
Xeek: An Efficient Method for Supporting
XPath Evaluation with Relational Databases?

Olli Luoma

Department of Information Technology and Turku Centre for Computer Science,
University of Turku, Finland

olli.luoma@it.utu.fi

Abstract. We introduce Xeek, a method for managing XML documents
using relational databases. Most previous proposals in which the XPath
axes are evaluated using only the pre- and postorder numbers of the
nodes have quite convincingly been shown to suffer from scalability prob-
lems. Thus, Xeek stores some redundant structural information which
can be used speed up XPath evaluation even when a large set of con-
text nodes is used. Our idea is to select a set of inner nodes to act as
proxy nodes and store the ancestor information only for the proxies. To
demonstrate the effectiveness of our method, we present the results of our
experiments in which Xeek outperformed the previous methods based on
relational databases as well as an established commercial XML database
product.

1 Introduction

Relational database management systems offer a powerful and reliable means for
storing and querying structured data, and thus they are at the core of data man-
agement in all organizations. Recently, however, some modern application areas,
such as bioinformatics [1] and Web services [2], have created a need for storing
and querying information that cannot easily be organized into tables, columns,
and rows. XML [3], a document description metalanguage recommended by the
World Wide Web Consortium, provides a means for representing heterogeneous
data in a simple and platform-independent manner, and thus database manage-
ment systems are constantly called to the challenge of managing XML data.

As an answer to this challenge, a plethora of methods for managing XML
data using relational databases have been proposed [4]. In these methods, an
incoming XML document is usually first represented as an XML tree in which
element and attribute nodes correspond to the metadata and text nodes to
the textual content in the original document. Ancestor/descendant relationships
between the nodes correspond to the nesting relationships in the document1 [5].
This tree is then stored into the database and queried using some XML query

? Supported by the Academy of Finland.
1 The XPath recommendation actually lists seven different node types, but for sim-

plicity, we limit the discussion to element, attribute, and text nodes.

language, such as XPath [5] or XQuery [6], which can be mapped to SQL in an
external software layer. Similarly, the resulting relations are mapped to XML
outside the RDBMS. This is indeed a tempting option, since it allows us to
leverage the well tried indexing and query optimization capabilities of relational
databases.

At the heart of the XPath query language, there are 12 axes, i.e., opera-
tors for XML tree traversals, such as parent, child, ancestor, descendant,
preceding, and following. In most of the previous proposals, these axes have
been supported by using pre- and postorder numbers of the nodes or some sim-
ilar method [7] [8] [9] [10] [11]. In the context of relational databases, however,
checking structural relationships using pre- and postorder numbers requires very
expensive nonequijoins, i.e., joins based on inequality comparisons. Thus, one can
argue that systems relying on a relational database and pre-/postorder encoding
lack the scalability that can be expected from a practicable XML management
system [12] [13] [14].

Because of the lack of scalability of the pre-/postorder encoding, many al-
ternative methods aiming at replacing the nonequijoins with equijoins, i.e., joins
based on equality comparisons, have been proposed. The extreme approach, of
course, is to store all ancestor/descendant pairs into a separate table [14] [15],
but more sophisticated methods consuming less storage have also been proposed.
In [13], for example, we described a method which stores the ancestor informa-
tion only for the leaf nodes and in [14], we generalized this idea by introducing
a proxy index in which the ancestor/descendant information is stored only for
a subset of inner nodes, namely so called proxy nodes. Our original proposal,
however, consumed quite a lot of storage, and thus as one of the contributions
of this paper, we propose an improvement which allows us store the structural
information in a more compact manner. Furthermore, our improved design pro-
vides better query performance than the original proposal. In summary, Xeek
contributes to the XML-RDBMS research by providing the following features:

1. Good query performance for all XPath axes.
2. Modest storage consumption compared to query performance.
3. Ability to balance between storage consumption and query performance by

tuning just one parameter.

The rest of this paper is organized as follows. In section 2, we discuss the
related work and in section 3, we present the basics of the XPath query language;
Xeek is described in section 4. Section 5 discusses the results of our experimental
evaluation and section 6 concludes this article.

2 Related Work

The existing approaches for managing XML data using relational databases can
roughly be divided into two categories [8]. One option is to extract the logical
structures or DTDs of the documents and define relational schemas in accor-
dance with the DTDs; this approach is usually known as the structure-mapping

approach or schema-aware approach. Early examples of this approach include
the approach proposed by Florescu and Kossmann [16] in which one relation for
each element type is created. Shanmugasundaram et al. [17] proposed a method
for designing the relational schemas based on a detailed analysis of the document
DTDs. However, if we are to store a large number of documents with different
DTDs we might end up flooding the database with table definitions [10] [4].
The other option is to design a relational schema which represents the generic
constructs of the XML data model, such as element, attribute, and text nodes.
This model-mapping approach or schema-oblivious approach allows us to store
any well-formed XML document without changing the schema, which simplifies
the XPath-to-SQL query translation.

In addition to our own previous work [13] [14] [18], the model-mapping ap-
proach has been followed in several other proposals, such as XRel [8], XParent
[15], XPath accelerator [10], and SUCXENT [19]. Unlike our own proposals,
XRel, XParent, and SUCXENT support only the descendant and child axes
of XPath, and thus one can argue that they provide a very limited XPath sup-
port. XPath accelerator, on the other hand, is based on pre-/postorder encoding,
which makes it prone to scalability problems. Nevertheless, the relational schema
of XPath accelerator is very similar to Xeek, and thus we regard Grust’s XPath
accelerator as a very relevant piece of work. For this reason, we also compare
the performance of Xeek with XPath accelerator.

A completely different approach is to build a native XML management sys-
tem, i.e., to build a XML management system from scratch. In the XML research
literature, there are several examples of this approach, such as the early propos-
als LORE [20] and NATIX [21], and more recent ones, such as TIMBER [22].
As a part of this research, multiple algorithms for joining XML tree node sets
have been proposed, such as the multi-predicate merge join [12], staircase join
[23], and just recently a partition-based P-join [24]. Interestingly, the idea behind
some of these methods is somewhat similar to the idea behind our proposal in
the sense that they also aim at avoiding nonequijoins. In P-join, for example, the
nodes are first partitioned into nine disjoint subsets. This information is then
used to prune all nodes located in partitions that cannot contain nodes satisfying
the query conditions without considering their pre- and postorder numbers at
all.

3 XPath Basics

As mentioned earlier, XPath [5] is based on a tree representation of a well-formed
XML document, i.e., a document that conforms to the syntactic rules of XML.
A simple example of an XML tree corresponding to the XML document <c
d="y"/><c d="y"><e>kl</e></c><c><e>ez</e></c> is presented in Fig.
1. The nodes are numbered in both pre- and postorder; unlike in [8], for example,
the attribute nodes are numbered similarly to all other nodes although according
to the XML recommendation, there is actually no order among attribute nodes.

1, 10 b

2, 2 c 4, 6 c 8, 9 c

9, 8 e 6, 5 e 5, 3 @d=” y” 3, 1 @d=” y”

7, 4 ” k l ” 10, 7 ” ez”

El ement node At t r i but e node Text node

Fig. 1. An XML tree

The tree traversals in XPath are based on 12 axes which are presented in
Table 1. In simple terms, an XPath query can be thought of as a series of
location steps of the form /axis::nodetest[predicate] which start from a
context node - initially the root of the tree - and select a set of related nodes
specified by the axis. A node test can be used to restrict the name or the type
of the selected nodes. An additional predicate can be used to filter the resulting
node set further. The location step n/child::c[child::*], for example, selects
all children of the context node n which are named ”c” and have one or more
child nodes.

Table 1. XPath axes and their semantics

Axis Semantics of n/Axis

parent Parent of n.
child Children of n, no attribute nodes.
ancestor Transitive closure of parent.
descendant Transitive closure of child, no attribute nodes.
ancestor-or-self Like ancestor, plus n.
descendant-or-self Like descendant, plus n, no attribute nodes.
preceding Nodes preceding n, no ancestors or attribute nodes.
following Nodes following n, no descendants or attribute nodes.
preceding-sibling Preceding sibling nodes of n, no attribute nodes.
following-sibling Following sibling nodes of n, no attribute nodes.
attribute Attribute nodes of n.
self Node n.

Using XPath, it is also possible to set conditions for the string values of
the nodes. The XPath query /descendant-or-self::record="John Scofield

Groove Elation Blue Note", for instance, selects all element nodes with la-
bel ”record” for which the value of all text node descendants concatenated
in document order matches ”John Scofield Groove Elation Blue Note”. No-
tice also that the result of an XPath query is the concatenation of the parts
of the document corresponding to the result nodes. In our example case,
query /descendant-or-self::c/descendant-or-self::*, for example, would
result in no less than <c d="y"/><c d="y"><e>kl</e></c><c><e>ez</e></c>
<e>kl</e><e>ez</e>.

4 Xeek

The overall architecture of Xeek is very similar to the methods discussed in [8]
and [10]. Roughly speaking, Xeek consists of three components: the database
builder, the query translator, and the XML builder. The database builder sim-
ply parses an incoming document using a SAX parser and issues a set of SQL
INSERT commands to insert the nodes into the database. The query translator
takes an XPath query as an input, parses the query, and issues an SQL query to
retrieve a set of nodes that satisfy the query. Finally, the purpose of the XML
builder is to build the result documents. This is done by iterating the results
of the SQL queries generated by the query translator and issuing another set of
SQL queries to retrieve the information needed to build the actual results. Thus,
one can think that the database builder and the XML builder work in opposite
manners.

4.1 The Relational Schema

The relational schema of Xeek is based on the idea of a proxy index [14] which
stores the ancestor/descendant information only for a selected subset of inner
nodes. The proxy nodes can actually be selected according to any criterion as
long as they cover all of the leaf nodes, i.e., there does not exist a leaf node that
is not a descendant of any of the proxies. In Xeek, we use a simple definition
formulated as follows:

Definition 1. Node n is a proxy node of level i, if n has exactly i-1 ancestors
or if n is a leaf node having less than i-1 ancestors.

According to this definition, there are three proxy nodes of level 2 in the
XML tree presented in Fig. 1, namely the nodes identified by preorder numbers
2, 4, and 8. In our original proposal, we defined the proxy index as a set of pairs
(n1, n2) where n1 is a proxy node and n2 is a node that is reachable from the
proxy, i.e., is an ancestor or descendant of the proxy node or the proxy node
itself. In Xeek, however, we only store a set of pairs (n1, n2) where n1 is a proxy
node and n2 is a node that is an ancestor of the proxy or the proxy node itself,
which results in a smaller index. For example, building a proxy index for a tree
of size n using value 1 for i produced in our original proposal an index with n
pairs, whereas Xeek stores just one pair. If value ∞ is used for i, i.e., the leaf

nodes are used as proxies, both Xeek and our original proposal produce similar
indexes.

It is also interesting to notice that since the root node is always the only
proxy node of level 1 and the leaf nodes are always the only proxy nodes of
level ∞, both XPath accelerator and the ancestor/leaf approach [13] in which
the ancestor information is stored only for the leaf nodes can be regarded as
special cases of the proxy index. Thus, a proxy index provides us with a simple
method for balancing between these two extremes by tuning the value of i.
Increasing the value of i obviously results in a larger index but also yields better
query performace. To implement the idea of the proxy index in Xeek, we use the
following relational schema:

Node(Pre, Post, Proxy, ProxySelf, Par, Type, Name, Value)

AncProxy(Anc, Proxy)

In relation Node, the database attributes Pre and Post correspond to the
preorder number and the postorder number of the node and the database at-
tribute Proxy corresponds to the preorder number of the leftmost2 proxy node
reachable from the node. For proxy nodes and their ancestors, the database at-
tribute ProxySelf stores the same value as Pre and for descendants of proxy
nodes, this attribute stores the same value as Proxy. Attribute Par corresponds
to the preorder number of the parent of the node and Type to the type of the
node. The Database attributes Name and Value correspond to the name and
the string value of the node, respectively; string values are stored only for text
nodes. Finally, relation AncProxy is used to store the actual proxy index. In both
relations, the underlined attributes constitute the primary key.

The semantics of the database attributes Proxy and ProxySelf may seem
a bit peculiar, but the use of these attributes is actually rather simple. If we
want to find the ancestors of a given node n, we first use the Node and AncProxy
tables to find all ancestors of the leftmost proxy reachable from n. This is done
by equijoining the Node table with the AncProxy table on attribute Proxy. The
result of this join is then equijoined with the Node table matching the values
of Anc and ProxySelf. Regardless of the level of the proxy nodes, the result of
these equijoins is guaranteed to contain the ancestors of n, and hence we can
use more expensive nonequijoins on database attributes Pre and Post to filter
out the nodes which are not ancestors of n. Thus, the selection of the proxy
node level affects not only the balance between storage consumption and query
performance, but also between equijoins and nonequijoins.

4.2 XPath-to-SQL Query Translation

By using an algorithm very similar to the algorithms discussed in [8] and
[10], the query translator first transforms an XPath query into a query tree
in which each node corresponds to a location step and branches correspond

2 Term leftmost means the node having the smallest preorder number.

to predicates. The query translator also locates the active node of the query
tree, i.e., the node which corresponds to the node set that is finally re-
turned as an answer to the query. An example of a query tree corresponding
to /descendant::a/following::b="abc"[preceding::c]/child::*="ijk" is
presented in Fig. 2; the active node is underlined.

descendant: :a

f ollowing: : b=” abc ”

preceding: :c child::*= ” ijk ”

Fig. 2. A query tree

The query translator then transforms the query tree into an SQL query. This
is done using the query conditions for the axes presented in Table 2 and the
conditions for node tests presented in Table 3; the string value conditions of
the query are matched against the database attribute Value. In Table 2, the
tuple variable ni corresponds to the set of context nodes and tuple variable
ni+1 to the resulting set of nodes. The special axis p-anc corresponds to the
query conditions ni+1.ProxySelf=pi+1.Anc AND pi+1.Proxy=ni.Proxy and the
axis p-desc corresponds to inverse query conditions ni+1.Proxy=pi+1.Proxy
AND pi+1.Anc=ni.ProxySelf3. In both cases, tuple variable pi+1 is an AncProxy
variable.

In simple terms, our query translation algorithm works as follows. Each node
in the query tree is first assigned a tuple variable ni where i is the preorder
number of the node in the query tree. Furthermore, tuple variable n0 is assigned
to the root of the XML tree, i.e., the initial context node. The SQL query is then
generated by joining each node in the query tree to its parent with the query
conditions presented in Table 2; tuple variable n1 is joined with tuple variable
n0. If the node of the query tree involves node tests, the conditions in Table 3 are
used. The database attribute Value is used to check string value tests. Finally,
the tuple variable corresponding to the active node is used in the SELECT and
ORDER BY parts of the query. Using this algorithm, the query tree presented
in Fig. 2 is translated into the following SQL query:

SELECT DISTINCT n4.*

FROM Node n0, Node n1, Node n2, Node n3, Node n4, AncProxy p1

-- First step: /descendant::a

WHERE n0.Pre=1 AND p1.Anc=n0.ProxySelf AND n1.Proxy=p1.Proxy

3 It can be shown that for any context node n, n/ancestor-or-self::* ⊆ n/p-anc::*
and n/descendant-or-self::* ⊆ n/p-desc::*

AND n1.Pre>n0.Pre AND n1.Post<n0.Post AND n1.Type=’elem’

AND n1.Name=’a’

-- Second step: /following::b="abc"

AND n2.Pre>n1.Pre AND n2.Post>n1.Post AND n2.Type=’elem’

AND n2.Name=’b’ AND n2.Value=’abc’

-- Third step: /preceding::b

AND n3.Pre<n2.Pre AND n3.Post<n2.Post AND n2.Type=’elem’

AND n3.Name=’c’

-- Fourth step: /child::*="ijk"

AND n4.Par=n2.Pre AND n2.Type=’elem’ AND n2.Value=’ijk’

ORDER BY n4.Pre;

Notice that although evaluating the ancestor, ancestor-or-self,
descendant, and descendant-or-self involves nonequijoins, these should not
be too expensive to evaluate. Provided that the query optimizer optimizes the
queries correctly, the conditions based on equijoins are checked first. These con-
ditions restrict the number of nodes that have to be checked using inequality
comparisons, which accelerates the queries considerably. Also notice that our
original proposal [14] did not include the attributes Proxy and ProxySelf in
relation Node, and thus we had to perform a possibly large selfjoin on the table
storing the proxy index to find all nodes that are reachable from any of the
proxy nodes reachable from the context node, which in some cases proved to
be expensive. Furthermore, our original proposal consumed considerably more
storage.

Table 2. Query conditions for axes.

Axis Query conditions

parent ni+1.Pre=ni.Par

child ni+1.Par=ni.Pre

ancestor p-anc AND ni+1.Pre<ni.Pre AND ni+1.Post>ni.Post

descendant p-desc AND ni+1.Pre>ni.Pre AND ni+1.Post<ni.Post

ancestor-or-self p-anc AND ni+1.Pre<=ni.Pre AND ni+1.Post>=ni.Post

descendant-or-self p-desc AND ni+1.Pre>=ni.Pre AND ni+1.Post<=ni.Post

preceding ni+1.Pre<ni.Pre AND ni+1.Post<ni.Post

following ni+1.Pre>ni.Pre AND ni+1.Post>ni.Post

preceding-sibling preceding AND ni+1.Par=ni.Par

following-sibling following AND ni+1.Par=ni.Par

attribute ni+1.Par=ni.Pre AND ni+1.Type="attr"

self ni+1.Pre=ni.Pre

Table 3. Query conditions for node tests

Node test Query conditions

node()

text() b.Type="text"
comment() b.Type="comm"
processing-instruction() b.Type="proc"
name b.Type="elem" AND b.Name="name"
* b.Type="elem"

4.3 Generating Result Documents

After the result of the SQL query generated by the algorithm described in
the previous section has been retrieved, Xeek still needs to build the result
documents. To do this, the XML builder iterates the result set and issues a
descendant-or-self query for each of the nodes in the result set. This is done
by issuing the following query in which the variables pre, post, and proxySelf
denote the preorder number of the node, the postorder number of the node, and
the preorder number of the leftmost proxy reachable from the node:

SELECT n.*

FROM Node n, AncProxy a

WHERE a.Anc=proxySelf AND n.Proxy=a.Proxy

AND n.Pre>=pre AND n.Post<=post

ORDER BY n.Pre;

The result sets of these queries are then iterated to stream out the part of the
document that corresponds to the node. To build the result documents, Xeek
obviously has to issue thousands of descendant-or-self queries, and thus these
queries should be as efficient as possible.

5 Experimental Results

In our experimental evaluation, we used Windows XP and Microsoft SQL Server
2000 running on 2.00 GHz Pentium PC equipped with 2 GB of RAM and stan-
dard IDE disks. We implemented all approaches using Java and extended the re-
lational schema of Xeek (abbreviated XK) with document identifier Doc. The per-
formance of our method was compared against other methods based on relational
databases, namely Grust’s XPath accelerator (XA) [10], our previous proposal
(PR) [14], and the ancestor/descendant approach (AD) [14] in which a separate
table is used to store all ancestor descendant pairs. The relational schemas of XA,
PR, and AD were also extended with document identifiers; auxiliary indexes were
built on Node(Doc, Post) Node(Doc, Par), Node(Doc, Proxy), Node(Doc,
ProxySelf), Node(Type), Node(Name), and AncProxy(Doc, Proxy).

We also compared Xeek to X-Hive [25], a rather established commercial XML
database product. These tests supported our presentiments of the weak scalabil-
ity of native XML databases since they revealed some severe scalability problems
in X-Hive. Xeek, on the contrary, performed well also in these tests.

5.1 Proxy Node Selection

We studied the optimal number of nodes to be promoted as proxies by building
databases with different numbers of proxy nodes, i.e., by selecting proxy nodes
from level 1, 2, 3 etc., from a synthetic XML document generated with XMLgen
[26] using factor 0.1. We then used these databases to perform ancestor and
descendant steps starting from a relatively large set of context nodes. The size
of our test document was approximately 11 MB and the number of nodes in the
document was 324217. The results are presented in Fig. 3.

 0

 50

 100

 150

 200

 1 2 3 4 5 6

Q
ue

ry
 T

im
e

(s
)

Proxy Node Level

ancestor
descendant

 0

 50

 100

 150

 200

 1 2 3 4 5 6

D
at

ab
as

e
S

iz
e

(M
B

)

Proxy Node Level

Fig. 3. Query times and database sizes with different proxy node levels

Obviously, the results only apply to this particular document, but we can use
these results to estimate the number of nodes that should generally be promoted
as proxies. In our tests, good query performance was achieved by selecting proxies
from level 4, which means that roughly 40000 nodes were promoted; selecting
proxies from level 5 or 6 did not result in better query performance. Thus, there
seems to be very little to be gained by promoting more than 10 percent of nodes.
This observation should be rather independent of the document, so it should
generally be safe both in terms of storage consumption and query performance
to select roughly 10 percent of the nodes to act as proxies.

5.2 Storage Requirements

We compared the storage consumption of XK, XA, PR, and AD by storing
three different sets of XML documents into databases designed according to
these approaches. In these tests, the periodic table of elements and the 1998
baseball statistics, both available at [27], were used. We also studied the storage
requirements by storing an 111 MB XML document generated with XMLgen.

The relative database sizes in both tuples and megabytes are presented in Fig.
4; all values are scaled so that XK has value 1. XK performs quite well in terms
of storage consumption even when compared to XA. The difference between
XK and PR, on the contrary, as well as the difference between XK and AD is
significant in the case of deeply nested XMLgen and Baseball documents.

 0

 0.5

 1

 1.5

 2

 2.5

XMLgenBaseballElements

XK
XA
PR
AD

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

XMLgenBaseballElements

XK
XA
PR
AD

Fig. 4. Relative database sizes both in megabytes (left) and tuples (right)

5.3 Query Performance

We evaluated the query performance of our approach using synthetic documents
generated with XMLgen using factors 0.001, 0.01, 0.1, and 1; the sizes of these
documents ranged from 0.11 MB to 111 MB. Using these documents, we per-
formed four major axes, i.e., ancestor, descendant, preceding, and following,
using all nodes with label ”item” as context nodes. Since the other axes involve
more restrictive query conditions they are generally easier to evaluate than the
major axes. For this reason, we omitted the results concerning the other axes.
To test the ancestor axis in XK, for example, we used the following SQL query:

SELECT DISTINCT n2.*

FROM Node n1, Node n2, AncProxy a2

WHERE n1.name=’item’

AND a2.Doc=n1.Doc AND a2.Proxy=n1.Proxy

AND n2.Doc=a2.Doc AND n2.ProxySelf=a2.Anc

AND n2.Pre<n1.Pre AND n2.Post>n1.Post

ORDER BY n2.Doc, n2.Pre;

It is worth pointing out that the number of context nodes was rather large -
the size of the context node set ranged from 44 to 43500 - and furthermore, since
the context nodes are scattered rather evenly across the documents, all of the
axes also resulted in a large node set. These features separate our experimental
setup from many previous experiments in which only a small set of context nodes
was used. It should be obvious that all approaches can perform well with a small
amount of context nodes, but this is not a very realistic scenario. It is easy to
write XPath queries which are not very restrictive and involve massive node

sets, and hence scalability with respect to the number of context nodes is an
important factor.

The results concerning the ancestor and descendant axes presented in Fig.
5 clearly reveal the lack of scalability in XA. Even though the information about
the height of the tree is used to tighten the query conditions [10], performing
these axes is extremely expensive. In the case of 11 MB document generated
using factor 0.1, for example, XK, PR, and AD needed only seconds to perform
these operations, whereas XA needed minutes. Thus, one can argue that the
elegance of XA comes at the cost of scalability. In the case of the ancestor axis,
XK, PR, and AD were equally efficient, but in the case of descendant axis,
XK outperforms both PR and AD. Even though AD evaluates the descendant
axis completely using equijoins, it is quite clearly outperformed by XK, since it
issues much more disk reads than XK4. The good performance of descendant
axis is especially important since they are used to build the result documents as
discussed in section 4.3. The preceding and following axes are performed with
similar query conditions in all approaches, and hence the results of all approaches
for these axes are combined in Fig. 6. Only the times needed to retrieve the nodes
which satisfy the query are measured; the time for building the result documents
is not included.

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1

Q
ue

ry
 T

im
e

(s
)

XMLgen Factor

XK
XA
PR
AD

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1

Q
ue

ry
 T

im
e

(s
)

XMLgen Factor

XK
XA
PR
AD

Fig. 5. Performance for ancestor (left) and descendant (right) axes

We also compared the different approaches using MySQL 5.0, but for brevity,
these results have been omitted. Overall, MySQL provided results similar to
those obtained using SQL Server, but we found the preceding and following
axes to be much slower in MySQL than in SQL Server. This is very probably
due to the sophisticated hash join algorithms used in SQL Server and for this
reason, XK should be implemented on MySQL only if the performance of these
axes is not essential. However, since SQL server stores tens of bytes of metadata
per row the SQL Server databases were considerably larger than the MySQL

4 One should notice that SQL Server avoided the pitfall of favouring hash joins over
more efficient nested loop joins in AD. Thus, although they use some nonequijoins,
both PR and XK can indeed outperform AD.

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1

Q
ue

ry
 T

im
e

(s
)

XMLgen Factor

XK

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1

Q
ue

ry
 T

im
e

(s
)

XMLgen Factor

ALL

Fig. 6. Performance for preceding (left) and following (right) axes

databases. All in all, our results were in line with those obtained in [15], [19],
and [14].

Table 4 presents the query set used for comparing Xeek against X-Hive,
a commercial native XML database; in Table 4, abbreviation ”//” stands for
descendant-or-self axis. Queries 1 and 2 are simple path expression queries
whereas the other queries involve predicates with different selectivity. Every
element with label ”address” contains an element with label ”street”, and thus
evaluating queries 5 and 6 involves massive node sets. The predicates used in
queries 3 and 4, on the contrary, are rather restrictive, and thus queries 3 and 4
should be much easier to evaluate than queries 5 and 6. The preceding axis has
been used since it very often reveals scalability problems in XML management
systems. This is especially true if this axis is performed starting from a large set
of context nodes.

Table 4. Query set for Xeek vs. X-Hive tests

Query

1 //address

2 //address/preceding::item

3 //address[//*="Connecticut"]

4 //address[//*="Connecticut"]/preceding::item

5 //address[//street]

6 //address[//street]/preceding::item

Table 5 presents the query times and the times needed to build the result
documents as well as the number of nodes in the results set for the queries
presented in Table 4. An 111 MB synthetic XML document generated with
XMLgen was used in these tests. In the case of queries 1, 3, and 5, both Xeek
and X-Hive performed well: the result documents were obtained in a matter of
just seconds. However, it is interesting to notice that Xeek needs the time to
build the result documents whereas in X-Hive, most of the time is used to locate
the nodes. Thus, there seems room for improvement in the way Xeek builds the

result documents. As another interesting detail, one may notice that Xeek needs
quite a lot of time to build the results for queries 2, 4, and 6. This is due to the
fact that the nodes with label ”item” have generally more descendants than the
nodes with label ”address”.

Queries 2, 4, and 6, i.e., the queries involving the preceding axis, reveal
severe scalability problems in X-Hive. All of these queries took over 5 minutes
to evaluate, and thus they were timed out. In the case of queries 2 and 6, this is
rather understandable since they involve performing the preceding axis starting
from a very large set of context nodes. In the case of query 4, however, the bad
query performance is very surprising since the size of the context node set is
only 101, i.e., the size of the result of query 3. Even in the case of an 11 MB
test document, X-Hive actually needed over 5 minutes to evaluate queries 2 and
6, whereas query 4 was evaluated in just a matter of seconds. In other words,
increasing the size of the data by a factor of 10 increased the query time by a
factor of 100. Thus, one can argue that the scalability of X-Hive leaves a lot to
be desired. Xeek, on the contrary, scaled up well and the query times increased
linearly with respect to the size of the data.

Table 5. Query times for Xeek vs. X-Hive tests

Xeek X-Hive
Query (s) Build (s) Total (s) Query (s) Build (s) Total (s) Nodes

1 1.3 7.1 8.4 8.2 1.4 9.6 12715
2 1.0 35.2 36.2 >300 N/A N/A 21750
3 0.6 0.2 0.8 8.5 0.5 9.0 101
4 2.4 35.3 37.7 >300 N/A N/A 21750
5 1.2 7.1 8.3 8.3 1.4 9.7 12715
6 1.0 35.0 36.0 >300 N/A N/A 21750

6 Conclusion

This paper discussed Xeek, a method for supporting XPath axes with relational
databases. The main intuition behind our method is to store a small amount
of redundant information about the structural relationships between the nodes
of XML trees, which allows Xeek to evaluate ancestor, ancestor-or-self,
descendant, and descendant-or-self axes very efficiently. This is achieved by
selecting a small amount of inner nodes to act as proxy nodes and storing the
ancestor information for these proxies using a separate table. Our method also
provides relatively good query performance for other XPath axes, and thus we
feel that our proposal provides a good compromise between storage consumption
and query performance. This claim is supported by the results of our experimen-
tal evaluation in which Xeek performed well compared to both methods based
on relational databases and a native XML management system.

References

1. N. Bales, J. Brinkley, E. S. Lee, S. Mathur, C. Re, and D. Suciu. A framework for
XML-based integration of data, visualization and analysis in a biomedical domain.
XSym, pages 207-221, 2005.

2. D. Florescu and D. Kossmann. An XML programming language for Web service
specification and composition. IEEE Data Engineering Bulletin, 24(2): 48-56, 2001.

3. W3C. Extensible Markup Language (XML) 1.0. http://www.w3c.org/TR/REC-xml.
4. R. Krishnamurthy, R. Kaushik, and J.F. Naughton. XML-to-SQL query translation

literature: The state of the art and open problems. XSym, pages 1-18, 2003.
5. W3C. XML path language (XPath) 2.0. http://www.w3c.org/TR/xpath20.
6. W3C. XQuery 1.0: An XML query language. http://www.w3c.org/TR/xquery.
7. P.F. Dietz. Maintaining order in a linked list. In Proc. of the 14th ACM Symposium

on Theory of Computing, pages 122-127, 1982.
8. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A path-based ap-

proach to storage and retrieval of XML documents using relational databases. ACM
Transactions on Internet Technologies, 1(1): 110-141, 2001.

9. Q. Li and B. Moon. Querying XML data for regular path expressions. VLDB, pages
361-370, 2001.

10. T. Grust. Accelerating XPath location steps. ACM SIGMOD, pages 109-120, 2002.
11. L. Yuen and C.K. Poon. Relational index support for XPath axes. XSym, pages

84-98, 2005.
12. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman. On supporting contain-

ment queries in relational database management systems. ACM SIGMOD, pages
425-436, 2001.

13. O. Luoma. Modeling nested relationships in XML documents using relational
databases. SOFSEM, pages 259-268, 2005.

14. O. Luoma. Suppporting XPath axes with relational databases using a proxy index.
XSym, pages 99-113, 2005.

15. H. Jiang, H. Lu, W. Wang, and J. Xu Yu. Path materialization revisited: An
efficient storage model for XML data. ADC, pages 85-94, 2002.

16. D. Florescu and D. Kossmann. A performance evaluation of alternative mapping
schemes for storing XML data in a relational database. Technical Report, INRIA,
1999.

17. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.J. DeWitt, and J.F.
Naughton. Relational databases for querying XML documents: Limitations and op-
portunities. VLDB, pages 302-314, 1999.

18. O. Luoma. A structure-based filtering method for XML management systems.
DEXA, pages 401-410, 2004.

19. S. Prakash, S.S. Bhowmick, and S. Madria. SUCXENT: An efficient path-based
approach to store and query XML documents. DEXA, pages 285-295, 2004.

20. J. McHugh, S. Abiteboul, R. Goldman, R. Quass, and J. Widom. Lore: A database
management system for semistructured data. SIGMOD Record, 26(3): 54-66, 1997.

21. M. Brantner, S. Helmer, C.C. Kanne, and G. Moerkotte. Full-fledged algebraic
XPath processing in Natix. ICDE, pages 705-716, 2005.

22. H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nierman, S.
Paparizos, J.M. Patel, D. Shrivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIM-
BER: A native XML database. VLDB Journal, 11(4): 274-291, 2002.

23. S. Mayer, M. van Keulen, T. Grust, and J. Teubner. An injection with tree aware-
ness: Adding staircase join to PostgreSQL. VLDB, pages 1305-1308, 2004.

24. N. Tang, J. Xu Yu, K. F. Wong, K. Lü, and J. Li. Accelerating XML structural
join by partitioning. DEXA, pages 280-289, 2005.

25. http://www.x-hive.com

26. http://monetdb.cwi.nl/xml/index.html.
27. http://www.ibiblio.org/xml/examples.

