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Danny Weynsa Nelis Boucḱe a Kurt Schelfthouta Tom Holvoeta

a Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract

The work presented in this paper is part of an ongoing effort to study suitable task assignment mech-
anisms for decentralized MAS. Our focus is on systems that are characterized by tasks withdelayed
commencement. Such a task requires a preceding effort before the agent can start executing the task. An
example is a robot that first has to move to the location of a task before it can start executing that task.
Important quality requirements for assigning tasks with delayed commencement are flexibility (enable
agents to adapt task assignment with changing circumstances) and openness (enable agents to take into
account other agents that come and go during the process of task assignment).

In previous work, we have studied Contract Net (CNET) and a field-based approach for task assign-
ment (FiTA). CNET does not provide the required flexibility and openness. FiTA satisfies the required
qualities, however, the field-based approach provides an emergent solution for task assignment. It is well
known that emergent solutions are difficult to engineer and reason about. This raises the question whether
it is not easier to extend CNET to take dynamics and changes into account.

This paper presents the DynCNET protocol. DynCNET is an extention of CNET, with “Dyn” refer-
ring to support for dynamic task assignment. DynCNET provides flexibility and openness for assigning
tasks with delayed commencement. We compare the DynCNET protocol with CNET and FiTA in an
AGV transportation system. Our experiences in this real-world setting show that: (1) the performance of
DynCNET and FiTA are similar, while both outperform CNET; (2) extending CNET to deal with delayed
commencement of tasks is not obvious; the complexity to engineer DynCNET is similar to FiTA but much
more complex than CNET; (3) whereas task assignment with FiTA is an emergent solution, DynCNET
explicitly specifies the interaction among agents allowing engineers to reason on the assignment of tasks.
This latter property may be of overriding importance in the selection of an agent-based approach for task
assignment in practice.

1 Introduction

Task assignment in multiagent systems (MAS) is complex, especially in systems characterized by highly
dynamic and changing operating conditions. The work presented in this paper is part of an ongoing effort
of our research group to study suitable task assigning mechanisms for decentralized MAS. Our focus is on
MAS with the following characteristics:

• The system is subject to highly dynamic and changing operating conditions. Examples are continuous
changes in availability of resources, particular failure modes, variations in network traffic, etc.

• Agents can dynamically join and leave the system. Agents may be removed from the system at
runtime, new agents may join, or agents may leave the system temporarily.

• The task stream is dynamic and irregular. Examples are dynamically changing workloads, unpre-
dictable peaks in demand, etc.

• Tasks are characterized by delayed commencement, i.e. the execution of a task requires a preceding
effort of an agent before the task can actually be executed.

1The research of the first author is supported by the the Research Fund K.U.Leuven. The research of the second author is supported
by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT).



A typical example application in the domain of manufacturing control is described in [4]. In this system,
workpieces move on a conveyor belt along a set of machines. Workpieces have to pass through a series
of operations. Some of the machines can perform the next operation on the workpieces. [4] proposes a
approach where workpieces select the next machine based on a first-price, single-round auction. However,
several kinds of dynamics may arise while a workpiece moves towards the assigned machine. A machine
may finish an operation on another workpiece, making the machine available for the next workpiece. Such
machine may be more suitable to execute the next operation on a workpiece that is on its way to its assigned
machine. Machines can be added and removed from the system, or can be temporarily unavailable due to a
breakdown or maintenance. Task assignment with a first-price single round auction is not able to deal with
such kinds of dynamics.

A second typical domain that complies with the problem characteristics are automated transportation
systems. In this paper we, use an industrial AGV transportation system as an example. An AGV transporta-
tion system consists of a set of automatic guided vehicles (AGVs) that transport loads in a warehouse. AGV
transportation systems have to deal with dynamic operation conditions. Production machines may have vari-
able waiting times, certain routes may be blocked, etc. AGVs can leave and re-enter the system, for example
for maintenance. The stream of transport tasks that enter the system is typically irregular and unpredictable.
Tasks in an AGV transportation system are characterized by delayed commencement. To execute a task, an
AGV first has to drive to a load before it can pick the load and transport it to the destination. While driving
towards the load all kinds of changes in the system may occur. New tasks may enter the system that are
more suitable for the AGV to execute, new AGVs may become available that are more suitable to perform
the task, etc.

Quality Requirements for Dynamic Task Assignment.In order to deal with the problem characteristics
mentioned above, two important quality requirements for task assignment are flexibility and openness. [19]
denotes flexibility as “the quality of being adaptable, i.e. being able to change to fit changed circumstances.”
For task assignment, flexibility denotes that agents are able to adapt task assignment with changing circum-
stances during the process of task assignment. Openness is defined as “the quality of being open, i.e. charac-
terized by an attitude of ready accessibility, affording unobstructed entrance and exit.” For task assignment,
openness denotes that agents take into account other agents that enter and leave during the process of task
assignment.

Previous Work. In a joint R & D project (EMC2 [6]), the DistriNet research group and Egemin have de-
veloped a decentralized architecture for an AGV transportation system. This architecture is structured as a
MAS where an agent is associated with each AGV and each task in the system. An important goal of the
new architecture is to improve flexibility and openness of the system.

In previous work, we have applied two approaches for task assignment in AGV transportation systems.
First, we have applied the well-known Contract-Net protocol (CNET [15]). In CNET, an initiator calls
for proposals and participants offer proposals to perform the task. When the initiator has received the
proposals from all participants, it evaluates the proposals and assigns the task to the participant with the
best offer. CNET is a simple protocol, but does not offer flexibility and openness with respect to delayed
commencement, i.e. the protocol does not consider opportunities that occur in the period between the entry
of a task in the system and the actual execution of the task.

As a second approach, we have developed a field-based approach for task assignment (FiTA [18]). In
FiTA, transport agents emit fields that attract idle AGVs. To avoid multiple AGVs driving to the same
transport, AGV agents emit repulsive fields. AGV agents follow the gradient of the combined field that
guide the AGVs towards pick locations of loads. The AGV agents continuously reconsider the situation and
definitive assignment of a transport is delayed until the load is finally picked, which benefits the flexibility
and openness of the system. In [18] is demonstrated that FiTA outperforms CNET; the cost is only a small
increase of bandwidth usage. Moreover, FiTA turned out to be highly robust with respect to the loss of
messages.

Motivations for DynCNET. Standard CNET does not provide the required flexibility and openness to cope
with the system characteristics mentioned above. FiTA satisfies the required quality goals, however, the
field-based approach provides anemergent solutionfor task assignment. It is well known that emergent
approaches are difficult to engineer and reason about. Egemin engineers as well as colleague researchers
and reviewers therefore raised the question whether it is not easier to adapt standard CNET to take dynamics
and changes in the system into account.



This paper presents the DynCNET protocol. DynCNET is an extention of CNET, with “Dyn” referring
to support for dynamic task assignment, i.e. DynCNET supports flexibility and openness for assigning tasks
with delayed commencement.

Overview. In the next section, we give a brief overview of the decentralized architecture of the AGV
transportation system. Section 3 introduces the DynCNET protocol. In section 4, we discuss test results
obtained from applying DynCNET in an AGV transportation system, and we compare DynCNET with
standard CNET and FiTA. Section 5 discusses related work. Finally, in section 6 we draw conclusions.

2 The AGV Transportation System

An AGV transportation system is a fully automated industrial transport system, that uses multiple AGVs to
transport loads (raw materials, finished products, etc.) in an industrial environment such as a warehouse. In
this section we give a brief overview of the AGV transportation application and the basic software architec-
ture.

2.1 AGVs and Transports

AGVs. An AGV is a unmanned, battery powered vehicle, capable of picking up loads, driving around and
dropping them. AGVs can communicate by means of a wireless LAN. The AGVs are restricted to follow a
predefined layout in the environment. The layout is defined in a map that consists of a network of stations
and segments. AGVs are equipped with low-level control software that provides an interface to command the
AGV; example commands are move(segment), pick(load), etc. The low-level control software uses sensors
and actuators, and beacons in the environment to stay on track, turn, pick and drop loads, and determine the
current position.

Transports. A transport represents a task to move a load from a pick location to a drop location. Transports
are generated by an external system, typically a warehouse management system. Each transport has a priority
that increases over time, e.g. as a result of long waiting times. The execution of a transport starts when an
AGV picks the load and it terminates when that AGV drops the load at the drop location.

2.2 Basic Software Architecture

Fig. 1 shows the deployment view of the AGV transportation system.
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Figure 1: Deployment view of AGV transportation system.

Each AGV is equipped with a computer containing anAGV Control System. The AGV control system
contains a singleAGV agentthat is responsible for obtaining and executing transports, and ensuring that
the AGV gets maintenance on time (such as charging the AGV’s battery). As such, an AGV becomes an
autonomous entity that can take advantage of opportunities that occur in its vicinity, and that can enter/leave
the system without interrupting the rest of the system.



Each transport in the system is represented by atransport agent. Transport agents are part of theTrans-
port Base Systemthat is deployed on a stationary computer located in the warehouse. A transport agent is
responsible for assigning the transport to an AGV and reporting the status and completion of the transport to
the warehouse management system. Transport agents are autonomous entities that interact with AGV agents
to find suitable AGVs to execute the transports.

All the subsystems can communicate via a wireless network. The warehouse management system inter-
acts with the AGV transportation system via a wired network.

3 DynCNET Protocol

We start by explaining a number of general properties of the DynCNET protocol. Then we give an overview
of the default sequence of the protocol. Next we explain how the agents involved in a protocol can switch
the assignment of tasks. We will use the AGV transportation scenario depicted in Fig. 3 to illustrate the
steps of the protocol.

General Properties. DynCNET is anm × n protocol. An initiator that offers a task can interact withm
participants, i.e. the candidate agents that can execute the task. On the other hand, each participant can
interact withn initiators that offer tasks. As an example, consider the scenario shown in Fig. 3. In the AGV
transportation system, an initiator corresponds with a transport agent that represents a task in the system and
the participant corresponds with an AGV agent that can execute tasks. We denote the area where an initiator
(or participant) searches for participants (or initiators) the area of interest of the initiator (or participant).
The dotted circles in Fig.3 show the current areas of interest of AGVA (top) and taskx (bottom). For task
x, there are currently two candidate AGVs to execute the task:F andG. For AGV A on the other hand,
there are three possible tasks to execute:u, v, andw.

Due to the dynamics in the system, the set of candidate tasks (initiators) and agents that can execute a
task (participants) can change over time. E.g., in the right part of Fig. 4, AGVE has just dropped its load
and becomes a candidate to execute taskx.

Default Sequence. Fig. 2 shows an AUML interaction diagram with the default message sequence of
DynCNET.
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Figure 2: High-level AUML diagram of the DynCNET protocol. Dark zones in the activation boxes repre-
sent periods in the protocol when agents can switch the provisional agreement.

The default protocol consists of four steps: (1) the initiator sends a call for proposals; (2) the partici-
pants respond with proposals; (3) the initiator notifies the provisional winner; and finally, (4) the selected
participant informs the initiator that the task is started. These four steps are basically the same as in the
standard CNET protocol. The flexibility of DynCNET is based on the possible revision of the provisional
task assignment between the third and fourth step of the protocol.

Switching Initiators and Participants. To explain how agents can switch tasks when the conditions in the
environment change, we use the UML state diagram of Fig. 5. This state diagram shows a compact repre-
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Figure 3: Example scenario in an AGV transportation system to illustrate DynCNET.
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Figure 4: Left: taskp provides an opportunity for AGVA. Right: AGV E becomes available for taskx.

sentation of the behavior of the initiator and participant agents in the protocol2. First we look at the protocol
from the perspective of the participant, then we look from the point of view of the initiator.

Switching Initiators.Consider the situation in Fig. 3 where AGVA has a provisional agreement to execute
taskw. While AGV A drives towards the pick location of taskw, a new taskp enters the system, see the left
part of Fig. 4. This new task is an opportunity for AGVA.

DynCNET enables participants to switch initiators and exploit such opportunities. When a participant
is ready to execute a task, it enters theVoting state where it answerscfp ’s with proposals. When the
participant receives aprovisional –accept message (step 3 in Fig. 2), it enters theIntentional
state, see Fig. 5. As soon as the participant starts the task, it sends abound message to the initiator to
inform this latter that the execution of the task is started. The participant is then committed to execute the
task. However, if a new opportunity occurs before the task is started, i.e. the participant receives a better
offer, the participant changes to theSwitch Initiator state. In this state the participant retracts from
the provisional task assignment and switches to the more suitable task.

Switching Participants.Consider the situation in Fig. 3 where the taskx has a provisional agreement with
AGV G. While AGV G drives towards the pick location of taskx, AGV E becomes available, see the right
part of Fig. 4. This new AGV is an opportunity for transportx.

2We have made abstraction of a number of synchronization issues in the description of the state diagrams. An example is the
situation where an initiator has not yet received the bound message from the provisionally assigned participant that has started a task,
while this initiator switches participants. To deal with such synchronization problems, confirmation messages are used. However, to
avoid overloaded diagrams, we have omitted these messages. For more details, see [5].
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Figure 5: High-level description of the DynCNET protocol

DynCNET enables initiators to switch participants and exploit such opportunities. When an initiator has
sent acpf and received the proposals from the participants, it sends aprovisional -accept message
(step 3 in Fig. 2) and enters theAssigned state, see Fig. 5. As soon as the initiator receives abound
message from the selected participant it enters the stateExecuting in which the task is effectively started.
However, if a new opportunity occurs before the task is started, i.e. the initiator receives a better offer from
a participant, the initiator changes to theSwitch Participant state. In this state the initiator sends an
abort to the provisionally assigned participant and switches to the more suitable participant.

TaskInScope() andTaskOutScope() are functions that notify the participant when new tasks enter
and leave its area of interest. Such functionality can be provided by the perception module of the participant
that monitors the area of interest of the agent in the environment, or it can be provided as a notification ser-
vice by the environment. Similarly, the functionsParticipantInScope() andParticipantOutOf -
Scope() notify the initiator when new participants enter and leave its area of interest. [3] elaborates on
these functions in the AGV application.

Discussion.Contrary to the suggestions of Egemin engineers and colleague researchers and reviewers, ex-
tending standard CNET to take dynamism and change into account is not obvious. Enabling the agents to
switch the assignment of tasks increases the complexity of the protocol significantly. Since AUML diagrams
do not support the specification of dynamicm×n protocols, we used state diagrams to describe DynCNET.
However, these diagrams are not simple and becomes even more complex when synchronization is taken
into account. In addition, DynCNET requires the tuning of various parameters. Examples are the range of
interest of both types of agents, the growth rate to extend this range when no suitable candidates are found,
the pace to send call for proposals, etc. Parameter tuning is typically associated with emergent solutions
such as FiTA. This paper indicates that a flexible agent-interaction protocol that deals with dynamism and
change in the system also requires considerable efforts to tune parameters.

Contrary to FiTA, DynCNET explicitly defines the various communicative actions, the points of choice,
and the internal state of the agents in the protocol. The protocol precisely specifies which participants are
involved in the assignment of a task, when a task is provisionally assigned, when the assignment switches,
and when a participant becomes committed to execute the task. The explicit specification of the protocol
allows engineers to reason on the assignment of tasks and it helps them to debug the system.

DynCNET (as FiTA) supports openness during delayed commencement. Whereas FiTA inherently sup-
ports openness, the DynCNET protocol requires specific functionality for openness. In FiTA, a participant is
guided by the combination of sensed fields. A field that disappears or a new field that appears will affect the
combination of sensed fields. DynCNET includes specific functionality to notify agents when other agents
enter and leave its current area of interest (ParticipantInScope, ParticipantOutOfScope, InitiatorInScope,
and InitiatorOutOfScope).

The flexibility of DynCNET is provided by the points of choice for each agent (Switch Participant and



Switch Initiator). The points of choice are abstractly defined in the protocol and need to be instantiated
according to the requirements of an application at hand. In the AGV application (discussed in the next
section), agents use the priorities of tasks and the distance between AGVs and loads to switch tasks. More
advanced approaches can be considered, e.g., participants may (to some extent) favour tasks that are located
near to other tasks increasing the change to find a closely located task when the original assignment of tasks
for some reason switches.

A final remark concerns the convergence of the protocol. A potential risk of DynCNET is that the
assignment of tasks oscillates between participants and no tasks are executed. In the AGV application,
oscillations were avoided by: (1) limiting the areas of interest of the agents, and (2) choosing different areas
of interest for initiators (task agents) and participants (AGV agents). In particular, the area of interests of
AGV agents covered up to 1/10th of the total area of the map and the area of transport agents was 4 times
smaller as that of AGV agents.

4 Applying DynCNET in Practice

This section discusses the test results obtained from applying DynCNET in a simulated AGV transportation
system. The section starts by explaining the test setting. Subsequently, we present the results of the various
tests and we reflect on the test results. Due to space limitation only the main test results are presented. For
a detailed discussion of the remaining test results we refer to [5].

4.1 Setting

AGV Transportation System. All tests are performed on the map of an AGV transportation system that is
implemented by Egemin at EuroBaltic. The size of the physical layout is 134 m x 134 m. The map has 56
pick and 50 drop locations. We used a standard transport profile that is used by Egemin for testing purposes.
This profile generates 140 transports with a random pick location and a random drop location per hour real
time. Each transport is assigned a random priority that increases over time. In the simulation, we used 14
AGVs just as in the real application. The average speed of driving AGVs is 0.7 m/s, while pick and drop
actions take an average amount of time of 5 s.

Infrastructure. For the tests, we used an AGV simulator [1]. The simulator uses a framework for time
management [9] to ensure that the simulation results are independent of performance characteristics of the
execution platform, working load of the processor, and memory size. Tests where executed on a cluster of
40 machines: P4 2Ghz, 512MB RAM, Debian Stable 3.0. For a detailed discussion of the AGV simulator,
we refer to [1].

Metrics. Every simulation was run for 200.000 timesteps, corresponding to approximately 4 hours real
time, i.e. one timestep represents 20 ms in real time. All test results displayed in the paper are average val-
ues over 20 simulation runs. Performance is measured in terms of throughput (number of finished transports
as a function of simulated timesteps) and reaction time (average waiting time per transport as a function of
simulated timesteps). Additionally, the amount of communication needed is measured (number of messages
sent per transport).

Reference Algorithms. We compared DynCNET with standard CNET and FiTA. With CNET each trans-
port that enters the system is assigned as soon as possible to the most suitable AGV, i.e., an idle AGV for
which the cost to reach the pick location is minimal. When transports can not be assigned immediately, they
enter a waiting status. All waiting transports are ordered by priority, and this priority determines the order
in which transports are assigned. With FiTA, AGVs combine fields that guide them toward pick locations
of transports. Transport agents emit fields that attract idle AGVs. The strength (and thus the range) of the
fields of transport agents that attract AGVs depends on the priority of the task and increases over time. The
strength of the repulsive fields emitted by the AGVs is fixed.

Parameter Settings.Preceding to the tests, we determined the most suitable set of values for the parame-
ters of the three tested protocols. Parameter tuning is a labour-intensive job. For most of the parameters, for
FiTA as well as for DynCNET, we were able to determine a range of values from which we could select one
without significantly affecting the performance of the protocol. We suspect that the constrained nature of the
problem (such as the restrictions imposed by the layout) accounts for this relaxation. A thorough discussion



of parameter tuning however, is not feasible within the limited space of this paper, for a detailed overview
we refer to [5].

4.2 Test Results

We have measured communication load, average waiting time, and the number of finished transports. In
addition, we have performed a stress test in which AGVs have to handle as quickly as possible a fixed
number of transports from a limited number of locations.

Communication Load. To compare the communication load, we have measured the average number of
messages sent per finished transport. The left part of Fig. 6 shows the results of the test.
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Figure 6: Left: amount of messages being sent per finished transport. Right: average waiting time

The number of messages of DynCNET is approximately the same as for FiTA, while the communication
load of CNET is about half of the load of the dynamic mechanisms. However, an important difference exists
between the type of messages sent. Fig. 7 summarizes the number of unicast and broadcast messages sent
by the three mechanisms.
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Figure 7: Left: number of unicast messages. Right: number of broadcast messages

For CNET, more than 90 % of the communication are unicast messages. For DynCNET the balance
unicast–broadcast messages is about 75–25, yet, for the field-based approach this balance is about 25–75,
thus the opposite. This difference is an important factor for selecting appropriate communication infrastruc-
ture for a particular task assignment mechanism and vice versa.

Average Waiting Time. The left part of Fig. 6 shows the test results for average waiting time for transports.
Average waiting time is expressed as the number of timesteps a transport has to wait before an AGV picks up
the load. After a transition period (around 20.000 timesteps), DynCNET outperforms CNET. The difference
increases when time elapses. On the other hand, FiTA is slightly better than DynCNET over the full test



range. A possible explanation is that idle AGVs in FiTA immediately start moving when they sense a field
of a task, while in DynCNET AGVs only start moving after they are provisionally accepted as a winner. The
fact that DynCNET is not able to outperform FiTA came as a surprise to us. Since every aspect in DynCNET
is explicitly specified, we expected that if fine tuned well DynCNET could perform better than FiTA.

Number of Finished Transports. The right part of Fig. 8 shows the number of transports finished by each
of the protocols during the test run.
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Figure 8: Left: number of finished transports. Right: number of finished transports in the stress test

The results confirm the measures of the average waiting time per finished transport. DynCNET handles
more transports than CNET, but less than the field-based protocol. After four hours in real-time, CNET has
handled 380 transports, DynCNET has handled 467 transports, and the field-based approach 515 transports.
For the 467 executed transports of DynCNET, we measured an average of 414 switches of transport assign-
ments performed by transport agents and AGV agents.

Stress Test.In addition to the standard transport test profile, we have performed a stress test in which 45
transports are created at a limited number of locations in the beginning of the test. These transports have to
be dropped at a particular set of destinations. The test simulates for example the arrival of a truck with loads
that have to be distributed in a warehouse. The task of the AGVs is to bring the loads as quickly as possible
to the right destinations. The transport test profiles for the three mechanisms was identical. The left part of
Fig. 8 shows the test results.

The slopes of the curves of FiTA and DynCNET are similar but much steeper than the curve of CNET.
The results demonstrate that CNET requires about 2.5 times more time to complete the 45 transports than
the dynamic protocols.

In the stress test, the communication load of FiTA is slightly higher as for DynCNET during the full test.
In the initial phase of the test, the dynamic protocol requires much more bandwidth as CNET (about factor
four), later the difference converges to the difference we have measured for the standard test profiles (about
factor two).

Variance. The tests we have discussed are non-deterministic. Orders are generated randomly and priorities
are assigned randomly. To verify the statistic significance of the mean values of the test results we have
calculated the 95 % confidence interval [17]. The results show confidence intervals between 5 and 10 %
variance relative to the mean values, meaning that the variance of the test results is small. For details we
refer to [5].

4.3 Summary

DynCNET outperforms CNET on all performance measures, the cost is a doubling of required bandwidth.
Contrary to our expectations, DynCNET is in general not able to outperform FiTA. At best DynCNET is
able to equal the performance of FiTA. Fig. 9 compares several quality attributes and engineering aspects of
the three mechanisms.

Flexibility and Openness.Both DynCNET and FiTA support flexible assigning of tasks with delayed com-
mencement. In FiTA, the choices of the participant agents are implicitly determined by the combination of
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Figure 9: Summary of quality attributes and engineering aspects of the three mechanisms

the sensed fields. DynCNET provides explicit points of choice for initiators and participants. Both DynC-
NET and FiTA support openness during delayed commencement, i.e. both mechanisms allow initiators to
take into account new participants that become available and participants can participate in the assignment
of new tasks that become available. Whereas FiTA inherently supports openness (the combination of fields
adapts when fields disappear or new fields appear), the DynCNET protocol includes explicit functions that
notify initiators and participants when changes occur. Neither flexibility, nor openness is supported by
CNET.

Robustness.In FiTA, the freshness of the received fields is taken into account to determine the attraction
and repulsion of fields. When an agent misses an update of a field due to the loss of a message, the previous
value of the field is used. Yet, to determine the combined field that guides the agent, less importance is given
to older field values. As such, FiTA is (to some degree) robust to message loss. CNET and DynCNET on
the other hand fail when a message gets lost and the prescribed sequence of messages is disrupted. As such,
the contract-net based mechanisms require additional support for robustness to message loss.

Mechanism Engineering.No common engineering approaches are available for the design and development
of FiTA. On the other hand, DynCNET allows to specify the behavior of the agents by means of common
engineering diagrams such as interaction diagrams and state charts. We used UniMod [16] to design the
DynCNET protocol as a state machine. UniMod enables to draw the state machine and export the diagram
to an XML file. This XML file was used to interpret the state machine in the agent program.

Parameter Tuning.CNET does not require much parameter tuning. The designer has only to define a crite-
rion that determines which participants are considered by the initiators. To deal with dynamism and change
in the system, DynCNET (as FiTA) requires considerable efforts to tune parameters.

Type of Communication.A significant difference exists in the ratio unicast–broadcast messages that are used
in the three task assignment mechanisms. This difference is important for selecting appropriate communi-
cation infrastructure for a specific task assignment mechanism and vice versa. Further research is needed to
investigate the implications of the type of communication of the different mechanisms.

5 Related Work

Task assignment is an extensive domain of research. Here we focus on mechanisms that are based CNET.
CNET is a widely known and extensively used protocol that uses an auction-like mechanism to achieve

task assignment. CNET was originally proposed by Smith and Davis [15] and is included in a FIPA-
standard [7]. The DynCNET protocol is an extension to CNET with two distinctive characteristics: (1)
it enablesm × n negotiations, i.e. a participant can manage concurrently multiple negotiation processes
with the initiators and the initiator can manage negotiation processes with multiple participants; (2) it sup-
ports changes on the initiator and the participant side and delays the definitive assignment until the task is
effectively started. In this section, we list several variants to CNET and show how they relate to DynCNET.

Several extensions of CNET exist that supportm× n negotiations. [10] describes a protocol that allows
a bidder to place bids for multiple unassigned tasks. This is achieved by giving the bidder the option to
refuse the task in step 3 of the original protocol (compare Fig. 2). The manager will then award the contract
to the second best bidder, who can again accept or refuse it, etc. This protocol does not supports changes at



both sides or delayed commencement.
The protocol in [2] focusses on self-interested agents supporting several negotiation processes in parallel.

The approach introduces two levels of bidding, i.e. a pre-bidding phase in which the participants can still
change their commitment and a definitive bidding phase in which the task is effectively assigned to a single
participant. The protocol allows to reconsider commitments during the pre-bidding phase, but the window
in which commitments can be changed is small. As soon as all agents answered in the pre-bidding phase, the
definitive bidding phase starts and the participants can no longer change their commitment. An interesting
contribution of [2] is that the authors formally prove the converge of the protocol.

FIPA proposes the Iterated CNET protocol, allowing multi-round iterative bidding [8]. The protocol is
multi-round in the sense that the initiator can decide to issue a new call for proposals (and thus start a new
round)after the bidding phaseinsteadof accepting a proposal. There is no partial commitment during the
iterations and the protocol does not allow to reconsider the situation once a proposal is accepted.

Related to the Iterated CNET protocol are levelled-commitment contracts [13]. The idea of a levelled-
commitment contract is that any of the agents in a contract can decommit by paying an agreed decommitting
penalty to the other agent(s) in the contract. A leveled-commitment contract is not a protocol on itself, but
this type of contracts can used in negotiation protocols between self-interesting agents.

Finally, there are several researchers who use the original CNET protocol in combination with other
strategies to provide support for dynamism. Maturana et al. [11] use a mediator pattern for dynamic schedul-
ing, combining mediation and sub-tasking using CNET to produce a schedule. Mediator agents are used to
coordinate the resource agents using the CNET protocol. In case of breakdowns, the system is resched-
uled by re-running the CNET protocol for the task to find available slots in the schedule. Shen et al. [14]
and Ouelhadj et al. [12] also use a combination of the mediator architecture and the CNET protocol, but
introduce different re-schedule techniques for different real-time events. For example, the re-scheduling
technique for rush orders (try to replace a task by another task) differs from a machine breakdowns (find the
nearest free slot in the schedule). These mechanisms using CNET in combination with schedules allow for
some flexibility, but rescheduling the tasks takes a lot of time. Thus this type of architectures is more suited
for relatively stable schedules and a limited amount of changes.

6 Conclusions

The work presented in this paper is part of an ongoing effort to study suitable task assignment mechanisms
for decentralized MAS. Our focus in on the assignment of tasks with delayed commencement. In previous
work, we studied two mechanisms for task assignment: standard CNET and FiTA, a field based approach
for task assignment. In this paper, we presented the DynCNET protocol, an extension to standard CNET
that supports dynamic task assignment.

We compared DynCNET with CNET and FiTA in a real-world test setting. DynCNET (as FiTA) outper-
forms CNET on all performance measures. The cost is a doubling of required bandwidth. However, contrary
to suggestions made by engineers and colleague researchers, extending standard CNET to take dynamism
and change into account is not obvious. Enabling the agents to switch the assignment of tasks increases the
complexity of the protocol significantly.

Our experiences with DynCNET with FiTA yield the following conclusions:

• Contrary to our expectations, DynCNET was not able to outperform FiTA, both mechanisms have
similar performance characteristics.

• Parameter tuning for DynCNET has similar complexity as for FiTA.

• Whereas FiTA is inherently robust to message loss, DynCNET is not and requires additional function-
ality to deal with message loss.

• FiTA mainly uses broadcast messages, while DynCNET mainly uses unicast message.

• DynCNET explicitly defines the task assignment process among the agents while in FiTA everything
is implicitly enclosed in the fields.

Egemin, our partner in the EMC2 project, currently considers to apply an agent-based approach for task
assignment in one of its AGV transportation systems. Due to the explicit specification of the protocol the
engineers tend to prefer DynCNET over FiTA. The fact that DynCNET allows engineers to reason on the



assignment of tasks may be of overriding importance in the selection of a mechanism for task assignment in
practice. Still, extensive tests are necessary before an eventual decision can be made.

DynCNET is a promising protocol for task assignment in decentralized MAS. Yet, before any claim can
be made about its general applicability, the protocol needs further tests in different application domains.
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