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Abstract. While current approaches to ontology mapping produce good
results by mainly relying on label and structure based similarity mea-
sures, there are several cases in which they fail to discover important
mappings. In this paper we describe a novel approach to ontology map-
ping, which is able to avoid this limitation by using background knowl-
edge. Existing approaches relying on background knowledge typically
have one or both of two key limitations: 1) they rely on a manually se-
lected reference ontology; 2) they suffer from the noise introduced by
the use of semi-structured sources, such as text corpora. Our technique
circumvents these limitations by exploiting the increasing amount of se-
mantic resources available online. As a result, there is no need either
for a manually selected reference ontology (the relevant ontologies are
dynamically selected from an online ontology repository), or for trans-
forming background knowledge in an ontological form. The promising
results from experiments on two real life thesauri indicate both that our
approach has a high precision and also that it can find mappings, which
are typically missed by existing approaches.
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1 Introduction

Ontology mapping techniques are essential for building semantic bridges between
ontologies. However, current approaches suffer from a number of problems. First
of all, most approaches do not provide a formal semantics to the mapping struc-
tures they produce1. As a result it is difficult for reasoners to make use of these
structures, e.g., to answer queries across ontologies [9]. More importantly, cur-
rent approaches to ontology mapping [11, 13] heavily rely on string-based and
structure-based similarity measures. While these techniques can produce good
results, there are also numerous examples in which they fail to find mappings.

A few approaches [1, 14, 15] have considered the use of external background
knowledge as a way to obtain semantic mappings between syntactically dissimilar
ontologies, i.e., to overcome the aforementioned limitations. However, obtaining
the right background knowledge is problematic. Some approaches rely on richly

1 A notable exception is the CtxMatch/S-Match algorithms (see Section 2.1).



axiomatized domain ontologies [1], but unfortunately such ontologies do not ex-
ist in all domains and even when they exist, they are unlikely to cover all the
intended mappings between the input ontologies. In addition, there are scenarios
where it is not possible to select the relevant ontology in advance. For instance,
in Semantic Web applications like PowerAqua [9], the domains of the terms to
be mapped cannot be determined a priori and whatever background knowledge
is needed, must be identified dynamically and in real-time. To avoid the prob-
lems associated with the manual selection of an ontology, other techniques try
to derive the required background knowledge from weakly structured textual
sources [15]. However, given the current limitations in information extraction
technology, they then suffer from the resulting noise.

The recent growth of the Semantic Web has resulted in an increased amount
of online available semantic data and has led to the first search engine to exploit
this data, Swoogle [5]. Our hypothesis is that ontology mapping, while trying to
cope with the heterogeneity of the Semantic Web, could actually exploit it. In
other words, online available ontologies could provide the background knowledge
sources, which are needed to support ontology mapping and to overcome the
problems mentioned above. On the one hand, they can be selected dynamically,
thus circumventing the need for an a priori, manual ontology selection. On the
other hand, by relying on semantic sources, we avoid the inherent noise caused
by information extraction based methods.

In this paper we build on these ideas and we describe an approach to ontology
mapping which goes beyond similarity-based algorithms by dynamically locating
and using relevant background knowledge (Section 3). Since our method derives
mappings between pairs of concepts, it can be used to map semantic structures
ranging from shallow thesauri to clearly formalized ontologies. We start by dis-
cussing in detail the importance of background knowledge in ontology mapping.

2 Motivation

We discuss two major limitations of current ontology mapping approaches that
only rely on label and structure similarity (i.e., syntactic approaches), namely
that they don’t provide semantic mappings (Section 2.1) and that they fail to
discover some correct mappings when the mapped ontologies are syntactically
dissimilar (Section 2.2). We then point out that while the use of background
knowledge can be a solution to these limitations, existing approaches using such
knowledge have their shortcomings (Section 2.3).

2.1 Syntactic Approaches Do Not Provide Semantic Mappings

Semantic Web tools, such as PowerAqua, which wish to reason on the results
of mapping techniques require that the discovered mappings are expressed as
semantic relations between the entities of the ontologies. Formal mapping lan-
guages, such as C-OWL [2], envision a wide range of semantic relations that can



hold between the entities of two ontologies (e.g., narrower, disjoint). However,
few existing mapping techniques are able to discover such semantic mappings.

An analysis of the state of the art of mapping systems presented in [13]
explains to some extent the lack of approaches that can provide semantic map-
pings. The major factor seems to be that most systems combine a range of
non-semantic techniques, such as terminological approaches (exploiting string
similarity between labels), structural approaches (relying on the structure of
the mapped ontologies), and extensional approaches (mapping concepts on the
basis of shared instances). Only few systems rely on semantic techniques (also
called model based approaches in [13]), thus exploiting the semantics both of
the mapped ontologies, and the mapping language, to infer mappings from the
available knowledge. As a result, during the last Ontology Alignment Contest
(OAC) [6] only one algorithm (CtxMatch [3]) was able to produce partial seman-
tic mappings in the form of subconcept relations. The other techniques produce
confidence based mappings that are derived by aggregating the output of ter-
minological and structural algorithms. Unfortunately, this kind of low semantic
(quantitative) relations are difficult to interpret and to exploit in reasoning proce-
dures. On the contrary, semantic techniques should produce meaningful relations
between the mapped entities, on which further reasoning can be applied. They
should focus on qualitatively good mappings that can be justified and explained
through the knowledge and inferences used to deduce them.

2.2 Syntactic Approaches Fail on Dissimilar Ontologies

As already observed by [1], traditional methods fail when there is little lexical
overlap between the labels of the ontology entities, or when the ontologies have
weak or dissimilar structures. This observation has been verified to some extent
in the last OAC [6]. In the first task of this contest where a base ontology was
mapped to its systematically modified versions, the performance of most meth-
ods decreased significantly in the test cases where important changes have been
performed to the labels and structures of the ontologies (tests 250 - 266). In
fact, traditional techniques are based on the hypothesis of an equivalence be-
tween some forms of syntactic correspondences and semantic relations. While it
is true that, in many cases, string and structural similarities can imply meaning-
ful mappings, this hypothesis is far from being always verified. For instance, the
relation between the concepts Beef and Food may not be discovered on the basis
of syntactical considerations, but becomes obvious when considering the mean-
ing of these concepts (their semantics). By ignoring such semantics, syntactic
techniques fail to identify several important mappings.

2.3 How is Background Knowledge Currently Used?

The previous sections suggest that the meaning of the mapped concepts should
be considered to discover meaningful and syntactically unidentifiable mappings.
Unfortunately, while meaning on the Semantic Web is expressed using ontologies,
in the case of ontology mapping, the constituents of a mapping can only be given



meaning in the context of their own distinct ontology, which cannot cover both
the source and target elements, as well as the relation linking them. In other
words, a semantic mapping between two ontologies could only be interpreted in
a larger domain than the ones of these ontologies. Therefore, in order to achieve
semantic mapping, the integration of external knowledge is required as a way to
cover both input ontologies and to fill the semantic gap between them. So far
the following types of background knowledge have been used in mapping:
1. WordNet is one of the most often used sources of background knowledge. For
example, CTxMatch [3] (and its follow-up, SMatch [7]) translates ontology labels
into logical formulae between their constituents, and maps these constituents to
corresponding senses in WordNet. A SAT solver is then used to derive semantic
mappings between the different concepts. This approach has been recently ex-
tended to handle the problem of missing background knowledge [8]. The lack of
knowledge is detected and compensated during the mapping process, using tech-
niques still relying on WordNet as a source of knowledge. When using WordNet,
it is important to be aware that it is a lexical resource (rather than a truly se-
mantic resource), relating terms by using terminological relations like synonymy
or hypernymy. Therefore, it can be seen as a source of linguistic knowledge,
useful in relating labels during the terminological step of a matching procedure.

(a) (b) (c)

Fig. 1. Using ontologies as background knowledge for semantic mapping: (a) using a
manually selected reference ontology (e.g., [1]); (b) using Swoogle to find the appropri-
ate ontologies (S1) (c) recursively exploiting multiple ontologies (S3).

2. Reference Domain Ontologies. Another approach is to rely on a reference
domain ontology as a semantic bridge between two ontologies. In [1], the authors
experimentally prove that state of the art matchers fail to satisfactorily match
two weakly structured vocabularies of medical terms. As a solution, they propose
to use the DICE ontology as a source of background knowledge. Terms from the
two vocabularies are first mapped to so called anchor terms in DICE and then
their mapping is deduced based on the semantic relation of the anchor terms (see
Figure 1(a)). As such, the obtained mappings can describe a larger variety of
semantic mappings between terms, not just equivalence. Similarly, [14] presents



a case study in the medical domain where mappings between two ontologies are
inferred from manually established mappings with a third ontology, and by using
the reasoning mechanisms permitted by the C-OWL language.

The advantage of these approaches is that they use richly axiomatized on-
tologies as background knowledge and therefore guarantee the semantic nature
of the mappings. However, a weakness is that the appropriate reference ontol-
ogy needs to be manually selected prior to mapping. As already pointed out,
in many scenarios this approach is unfeasible as we might not know in advance
which terms from which ontologies we may want to map. Even in the cases where
a reference ontology can be manually selected prior to performing the mapping,
there is no guarantee that such an ontology actually exists.
3. Online textual resources can provide an important source of background
knowledge. van Hage et. al [15] rely on the combination of two “linguistic ontol-
ogy mapping techniques” that exploit online available textual sources to resolve
mappings between two thesauri in the food domain. On the one hand, they use
Google to determine subclass relationships between pairs of concepts using the
Hearst pattern based technique introduced by the PANKOW system [4]. On the
other hand, they exploit the regularities of an online cooking dictionary to learn
hypernym relations between concepts of the source and target ontologies.

The strength of this approach is that it reduces the high cost of establish-
ing adequate background knowledge. Indeed, the background knowledge sources
are dynamically discovered and used [15]. There is no need for a manual and
domain dependent ontology selection task prior to mapping. The drawback is
that the right knowledge has to be extracted first. However, knowledge extrac-
tion techniques generally lead to considerable noise and so, reduce the quality of
the mapping (e.g., Mayonnaise v Cold). Therefore, without human validation,
online texts cannot be considered as reliable semantic resources.

We conclude that the use of background knowledge overcomes the major
limitations of syntactic approaches: it allows obtaining semantic relations even
between dissimilar ontologies. However, existing approaches either 1) rely on an
a priori selected reference ontology or, if they acquire knowledge dynamically, 2)
suffer from the noise introduced by knowledge extraction techniques. As a result,
they are not suitable for use by novel Semantic Web tools, such as PowerAqua,
which require both that the returned mappings are semantically sound and that
the relevant background knowledge is dynamically selected, at run-time. In the
next section we describe an approach that fulfills these requirements.

3 Using The Semantic Web as Background Knowledge

Our hypothesis is that the growing amount of online available semantic data
which makes up the Semantic Web can be used as a source of background knowl-
edge in ontology mapping in a way that satisfies the requirements identified in the
previous section. Indeed, this large-scale, heterogeneous semantic data collection
provides formally specified knowledge which is likely to be less faulty than that
derived from textual sources and therefore lead to better mappings. Moreover,



the size and heterogeneity of the collection makes it possible to dynamically se-
lect and combine the appropriate knowledge and to avoid the manual selection of
a single, large ontology. In the following we investigate increasingly sophisticated
approaches to discover and exploit online available ontologies for mapping. We
also provide experimental evidence that such mappings can be obtained.

Experimental Data. We have used the dataset described in [15] for our exper-
iments. In their work, van Hage et al. compare the UN FAO’s AGROVOC2 and
the USDA Nutrient Database for Standard Reference, release 16 (SR-16)3 the-
sauri. Their mapping techniques are verified on a subset of these thesauri. Two
modules are selected from AGROVOC one describing food types (A-Food, 21
concepts), the other describing animal products (A-Animal, 88 concepts). These
are compared against one module of SR-16 describing meat products (SR-Meat,
24 concepts). Together with the terms (concept names) of these modules, the
authors provided us with manually established alignments. The 32 mappings
from A-Food to SR-Meat and the 31 mappings from A-Animal to SR-Meat are
used here as gold standards for validating the results of our technique.

Implementation Details. We explore our idea by implementing different map-
ping strategies on top of the Swoogle’05 ontology search engine [5]. Swoogle
crawls and indexes a large amount of semantic metadata available online and as
such allows access to a large part of the Semantic Web.

Notations. Each strategy takes two candidate concept names (A and B) as
an input and returns the discovered mapping between them. The corresponding
concepts in the selected ontology are A’ and B’ (“anchor terms”). We rely on
the description logic syntax for semantic relations occurring between concepts
in an ontology, e.g., A’ v B’ means that A’ is a sub-concept of B’ in a selected
ontology and A’⊥ B’ means that A’ and B’ are disjoint. The returned mappings
are expressed using C-OWL [2] like notations, like A

v−→ B or A ⊥−→ B.

3.1 S1: Mappings Based on One Ontology

Our simplest strategy consists in using Swoogle to find ontologies containing
concepts with the same names as the candidate concepts and to derive mappings
from their relationship in the selected ontologies. Figure 1(b) illustrates this
strategy with an example where three ontologies are discovered containing the
concepts A’ and B’ with the same names as A and B. The first ontology contains
no relation between the anchor concepts, while the other two ontologies contain
a subsumption relation. The concrete steps of this strategy are:

1. Select ontologies containing concepts A’ and B’ corresponding to A and B;
2. For each resulting ontology:

– if A’ ≡ B’ then derive A
≡−→ B;

– if A’ v B’ then derive A
v−→ B;

– if A’ w B’ then derive A
w−→ B;

2 http://www.fao.org/agrovoc
3 http://www.nal.usda.gov/fnic/foodcomp/Data/SR16/sr16.html



– if A’⊥ B’ then derive A
⊥−→ B;

3. If no ontology is found, no mapping is derived;

Even if this strategy seams simple, it leads to several implementation choices,
depending on the relative importance given to time performance and accuracy
of the mapping mechanism:

Stop when the first mapping is found. In its simplest version, the algo-
rithm would stop as soon as a mapping is discovered. This is the easiest way to
deal with the multiple returned ontologies but it assumes that the first discov-
ered relation can be trusted and there is no need to inspect the other ontologies.
Note that the first ontology returned by Swoogle does not necessarily contain a
relation between the candidate concepts (like in the example Figure 1(b)). Here
we use the first ontology containing such a relation, but, in another implemen-
tation, it could be considered that if an ontology covers the candidate concepts
without relating them, then no mapping should be derived.

Dealing with contradictions. Instead of relying on the information pro-
vided by only one ontology as before, we can envisage to combine the results ob-
tained using all the selected ontologies. Mappings resulting from different sources
can be different (e.g., A v−→ B and A

w−→ B), or, in the worst case, inconsistent

(e.g., A v−→ B and A
⊥−→ B). Several ways of dealing with these contradictions

can be considered: we can keep all the mappings (favoring recall), only keep
mappings without contradiction (favoring precision), keep the mappings that
are derived from most of the ontologies, or try to combine the results (e.g., by

deriving A
≡−→ B from A

v−→ B and A
w−→ B). In any case, combining the results

from several ontologies is more time consuming (but more reliable) than deriving
it from a single ontology.

Considering a particular level of inferences. In the simplest implemen-
tation, we can rely on direct and declared relations between A’ and B’ in the
selected ontology. But, for better results, indirect and inferred relations should
also be exploited (e.g., if A’ v C and C⊥ B’, then A’⊥ B’). Different levels
of inferences can be considered (no inference, basic transitivity, DL reasoning),
each of them representing a particular compromise between the performance of
mapping and the completeness of the result.

Experimental results. For our experiments, we implemented this first strategy
using basic transitivity reasoning (i.e., taking into account all parents of A’ and
B’) and stopping as soon as a relation was found.
A-Food vs. SR-Meat: We obtained three mappings for these term sets:
Beef, Pork, Poultry

v−→ Food. All mappings were derived from the Tap on-
tology4, where, for example, Beef v ReadMeat vMeatOrPoultry v Food.
A-Animal vs. SR-Meat: For these hierarchies, our implementation yielded in
a single mapping, Bacon

v−→ Pork, which can be found as is in Tap.
Analyzing our results, we discovered that a key factor in the efficiency of

our approach is the level to which the candidate terms are covered by Swoogle.

4 http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf



Indeed, comparing our results to the gold standard mappings, we observed that
24 out of 32 for A-Food vs. SR-Meat (and 20 out of 31 for A-Animal vs. SR-
Meat) involve concepts that do not exist in any ontology known to Swoogle
(e.g., GuineaHen,Quail, Squab). Our experiments are quite strict with respect
to finding anchor terms for the candidate concepts: only concepts with identical
names are considered. In the next section we suggest ways to reduce this problem.

3.2 S2: Extending Swoogle’s Coverage

In order to discover more ontologies that cover the candidate concepts, the pro-
cess of finding anchor terms must be more flexible. This flexibility can be achieved
by considering the following techniques:

A. String normalization. Differences between concept names can be based
on simple differences in naming conventions (e.g., TURKEY BREAST and
TurkeyBreast). Most mapping mechanisms use string normalization techniques,
that consist in transforming strings into a standard form before comparison. Our
ontology selection relies on such mechanisms as well.

B. Dealing with compound names. Compound names are particularly
difficult to match as they are likely to appear under slightly different forms.
Several mapping techniques suggest to be more flexible when searching for com-
pound terms and to allow for:

Different order of the constituents. For example, the term TurkeyRoast
does not appear in Swoogle, but RoastTurkey does.

Additional constituents. For example, TurkeyBreast is not covered but
TurkeyMeatBreast (which additionally contains Meat) is.

Less constituents. Some compound terms are only partially covered. For ex-
ample, MeatProduct does not exist in Swoogle, but Meat does.

Such a flexible matching is also used when discovering anchor terms in the work
of Aleksovski et al. [1]. However, while the examples given above are seman-
tically equivalent, automatically identifying lexically different but semantically
equivalent compound terms is a difficult task.

B. Exploiting semantic relations between terms. Semantic relations
such as synonymy can be used to replace terms with their semantic equivalents.
A good source for synonymy information is WordNet. However, the drawbacks
of WordNet are that it is difficult to get relevant synonyms unless the sense of
the term is known a priory and that compound terms are weakly covered.

Experimental results. Just to prove the point that extended coverage can
have a significant effect on the obtained mappings, we rerun our experiments
by replacing some terms with their syntactic approximates. We
replaced TurkeyRoast with RoastTurkey (SR-Meat), TurkeyBreast with
TurkeyMeatBreast (SR-Meat) and, MeatProduct with Meat (A-Animal).

A-Food vs. SR-Meat: We obtained that RoastTurkey
v−→ PreparedFood

and RoastTurkey
v−→ Food because RoastTurkey v TurkeyDish v Poul-

tryDish vMeatDish v PreparedFood v Food. Also, TurkeyMeatBreast
v−→

Food. All mappings were derived from Tap.



A-Animal vs. SR-Meat: We obtained three extra mappings: Beef
v−→Meat5,

Ham
v−→Meat6 and Pork

v−→Meat7.
Increasing the coverage of the mapped terms by replacing them with se-

mantically similar variants leads to more mappings. However, another problem
comes from the fact that both candidate concepts might not appear in a single
ontology, even if each of them appears by itself in many ontologies. Therefore,
another way to obtain more mappings is to extend the matching strategy to
combine information derived from multiple ontologies, as detailed next.

3.3 S3: Cross-Ontology Mapping Discovery

The previous strategies (S1 and S2) assume that a semantic relation between
the candidate concepts can be discovered in a single ontology. However, some
relations could be distributed over several ontologies. Therefore, if no ontology is
found that relates both candidate concepts, then the mappings should be derived
from two (or more) ontologies. In this strategy, mapping is a recursive task where
two concepts can be mapped because the concepts they relate in some ontologies
are themselves mapped (Figure 1(c)):

1. If no ontologies are found that contain both A and B then select all ontologies
containing a concept A’ corresponding to A;

2. For each of the resulting ontologies:
(a) for each C such that A’ v C, search for mappings between C and B;
(b) for each C such that A’ w C, search for mappings between C and B;
(c) derive mappings using the following rules:

– (r1) if A’ v C and C
v−→ B then A

v−→ B

– (r2) if A’ v C and C
≡−→ B then A

v−→ B

– (r3) if A’ v C and C
⊥−→ B then A

⊥−→ B

– (r4) if A’ w C and C
w−→ B then A

w−→ B

– (r5) if A’ w C and C
≡−→ B then A

w−→ B

In this strategy, steps (a) and (b) can be ran in parallel and stopped when
one of them is able to establish a mapping. These two steps correspond to the
recursive part of the algorithm. The task of searching for mappings between C

and B can be realized using one of our three strategies.
Experimental results. We have implemented this algorithm by using the first

mapping strategy (S1) in the recursive part.
A-Food vs. SR-Meat: By combining information available in different on-
tologies, we obtained that Chicken, Duck,Goose, Turkey

v−→ Food because
they are subclasses of Poultry in some ontologies 8 and Poultry v Food in
5 http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml
6 http://www.pizza-to-go.org/ontology
7 http://reliant.teknowledge.com/DAML/Economy.daml
8 e.g., http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml



Tap (r1). We also discovered that Ham
v−→ Food because Ham v Meat and

Meat v Food in SUMO9 (r1). Finally, we found that Ham
⊥−→ Seefood because

Ham vMeat and Meat⊥Seafood10 (r3).
A-Animal vs. SR-Meat: Because Beef,Ham,Pork v Meat and
Meat⊥Seafood we derive that Beef,Ham,Pork

⊥−→ Seafood (r3). Note that
incompatibility mappings are not specified in the gold standard.

4 Conclusions

The aim of this paper was to show the feasibility and the potential advantages
of using automatically selected online ontologies as background knowledge for
semantic mapping. As Table 1 shows, our experiments on two real life examples
have provided promising results, which are consistent with our idea of semantic
mappings, as discussed in Section 2. In particular, the output of our algorithm
provides mappings, which i) are expressed in terms of semantic relations (sub-
sumption, disjunction); ii) rely on semantics, as expressed in external ontologies;
and iii) in many cases would have not been discovered by syntactic techniques
(e.g., because the strings denoting similar concepts are very different).

Mappings
A-Food vs. SR-16 A-Animal vs. SR-16

S1 Beef, Pork, Poultry
v−→ Food Bacon

v−→ Pork

S2 RoastTurkey
v−→ Food, PreparedFood Beef, Ham, Pork

v−→ Meat

TurkeyMeatBreast
v−→ Food

S3 Chicken, Goose, Turkey, Duck
v−→ Food Beef, Ham, Pork

⊥−→ Seafood*

Ham
v−→ Food; Ham

⊥−→ Seefood*
Total 11 (+1*) 4 (+3*)

Table 1. Discovered mappings. Marked mappings* do not exist in the Gold Standard.

Note that the technique presented here is not meant to be used in isolation, as
an alternative to current approaches. On the contrary, we plan to integrate our
technique with “syntactic” techniques, to develop a robust and comprehensive
ontology mapping method. For this reason it is difficult to provide a detailed
comparison with other approaches, using standard measures of precision and
recall. Because our technique is meant to enhance, rather than replace existing
methods, it scores very highly on precision but relatively low on recall, about
30% on the test case provided by [15] (low recall is due to the fact that many
concepts are not covered by any online ontology). Having said so, we should
also emphasize that some of the mappings our system is able to discover are not
even covered by the Gold Standard defined in [15], which is an indication of the
greater range of mapping possibilities provided by our approach.
9 http://reliant.teknowledge.com/DAML/SUMO.owl

10 http://ontolingua.stanford.edu/doc/chimaera/ontologies/wines.daml



The broader context of our work is one of providing meaningful mappings
that can be used by the next generation of Semantic Web applications [10] to
reason over multiple ontologies. Hence, in contrast with most existing work on
ontology mapping, we are interested in developing an approach which can be
used by systems that need to create mappings dynamically and in real time to
make use of the large scale semantics available on the Web. This aspect still
needs to be evaluated using appropriate experimental settings and criteria.

Another goal of this paper was to identify some of the research issues brought
up by the innovative aspects of our technique. The first innovative aspect is that
appropriate background knowledge is automatically selected from the variety of
ontologies available on the Semantic Web. As a result, important issues for us
concern i) the current level of semantic coverage of the Semantic Web and ii) the
quality of the tools that give access to it. Regarding the second point, although
Swoogle [5] is by far the most advanced ontology search engine available today,
it is still rather limited with respect to supporting our needs to exploit online
ontologies dynamically and in real time. Among other things, we need better
query facilities, a richer set of relations between ontologies (at the very least to
quickly discard duplicate ontologies), and other ranking mechanisms in addition
to popularity. Regarding the current level of coverage on the Semantic Web, our
previous work [12] indicated a knowledge sparseness phenomenon: some domains
are well covered by existing ontologies (e.g., academic research and medicine),
while others are not covered at all. This phenomenon has a direct influence on
our method as coverage of a domain is a prerequisite for successfully mapping
ontologies in this domain. Having said so, there is evidence that the Semantic
Web is rapidly growing and, as a result, our method will be able to perform better
and better, simply by taking advantage of the improved semantic coverage.

The second innovative aspect of our technique, that of combining facts from
different ontologies, leads to another important issue: how to deal with contradic-
tions. Online ontologies are made for different purposes, in different contexts and
therefore, can lead to contradictory (or inconsistent) mappings. As already men-
tioned, one of the advantages of semantic techniques is that resulting mappings
can be justified and explained. In that sense, one way to deal with contradic-
tions would be to relate mappings to the ontologies on which they are based.
Using this solution, contradictory mappings would still co-exist but in a con-
textualized form, i.e., justified and valid only in the context of some particular
ontologies. Another way to deal with contradictions would be to rely only on
ontologies sharing a similar context with the mapped ones. Indeed, when trying
to map the Turkey concept, we would more likely find relevant mappings using
ontologies also containing concepts like Food or Meat, than ontologies covering
countries. This implies that more advanced ontology selection techniques are
needed which can consider similarity between ontologies as a selection criterion.

In addition to tackling the aforementioned issues, the experiments presented
here need to be followed by several studies. A key next step concerns the complete
implementation and evaluation of our technique, which is currently restricted to
subsumption and disjunction relations between concepts. Our plan is to extend



the technique to also map properties and individuals, so to increase the range of
discovered mappings. Finally, when presenting our strategies we emphasized the
trade-off between the performance and the accuracy of the mapping mechanism.
Finding a good compromise between these two aspects is a hard task and we plan
to address this issue by reformulating our technique as an anytime algorithm.
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