
Integrating XQuery and P2P in MonetDB/XQuery*

Ying Zhang and Peter Boncz

Centrum voor Wiskunde en Informatica, P.O.Box 94079, 1090 GB, Amsterdam, the Netherlands
{Y.Zhang, P.Boncz}@cwi.nl

Abstract. MonetDB/XQuery* is a fully functional publicly available XML DBMS
that has been extended with distributed and P2P data management functionality.
Our (minimal) XQuery language extension XRPC adds the concept of RPC to
XQuery, and exploits the set-at-a-time database processing model to optimize the
networking cost through a technique called Bulk RPC. We describe our approach
to include the services offered by diverse P2P network structures (such as DHTs),
in a way that avoids any further intrusion in the XQuery language and semantics,
and show how this, similarly to Bulk RPC, will lead to further query optimization
opportunities where the XDBMS interacts with the underlying P2P network. We
also discuss some P2P data management applications were MonetDB/XQuery*
is being used (an in-home small scenario and a wide-area collaborative applica-
tion). As this research is work-in-progress, we outline some research questions
on our path towards defining and realizing P2P XDBMS technology.

1 Introduction

In the AmbientDB [9] project, we are building MonetDB/XQuery* , an open-source
XML DBMS (XDBMS) with support for distributed querying and P2P services. Our
work is motivated by the hypothesis that P2P is a disruptive paradigm that should
change the nature of database technology. Most of the existing distributed DBMS tech-
nologies were developed to be used in (small-scale) local-area networks (LAN). Those
technologies usually assume that (i) there is a central controller and/or peers have com-
plete knowledge of the whole system, (ii) peers are uniform and highly available, (iii)
placement of data happens in a controlled way and is rarely changed and (iv) a global
database schema is used. Peer-to-Peer (P2P) networks have led the distributed DBMS
research to reconsider existing technologies in such a new environment, where (i) sys-
tems have decentralized architectures, (ii) peers join or leave the network at any time,
(iii) placement of data is out of the system’s control and it changes frequently, (iv) each
peer can have its local database schema (or no schema at all), and (v) data owned by the
peers are often incomplete, overlapping and even conflicting.

Challenges. While the P2P database concept has generated a research niche, the con-
cept has not yet been widely recognized as relevant. A first problem is that P2P database
technology is understood by different researchers to mean different things, and there is
no “role model” system (like what System-R was for the RDBMS) as an orientation
point for the community. Secondly, most proposed techniques (e.g. P2P query process-
ing algorithms) are evaluated in simulations whose results are hard to extrapolate to
behaviour in real-world circumstances. A third and related problem is that so far no

“killer applications” for P2P database technology have been recognized (in contrast to
P2P systems – of which various mostly file-downloading systems have found a large
user audience).

Strategy. Our strategy for advancing the state-of-the-art is to incrementally develop a
working P2P database prototype as a test-bed for our research and to work on appli-
cations that benefit from P2P database technologies. This strategy requires – besides
research effort – a large investment in prototype engineering. We are glad to be able
to build on MonetDB/XQuery [8], an open source XDBMS based on purely relational
query processing that supports XQuery [3] and the XQuery Update Facility (XUF) [11].
The choice for XML as a data model – and web standards in general – eases many
aspects of distributed data management (i.e. the XML data format is platform indepen-
dent, and there is ubiquitous support for URIs and specifically HTTP networking, that
we use for data and query transport). We obtain P2P XDBMS functionality by orthogo-
nally extending XQuery with support for (i) distributed querying and (ii) P2P services.
At this stage we have made the step (i) by introducing XRPC, an XQuery language
extension (a full discussion is in [29]). We also formulate the requirements and current
direction for achieving step (ii), and illustrate the working of our envisioned system in
a P2P application called StreetTiVo.

StreetTiVo is a showcase application being developed by the Dutch national research
project MultimediaN, that unites multimedia and database researchers in various aca-
demic and industrial research institutes. The StreetTiVo application is a plug-in for
so-called Home Theatre PCs (MythTV and Windows Media Center Edition), which
one can consider programmable digital video recorders. The StreetTiVo plug-in en-
ables real-time content-based video retrieval and meta data generation, by distributing
compute-intensive video analysis over multiple peers that recorded the same TV pro-
gram. This application involves distributed collaborator discovery, work coordination,
and result exchange in a volatile WAN environment (but not video file exchange – it is
strictly legal). We think that deploying ready-to-run P2P data management technology
enables quick development of this application.

Outline. In Section 2, we present our first step, namely distributed XQuery processing
using a language extension called XRPC. While XRPC already allows to perform P2P
queries, it still misses a number of vital P2P functionalities (robust connectivity, peer
and resource discovery, approximate query/transaction processing). In Section ??, we
outline our plans and research questions to address these open issues. We also illustrate
how the described P2P XDBMS can be used in the StreetTiVo application. Finally, in
Section 4 we describe related work, before concluding in Section 5.

2 XRPC: Distributed XQuery Processing

The XRPC syntax for remote function application is similar to XQueryD [22]:
“execute at” “{” Expr “}” “{” FunApp (ParamList) “}”

where Expr is an XQuery xs:string expression that specifies the URI of the peer on
which FunApp is to be executed. Here we restrict the function application FunApp

to user-defined functions (UDF) that are defined in a module. Thus, the defining pa-
rameters of an XRPC call are: (i) a module URI, (ii) a function name, and (iii) the
actual parameters. The module URI is the one bound to the namespace identifier in the
function application. Just like a “import module” statement, the module URI may be
supplemented by a so-called “at” hint, which also is a URI.

We chose to exclude calling built-in functions over XRPC, since remote execution
of local parameters does not provide any functional benefit over local execution. We
also exclude remote application of user-defined functions specified inside the query
(rather than in a module). This latter restriction simplifies the issue of how to transport
the query definition from caller to callee, as it allows the XQuery system implementing
XRPC to re-use the existing mechanism for function resolution from imported modules.

We made a conscious choice for by value 1 parameter passing, as by reference se-
mantics would make it very complicated to orthogonally support XPath/XQuery on
parameters or results of RPC calls (think of calling parent::* on an XML node type
parameter, passed by reference – it would require additional implicit communication).
Examples. As a running example, we assume a set of XQuery database systems (peers)
that each store a film database document “films.xml” with contents similar to:
<films>
<film><filmName>The Rock</filmName><actorName>Sean Connery</actorName></film>
<film><filmName>Goldfinger</filmName><actorName>Sean Connery</actorName></film>
<film><filmName>Green Card</filmName><actorName>Gerard Depardieu</actorName></film>

</films>

We assume an XQuery module filmdb stored at http://x.org/film.xq, that defines
a function filmsByActor():
module namespace film="filmdb";
declare function film:filmsByActor($actor as xs:string) as node()*
{ doc("films.xml")//filmName[../actorName=$actor] };

We can execute this function on the remote peer “y.org” to get a sequence of films in
which Sean Connery plays in the remote film database:
import module namespace film="filmdb" at "http://x.org/film.xq";
<films> (Q1)
{ execute at {"xrpc://y.org"} {film:filmsByActor("Sean Connery")} }
</films>

We introduce here a new xrpc network protocol, accepted in the destination URI of
execute at. The generic form of such URIs is xrpc://< host > [: port] [/[path]].
The xrpc:// indicates the network protocol. The second part, < host > [: port], indicates
the remote peer. The third part, [/[path]], is an optional local path at the remote peer.

The above example yields:
<films>
<filmName>The Rock</filmName>
<filmName>Goldfinger</filmName>

</films>

Another example performs multiple remote function calls to a single peer:
import module namespace film="filmdb" at "http://x.org/film.xq";
<films>
{ for $actor in ("Julie Andrews", "Sean Connery") (Q2)

let $dst := "xrpc://y.org"
return execute at {$dst} {film:filmsByActor($actor)} }

</films>

1 Only the subtree rooted at a node parameter is sent.

Note that one can also perform XRPC calls to many different peers from within the
same query (since the destination expression is unrestricted).

2.1 SOAP XRPC Message Format
SOAP (Simple Object Access Protocol) is an XML-based message format used for web
services [2]. We propose the use of SOAP messages over HTTP as the network protocol
underlying XRPC. The choice for SOAP allows seamless integration of XRPC with web
services and Service Oriented Architectures (SOA). SOAP web service interactions
usually follow a RPC (request/response) pattern, though the SOAP protocol is much
richer and allows multi-hop communications, and highly configurable error handling.
XRPC Request Message. SOAP messages consist of an Envelope, with a (optional)
Header and a Body. Inside the body, we define a request that specifies a module URI
module, an (optional) at-hint location and a function name method. The actual pa-
rameters of a single function call are enclosed by a call element. Each individual
parameter consists of a sequence element, that contains zero or more values. Below
we show the SOAP XRPC request message for the example query (Q1):
<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery http://monetdb.cwi.nl/XQuery/XRPC.xsd">
<env:Body>

<xrpc:request module="filmdb" location="http://x.org/film.xq" method="filmsByActor">
<xrpc:call>
<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>
</env:Body>

</env:Envelope>

XRPC Response Messages follow the same principles. Inside the body is now a response
element that contains the result sequence of the remote function call. In the messages,
atomic values are represented with atomic-value, and are annotated with their (sim-
ple) XML Schema Type by the xsi:type attribute. Thus, the heterogeneously typed
sequence containing an integer 2 and double 3.1 would become:
<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:integer">2</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:double">3.1</xrpc:atomic-value>

</xrpc:sequence>

XML nodes are passed by value, enclosed by an element tag:
<xrpc:sequence>
<xrpc:element><filmName>The Rock</filmName></xrpc:element>
<xrpc:element><filmName>Goldfinger</filmName></xrpc:element>

</xrpc:sequence>

Similarly, the XML Schema XRPC.xsd2 defines enclosing elements for document, at-
tribute, text, processing instruction, and comment nodes. XRPC fully supports the XQuery
Data Model (XDM) [12], a requirement for making it an orthogonal XQuery language
feature. User defined element types are annotated in the messages using xsi:type at-
tributes, such that XRPC messages can be correctly validated [29].

2 See http://monetdb.cwi.nl/XQuery/XRPC.xsd

2.2 XRPC Formal Semantics

In defining the semantics of XRPC 3, we take care to attach proper database semantics
to the concept of RPC, to ensure that all RPCs being done on behalf of a single query
see a consistent distributed database image and commit atomically. It is known that
full serializability in distributed queries can come at a high cost, and therefore we first
define a less strict isolation level that still may be useful for certain applications. We
use the following notations and terms:

– P denotes a set of peer identifiers.
– F denotes a set of XRPC function applications. The focus of this paper is read-

only function calls, which are indicated by fr. If the evaluation of an XRPC call f
requires evaluation of other XRPC call(s), we term f a nested XRPC call.

– M denotes a set of XQuery modules. A module consists of a number of function
definitions d f . Each XRPC call f must correspond to a definition d f from some
module m f ∈ M.

– Each query operates in a dynamic context. The XQuery 1.0 Formal Semantics [4]
specifies the result of an expression to be defined by a semantic judgement dynEnv`
Expr ⇒ val. This judgement states that in the dynamic context dynEnv, the expres-
sion Expr evaluates to the value val, where val is an instance of the XQuery Data
Model [12]. For now, we simplify the dynamic environment to a database state
db (i.e. the documents and their contents stored in the XML database): dynEnv '
db@p. The dynEnv.docValue from the XQuery Formal Semantics [4] corresponds
to db used here. To indicate a context at a particular peer p, we write db@p.

Basic Read-Only XRPC is defined by extending the XQuery 1.0 semantic judgements
with a new rule RFr :

sendp0→pi request(m, fr,ParamList)
db@pi ` fr(ParamList) ⇒ val, db@pi

sendpi→p0 response(val)
db@p0 ` fr(ParamList)@pi ⇒ val, db@p0

(RFr)

This rule states that in the dynamic context, evaluation of the read-only XRPC call
fr(ParamList)@pi starts with sending the request (m, f ,ParamList) to peer pi. Here, m
is the module URI (plus at-hint) in which function fr is defined, and ParamList is a list
of actual parameters. The function fr is then evaluated as a normal local function in the
dynamic context dynEnv@pi, that consists of the database state db@pi of the remote
peer pi at the time the request arrived at pi. The evaluation yields the value val, which
is sent back to the local peer p0. Hence, the final result of this XRPC call at p0 is val.

Note that neither the local database state db@p0 nor the remote database state
db@pi were modified by the evaluation of a read-only XRPC function. The function
evaluation result val is a transient value, which only exist in the runtime environment at
both p0 and pi. Also note that this definition inductively relies on the XQuery Formal
Semantics to evaluate f locally at pi, and thus may trigger the evaluation of additional
XRPC calls if these happen to be present in body of f .

3 We adopt the notations from XQuery 1.0 and XPath 2.0 Formal Semantics [4]

Repeatable Reads. As a query may perform multiple XRPC calls and each XRPC call
may again perform XRPC calls, it can happen that some peer pi is contacted multiple
times, even using different call sequences. When considering rule RFr , the dynamic en-
vironment dynEnv@pi containing the database state db@pi may thus be seen multiple
times during query evaluation. In between those multiple function evaluations, other
transactions may update the database and change db@pi. Thus, those different XRPC
calls to the same remote peer pi from the same query q may see different database states.
This will not be acceptable for some applications and therefore, we deem it worthwhile
to define repeatable read isolation for queries that perform XRPC calls. For this pur-
pose, we formulate a similar-looking rule R′

Fr , where we tag the database state with a
query identifier: dbq@p.

sendp0→pi request(q,m, fr ,ParamList)
dbq@pi ` fr(ParamList) ⇒ val, dbq@pi

sendpi→p0 response(val)
dbq@p0 ` fr(ParamList)@pi ⇒ val, dbq@pi

(R′
Fr)

This rule specifies all XRPC calls at peer pi belonging to the same query q, will be
evaluated using the same database state dbq@pi. This dbq@pi is the state of the data-
base at the time when the first XRPC request belonging to q arrived at pi. Observe that
a unique query identifier q is now passed as an extra parameter in the XRPC request,
such that a peer can recognize which XRPC calls belong to the same query 4. Clearly,
XRPC with repeatable reads requires more resources to implement, as some database
isolation mechanism (of choice) will have to be applied. The transaction mechanism
of MonetDB/XQuery, for example, uses snapshot isolation based on shadow paging,
which keeps copies of modified pages around.

A quite common reason why a peer is called multiple times in the same query is
when an XRPC call appears inside a for-loop. In Section 2.3 we describe how loop-
lifting helps avoid these costly isolation measures in case of simple XRPC queries (i.e.
those that contain only one non-nested function application) 5.

Updates. XRPC is an orthogonal language extension, thus it also allows updating user
defined functions to be called. MonetDB/XQuery supports such updates conforming
to the W3C XQuery Update Facility [11]. Thus, XRPC also enables complex P2P up-
date transactions, as a query may contain multiple such updating function XRPC calls,
each call may be nested, such that the same peer may be involved in the execution
of multiple updating XRPC calls originating from the same query. In [29] we define
two update semantics: a lax semantics where each updating XRPC call is executed and
committed in isolation, and a strict variant, that supports repeatable reads and atomic
distributed commit (this latter semantics requires a costly distributed commit protocol
such as 2PC). Also, we describe a deterministic update order (the XUF leaves this or-
der open) and describe an extension to our SOAP message format to guarantee correct
deterministic update order in distributed updates in [29].

4 Note that the choice of desired semantic rule is made per query, not per request.
5 XRPC currently only has repeatable-reads support for simple XRPC queries, at zero cost.

2.3 Bulk RPC

One of the major contributions of XRPC is allowing Bulk RPC operations, in which a
single XRPC request message is sent to the destination peer to perform multiple func-
tion calls. The results of such a Bulk RPC operation are sent back, again, in a single
(response) message. Obviously, this approach can dramatically reduce network latency
and band-width usage if the number of interactions with XRPC calls to the same peer
is large. While Bulk RPC can in principle be applied in any XQuery implementation, it
followed quite naturally from the translation technique used by the Pathfinder [15] com-
piler (that is used in MonetDB/XQuery), which is is capable of translating arbitrarily
shaped XQuery expressions into a single relational plan, consisting only of set-a-time
relational algebra expressions.

actor
iterpos item
1 1 ”JulieAndrews”
2 1 ”SeanConnery”

dst
iterpos item
1 1 ”xrpc : //y.org/”
2 1 ”xrpc : //y.org/”

Bulk RPC to a single peer. Our earlier example query (Q2) con-
tains a function application inside a for-loop. In the relational
XQuery translation approach of Pathfinder, the values of the vari-
ables $dst and $actor of all iterations inside this loop are rep-
resented by the three-column relational tables shown at the right
side. The actual values of a variable are stored in the column item. The column iter is
used to preserve the iteration order. The column pos is used to indicate the position of
the value in an XQuery sequence. This loop-lifting technique is extensively explained
in [8] and [15]. From the tables, it can be seen that the values of $dst are the same in
both iterations of the for-loop, whereas $actor takes on values “Julie Andrews” in
the first and “Sean Connery” in the second iteration. Both pos columns in our tables
contain only the value 1 indicating that there are no multi-item sequences in the query.

For this query, XRPC generates one request message as shown below (only the
request is shown). Each call is represented by an individual call child element:
<xrpc:request module="filmdb" location="http://x.org/film.xq" method="filmsByActor">
<xrpc:call> <!-- first call -->

<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:string">Julie Andrews</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>
<xrpc:call> <!-- second call -->

<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>

Bulk RPC returns results of multiple calls in one response element, with one sequence
element representing the result of each call:
<xrpc:response module="filmdb" method="filmsByActor">
<xrpc:sequence/> <!-- result of first call -->
<xrpc:sequence> <!-- result of second call -->

<xrpc:element><filmName>The Rock</filmName></xrpc:element>
<xrpc:element><filmName>Goldfinger</filmName></xrpc:element>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>

Bulk RPC to multiple peers. In the previous example the execute at expression
$dst happened to be constant, such that all loop-lifted function calls had the same

destination peer, and could be handled by the single Bulk RPC request above. In the
general case, however, there are multiple destination peers, which means that we have
to split the input tables in sub-tables with the parameter values for each distinct destina-
tion peer. From these separate sub-inputs, we perform a separate (Bulk) RPC requests
to each peer, in parallel. The results extracted from the response messages are then
combined (∪) and re-ordered [29].

In the remainder of the paper, we will define some additional semantics of XRPC
functions as if there is only a single destination URI. This is done for simplicity; the
technique of splitting at run-time all XRPC inputs per unique destination and handling
them separately trivially applies to any case.

2.4 XRPC Implementation

The XRPC module in MonetDB/XQuery contains an ultra-light HTTP daemon imple-
mentation [19] that runs a request handler (the XRPC server), and contains a message
sender API (the XRPC client). We also had to add support for the execute at syntax
to the Pathfinder XQuery compiler, and change its code generator to generate stub code
that invokes the new message sender API.

XRPC call processing re-uses the standard XML shredding and serialization pro-
vided by MonetDB/XQuery: first from the actual parameters a XML message is se-
rialized into a HTTP post request, sent out using the message sender API. The return
message is again shredded and the resulting relational tables are used as the result of the
XRPC call. The request handler, on the other side, behaves similarly. It listens for SOAP
requests and shreds incoming messages into a temporary relational table, from which
the parameter values are extracted. The module function specified in the SOAP request
is then executed locally with these parameter tables, producing a result table. The re-
quest handler then builds a response message in which this result table is serialized into
XML onto the network socket.
Experiments. We conducted some simple and preliminary experiments to evaluate the
performance of SOAP XRPC in MonetDB/XQuery. The test setup consisted of two
2GHz Athlon64 Linux machines connected on 100Mb/s ethernet. We defined a module
with a trivial user defined function, that adds two integer parameters:
module namespace test="test";
declare function add($a as xs:integer, $b as xs:integer) as xs:integer
{ return $a + $b };

For each measurement, we executed the following function hundred times (the average
elapsed time is reported):
import module namespace test="test" at "http://x.org/test.xq";
for $i in (1 to $x) (Q3)

return execute at {"xrpc://y.org"} {test:add(20,22)}

$x=1 $x=1000
one-at-a-time 35 34979
bulk 35 400

Fig. 1. XRPC Performance (msec)

While in MonetDB/XQuery loop-lifting of
XRPC calls (i.e. Bulk RPC) is the default, we
also implemented a single RPC at-a-time mech-
anism for comparison. Figure 1 shows the exper-
iment where we compare performance of Bulk
RPC with single RPC at-a-time, while varying

the number of loop iterations $x. It shows that performance is identical at $x=1, such
that we can conclude that the overhead of Bulk RPC is small. At $x=1000, there is
an enormous difference, mostly caused by network communication cost. This is eas-
ily explained as the single RPC at-a-time experiment involves performing 1000 times
synchronous RPCs instead of 1.

3 P2P XQuery Semantics

MonetDB/XQuery* provides generic XQuery functionality, and its distributed querying
and update facilities can be used in widely varying environments. First, we show how
the mechanism described so far, can be useful in LAN environments with a limited
number of nodes. When considering WAN applications with potentially thousands or
more participating peers (such as StreetTiVo), we propose to use Distributed Hash Table
(DHT) data structures under the hood of the system.

In the following, we will show how these widely varying application areas can be
addressed by the fn:doc() and fn:put() built-in functions plus our XRPC execute
at language construct.

3.1 Simple Scenarios

The XQuery 1.0 language [3] specifies a data shipping model to deal with remote XML
documents. The built-in function fn:doc() retrieves an XML document stored in the
peer identified by an xs:anyURI. In the XQuery Update Facility [11], a new built-in
function fn:put() has been added, which stores an XML document node (or an XML
element node) to the location specified by an xs:anyURI. Our XRPC extension for
the XQuery language enables a query shipping model to query and manipulate remote
XML documents. Given our choice for SOAP over HTTP as the network protocol for
XRPC, it is interesting to note that the execute at construct, when combined with
fn:doc() and fn:put(), provides an implementation of HTTP-based data shipping,
as shown by the following rewriting rules:

fn:put ($node, xrpc://host/localname)
= =

StatEnv.baseURI ⇐ /0
execute at { xrpc://host } { fn:put($node, localname) }

(Rput1)

fn:doc (xrpc://host/localname)
= =

StatEnv.baseURI ⇐ /0
execute at { xrpc://host } { fn:doc(localname) }

(Rdoc1)

Thus, an XQuery system with XRPC can implement the HTTP protocol in fn:doc(),
fn:put() internally by using XRPC to execute those requests remotely with the local
part of the URI (and an empty ”base-URI”, from the static environment [4]).

Consumer Electronics Use Cases. Our AmbientDB research project originates from
the desire in the consumer electronics domain to provide a common data management
layer, that manages meta data found on mobile and stationary consumer electronics

DHT network1

M
on

et
DB

/X
Q

ue
ry

DHT agent

DHT agent

DHT agent

DHT agent

DHT agent

M
onetDB/XQ

uery

DHT network2

DHT network3DHT agent
Peer 1 Peer 2

(a) Loose DHT/DBMS Coupling

M
on

et
DB

/X
Q

ue
ry

DHT agent

DHT agent

DHT agent

DHT agent

DHT agent

DHT agent

M
onetDB/XQ

uery

DHT network2

DHT network3

DHT network1

Peer 1 Peer 2

(b) Tight DHT/DBMS Coupling

Fig. 2. MonetDB/XQuery* with multiple DHT connections

devices in and around the home (mobile phones, music players, PDAs, digital video
recorders, PCs, etc). The fact that some of these devices are mobile and not always con-
nected, and that manufacturers would prefer to provide functionality without the strict
need to install a central server, squarely puts this area in the P2P domain, albeit in a
LAN and a relatively small scale. Some of the applications found here (e.g. music meta
data browsing, intelligent media synchronization and playlist statistics collection, anal-
ysis and recommendation) can already benefit from the functionalities of a system like
MonetDB/XQuery* . More information about the envisioned AmbientDB applications
can be found in [9, 13]. Note that in a LAN, peer discovery can still be handled by the
application (using application-level protocols like UPnP [1]).

3.2 Loose DHT Coupling

A Distributed Hash Table [24, 5] provides (i) robust connectivity (i.e. tries to prevent
network partitioning), (ii) high data availability (i.e. prevent data loss if a peer goes
down by automatic replication), and (iii) a scalable (key,value) storage mechanism with
O(log(N)) cost complexity (where N is the amount of peers in the network). A num-
ber of P2P database prototypes have already used DHTs [10, 16–18, 21]. An important
design question is how a DHT should be exploited by an XQuery processor, and if and
how the DHT functionality should surface in the query language.

We propose here to avoid any additional language extensions, but rather introduce
a new dht network protocol, accepted in the destination URI of fn:doc(), fn:put()
and execute at. The generic form of such URIs is dht://dht id/key. The dht://
indicates the network protocol. The second part, dht id, indicates the DHT network
to be used. Such an ID is useful to allow a P2P XDBMS to participate in multiple
(logical) DHTs simultaneously, as shown in Figure 2(a). The third part (key) is used to
store and retrieve values in the DHT. The simplest architecture to couple a DHT network
with a DBMS is to just use the DHT API, the put(key,value) and get(key):value
functions, to implement the XQuery data shipping functions fn:put() and fn:doc(),
as shown in rules Rput2 and Rdoc2 :

pi = dht hashdht id(key)
dht sendp0→pi request(“put”, (key,$node))

dht store@pi ` put($node)@pi ⇒ dht store′@pi
dht sendpi→p0 response()

db@p0 ` fn:put ($node, dht : //dht id/key) ⇒ db@p0

(Rput2)

pi = dht hashdht id(key)
dht sendp0→pi request(“get”, (key))

dht store@pi ` get (dht id/key) ⇒ $node, dht store@pi
dht sendpi→p0 response($node)

db@p0 ` fn:doc (dht : //dht id/key) ⇒ $node, db@p0

(Rdoc2)

That is, we simply use the DHT to store XML documents as string values. The rules
indicate that at the remote peer pi, only the peer’s DHT storage is involved, hence, peer
pi does not even have to have a running MonetDB/XQuery* instance. Note that the
XQuery function fn:doc is a read-only function, since the document retrieved by using
this function is stored as a transient document.

In this architecture, we can run the DHT as a separate process called the Local
DHT Agent (LDA). Each LDA is a process that is connected to one DHT dht id (see
Figure 2(a)). This process runs separately from the database server, such that we can
use the DHT software without any modifications.

The execute at can be “simulated” as follows:
StatEnv.baseURI ⇐ dht : //dht id/pre f ix
db@p0 ` fr(ParamList) ⇒ val, db@p0

db@p0 ` fr(ParamList)@dht : //dht id/pre f ix ⇒ val, db@p0
(Rxrpc2)

Rule Rxrpc2 in fact just evaluates the function locally, by getting all documents with a
relative URI name from the DHT. This is achieved by setting the baseURI in the static
environment to dht://dht id/pre f ix. If the function body thus contains any fn:doc(),
fn:put() on some relative URI localname, the rules Rput2 and Rdoc2 specify that
the document should be stored/retrieved into/from dht://dht id/pre f ix localname. One
should note that the pre f ix may be empty.

While this approach allows zero-effort coupling of DHT technology with DBMS
technology, we consider it nothing more than a workaround. Rule Rxrpc2 substitutes
function shipping by data shipping, defeating the purpose of XRPC. In case of updates,
we would need to modify the rule to store the modified documents using put back in
the DHT, but such a two-step update is hard to be made atomic.

3.3 Tight DHT Coupling

In a tight coupling scenario, rather than keep XML as string blobs inside the DHT (in
RAM), each DHT peer actually uses its local XDBMS to store the documents (see
Figure 2(b)). To realize this, we need to extend the DHT API with a single new method:

xrpc (key, q, m, fr(ParamList)) : item()*

This new method allows the request in the below rule to be routed through the DHT
(dht send), to achieve the following semantics for XRPC calls to a “dht://” URI:

pi = dht hashdht id(key)
dht sendp0→pi request(q,m, fr,ParamList)

db@q pi ` fr(ParamList)@pi ⇒ val, dbq@pi
dht sendpi→p0 response(val)

dbq@p0 ` fr(ParamList)@dht : //dht id/key ⇒ val, dbq@p0

(Rxrpc3)

This rule states that the DHT dht id routes an XRPC request using the normal DHT
routing mechanism towards the peer pi responsible for key. When the Local DHT Agent

(LDA) in pi receives such a request, it performs an XRPC to the MonetDB/XQuery*
instance on the same peer pi. This XRPC executed at remote location pi from the LDA
into MonetDB/XQuery* (it may use either semantic RFr or R′

Fr). The response is then
transported back via the DHT towards the query originator p0.

In this scenario, we can support fn:doc() and fn:put() by combining rule Rxrpc3
with Rdoc1 and Rput1 . That is, use an XRPC request routed via the DHT to do a remote
execution of fn:doc(), fn:put() on the relative URI localname.

In the tight coupling, we have to extend the DHT implementation. A positive side-
effect of this is that the DBMS gets access to to information internal to the P2P network.
This information (e.g. peer resources, connectivity) can be exploited in query optimiza-
tion. Also, bulk XRPC requests routed over the DHT may be optimized (similar to Bulk
RPC), by combining requests that follow the same route as long as possible in single
network messages.

StreetTiVo Use Cases. We show how two uses cases in the StreetTiVo application can
be implemented as XQuery module functions, which then can be executed using XRPC
and tightly coupled DHT semantics.
(i) Collaborator Discovery. In StreetTiVo, compute-intensive video analysis work is
distributed to all peers pi that record the same TV program. Every TV program’s video
data is divided into segments of e.g. 30 seconds. Each peer pi analyses one segment at a
time. If a peer p0 has finished retrieving the meta data of a segment si, it sends the meta
data to those peers that record the same TV program, so that the other peers do not have
to analyse the same segment themselves. Peer p0 then tries to find out if there are more
segments need to be analysed, if yes, the peer p0 claims the segment s j and analyse it.
These steps are repeated until all segments of a TV program are analysed.

In this scenario, peer p0 needs to know which other peers record the same program
(its collaborators). This can be implemented as the following. Assume that every TV
program has a unique identifier progid, then we creates for each recorded TV program
progi an XML document with the name “<progid>.xml” to keep a list of pid-s of
peers that record this program. Store the document “progid.xml” in a peer in the DHT
network and later retrieve it can be done by the calls:

fn:put($node, "dht://dht id/progid.xml"), and
fn:doc("dht://dht id/progid.xml").

If a peer is going to record the TV program progid, it should add its peer ID to
“progid.xml”. This can be typically done by an XRPC call like:

execute at {"dht://dht id/progid.xml"} {xrpc:addPID($pid)}

(ii) Distributed Keyword Retrieval. One of the features provided by StreetTiVo is Au-
tomatic Speech Recognition (ASR) on TV programs. The resulting text is stored as
meta data for the recording, and can be searched using text retrieval functionality in
MonetDB/XQuery* . Each peer should have access to a local XQuery module with
the user-defined function searchKeywords that gets two parameters. The first param-
eter pid identifies the program in which text fragment should be searched. The second
parameter keywords is a list of search keywords.

Image this scenario: a StreetTiVo user wants to search in the today’s newscast for
text fragments that were about the earthquake in Hawaii, but he/she did not record
the newscast. Then the search request needs to be send to other StreetTiVo peers that

have recorded the newscast. Assume the newscast’s program ID is “newscast123”, this
scenario can be implemented by the following pseudo-code:
let $peers := execute at { "dht://dht_id/newscast123" } { xrpc:getPIDs() }
for $p in $peers
execute at { $p } { xrpc:searchKeywords("newscast123", ("earthquake", "hawaii")) }

3.4 Research Questions

The mission of the AmbientDB project at large is:

build a large-scale Peer-to-Peer middleware XML database management system,
which hides the heterogeneity of underlying database systems and communica-
tions networks, and provides a uniform programming interface to ease the devel-
opment of the ambient intelligent applications.

The final objective to unite data from heterogeneous sources recognizes the importance
of schema and data integration in P2P data management – issues not addressed here.
The AmbientDB project is being conducted together with Philips Research and Tech.
Univ. Twente, and this data integration aspect is being pursued there with special atten-
tion for the probabilistic nature of the result of such data/schema integration [28].

At CWI, we focus on the query and update processing research questions, such as:

– Which information and API should a DHT expose to a query processing engine
such that it can effectively optimize P2P queries? How can query optimization be
pursued effectively without having any global statistics? How can we balance query
optimization effort with query execution effort in a P2P setting?

– How can it be guaranteed that the distributed execution of a query will terminate
in a finite time. When it is the right moment to decide a query has produced enough
result? How can an error be handled properly in MonetDB/XQuery* ? When should
an execution be aborted due to errors?

– Which consistency constraints can be relaxed for different kinds of applications?
What are the trade-offs between location transparency and efficiency?

4 Related Work

P2P networks active topic in networking research, especially Distributed Hash Tables,
such as Chord [26]. For practical use, the systems Bamboo [23] and P-Grid [5] currently
seem to be the most usable.

[14] is one of the first papers that discuss database management issues in a P2P
environment. PIER [16] is a P2P information exchange and retrieval system on top of
the Bamboo DHT. It uses a relational data model and query language and has some
support for in-network joins. UniStore [18] provides an (RDF-like) triple storage on
top of P-Grid. XPeer [25] is a P2P XDBMS for sharing and querying XML data, on top
of a super-peer network. The query algebra of XPeer takes explicitly into account data
dissemination, data replication and data freshness. [21] is a proposal for a XML-based
database system on top of a DHT, which is also named XPeer. Of these systems, the
PIER and UniStore systems seem to be the most developed prototypes so far.

In the area of extending XQuery with distributed querying capabilities, several pro-
posals are close to our work ([22, 7, 6, 20, 27]). The syntax of XRPC is based on that
of XQueryD [22], but in a more restricted form. The XQueryD approach requires a
runtime rewriter to scan the XQuery expressions in the execute statement for vari-
ables and substitute the variables with the current runtime values. Such a rewriter is not
needed in XRPC, and by relying on function resolution in modules, query transporta-
tion is simplified and queries may benefit from pre-processing. In Active XML ([7, 6]),
calls to service functions are embedded in XML documents. Galax Yoo-Hoo! [20] is
related to our work in the sense that web services are accessed using remote procedure
calls and SOAP messages are used as the communication protocol (although messages
must be manipulated explicitly with element construction). DXQ [27] is a specification
of a Distributed XML-Query network.

5 Conclusion

In this paper, we discussed work on MonetDB/XQuery* that aims to create power-
ful P2P XML database technology that preserves the full XQuery language (+XUF),
extending it only with a single new construct called XRPC. 6 We first gave a formal
definition of the syntax and the semantics of XRPC, and showed how it can be im-
plemented efficiently using set-at-a-time processing (Bulk RPC). A small experimental
section demonstrated that Bulk RPC strongly improves performance of queries that ex-
ecute XRPC calls inside for-loops. We then described how Distributed Hash Tables
(DHTs) can be integrated without further XQuery extensions, by adding support for
a new dht:// protocol in URIs. We discussed the semantics of two ways of coupling
(loose and tight) a DHT with an XDBMS, of which the latter is more powerful. This was
shown by elaborating in some detail how this functionality can be used in the StreetTiVo
collaborative video indexing application.

Our next step is to implement these couplings in MonetDB/XQuery* using the
Bamboo DHT [24], and perform experiments in environments like PlanetLab. Espe-
cially the tight coupling will open up a playing field for a number of query optimization
techniques that exploit the P2P network characteristics. This is only one of the many
research questions in AmbientDB, of which we provided a non-exhaustive overview.

References

1. UPnP: Universal Plug and Play. http://www.upnp.org.
2. SOAP Version 1.2 Part 0: Primer. W3C Recommendation 24 June, 2003.

http://www.w3.org/TR/2003/REC-soap12-part0-20030624.
3. XQuery 1.0: An XML Query Language. W3C Candidate Recommendation 8 June, 2006.

http://www.w3.org/TR/2006/CR-xquery-20060608.
4. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Candidate Recommendation 8 June,

2006. http://www.w3.org/TR/2006/CR-xquery-semantics-20060608.

6 The next open-source release of MonetDB/XQuery including XRPC (download from
http://monetdb.cwi.nl/XQuery) is coming soon.

5. K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Systems. In
CooplS ’01, London, UK, 2001. Springer-Verlag.

6. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic xml documents
with distribution and replication. In SIGMOD Conf., 2003.

7. S. Abiteboul, I. Manolescu, and E. Taropa. A Framework for Distributed XML Data Man-
agement. In Intl. Conf. on Extending Database Technology, 2006.

8. P. Boncz, T. Grust, M. vKeulen, S. Manegold, J. Rittinger, and J. Teubner. Mon-
etDB/XQuery: A Fast XQuery Processor Powered by a RDBMS. In SIGMOD, 2006.

9. P. A. Boncz. AmbientDB: P2P Database Technology for Ambient Intelligent Multimedia
Applications. ERCIM News, (55), 2003.

10. A. Bonifati, E. Q. Chang, T. Ho, and L. V. Lakshmanan. HepToX: Heterogeneous Peer to
Peer XML Databases. Technical Report UBC TR-2005-15, 2005.

11. D. Chamberlin, D. Florescu, and J. Robie. XQuery Update Facility. W3C Working Draft 11
July, 2006. http://www.w3.org/TR/2006/WD-xqupdate-20060711.

12. M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 Data Model (XDM). W3C Candidate Recommendation 11 July, 2006.
http://www.w3.org/TR/2006/CR-xpath-datamodel-20060711.

13. W. Fontijn and P. A. Boncz. AmbientDB: P2P Data Management Middleware for Ambient
Intelligence. In PERWARE, Orlando, FL, USA, 2004.

14. S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and D. Suciu. What Can Peer-to-Peer Do
For Databases, and Vice Versa? In WebDB, Santa Barbara, CA, USA, 2001.

15. T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In VLDB, 2004.
16. R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe, S. Shenker,

I. Stoica, and A. R. Yumerefendi. The Architecture of PIER: an Internet-Scale Query Pro-
cessor. In CIDR, 2005.

17. R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica. Querying
the Internet with PIER. In VLDB, 2003.

18. M. Karnstedt, K.-U. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt, and
R. John. UniStore: Querying a DHT-based Universal Storage. Technical report, 2006.

19. S. Lyubka. SHTTPD: Simple HTTPD. http://shttpd.sourceforge.net.
20. N. Onose and J. Siméon. XQuery at Your Web Service. In WWW, 2004.
21. W. Rao, H. Song, and F. Ma. Querying XML Data over DHT System Using XPeer. In Grid

and Cooperative Computing - GCC 2004, 2004.
22. C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In IIWeb, 2004.
23. S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker. Fixing the Embarrassing Slowness of

OpenDHT on PlanetLab. In USENIX WORLDS’05, 2005.
24. S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In USENIX

Annual Technical Conference, General Track, 2004.
25. C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A Self-Organizing XML P2P

Database System. In EDBT Workshops, 2004.
26. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications. In ACM SIGCOMM, 2001.
27. C. Thiemann, M. Schlenker, and T. Severiens. Proposed Specification of a Distributed XML-

Query Network. CoRR, cs.DC/0309022, 2003.
28. M. van Keulen, A. de Keijzer, and W. Alink. A probabilistic XML approach to data integra-

tion. In Proceedings of the International Conference on Data Engineering (ICDE), 5-8 April
2005, Tokyo Japan, pages 459–470. IEEE Computer Society, April 2005.

29. Y. Zhang and P. A. Boncz. Loop-Lifted XQuery RPC with Deterministic Updates. Technical
Report INS-E0607, CWI, Amsterdam, The Netherlands, 2006.

