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1 Article Summary

Learning Automata (LA) are adaptive decision making devices suited for operation in unknown
environments [12]. Originally they were developed in the area of mathematical psychology and
used for modeling observed behavior. In its current form, LA are closely related to Reinforce-
ment Learning (RL) approaches and most popular in the area of engineering. LA combine fast
and accurate convergence with low computational complexity, and have been applied to a broad
range of modeling and control problems. However, the intuitive, yet analytically tractable concept
of learning automata makes them also very suitable as a theoretical framework for Multi agent
Reinforcement Learning (MARL).

Reinforcement Learning (RL) is already an established and profound theoretical framework
for learning in stand-alone or single-agent systems. Yet, extending RL to multi-agent systems
(MAS) does not guarantee the same theoretical grounding. As long as the environment an agent is
experiencing is Markov, and the agent can experiment sufficiently, RL guarantees convergence to
the optimal strategy. In a MAS however, the reinforcement an agent receives, may depend on the
actions taken by the other agents acting in the same environment. Hence, the Markov property no
longer holds. And as such, guarantees of convergence are lost. In the light of the above problem it
is important to fully understand the dynamics of multi-agent reinforcement learning.

Although, they are not fully recognized as such, LA are valuable tools for current MARL
research. LA are updated strictly on the basis of the response of the environment, and not on the
basis of any knowledge regarding other automata, i.e. nor their strategies, nor their feedback. As
such LA agents are very simple. Moreover, LA can be treated analytically. Convergence proofs do
exist for a variety of settings ranging from a single automaton model acting in a simple stationary
random environment to a distributed automata model interacting in a complex environment.

In this paper we argue that LA are very interesting building blocks for learning in multi agent
systems. The LA can be viewed as policy iterators, who update their action probabilities based on
private information only. This is a very attractive property in applications where communication
is expensive. LA are in particular appealing in games with stochastic payoffs. Then we move to
collections of learning automata, that can independently converge to interesting solution concepts.
We study the single stage setting, including the analytical results. Then we generalize to intercon-
nected learning automata, that can deal with multi agent multi-stage problems. We also show how
Ant Colony Optimization can be mapped to the interconnected Learning Automata setting.

This extended abstract is a summary of an article published earlier [14].
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