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Abstract. In this work, we address the problem of revision of OWL-DL knowl-
edge bases. We focus on belief bases revision as it has previously been shown that
OWL-DL is not AGM-compliant for revision. Previously an algorithm for belief
base semi-revision for propositional logic has been defined; in particular it has
been shown how the diagnosis problem can be translated into a revision problem.
In this work, we expand upon this work and detail an approach for performing be-
lief base semi-revision in the Description LogicSHOIN , which corresponds to
the W3C standard Web Ontology Language OWL-DL. We additionally, discuss
various optimizations to make the approach more practical.

1 Introduction

Recently there has been interest in reasoning with changing Description Logic (DL)
knowledge bases. A variety of research directions have been investigated including syn-
tactic updates [8], model-based update semantics (minimal model change) [16, 7], and
traditional belief revision approaches based on the AGM postulates [5, 4, 3]. Tradition-
ally, the distinction between update and revision is that in the former the actual state of
the world has changed (e.g., via actions of some agent), where as in the latter we incor-
porate new beliefs about a static world. The choice of which of these types ofchangeis
appropriate is driven by the application at hand; for purpose of this work, we focus on
the problem of belief revision.

The most influential work in belief revision is the AGM model [1], in which the au-
thors define three main change operations on belief states which are represented by log-
ically closed sets of sentences (referred to asbelief sets). The three operations of change
areexpansion(expanding a belief set with a new belief with no guarantee of consistency
after the operation),contraction(retracting a belief) andrevision(expansion with con-
sistency after the operation). Additionally, the authors define a set of postulates for both
contraction and revision, which specify what properties a contraction/revision operator
must meet in order to be rational.

The basic structure of beliefs assumed by the AGM model is abelief set, which is a
deductively closed (and hence in general infinite) set of formulae. Due to the difficulty
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of computing with belief sets as well as representational issues, there has been substan-
tial work on usingbelief basesas an alternative structure [6, 9, 17, 18]. Belief bases are
not closed under logical consequence and are usually interpreted as basic beliefs from
which additional beliefs (the belief set) can be derived. In [6, 10, 13] the AGM change
operators are defined in terms of belief bases. Additionally, [12] definessemi-revision,
which differs with the belief base revision model in that the added belief may or may
not be accepted (discussed further in Section 2.2).

In this work, we address the problem of semi-revision of finite OWL-DL belief
bases. We focus on belief bases as it has previously been shown that OWL-DL is not
AGM-compliant for contraction [5, 4, 3] (therefore it can be shown thatSHOIN is not
AGM compliant for revision); additionally, one of the biggest short comings in our pre-
vious work on syntactic updates [8] is that we do not address resolving inconsistencies
after an update. In particular, we extend prior work on belief base revision for proposi-
tional logic [21], which allows us to define an algorithm for belief base semi-revisions in
the Description LogicSHOIN (which corresponds to the W3C standard Web Ontol-
ogy Language OWL-DL). We additionally, discuss various optimizations which make
the approach practical.

2 Preliminaries

In this section we provide background information relevant to this paper. First we dis-
cuss the Description LogicSHOIN ; this is then followed by details regarding be-
lief base revision. Lastly we discuss finding justifications in the Description Logic
SHOIN .

2.1 SHOIN Description Logic

OWL-DL is a syntactic variant of the Description LogicSHOIN [14], with an OWL-
DL ontology corresponding to aSHOIN knowledge base. In this section, we briefly
present the syntax and semantics of the Description LoginSHOIN .

Let NC,NR,NI be non-empty and pair-wise disjoint sets ofatomic concepts, atomic
rolesandindividualsrespectively. The set ofSHOIN roles (roles, for short) is the set
NR ∪ {R−|R ∈ NR}, whereR− denotes the inverse of the atomic roleR. Concepts are
inductively using the following grammar:

C← A | ¬C | C1 uC2 | C1 tC2 | ∃R.C | ∀R.C | ./ nS | {a}

whereA ∈ NC, a ∈ NI , C(i) aSHOIN concept,R a role,S a simplerole 4 and./∈ {≤
,≥}. We write> and⊥ to abbreviateC t ¬C andC u ¬C respectively.

A role inclusion axiomis an expression of the formR1 v R2, whereR1,R2 are roles.
A transitivity axiomis an expression of the formTrans(R), whereR ∈ VR. An RBox
R is a finite set of role inclusion axioms and transitivity axioms. ForC,D concepts, a
concept inclusion axiomis an expression of the formC v D. A TBox T is a finite set of
concept inclusion axioms. An ABoxA is a finite set of concept assertions of the form

4 See [14] for a precise definition of simple roles
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C(a) (whereC can be an arbitrary concept expression) and role assertions of the form
R(a,b).

An interpretationI is a pairI = (W, .I), whereW is a non-empty set, called the
domainof the interpretation, and.I is the interpretation function. The interpretation
function assigns toA ∈ NC a subset ofW, to eachR ∈ NR a subset of ofW×W and to
eacha ∈ NI an element ofW. The interpretation function is extended to complex roles
and concepts as given in [14].

The satisfaction of aSHOIN axiomα in an interpretationI, denotedI |= α is
defined as follows: (1)I |= R1 v R2 iff (R1)I ⊆ (R2)I; (2) I |= Trans(R) iff for every
a,b, c ∈ W, if (a,b) ∈ RI and (b, c) ∈ RI, then (a, c) ∈ RI; (3)I |= C v D iffCI ⊆ DI;
The interpretationI is a model of the RBoxR (respectively of the TBoxT) if it satisfies
all the axioms inR (respectivelyT). I is a model ofK = (T,R), denoted byI |= K, iff
I is a model ofT andR.

2.2 Belief Base Revision

As discussed earlier, belief bases are sets of formulae which are not closed under logical
consequence and are usually interpreted as basic beliefs from which additional beliefs
(the belief set) can be derived. [11] introduces a construction for contraction operators
for belief bases calledkernel contraction. The general idea behind this operator is that
if at least one element from eachα-kernel (which is a minimal subset of a belief base
that impliesα) is removed from the belief base, then the base will no longer implyα.
[11] formally defines the kernel operator as follows:

Definition 1. [11] The kernel operationy is defined such that for any set B of formulas
and any formulaα, X ∈ By α iff:

1. X⊆ B
2. X |= α, and
3. for all Y, if Y⊂ X, Y 6|= α

By α is a referred to as a kernel set, and its elements are referred to asα-kernels.

Note that in general, there are arbitrarily many ways to resolve inconsistencies be-
tween new information and our current knowledge. For example, if we hold the beliefs
that (i) Everyϕ is aψ and (ii) w is aϕ, and we revise our knowledge with (iii)w is not
a ψ, we are faced with an option: we could either retract (i) or retract (ii), therefore a
choice must be made. Anincision function, defined below (originally defined in [11]),
determines our choice in such cases; that is it selects the formula to be removed from
everyα-kernel when we contractα.

Definition 2. [11] An incision function for B is a functionσ such that for any formula
α:

1. σ(By α) ⊆
⋃

(By α), and
2. If X , ∅ and X∈ By α, then X∩ σ(By α) , ∅

Kernel semi-revisionis then defined as follows [12]:
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Definition 3. [12] The kernel semi-revision operator of B based on an incision function
σ is denote?σ and defined such that for all sentencesα:

B?σα = B∪ {α} \ σ((B∪ {α}) y ⊥)

This can be thought of as a two-step process: we first addα to B, and second, remove
inconsistencies inB if there are any. The name “semi-revision” comes from the fact that
in our revision process, the formulaα that we revise our knowledge with may not be
accepted. In other words,α might be removed as part of the second step.

[12] goes on to define the following postulates that must be satisfied for any operator
to be considered a kernel semi-revision operator.

Proposition 1. [12] An operator? is a kernel semi-revision operator if and only if for
all set B of sentences it satisfies the following postulates:

1. ⊥ < Cn(B?α) (consistency)
2. B?α ⊆ B∪ {α} (inclusion)
3. If β ∈ B \ B?α, then there is some B′ ⊆ B ∪ {α} such that⊥ < Cn(B′) and⊥ ∈

Cn(B′ ∪ {β}) (core-retainment)
4. (B+ α)?α = B?α (pre-expansion)
5. If α, β, then B?α = B?β (internal exchange)

[21] presents an algorithm for belief base semi-revision for propositional logic; in
particular, the author shows how the diagnosis problem as described by [19] can be
translated into a revision problem.

2.3 Justifications in OWL-DL

Previously, [2] introduced axiom pinpointing for localizing the set of axioms responsi-
ble for inconsistencies in DL knowledge bases for the purpose of computing all exten-
sion of default theories. Recently, [15] extended this work for the purpose of debugging
and repairing OWL ontologies; in [15] the tableau algorithm is slightly modified to
maintain the justifications of entailments. Given this work it is possible to find thejusti-
ficationsfor arbitrary entailments in OWL-DL knowledge bases. [15] formally defines
a justificationas follows:

Definition 4. [15] Let K |= αwhereα is a sentence. A fragmentK′ ⊆ K is a justification
for α in K if K′ |= α, andK′′ 6|= α for everyK′′ ⊂ K′.

[15] also provides an algorithm for finding all justifications using axiom tracing and
Reiter’s Hitting Set Tree (HST) algorithm [19] (a similar approach is used in [21] for
propositional calculus). The intuition behind the usage of the Hitting Set relies on the
fact that, in order to remove an inconsistency from a KB, one needs to remove from KB
at least one axiom from each justification for that inconsistency. The approach starts
by adding the negation ofα and finds an initial justification (subset ofK) using axiom
tracing [15]. Following this, a hitting set tree is initialized with the initial justification
as its root; then it selects an arbitrary axiom (call iti) in the root and generates a new
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node with an incoming edge whose label corresponds to the removed axiom. The algo-
rithm then tests for consistency with respect to theK \ {i}. If it is inconsistent, then we
obtain another justification forα w.r.t K\{i}. The algorithm repeats this process, namely
removing an axiom, adding a node, checking consistency and performing axiom trac-
ing until the consistency test turns positive. Due to space limitation, further details are
omitted here; however they can be found in [15]. We follow [15] in denoting the set of
all justifications forα in aSHOIN knowledge baseK with JUST(α,K).

3 Belief Base Revision in OWL-DL

As mentioned ealier, [21] presents an algorithm to kernel semi-revision using Reiter’s
consistency-based diagnosis and minimal hitting sets algorithm [19]. The author uses
Reiter’s algorithm to compute the minimal set of justifications for the inconsistency in
the belief base. Since the state of the art DL reasoners are tableau-based, an analogous
approach is needed for computing all minimal justifications for some entailment in an
OWL-DL knowledge base. Here we apply the approach presented in [15] to achieve
this task. More specifically, we use the approach of [15] to compute theα-kernels (in-
troduced in [11]) of an OWL-DL knowledge base. With this ability, the results of [11]
on revising belief bases easily follow for OWL-DL.

3.1 A Kernel Operator for OWL-DL

We now argue that the previously mentioned approach for finding minimal justifications
in OWL-DL can be used as a kernel operator. Specifically we show thatJUST(α,K) =⋃

(K y α).

Observation 1 For anySHOIN knowledge baseK and beliefα, JUST(α,K) =
⋃

(K y
α).

By definition,JUST(α,K) contains all justifications forK |= α. We can easily see
that this set satisfies criteria 1, 2, and 3 from Definition 1. Letj ∈ JUST(α,K). By
definition, j ⊆ K, thereby satisfying criteria 1. Sincej justifiesα, we have j |= α
thereby satisfying 2. Finally, since justifications are minimal, we obtain condition 3,
namely j′ ⊂ j, j′ 6|= α. Thus,JUS T(α,K) is a kernel operator forSHOIN knowledge
bases.

3.2 A Kernel Semi-Revision Operator for OWL-DL

In this section we formally define a kernel semi-revision operator for OWL-DL knowl-
edge bases. First we must define some incision function; in general such a function will
be application specific. For illustration purposes, we follow [21] and define a minimal
incision function for OWL-DL.

Definition 5. In the following we assume all set of formulae areSHOIN formulae.
Given aSHOIN knowledge baseK, aSHOIN–minimal incision functionσSHOIN
is a function mapping a set of sets of formulae into a set of formulae, such that for any
set of formulae S :
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1. σSHOIN (S) ⊆
⋃

S
2. If X , ∅ and X∈ S then X∩ σSHOIN (K) , ∅
3. If for all X ∈ S , X∩ K , ∅, thenσSHOIN (S) ⊆ K, and
4. σSHOIN (S) is the smallest set satisfying conditions 1–3

Next we define the semi-revision operator for OWL-DL.

Definition 6. Given aSHOIN knowledge baseK and formulaα, we define the oper-
ator ?σSHOIN such that:

K?σSHOINα = (K ∪ {α}) \ σSHOIN (JUST(⊥,K ∪ {α}))

It follows from this definition and our previous observation that ?σSHOIN is a kernel
semi-revision operator. We obtain the following easy consequence:

Proposition 2. ?σSHOIN satisfies the kernel semi-revision postulates.

4 Base Revision Algorithm

The belief base semi-revision algorithm using the previously mentioned techniques is
shown below in Figure 1. First the underlying KB is expanded with the update; if the
KB is inconsistent after the expansion, then all justifications for the inconsistency are
found using the previously discussed approach for computingJUST for OWL-DL KBs.
Following this, the applications specific incision function, generally denotedIncision
here, is used to select the axioms and/or assertions to remove from the updated KB.

procedure BaseRevision(K, α):
Input:

(1) An initial SHOIN knowledge baseK
(2) An updateα

Return:
Revised knowledge base

K := K ∪ α
if K is inconsisent:
kernels:= JUST(⊥,K)
K := K \ Incision(kernels)

return K

Fig. 1.Pseudo-code for base revision algorithm.

4.1 Performance Issues

In this section we discuss a variety of performance issues with respect to the revision
algorithm presented in Figure 1. We discuss each issue and then present possible opti-
mizations.
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Incremental Consistency Checking The first step in the algorithm previously pre-
sented is rechecking consistency of the KB after it has been expanded with an update.
When the underlying KB is very large, this process can be require substantial compu-
tation time, even when the updates are trivial; this is related to the inherent complexity
of DL reasoning. There has, however, been recent work on incremental consistency
checking of the Description LogicsSHIQ andSHOQ under syntactic ABox updates
(which correspond directly to belief base expansion) [8].

More specifically, [8] presents an approach for incrementally updating tableau com-
pletion graphs under syntactic ABox updates, therefore providing a mechanism to in-
crementally determine if the updated KB is consistent. DL tableau-based algorithms
decide the consistency of an ABoxA w.r.t a KBK by trying to construct (an abstraction
of) a common model forA andK, called acompletion graph. Formally, a completion
graph for an ABoxA with respect toK is a directed graphG = (V,E,L, ,̇). Each node
x ∈ V is labeled with a set of conceptsL(x) and each edgee = 〈x, y〉 with a setL(e)
of role names (the binary predicate,̇ is used for recording inequalities between nodes).
The update algorithm adds new (resp. removes existing for deletions) components (edge
and/or nodes) induced by the update to a completion graph; after this, standard tableau
completion rules are re-fired to ensure that the model is complete. Therefore the previ-
ous completion graph is updated such that if a model exists (i.e, the KB is consistent
after the update) a new completion graph will be found. In [8], we observed that the
approach demonstrated orders of magnitude performance improvement and performs
in real time for a variety of realistic ontologies. This is shown here for varying sized
datasets and addition updates from the Lehigh University Benchmark (LUBM)5 (1, 2
and 3 Universities) in Figure 2. The optimized version of Pellet is denoted by ’Opt.’.
It can be observed in Figure 2 that for updates of varying sizes, the algorithm pro-
vides dramatic performance improvements and scales for various update sizes. We note
here that similar results were observed for deletion updates as well. Further details are
omitted here, however they can be found in [8]. It is clear that applying this technique
when rechecking consistency after the expansion will provide clear performance im-
provements. We note that the approach is currently only applicable for ABox updates;
however, we are in the progress of extending the approach for TBox updates, as well as
for full support of OWL-DL.

Incremental Consistency Checking for Kernel OperatorsA main performance issue
with this approach is related to efficiently computing allα-kernels (i.e., computing all
justifications for an entailment). In the naive implementation, computing the minimal
hitting sets [15] requires substantial number of consistency checks; this is evident as the
algorithm incrementally removes axioms and performs consistency checks at each node
in the HST. Figure 3 shows current computation times for finding all justification in a
variety of ontologies [15]. It can be seen that in some cases, the algorithm performs quite
well on average; in some cases even less than 2 seconds. However in other ontologies,
such as Tambis, the approach requires substantially more time. If a revision approach is
to be utilized in applications which are time sensitive, then such performance may not
be acceptable.

5 LUBM Homepage; http://swat.cse.lehigh.edu/projects/lubm/
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Fig. 2.Addition Updates of LUBM datasets

In order to make this approach more practical it can be noted that our previous work
on incremental consistency checking [8] can be leveraged here as well. Rather than
checking for consistency from scratch at each iteration of the algorithm to compute all
justifications, the incremental approach can be used [15]6. More specifically, we can
store the completion graph generated by the tableau algorithm at every node of the HST
tree and incrementally modifying the graph for every change made (axiom removed).
This will clearly save the time required in rechecking consistency from scratch for each
new node of the tree.

5 Discussion and Related Work

We briefly point out here that one main limitation of the approach presented in this
paper is that the revision approach is syntactic in nature (this is true for all belief base
revision operators). That is, the revision performed is dependent on the syntactic form
of the explicit axioms in the knowledge base. However, we feel that such an approach
is promising and worth investigating as it has previously been shown that the more
traditional AGM model is not applicable in a variety of Description Logics, including
SHOIN [5, 4, 3].

There has been a great deal of related work on belief base revision (see [6, 9, 17, 18,
10, 13, 12]); such an approach is more attractive from a computational standpoint than
the more general belief set revision [1]. From a Semantic Web standpoint, belief base

6 Thanks to Aditya Kalyanpur and Vladimir Kolovski for this insight.
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Fig. 3.Performance for Computing All Justifications in a Variety of Ontologies

revision is preferable for an additional reason, namely a negative result about belief set
revision and Description Logics [5, 4, 3]. Recently, there has also been interest in spec-
ify formal update semantics for Descriptions Logics [16, 20, 7]; our work here differs
in that we address revision ofSHOIN belief bases. Lastly, as previously discussed,
[21] presents an algorithm for belief base semi-revision for propositional logic. In this
work, we expand upon [21] and provide an approach for performing revisions in the
Description LogicSHOIN .

6 Conclusions and Future Work

While well-studied and interesting from a theoretical perspective, belief set revision of
the type introduced by the [1] is computationally intractable, making it unrealistic for
use in many practical knowledge representation systems. Work on belief base revision
attempts to fix these issues by limiting the set of formulae that can be revised. A par-
ticularly elegant algorithm for belief base revision, based on Reiter’s work on hitting
sets for diagnosis, was introduced in [21]. We have shown that an analogue of the tech-
nique in [21] for OWL-DL, namely finding of minimal justifications inSHOIN , can
be used for revising OWL-DL knowledge bases. Additionally, we have coupled this
method with the incremental consistency checking developed in [8], which (based on a
preliminary OWL-DL knowledge bases) we hypothesize will out peform a naive belief
revision algorithm that recomputes consistency from scratch. For future work, we plan
to carry a detailed evaluation of our combined approach for a belief revision system to
confirm this hypothesis.
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