoMeT Workshop. IOS Press,
Amsterdam (2002) 273–288

16. Gustas, R., Gustiené, P.: Towards the Enterprise Engineering Approach for Information
System Modelling Across Organisational and Technical Boundaries. In: Camp, O. et al.
(eds.): Enterprise Information Systems V. Kluwer Academic Publishers, Netherlands,
(2004) 204–215

17. Gustas, R., Jakobsson, L.: Enterprise Modelling of Component Oriented Information
System Architechtures. In: Fujita, H., Gruhn V. (eds.): Proc. 3rd SoMeT Workshop. IOS
Press, (2004) 88–102

18. Johannesson, P.: Schema Integration, Schema Translation, and Interoperability in
Federated Information Systems. PhD thesis, Department of Computer & Systems
Sciences, Stockholm University, Royal Institute of Technology, No 93-010-DSV, Edsbruk
(1993)

19. Lee, M.L., Ling, T.W.: A Methodology for Structural Conflict Resolution in the
Integration of Entity-Relationship Schemas. Knowledge and Information System 5(2)
(2003) 225–247

20. Martin, J., Odell, J.J.: Object Oriented Methods A Foundation, Prentice Hall, New Jersey
(1998)

21. Navathe, S.B., Gadgil, S.U.: A Methodology for View Integration in Logical Database
Design. In: Proc.8th VLDB Conference. (1982) 142–164

22. Navathe, S., Elmasri, R., Larson, J.: Integrating User Views in Database Design. IEEE
Computer 19(1) (1986) 50–62

23. Parent, C., Spaccapietra, S.: Issues and Approaches of Database Integration.
Communications of the ACM 41(5es) (1998) 166–178

24. Shoval, P., Shiran, S.: Entity-Relationship and Object-Oriented Data Modeling – an
Experimental Comparison of Design Quality. Data & Knowledge Engineering 21 (1997).
297–315

25. Song, W.: Schema Integration – Principles, Methods, and Applications. PhD thesis,
Department of Computer & Systems Sciences, Stockholm University, Royal Institute of
Technology, No 95-019, Edsbruk (1995)

26. Spaccapietra, S., Parent, C.: Conflicts and Correspondence Assertions in Interoperable
Databases. ACM SIGMOD RECORD 20(4) (1991) 49–54

27. Spaccapietra, S., Parent, C.: View Integration: a Step Forward in Solving Structural
Conflicts. IEEE Transactions on Knowledge and Data Engineering 6(2) (1994) 258–274

28. Storey, V.C., Thompson, C.B., Ram, S.: Understanding Database Design Expertise. Data
& Knowledge Engineering 16 (1995) 97–124

29. Teorey, T.J., Yang, D., Fry, J.P.: A Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model. Computing Surveys 18(2) (1986) 197–222

30. Teorey, T.J.: Database Modeling & Design. Morgan Kaufmann Publishers Inc, USA
(1999)

31. Turetken, O., Schuff, D., Sharda, R., Ow, T.T.: Supporting Systems Analysis and Design
through Fisheye Views. Communications of the ACM 47(9) (2004) 72–77

32. Vernadat, F.B.: Enterprise Modeling and Integration Principles and Applications.
Chapman & Hall, London (1996)

