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Abstract. While it has been argued that knowledge representation for the World
Wide Web must respect the open world assumption due to the “open” nature of
the Web, users of the Web Ontology Language (OWL) have often requested some
form of non-monotonic reasoning. In this paper, we present preliminary optimiza-
tions and an implementation of a restricted version of Reiter’s default logic as an
extension to the description logic fragment of OWL, OWL DL. We implement the
decision procedure for this logic in the OWL DL reasoner Pellet, and exploit its
support for incremental reasoning through update to improve performance. We
also extend an open source ontology editor SWOOP with default rules editing
support.

1 Introduction

The WebOnt Working Group identified two objectives3 concerning, at least potentially,
non-monotonicity, and yet the resulting Web Ontology Language (OWL) is thoroughly
monotonic. Both objectives (some form of defaults, i.e., “default property values”, and
an unspecified version of the closed world assumption) could be plausibly met with
Reiter’s default logic, which is one of the most studied non-monotonic logics.

Reiter’s default logic (or simply default logic henceforth), while very expressive,
is, like many non-monotonic formalisms, known to be computationally difficult even
in the propositional case. In [1], Baader and Hollunder showed that even a restricted
form of defaults coupled with a description logic that contains a smaller set of class
constructors than OWL-DL4 is undecidable. They also showed that if one restricted the
defaults to apply to only to named individuals (or, equivalently, restricted the logic to
closed defaults), then a robust decidability ensued. The decision procedure proposed in
that paper proved difficult to implement with reasonable efficiency and the proposal has
languished ever since.

However, the state of the art in description logic reasoners has advanced, and there
have been recent developments in the OWL-DL reasoner Pellet that suggest that a

3 See O2 and O3 in the use cases and requirements document at http://www.w3.org/TR/webont-
req/

4 The logic that Baader and Hollunder use (ALCF) incorporates feature agreements, which are
not part of OWL-DL, so we cannot claim it is a subset.



2

reasonable implementation of a default logic reasoner can be achieved. These devel-
opments include tableau tracing for the description logicSHOIN and incremental
reasoning support. In this paper, we present a prototype implementation of the “termi-
nological defaults” of Baader and Hollunder based on the above developments. Tableau
tracing allows us to useSHOIN as the underlying description logic of the terminolog-
ical defaults, hence the term OWL defaults. We provide UI for this defaults reasoner by
extending open source ontology editor Swoop [10]. We show through empirical evalu-
ation that this prototype performs reasonably overall, but also does fairly well in some
cases when compared to the propositional default logic reasoner, XRay.

2 Background

2.1 Default Logic

Reiter’s default logic is a nonmonotonic formalism for expressing commonsense rules
of reasoning. These rules, called default rules (or simplydefaults), are of the form:

α : β

γ

whereα, β, γ are first-order formulae. We sayα is theprerequisiteof the rule,β is
the justificationandγ theconsequent. Intuitively, a default rule can be read as: if I can
prove the prerequisite from what I believe, and the justification is consistent with what
I believe, then add the consequent to my set of beliefs. For a set of default rulesD, we
denote the sets of formulae occurring as prerequisites, justifications, and consequents
in D by Pre(D), Jus(D), andCon(D), respectively.

Definition 1 A default theory is a pair〈W, D〉 whereW is a set of closed first-order
formulae (containing the initial world description) andD is a set of default rules. A
default theory is closed if there are no free variables in its default rules.

Possible sets of conclusions from a default theory are defined in terms ofextensions
of the theory. Extensions are deductively closed sets of formulae that also include the
original set of facts from the world description. Extensions are also closed under the
application of defaults inD - we keep applying default rules as long as possible to
generate an extension.

Default rules can conflict. A simple example is when two defaultsd1 andd2 are
applicable yet the consequent ofd1 is inconsistent with the consequent ofd2. We then
typically end up with two extensions: one where the consequent ofd1 holds, and one
where the consequent ofd2 holds.

2.2 Terminological Default Theories

In this section, we present some definitions from [1] and their algorithm for computing
all extensions of a default theory (which was the basis for our implementation).
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Definition 2 (Terminological Default Theory) A terminological default theory is a
pair 〈W,D〉 whereW is a SHOIN knowledge base andD is a finite set of default
rules whose prerequisites, justifications, and consequents are concept expressions.

A terminological default theory is not necessarily decidable - in fact, [1] shows that a
default theory〈W,D〉 whereW is anALCF logic is undecidable due to skolemization
in Reiter’s treatment of open defaults. In order to retain decidability, [1] proposes a
restricted semantics: default rules are only applicable to named individuals. Thus, a set
of defaultsD is interpreted as representing the closed defaults obtained by instantiating
the free variable by all individual names occurring inW. Baader and Hollunder also
show that as long as the underlying logic language is decidable, with this restricted
semantics the problem of computing all of the extensions is also decidable.

Reasoning with Terminological Defaults For sake of completeness, we describe in
this section the algorithm from [1] for computing all of the extensions of a terminolog-
ical default theory. Our implementation and optimizations are based on this algorithm.

Definition 3 (Grounded Set of Defaults) Let W be a set of closed formulae, and D be
a set of closed defaults. We defineD0 = ∅ and, fori ≥ 0,

Di+1 = Di ∪ {d =
α : β

γ
d ∈ D andW ∪ Con(Di) |= α}

ThenD is called grounded inW iff D =
⋃

i≥0Di

The main reasoning service provided is the procedure that computes all of the exten-
sions of a terminological default theoryD. The procedure works in a top-down fashion:
it starts with the set of all ground defaultsD0, and then inspects if there is a conflicting
defaultd in that set (i.e., the justification ofd conflicts withW ∪ Con(D0)). There are
two ways to eliminate the conflict and the procedure does both. First, it simply removes
the defaultd fromD0 and applies itself again to the smaller setD0 \ d. The other way
is to keepd in D0, and prune other defaults that cause the conflict. In other words, for a
conflicting defaultd, the procedure is also invoked with the maximal subsetsD′ of D0

s.t.d ∈ D′ and the justification ofd does not conflict withW∪Con(D′). It is shown in
[1] how finding the maximal subsets ofD0 above reduces to the problem of computing
maximally consistent subsets: given two setsW andD0, find the maximal subsets of
D′ ∈ D0 s.t.W ∪ D′ is consistent.

3 Optimizations

To the best of our knowledge there has been no adaptation of Baader and Hollunder’s
algorithm to OWL-DL. Recently, however, there has been work in Description Logics
that has allowed us to adapt the algorithm and optimize it to produce a working imple-
mentation. First, there is a practical tableau tracing algorithm [11] with low overhead
which can be used solve the problem of computing maximally consistent subsets for
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more expressive logics (up toSHOIN ). Second, there has been recent work on op-
timizing reasoning for dynamic Aboxes [8]. This work allows us to optimize the con-
sistency check every time there is an update to the working set of defaultsD0. Third,
we propose a technique for generating possible (candidate) extensions in a bottom-up
fashion. We discuss all of these techniques in this section.

3.1 Finding Maximally Consistent Subsets

In this section, we explain how we apply recent work in tableau tracing and debugging
OWL ontologies to solve the problem of finding the maximal subsetsD′ ∈ D such
thatCon(D′)∪W is consistent. The approach in [1] introduces clash formulae for this
problem - instead we usejustifications. A justification for an ABox inconsistency is a
minimal fragment of the KB in which the ABox is inconsistent. Justifications are com-
puted by a tracing function that records the changes in the tableau and the axioms and
non-deterministic choices that are responsible for those changes. We refer the reader to
[11] for more details.

Every justification contains DL axioms which are responsible for the particular
clash. In our case, these axioms come either fromW or Con(D). A justification where
all of the axioms come fromW indicates thatW by itself is inconsistent. In this paper,
without loss of generality, we will assume thatW is consistent5. Thus, every justifica-
tion will contain at least one axiom fromCon(D).

In order to find the maximally consistent subsets ofCon(D), the first step is to
find all of the justifications for the inconsistency ofW∪Con(D). Using the information
from those justifications, then we can determine the minimum number of axioms com-
ing from Con(D) that should be removed to renderW∪Con(D) consistent. We use the
algorithm from [9] to find all justifications: it does tableau tracing to find one justifica-
tion and Reiter’s Hitting Set Tree (HST) algorithm [14] to find all other justifications.
The intuition behind the usage of the Hitting Set relies on the fact that in order to make
the KB consistent, one needs to remove from the KB at least one axiom from each
justification.

After computing all justifications, the next step is to determine what is the smallest
set of axioms that we need to remove to make it consistent. Because of the nature of the
justifications, we only need to remove one axiom from each justification to make the
KB consistent. It is important to note here that even though the axioms in a justification
can come from eitherW or Con(D), we are only interested in removing axioms from
Con(D). Thus, we pre-process each justification, discarding the axioms coming from
W and only leaving the axioms fromCon(D).

At this point, we apply Reiter’s HST algorithm again on the pruned justifications to
obtain the minimum set cover. For example, for the set of justificationsS = {{a}, {a, b}, {c}, {c, d}}
the minimal hitting set is{a, c}. This minimal hitting set gives us the smallest set of ax-
ioms fromCon(D) that we need to remove to makeCon(D) ∪W consistent. Note that
at this point, there are no consistency checks performed while computing the minimal
hitting sets (unlike the previous application of Reiter’s algorithm) and the justifications

5 In the caseW is inconsistent, then there is only one extension consisting of all of the formulae
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contain less. Nonetheless, we have observed that this task is the bottleneck of the system
due to the exponential nature of the hitting set tree algorithm.

3.2 ABox Updates

In the procedure described in Section 2.2 often there are incremental changes to the
working set of defaultsD0: either the conflicting defaults is removed, or a minimal set
of other defaults that cause the conflict. These modifications are equivalent of remov-
ing (and adding) type assertions toW∪ Con(D0), thus reasoning time overall would
improve if we used a DL reasoner optimized for ABox updated.

Incremental Consistency CheckingThe recent work that we used was [8], which is an
approach for incrementally updating tableau completion graphs under ABox updates.
Their idea is not to throw away the old completion graph after an update. Instead, the
update algorithm adds new (resp. removes existing for deletions) components (edge
and/or nodes) induced by the update to the old completion graph; after this, standard
tableau completion rules are re-fired to ensure that the model is complete. Therefore
the previous completion is updated such that if a model exists (i.e, the KB is consistent
after the update) a new completion graph will be found. In [8], it was observed that
updates did not have a large effect on the existing completion graph, therefore orders of
magnitude performance improvements are achieved.

Applying Incremental Reasoning The incremental reasoning techniques can be ap-
plied in a number of places in the algorithm from [1] to improve overall performance.
First, we use them to compute the largest ground subset of rules - the pseudo-code for
this procedure is given in Figure 3.2.

function Find-Largest-Grounded-Subset(W,D)
begin
(1) Dl = ∅, changed = true
(2) while changed do
(3) changed = false
(4) foreachdi = α : β/γ ∈ D \ Dl

(5) if W ∪ Con(Dl) |= α then
(6) incupdate(W, γ, add)
(7) Dl = Dl ∪ {di}
(7) changed = true
(8) return Dl

end

Fig. 1. Pseudo-code to get the largest grounded subset. It is important to note line (6) which in-
crementally updates the world descriptionW with a new type assertion. In line (5), to check
whetherW ∪ Con(Di) |= α we simplyincupdate(W,¬α, add) and inspect the updated com-
pletion graph.
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Another application of the ABox updates is in the procedure of finding all justifi-
cations (Section 3.1). While building the hitting set tree, instead of rebuilding the com-
pletion graph from scratch (when removing or adding axioms) we update only those
portions affected by the change.

3.3 Generating Candidate Extensions

Considering that the bottleneck of the algorithm that computes the extensions is in
the subtask that computes the maximally consistent subsets (empirical results are in
Section 5), we introduce here another optimization aimed at reducing the number of
calls to the afore-mentioned subtask. The purpose of this optimization is to find the
obvious conflicts and generate approximate extensions before the algorithm in [1] is
used. The optimization is based on the idea of generating extensions bottom-up, as
explored in [12, 3]. Defaults that conflict are placed into separate extensions. However,
when determining whether defaultsd1 andd2 conflict, we simplify the conflict detection
by taking only the world descriptionW into account, and ignoring the current extension.
Following we provide a definition of obviously conflicting defaults.

Definition 4 (Obvioisly Conflicting Rules) For a default theory〈W,D〉we define two
closed defaultsd1, d2 ∈ D to be obviously conflicting iff at least one of the following
holds:

W ∪ Con(d1) |= ¬Jus(d2) , W ∪ Con(d1) |= ¬Con(d2),
W ∪ Con(d2) |= ¬Jus(d1) or W ∪ Con(d2) |= ¬Con(d1)

To find all of the obvious conflicts, we use a naiveO(N2) algorithm whereN is
the number of closed defaults. Note that in this case we can again exploit incremental
reasoning techniques. Using the information about the conflicts, we proceed to generate
possible extensions. Since the extensions are built only on the basis of the simplified
idea of obvious conflicts, and are different from extensions in terminological default
theories, we call themcandidateextensions.

Definition 5 (Candidate Extension) Let T = 〈W,D〉 be a closed default theory. Let
Dg = {α : β/γ | α : β/γ ∈ D andW |= α}.

LetS0 = ∅ and∀i ≥ 0 define:

Si+1 = Si ∪ {d | d ∈ Dg and there is noh s.t.h ∈ Si and conflict(d,h)}

ThenS ∪ {D \ Dg} is a set of generating defaults of a candidate extension iff
S =

⋃
i≥0 Si.

To compute the candidate extensions, we follow the above definition: working only
with the set of defaults that is ground w.r.t. the world descriptionW, we build candidate
extensions using backtracking search making sure that no two ”obviously” conflicting
defaults are in the same extension. Then to each generated extension we append the
set of non-ground defaults (defaults not used in the search). These candidate extensions
are passed to the main (top-down) procedure where the rest of the conflicts are found
and pruned. We have evaluated the impact of candidate extensions (results available in
Section 5) and the initial results are encouraging.
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4 Implementation

We have a preliminary implementation of our optimizations. It is provided as an exten-
sion to an open source DL reasoner [13] and it providesrealizationof individuals with
terminological default rules, with either credulous or skeptical reasoning. We have also
provided a UI for defaults by extending the open source OWL Ontology editor Swoop
[10]. More specifically, we added support for default rules editing (shown in Figure 2)
and informing the user of the inferences made by the rules. Also,we update the current
ontology with the set of inferred facts from the defaults.

Fig. 2.Screenshot of defaults editor

5 Evaluation

To evaluate our implementation, we used an IBM ThinkPad T42 with Pentium Centrino
1.6GHz processor and 1.5GB of memory. First we show the performance benefits of in-
cremental reasoning support and generating candidate extensions. The ontologies used
for these tests were modified versions of the Lehigh University Benchmark (LUBM)[7],
with two open default rules of the Nixon diamond shape. The number of extensions is2i

(Columnext.), wherei is the number of ’Nixon’ individuals.Performance results (times
in seconds) are shown in Table 1.Candext is the time spent generating the candidate
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extensions,groundedis the time spent computing largest grounded subsets, andHST is
the time spent computing maximally consistent subsets. The benefit of candidate exten-
sions becomes obvious in cases with more extensions for a default theory.

Size fully-optimized updates-only not-optimized
indsext.candext HST totalgrounded HST totalgrounded HST total
50 8 .291 .300 .631 .803 .770 1.513 .952 1.671 2.553
100 8 .731 .3111.122 1.192 .861 2.003 2.585 1.902 4.447
200 8 2.504 .4303.084 1.9831.101 3.165 11.446 2.93414.190
50 64 .2911.2411.933 3.5474.364 8.462 3.46610.36514.141
100 64 .7611.4522.763 4.4085.08610.515 5.98714.05221.601
200 64 2.6131.9935.597 6.6117.61016.614 20.29220.47643.072

Table 1. Comparison of three versions of pellet-defaults.Not-optimized does not generate any
candidate extensions or perform reasoning with updates.Updates-only, includes the incremental
reasoning support but not the candidate extensions.Fully-optimized includes all of the tech-
niques presented in this paper.

Next, we present a comparison of our tool with XRay [5], which is a popular Prolog-
based implementation for query-answering inpropositionaldefault logics, and smodels
[12], an implementation of the stable model semantics for logic programs with negation
as failure. The first set of defaults rules that we used was a set of sample defaults on
XRay’s homepage [6]:

d1 =
Student : Student

Adult
d2 =

Student : Student

¬Employed
d3 =

Student : Adult

¬Married

d4 =
Adult : ¬Student

Employed
d5 =

Adult : ¬Student

Married

This theory has only one extension (where only{d1, d2, d3} are fired for each
named individual). Unfortunately, since (to the best of our knowledge) smodels does not
support classical negation, we could not evaluate its performance for these test cases.

The second test case is a default theory with only two open defaults, of the Nixon
diamond shape. Results are shown in Table 2. In the case when there are few extensions,
our approach outperforms XRay, even though our algorithm is not specifically tuned for
propositional default logics. In the second example, in cases with a lot of extensions,
we do not fare as well.

6 Related Work

The majority of reasoners for default logic focus onpropositionaldefault theories,
where quantifiers are not allowed. Two capable systems in this group that are com-



9

Type and Size of KB Pellet-defaults XRaysmodels
Type Size Ext. grounded HST total total total

xray ex.
50 1 .181 .370 .615 1.472 N/A
100 1 .5 .541 1.090 4.637 N/A
500 1 15.1421.71215.252timeout N/A

Nixon
3 8 .03 .15 .2 .03 .02
6 64 .130 .280 .63 .11 .04
11 2048 2.1833.3751.0745 .180 1.444

Table 2.Evaluation Results for computing all of the extensions.

parable in functionality include XRay [5] and DeReS [3]. However, the restricted ex-
pressivity of the languages these reasoners handle make them of limited interest for
OWL reasoning. It would be unrealistic to ignore many of OWL’s key constructs−e.g.
existential, universal, and cardinality restrictions−for the benefit of adding default rules.

Smodels [12] and dlv [4] are both efficient implementations of the answer set se-
mantics. Since the answer set (or stable models) semantics for logic programs can be
embedded into Reiter’s default logic (an answer set is analogous to a default theory
extension), these systems can also be seen as default logic reasoners. The main differ-
ence with our approach is that we are description logic-based, whereas they use logic
programming techniques.

7 Discussion and Future Work

It is obvious from the evaluation that our approach does not work well with default the-
ories with lots of extensions. The reason is that the number of extensions is determined
by the number of conflicting rules. Every time a conflicting default is detected, the sub-
task to compute the maximally consistent subsets procedure is executed (which is the
bottleneck of our system). A goal for future optimizations could be to avoid calling this
subtask as much as possible. We have taken the first step with the bottom-up generation
of candidate extensions. However, further work is needed. We believe it is possible to
achieve much more accurate and efficient generation of candidate extensions, based on
the techniques in [12, 3, 2].

In terms of expressivity, an important next step would be to handle one of the many
prioritized default logics, where default rules are partially ordered to determine pre-
ferred extensions.
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